MRF13750H MRF13750HS
1
RF Device Data
NXP Semiconductors
RF Power LDMOS Transistors
N--Channel Enhancement--Mode Lateral MOSFETs
These 750 W CW transistors are designed for industrial, scientific and
medical (ISM) applications in the 700 to 1300 MHz frequency range. The
transistors are capable of CW or pulse power in narrowband operation.
Typical Performance: VDD =50Vdc
Frequency
(MHz) Signal Type
Pout
(W)
Gps
(dB)
D
(%)
915 (1) CW 750 19.3 67.1
915 (2) Pulse
(100 sec, 10% Duty Cycle)
850 20.5 69.2
1300 (3) CW 700 17.2 56.0
Load Mismatch/Ruggedness
Frequency
(MHz) Signal Type VSWR
Pin
(W)
Test
Voltage Result
915 (2) Pulse
(100 sec, 10%
Duty Cycle)
> 10:1 at all
Phase
Angles
15.9 Peak
(3 dB
Overdrive)
50 No Device
Degradation
1. Measured in 915 MHz narrowband reference circuit (page 5).
2. Measured in 915 MHz narrowband production test fixture (page 11).
3. Measured in 1300 MHz narrowband reference circuit (page 8).
Features
Internally input pre--matched for ease of use
Device can be used single--ended or in a push--pull configuration
Characterized for 30 to 50 V
Suitable for linear applications with appropriate biasing
Integrated ESD protection
Recommended driver: MRFE6VS25GN (25 W)
Included in NXP product longevity program with assured supply for a
minimum of 15 years after launch
Typical Applications
915 MHz industrial heating/welding systems
1300 MHz particle accelerators
Document Number: MRF13750H
Rev. 1, 01/2018
NXP Semiconductors
Technical Data
700–1300 MHz, 750 W CW, 50 V
RF POWER LDMOS TRANSISTORS
MRF13750H
MRF13750HS
(Top View)
Drain A
31
Figure 1. Pin Connections
42
Drain B
Gate A
Gate B
Note: The backside of the package is the
source terminal for the transistor.
NI--1230H--4S
MRF13750H
NI--1230S--4S
MRF13750HS
2017–2018 NXP B.V.
2
RF Device Data
NXP Semiconductors
MRF13750H MRF13750HS
Table 1. Maximum Ratings
Rating Symbol Value Unit
Drain--Source Voltage VDSS –0.5, +105 Vdc
Gate--Source Voltage VGS –6.0, +10 Vdc
Operating Voltage VDD 55, +0 Vdc
Storage Temperature Range Tstg –65 to +150 C
Case Operating Temperature Range TC–40 to +150 C
Operating Junction Temperature Range (1,2) TJ–40 to +225 C
Total Device Dissipation @ TC=25C
Derate above 25C
PD1333
6.67
W
W/C
Table 2. Thermal Characteristics
Characteristic Symbol Value (2,3) Unit
Thermal Resistance, Junction to Case
CW: Case Temperature 82C, 700 W CW, 50 Vdc, IDQ(A+B) = 150 mA, 915 MHz
RJC 0.15 C/W
Thermal Impedance, Junction to Case
Pulse: Case Temperature 76C, 850 W Peak, 100 sec Pulse Width,
10% Duty Cycle, 50 Vdc, IDQ(A+B) = 200 mA, 915 MHz
ZJC 0.014 C/W
Table 3. ESD Protection Characteristics
Test Methodology Class
Human Body Model (per JESD22--A114) 2, passes 2500 V
Charge Device Model (per JESD22--C101) C3, passes 1200 V
Table 4. Electrical Characteristics (TA=25C unless otherwise noted)
Characteristic Symbol Min Typ Max Unit
Off Characteristics (4)
Gate--Source Leakage Current
(VGS =5Vdc,V
DS =0Vdc)
IGSS 1 Adc
Drain--Source Breakdown Voltage
(VGS =0Vdc,I
D=10A)
V(BR)DSS 105 Vdc
Zero Gate Voltage Drain Leakage Current
(VDS =55Vdc,V
GS =0Vdc)
IDSS 1 Adc
Zero Gate Voltage Drain Leakage Current
(VDS = 105 Vdc, VGS =0Vdc)
IDSS 10 Adc
On Characteristics
Gate Threshold Voltage (4)
(VDS =10Vdc,I
D= 275 Adc)
VGS(th) 1.3 1.72 2.3 Vdc
Gate Quiescent Voltage
(VDD =50Vdc,I
DQ(A+B) = 200 mAdc, Measured in Functional Test)
VGS(Q) 1.7 2.2 2.7 Vdc
Drain--Source On--Voltage (4)
(VGS =10Vdc,I
D=2.8Adc)
VDS(on) 0.1 0.23 0.6 Vdc
Dynamic Characteristics (4,5)
Reverse Transfer Capacitance
(VDS =50Vdc30 mV(rms)ac @ 1 MHz, VGS =0Vdc)
Crss 1.94 pF
Output Capacitance
(VDS =50Vdc30 mV(rms)ac @ 1 MHz, VGS =0Vdc)
Coss 63.8 pF
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.nxp.com/RF/calculators.
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.
4. Each side of device measured separately.
5. Part internally input pre--matched.
(continued)
MRF13750H MRF13750HS
3
RF Device Data
NXP Semiconductors
Table 4. Electrical Characteristics (TA=25C unless otherwise noted) (continued)
Characteristic Symbol Min Typ Max Unit
Functional Tests (In NXP Narrowband Production Test Fixture, 50 ohm system) VDD =50Vdc,I
DQ(A+B) = 200 mA, Pout = 850 W Peak
(85 W Avg.), f = 915 MHz, 100 sec Pulse Width, 10% Duty Cycle
Power Gain Gps 19.5 20.5 21.5 dB
Drain Efficiency D66.0 69.2 %
Table 5. Load Mismatch/Ruggedness (In NXP Narrowband Production Test Fixture, 50 ohm system) IDQ(A+B) = 200 mA
Frequency
(MHz) Signal Type VSWR
Pin
(W) Test Voltage, VDD Result
915 Pulse
(100 sec, 10% Duty Cycle)
> 10:1 at all
Phase Angles
15.9 Peak
(3 dB Overdrive)
50 No Device Degradation
Table 6. Ordering Information
Device Tape and Reel Information Package
MRF13750HR5
R5 Suffix = 50 Units, 56 mm Tape Width, 13--inch Reel
NI--1230H--4S
MRF13750HSR5 NI--1230S--4S
4
RF Device Data
NXP Semiconductors
MRF13750H MRF13750HS
TYPICAL CHARACTERISTICS
1000 –1.854
Slope (mV/C)
IDQ (mA)
1
100
02010
VDS, DRAIN--SOURCE VOLTAGE (VOLTS)
Figure 2. Capacitance versus Drain--Source Voltage
C, CAPACITANCE (pF)
10
Measured with 30 mV(rms)ac @ 1 MHz
VGS =0Vdc
Note: Each side of device measured separately.
10000
30 40 50
1000
Figure 3. Normalized VGS versus Quiescent
Current and Case Temperature
NORMALIZED VGS(Q)
TC, CASE TEMPERATURE (C)
1.06
1.04
1.02
1
0.98
0.96
0.94
100–50 0–25 25 50 75
VDD =50Vdc
200
500
750
0.92
1.08
Coss
Crss
IDQ(A+B) = 200 mA
500 mA
750 mA
1000 mA
–2.168
–1.992
–1.903
250
108
90
TJ, JUNCTION TEMPERATURE (C)
106
105
104
110 130 150 170 190
MTTF (HOURS)
210 230
107
VDD =50Vdc
26.2 Amps
22.3 Amps
ID= 17.3 Amps
Figure 4. MTTF versus Junction Temperature CW
Note: MTTF value represents the total cumulative operating time
under indicated test conditions.
MTTF calculator available at http:/www.nxp.com/RF/calculators.
MRF13750H MRF13750HS
5
RF Device Data
NXP Semiconductors
915 MHz NARROWBAND REFERENCE CIRCUIT 3.03.8(7.6 cm 9.7 cm)
Table 7. 915 MHz Narrowband Performance (In NXP Reference Circuit, 50 ohm system)
VDD =50Vdc,I
DQ(A+B) = 150 mA, Pin =8.8W
Frequency
(MHz)
Signal
Type
Pout
(W)
Gps
(dB)
D
(%)
915 CW 750 19.3 67.1
6
RF Device Data
NXP Semiconductors
MRF13750H MRF13750HS
915 MHz NARROWBAND REFERENCE CIRCUIT 3.03.8(7.6 cm 9.7 cm)
Figure 5. MRF13750H Narrowband Reference Circuit Component Layout 915 MHz
*C2, C3 and C4 are mounted vertically.
C5 C7
R1
R11
R2
C6 C8
R3
C15 R7
R6
R4
R5 U1
R9
R8
C14
C13 C11C9
C2*
C3*
C4*
C10 C12
R10
Q2
C1
Rev. 0D94455
Q1
Table 8. MRF13750H Narrowband Reference Circuit Component Designations and Values 915 MHz
Part Description Part Number Manufacturer
C1, C2, C3, C4, C5, C6, C11, C12 47 pF Chip Capacitor ATC100B470JT500XT ATC
C7, C8, C15 1 F Chip Capacitor GRM21BR71H105KA12L Murata
C9, C10 1000 pF Chip Capacitor ATC100B102JT50XT ATC
C13, C14 470 F, 100 V Electrolytic Capacitor MCGPR100V477M16X32--RH Multicomp
Q1 RF Power LDMOS Transistor MRF13750H NXP
Q2 NPN Bipolar Transistor BC847ALT1G ON Semiconductor
R1, R2 10  1/4 W Chip Resistor CRCW120610R0JNEA Vishay
R3 5kMulti--turn Cermet Trimmer Potentiometer 3224W--1--502E Bourns
R4 20 k 1/10 W Chip Resistor RR1220P--203--B--T5 Susumu
R5 4.7 k 1/10 W Chip Resistor RR1220P--472--D Susumu
R6, R8 1.2 k 1/8 W Chip Resistor CRCW08051K20FKEA Vishay
R7 10  1/8 W Chip Resistor CRCW080510R0FKEA Vishay
R9 2.2 k 1/8 W Chip Resistor CRCW08052K20JNEA Vishay
R10 4.7 k 1/2 W Chip Resistor CRCW12104K70FKEA Vishay
R11 2 1/2 W Chip Resistor ERJ--14YJ2R0U Panasonic
U1 Voltage Regulator 5 V, Micro8 LP2951ACDMR2G ON Semiconductor
PCB Rogers TC600, 0.025”, r=6.15 D94455 MTL
MRF13750H MRF13750HS
7
RF Device Data
NXP Semiconductors
TYPICAL CHARACTERISTICS 915 MHz
NARROWBAND REFERENCE CIRCUIT
Pin, INPUT POWER (WATTS)
16
0
Pout, OUTPUT POWER (WATTS)
624
900
0
VDD =50Vdc,I
DQ = 150 mA, f = 915 MHz
1081214
800
700
600
500
400
300
200
100
915 690 800
f
(MHz)
P1dB
(W)
P3dB
(W)
Figure 6. CW Output Power versus Input Power
20
18
16
Pout, OUTPUT POWER (WATTS)
Figure 7. Power Gain and Drain Efficiency
versus CW Output Power
Gps, POWER GAIN (dB)
D, DRAIN EFFICIENCY (%)
19
17
21
0 100 200
80
70
60
50
40
30
20
22
90
23
D
Gps
VDD =50Vdc,I
DQ = 150 mA, f = 915 MHz
400
15
300 500 600 700 800 900
10
f
MHz
Zsource
Zload
915 0.58 + j0.24 0.59 + j1.19
Zsource = Test circuit impedance as measured from
gate to ground.
Zload = Test circuit impedance as measured
from drain to ground.
Figure 8. Narrowband Series Equivalent Source and Load Impedance 915 MHz
Input
Matching
Network
Device
Under
Test
Output
Matching
Network
Zsource Zload
50
50
8
RF Device Data
NXP Semiconductors
MRF13750H MRF13750HS
1300 MHz NARROWBAND REFERENCE CIRCUIT 3.03.9(7.6 cm 9.9 cm)
Table 9. 1300 MHz Narrowband Performance (In NXP Reference Circuit, 50 ohm system)
VDD =50Vdc,I
DQ(A+B) = 150 mA, Pin =11W
Frequency
(MHz)
Signal
Type
Pout
(W)
Gps
(dB)
D
(%)
1300 CW 700 17.2 56.0
MRF13750H MRF13750HS
9
RF Device Data
NXP Semiconductors
1300 MHz NARROWBAND REFERENCE CIRCUIT 3.03.9(7.6 cm 9.9 cm)
Figure 9. MRF13750H Narrowband Reference Circuit Component Layout 1300 MHz
C5
R11
R1
C4
C8
C2
C3
C9
C1
C6
C7 C14
R6
R2
R7
C10
C11
R4
R5
Q2
R9
R8
C12
C13
R3
U1
D100209
R10
Rev. 0
Q1
Table 10. MRF13750H Narrowband Reference Circuit Component Designations and Values 1300 MHz
Part Description Part Number Manufacturer
C1, C4, C5, C10, C11 24 pF Chip Capacitor ATC100B240JT500XT ATC
C2, C3 18 pF Chip Capacitor ATC100B180JT500XT ATC
C6, C7, C14 1 F Chip Capacitor GRM21BR71H105KA12L Murata
C8, C9 1000 pF Chip Capacitor ATC100B102JT50XT ATC
C12, C13 470 F, 100 V Electrolytic Capacitor MCGPR100V477M16X32-RH Multicomp
R1, R2 10 , 1/4 W Chip Resistor CRCW120610R0JNEA Vishay
R3 5kMulti--turn Cermet Trimmer Potentiometer 3224W-1-502E Bourns
R4 20 k, 1/8 W Chip Resistor CRCW080520K0FKEA Vishay
R5 4.7 k, 1/8 W Chip Resistor CRCW08054K70FKEA Vishay
R6, R8 1.2 k, 1/8 W Chip Resistor CRCW08051K20FKEA Vishay
R7 10 , 1/8 W Chip Resistor CRCW080510R0FKEA Vishay
R9 2.2 k, 1/8 W Chip Resistor CRCW08052K20JNEA Vishay
R10 4.7 k, 1/2 W Chip Resistor CRCW12104K70FKEA Vishay
R11 3.3 , 1/2 W Chip Resistor ERJ-14YJ3R3U Panasonic
Q1 RF Power LDMOS Transistor MRF13750H NXP
Q2 NPN Bipolar Transistor BC847ALT1G ON Semiconductor
U1 Voltage Regulator 5 V, Micro8 LP2951ACDMR2G ON Semiconductor
PCB Arlon TC350, 0.020,r=3.5 D100209 MTL
10
RF Device Data
NXP Semiconductors
MRF13750H MRF13750HS
TYPICAL CHARACTERISTICS 1300 MHz
NARROWBAND REFERENCE CIRCUIT
Pin, INPUT POWER (WATTS)
500
400
Pout, OUTPUT POWER (WATTS)
300
201612084
600
700
0
800
VDD =50Vdc,I
DQ(A+B) = 150 mA, f = 1300 MHz
200
100
1300 600 710
f
(MHz)
P1dB
(W)
P3dB
(W)
Figure 10. CW Output Power versus Input Power
Pout, OUTPUT POWER (WATTS)
Figure 11. Power Gain and Drain Efficiency
versus CW Output Power
Gps, POWER GAIN (dB)
D, DRAIN EFFICIENCY (%)
17.5
17
19
0 100
55
45
35
25
20
D
Gps
16
16.5
18
18.5
19.5
50
40
30
20
60
VDD =50Vdc,I
DQ(A+B) = 150 mA, f = 1300 MHz
200 300 400 500 600 700 800
f
MHz
Zsource
Zload
1300 0.64 + j1.92 0.39 + j0.92
Zsource = Test circuit impedance as measured from
gate to ground.
Zload = Test circuit impedance as measured
from drain to ground.
Figure 12. Narrowband Series Equivalent Source and Load Impedance 1300 MHz
Input
Matching
Network
Device
Under
Test
Output
Matching
Network
Zsource Zload
50
50
MRF13750H MRF13750HS
11
RF Device Data
NXP Semiconductors
915 MHz NARROWBAND PRODUCTION TEST FIXTURE 4.06.0(10.2 cm 15.2 cm)
C20*
C21*
C16*
Figure 13. MRF13750H Narrowband Production Test Fixture Component Layout 915 MHz
*C14, C15, C16, C17, C18, C19, C20 and C21 are mounted vertically.
C2
C17*
C23
C4 C6
C8
R2
C13 L2
C14* C15* C18*
C19*
C12 L1
C11
R1
C7
C1 C5
C3 C24
C25
C9
C10
B2
C22
C27 C29
C26 C28
B1
CUT OUT AREA
Rev. 0
D87851
Coax1
Coax2
Coax3
Coax4
Table 11. MRF13750H Narrowband Production Test Fixture Component Designations and Values 915 MHz
Part Description Part Number Manufacturer
B1, B2 RF Bead, Short 2743019447 Fair--Rite
C1, C2 22 F, 35 V Tantalum Capacitor T491X226K035AT Kemet
C3, C4 2.2 F Chip Capacitor C1825C225J5RAC Kemet
C5, C6 0.1 F Chip Capacitor CDR33BX104AKWS AVX
C7, C8, C22, C23 36 pF Chip Capacitor ATC100B360JT500XT ATC
C9, C10 10 pF Chip Capacitor ATC100B100JT500XT ATC
C11 13 pF Chip Capacitor ATC100B130JT500XT ATC
C12, C13 12 pF Chip Capacitor ATC100B120JT500XT ATC
C14, C15 7.5 pF Chip Capacitor ATC100B7R5CT500XT ATC
C16, C17, C18, C19, C20, C21 36 pF Chip Capacitor ATC100B360JT500XT ATC
C24, C25 0.01 F Chip Capacitor C1825C103K1GAC--TU Kemet
C26, C27, C28, C29 470 F, 63 V Electrolytic Capacitor MCGPR63V477M13X26--RH Multicomp
Coax1, 2, 3, 4 25 , Semi Rigid Coax, 2.2Shield Length UT--141C--25 Micro Coax
L1, L2 5 nH Inductor A02TKLC Coilcraft
R1, R2 10 , 3/4 W Chip Resistor CRCW201010R0FKEF Vishay
PCB Arlon, AD255A, 0.03,r=2.55 D87851 MTL
12
RF Device Data
NXP Semiconductors
MRF13750H MRF13750HS
TYPICAL CHARACTERISTICS 915 MHz, TC=25_C
PRODUCTION TEST FIXTURE
56
54
48
52
38363428 3230
58
60
26
50
62
Pin, INPUT POWER (dBm)
Pout, OUTPUT POWER (dBm) PEAK
0
VGS, GATE--SOURCE VOLTAGE (VOLTS)
Figure 14. Output Power versus Gate--Source
Voltage at a Constant Input Power
0
Pout, OUTPUT POWER (WATTS) PEAK
1200
1000
800
600
400
1.5 2 2.5 3
Pin =8.8W
Pin =4.4W
0.5 1
VDD = 50 Vdc, f = 915 MHz
Pulse Width = 100 msec, 10% Duty Cycle
200
915 802 912
f
(MHz)
P1dB
(W)
P3dB
(W)
Figure 15. Output Power versus Input Power
24
22
20
Pout, OUTPUT POWER (WATTS) PEAK
Figure 16. Power Gain and Drain Efficiency
versus Output Power and Quiescent Current
Gps, POWER GAIN (dB)
D, DRAIN EFFICIENCY (%)
23
21
30 100 1000
0
80
70
60
50
40
30
20
90
D
19
18
10
D
VDD =50Vdc,I
DQ(A+B) = 200 mA, f = 915 MHz
Pulse Width = 100 sec, 10% Duty Cycle
17
15
16
20 100 1000
10
80
70
60
50
40
30
20
90
Pout, OUTPUT POWER (WATTS) PEAK
Figure 17. Power Gain and Drain Efficiency
versus Output Power
Gps, POWER GAIN (dB)
D, DRAIN EFFICIENCY (%)
0
Pout, OUTPUT POWER (WATTS) PEAK
Figure 18. Power Gain versus Output Power
and Drain--Source Voltage
24
Gps, POWER GAIN (dB)
21
20
19
18
17
600 800 1000
23
22
VDD =30V
200 400
16
17
TC= –40_C
21
20
19
18
22
23
24
35 V
Gps
0
VDD =50Vdc,I
DQ(A+B) = 200 mA, f = 915 MHz
Pulse Width = 100 msec, 10% Duty Cycle
46
44
40 42 44
16
15
25_C
85_C
85_C25_C
–40_C15
12
14
13
40 V
45 V 50 V
VDD = 50 Vdc, f = 915 MHz
Pulse Width = 100 sec, 10% Duty Cycle
200 mA
400 mA 600 mA
800 mA
1000 mA
200 mA
400 mA
600 mA
800 mA
IDQ(A+B) = 1000 mA
IDQ(A+B) = 200 mA, f = 915 MHz
Pulse Width = 100 sec, 10% Duty Cycle
Gps
MRF13750H MRF13750HS
13
RF Device Data
NXP Semiconductors
915 MHz NARROWBAND PRODUCTION TEST FIXTURE
f
MHz
Zsource
Zload
915 3.46 j1.76 2.39 + j3.92
Zsource = Test fixture impedance as measured from
gate to gate, balanced configuration.
Zload = Test fixture impedance as measured from
drain to drain, balanced configuration.
Figure 19. Narrowband Series Equivalent Source and Load Impedance 915 MHz
Input
Matching
Network
Device
Under
Test
Output
Matching
Network
--
-- +
+
Zsource Zload
50
50
14
RF Device Data
NXP Semiconductors
MRF13750H MRF13750HS
PACKAGE DIMENSIONS
MRF13750H MRF13750HS
15
RF Device Data
NXP Semiconductors
16
RF Device Data
NXP Semiconductors
MRF13750H MRF13750HS
MRF13750H MRF13750HS
17
RF Device Data
NXP Semiconductors
18
RF Device Data
NXP Semiconductors
MRF13750H MRF13750HS
PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS
Refer to the following resources to aid your design process.
Application Notes
AN1908: Solder Reflow Attach Method for High Power RF Devices in Air Cavity Packages
AN1955: Thermal Measurement Methodology of RF Power Amplifiers
Engineering Bulletins
EB212: Using Data Sheet Impedances for RF LDMOS Devices
Software
Electromigration MTTF Calculator
RF High Power Model
.s2p File
Development Tools
Printed Circuit Boards
To Download Resources Specific to a Given Part Number:
1. Go to http://www.nxp.com/RF
2. Search by part number
3. Click part number link
4. Choose the desired resource from the drop down menu
REVISION HISTORY
The following table summarizes revisions to this document.
Revision Date Description
0Dec. 2017 Initial release of data sheet
1Jan. 2018 On Characteristics, VGS(Q): Min and Max values updated to reflect recent test results of the device, p. 2
MRF13750H MRF13750HS
19
RF Device Data
NXP Semiconductors
How to Reach Us:
Home Page:
nxp.com
Web Support:
nxp.com/support
Information in this document is provided solely to enable system and software
implementers to use NXP products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits based on the information
in this document. NXP reserves the right to make changes without further notice to any
products herein.
NXP makes no warranty, representation, or guarantee regarding the suitability of its
products for any particular purpose, nor does NXP assume any liability arising out of the
application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters
that may be provided in NXP data sheets and/or specifications can and do vary in
different applications, and actual performance may vary over time. All operating
parameters, including “typicals,” must be validated for each customer application by
customer’s technical experts. NXP does not convey any license under its patent rights
nor the rights of others. NXP sells products pursuant to standard terms and conditions of
sale, which can be found at the following address: nxp.com/SalesTermsandConditions.
NXP and the NXP logo are trademarks of NXP B.V. All other product or service names
are the property of their respective owners.
E2017–2018 NXP B.V.
Document Number: MRF13750H
Rev. 1, 01/2018