D CIATEL INNOVATION and EXCELLENCE PRELIMINARY PRODUCT DATA FEATURES 14-bit resolution 10MHz minimum sampling rate No missing codes over full military temperature range Ideal for both time and frequency-domain applications Excellent THD (-81dB) and SNR (76dB) e Edge-triggered Small, 24-pin, ceramic DDIP or SMT e Requires only +5V and -5.2V supplies e Low-power, 2 Watts Low cost GENERAL DESCRIPTION The low-cost ADS-947 is a 14-bit, 1OMHz sampling A/D converter. This device accurately samples full-scale input signals up to Nyquist frequencies with no missing codes. Excellent differential nonlinearity error (DNL), signal-to-noise ratio (SNR}, and total harmonic distortion (THD) make the ADS-947 the ideal choice for both time-domain (CCD/FPA imaging, scanners, process control) and frequency-domain (radar, telecommunications, spectrum analysis) applications. The functionally complete ADS-947 contains a fast-settling sample/hold amplifier, a subranging (two-pass) A/D converter, an internal reference, timing/control logic, and error-correction circuitry. Digital input and output levels are TTL. The ADS- 947 only requires the rising edge of a start convert pulse to operate. Requiring only +5V and 5.2V supplies, the ADS-947 typically dissipates just 2 Watts. The device is offered with a bipolar input range of +2V. Models are available for use in either commercial (0 to +70C) or military 55 to +125C) operating ADS-947 14-Bit, 10MHz Sampling A/D Converters INPUT/OUTPUT CONNECTIONS PIN FUNCTION PIN FUNCTION 1 BIT 1 (MSB) 24 ANALOG GROUND 2 BIT 2 23 OFFSET ADJUST 3 BIT 3 22 +5V ANALOG SUPPLY 4 BIT 4 21 ANALOG INPUT 5 BIT 5 20 5.2 SUPPLY 6 BIT 6 19 ANALOG GROUND 7 BIT 7 18 START CONVERT 8 BIT 8 17 DATA VALID g BIT 9 16 BIT 14 (LSB) 10 BIT 10 15 BIT 13 1 BIT 11 14 DIGITAL GROUND 12 BIT 12 13 +5V DIGITAL SUPPLY temperature ranges. A proprietary, auto-calibrating, error- correcting circuit allows the device to achieve specified performance over the full military temperature range. OFFSET ADJUST 23 L}-A~AA#*\AA- BUFFER |_t Le] 16 BIT 14 (LSB ANALOG INPUT 21 --~AA tc (LSB) FLASH | E \| |__po Lwm1 15 BIT 13 ADC 5 S -t| te, i2 BIT 12 Lb | 1 i v = te 11 BIT 11 = 10 BIT Io POWER AND GROUNDING z 5 tLe & (Le o ora eE_ REF L 5 o Oo tw = 45V ANALOG SUPPLY 22 DAC w i & BITS ~ re a 45V DIGITAL SUPPLY 13 x} Qo z So tw & [wl 6 Bits oa a a 5.2V SUPPLY 20 = pe 3 5 Bits ANALOG GROUND 19, 24 r Oo Lw} 4 BIT4 FLASH s bE aN a DIGITAL GROUND 14 ADC D # 5 Lr t- 3 BITS __ 2 w v |-| | 2 BIT2 z /-} | 1 BIT 1 (MSB) a d Z START CONVERT 18 TIMING AND . CONTROL Locic DATA VALID 17 + Figure 1. ADS-947 Functional Block Diagram DATEL, Inc., 11 Cabot Boulevard, Mansfield, MA 02048 (U.S.A.) - Tel: (508) 339-3000, (800) 233-2765 Fax: (508) 339-6356 - Email: datellit@meci.comADS-947 D LIATEL ABSOLUTE MAXIMUM RATINGS PHYSICAL/ENVIRONMENTAL PARAMETERS LIMITS UNITS PARAMETERS MIN. TYP. MAX. | UNITS +5Voppl (Pi 13, 22) Of +6 Vv it prtigT m.R g, -.2V ppl (Pi 20) Ot -5.5V V it D -347MC, GC 0 +70 c Digtt | p t{Pi 18) 03t +Vo0 +03 vit D -947MM, GM, 883 ~55 +125 Ig ptiPi 21) 45 vit Thimimpd 8jc _ 6 _ CAV tt L dTmprtr (io c d) +300 C Qc _ 34 _ CAN tt trg TmprtrR g -65 _ +156 C Pekg Tp e4pi,mtl idermiceDDP r MT W ght 046 (18grm) FUNCTIONAL SPECIFICATIONS (T =+25%, +Vo0=+5V,-Voo =-5.2V,10MH = mpligrt, d miimm3mi t wmp | th wisp efi d)} 425C Oto +70C 55 to +125C ANALOG INPUT MIN. TYP. MAX. MIN. TYP. MAX. MIN. TYP. MAX. | UNITS ptVitgR g $2 +2 +2 V It ptR Itc 250 250 250 Q ptC pelt c 6 15 6 15 6 15 pF DIGITAL INPUT L gleL vl L gic "1" +2.0 +2.0 +2.0 Vit L gic "0" _ _ +08 _ +0.8 _ _ +08 V it LgicL di g "1" +20 +20 +20 KC LgicL di g0" -20 _ -20 20 rs tC vitP itv Pl Width 10 20 10 20 10 20 STATIC PERFORMANCE RF it _ 14 _ _ 14 _ _ 14 _ Bit tgrl I orit (fi = 10k } _ 0.75 _ _ 0.75 _ _ +1 _ LB Diffr tl I orit (fi = 10kH } -0.95 10.5 +1.25 -0.95 +0.5 +1.25 -0.95 +0.5 +15 LB File! bdlt cere 40.15 +04 0.15 +0.4 +04 +08 SoF R Bipir or omrdich t +0.1 403 +0.1 +0.3 +03 +0.6 %F R Glomrdch t J +02 +04 +0.2 +0.4 +04 +15 So MI IgG d= (fi =10kH ) 14 14 _ 14 Bit DYNAMIC PERFORMANCE P kHrm le (0.5dB) det 1MH -83 -76 -83 -75 _ -79 -f1 dB MH { 2.5MH #8 2 _ 78 -f2 73 68 dB 2.5MH t SMH _ -76 -7 _ -76 -f1 _ -74 -65 dB TtlH rm IcDit rl (0.5dB) det 1MH _ -81 -74 -81 -74 _ ii -70 dB MH { 2.5MH 76 71 -16 -f1 42 66 dB 2.5MH t 5M _ -74 -69 _ -74 -69 _ -69 -63 dB Ig H- | Rll (wi dit ri , -0.5dB) det 1MH f2 76 72 76 70 75 _ dB MH { 2.5MH 72 76 _ 72 76 _ 70 15 _ dB 2.9MH t SMH 71 75 71 75 70 75 _ dB Ig H- | Ru (adit ri ,-0.5dB) det 1MH 70 74 _ 70 f4 68 73 _ dB MH { 2.5MH 70 74 70 74 66 71 _ dB 2.5MH t 5M 68 73 68 73 _ 65 70 _ dB I _ 150 _ _ 150 _ _ 150 _ arm Tw -t trm dtl Dit rtl (f =245MH , 1.975MH ,f = 10MH , -0.5dB) -82 _ -82 _ -82 _ dB p tB dwidth (-3dB) mil ig | (-20dBi p t _ 30 _ _ 30 _ _ 30 _ MH Lrg ig 1(-0.5dBi pt 10 10 10 MH F dthr ghR]etl (fi =5MH) 85 85 85 dB IwRt _ +400 _ _ +400 _ _ +400 Vic prtr DI Tim _ +5 _ _ +5 _ _ +5 _ prtr ertit _ 2 _ _ 2 _ _ 2 p rmADS-947 425C 0 to +70C -55 to 4125C DYNAMIC PERFORMANCE (Cont.)| MIN. TYP. MAX. MIN. TYP, MAX. MIN. TYP, MAX. | UNITS fH eq 1 it) = Tim (t +0.003%F R,4 t p) 40 45 40 45 40 45 vivnitg Revr Tm 100 100 100 IDG vri Rt 10 10 10 MH DIGITAL OUTPUTS LgkeLvl L gic 1 +2.4 +24 +24 V tt L gic "0 +04 +04 +04 V tt LgicL di g"1 _ _ -4 _ _ -4 _ _ -4 m LgicL di g "0" +4 +4 +4 m tp t dig ff tBi r POWER REQUIREMENTS Pwr ppl Rg +5V ppl +4.75 +5.0 +5.25 44.75 +5.0 +5.25 +4.9 +5.0 +5.25 Vit 5.24 ppl -475 -5.2 -5.45 -4.75 -42 -5.45 -49 -2 -545 tt Pwr ppl Crr t +5 ppl +250 +260 +250 +260 +250 +260 m -5.24 ppl -200 -210 -200 210 200 -210 m PwrDl [pt 20 225 2.0 225 20 2.25 W tt Pwr ppl FJ ctl +01 +01 40.1 | %F R/S F tt pwr ppi h Mb bfr pplig tre vetpl . I @ flew biti q It 7 Full Scale Amplitude ppli dth cleck(tte vitpl jm th pr tdrigwimp (SNR + Distortion) - 1.76 + | 20 log ~-__ pid.thdvcm tbc ti Ic vitigdnigthi tim. Actual Input Amplitude @C taD TLtrthriptvitg r g 6.02 @ 10MH cl ckwith 20) p itiv pl widlhi dtr Uprd efi Thii th tmrqirdbfrth tptdtivid eth Ig tig. TimigDigrmFigr 4frmr dtil. ipti bckwithi th peifidr g.Th tmi Igor t difth iptd txc di22V 0H trti vitq). Th miimm pp vitg F+49 d-51VErtVoo r rqirdtr -66C pr ti |. Th mi im miimit rr +4764 d-4.95V wh prtig t+125T TECHNICAL NOTES 1. Obtaining fully specified performance from the ADS-947 requires careful attention to pe card layout and power supply decoupling. The devices analog and digital ground systems are connected to each other internally. For optimal performance, tie all ground pins (14, 19 and 24} directly toa large analog ground plane beneath the package. Bypass all power supplies to ground with 4.7uF tantalum capacitors in parallel with 0.1uF ceramic capacitors. Locate the bypass capacitors as close to the unit as possible. 2. The ADS-947 achieves its specified accuracies without the need for external calibration. If required, the devices small initial offset and gain errors can be reduced to zero using the adjustment circuitry shown in Figures 2 and 3. When using this circuitry, or any similar offset and gain calibration hardware, make adjustments following warmup. To avoid interaction, always adjust offset before gain. 3. Applying a start convert pulse while a conversion is in progress (EOC = logic 1) will initiate a new and inaccurate conversion cycle. Data for the interrupted and subsequent conversions will be invalid. 4. A passive bandpass filter is used at the input of the A/D for all production testing. 2k. GAIN A AY ADJUST ] +5 SIGNAL A 1 98K0. INPUT 50 WV ~ To Pin 24 1. ' of ADS-947 + -5Y Figure 2. Optional ADS-947 Gain Adjust Calibration CircuitADS-947 D LIATEL CALIBRATION PROCEDURE Any offset and/or gain calibration procedures should not be Gain Adjust Procedure implemented until devices are fully warmed up. To avoid . interaction, offset must be adjusted before gain. The ranges of 1. Apply +1.99963 to the ANALOG INPUT (pin 21). adjustment for the circuits in Figures 2 and 3 are guaranteed to 2. Adjust the gain potentiometer until all output bits are 1s compensate for the ADS-947s initial accuracy errors and may and the LSB flickers between 1 and 9. not be able to compensate for additional system errors. ; ; ; ; . a oo, 3. To confirm proper cperation of the device, vary the input A/D converters are calibrated by positioning their digital signal to obtain the output coding listed in Table 2. outputs exactly on the transition point between two adjacent digital output codes. This can be accomplished by connecting LED's to the digital outputs and adjusting until certain LED's flicker equally between on and off. Other approaches employ digital comparators or microcontrollers to detect when the outputs change from one code to the next. Table 1. Gain and Zero Adjust INPUT VOLTAGE ZERO ADJUST GAIN ADJUST RANGE +% LSB +FS -1% LSB Offset adjusting for the ADS-947 is normally accomplished at the point where the MSB is a 1 and all other output bits are 0's +2V +122uV +1.99963V and the LSB just changes from a Oto a1. This digital output transition ideally occurs when the applied analog input is +% LSB (+122u). Table 2. Output Coding for Bipolar Operation Gain adjusting is accomplished when all bits are 1s and the BIPOLAR INPUT VOLTAGE OFFSET BINARY LSB just changes from a1 toad. This transition ideally occurs SCALE (#2V RANGE) MSB LSB when the analog input is at +full scale minus 12 LSB's (+1.99963V). +FS -1 LSB +1.99976 44.4411:11411111 ; ; ; +1/2 FS +1.00000 11 0000 0000 0000 1. Apply a train of pulses to the START CONVERT input (pin 0 0.00000 40 0000 OC0C CDC0 18) so the converter is continucusly converting. _1/2 FS 1.00000 01 0G00 A000 D000 2. Apply +122uV to the ANALOG INPUT (pin 21). 3/4 FS 1.50000 00 1000 0000 00c0 ; . . . F +1 LSB -1.99976 00 C000 0000 0001 3. Adjust the offset potentiometer until the output bits are Es _2 00000 00 0000 0000 0000 10 0000 0000 0000 and the LSB flickers between 0 and 1. : -5.2V +5V D o 4.7pF 4.7uF | 4.7pF = STIS TT O.1pF O.1pF | 0.1pF i: tH 19 20 24 22,13 14/1 1 Bird asp) H 2 BIT2 ANALOG >t - 3 BIT3 i 4 BIT4 asY H 5 BITS H 6 BITS ZERO/ PIT? OFFSET 23 ADS-947 - 8 BITS ADJUST 20k2 i 9 BITS H10 BIT 19 -5V H11 BIT 11 H 12 BIT 12 START ___| = CONVERT 18 15 BIT13 H16 BIT 14 (LSB) H17 DATA VALID @ A single +5V supply should be used for both the +5V analog and +5V digital. It separate supplies are used, the difference between ihe two cannot exceed 100mV. Figure 3. Typical ADS-947 Connection DiagramD OATEL ADS-947 THERMAL REQUIREMENTS All DATEL sampling A/D converters are fully characterized and specified over operating temperature (case) ranges of Oto +70C and -55 to +125C. All room temperature (Ta = +25C) production testing is performed without the use of heat sinks or forced air cooling. Thermal impedance figures for each device are listed in their respective specification tables. These devices do not normally require heat sinks, however, standard precautionary design and layout procedures should be used to ensure devices do not overheat. The ground and power planes beneath the package, as well as all pcb signal runs to and from the device, should be as heavy as possible to help conduct heat away from the package. Electrically-insulating, thermally-conductive "pads" may be installed underneath the package. Devices should be soldered to boards rather than socketed, and of course, minimal air flow over the surface can greatly help reduce the package temperature. In more severe ambient conditions, the package/junction temperature of a given device can be reduced dramatically (typically 35%) by using one of DATEL's HS Series heat sinks. See Ordering Information for the assigned part number. See page 1-183 of tne DATEL Data Acquisition Components Catalog for more information on the HS Series. Request DATEL Application Note AN8, "Heat Sinks for DIP Data Converters", or contact DATEL directly, for additional information. N+1 N START: fe] CONVERT - 20ns Do typ. _ 10ns typ. : Hold INTERNAL S/H: Lo Lt 67ns typ. :; (64ns min., 70ns max.) ai 27ns typ. (23ns min ai Conversion Time 70ns typ. a DATA N-1 VALID INTERNAL EOC: : DATA: : VALID (e5ns) 30ns max. JL : Acquisition Time : : 40ns typ. . 30ns max.) : : : DATA N VALID (+5ns) ha: 45ns typ. _ at Dd OUTPUT | DATA DATA N-1 VALID ee s DATAN VALID _[~- LT ft 55ns typ. 4 INVALID DATA (+5ns) Notes: 1. Scale is approximately Sns per division. Sampling rate = 10MHz. 2. The start convert pasitive pulse width must be between 10 and 40ns or between 70 and 85ns (when sampling at 10MHz) to ensure proper operation. For sampling rates less than 10MHz, the start pulse can be wider than 85nsec, however a minimum pulse width low of 15nsec should be maintained. A 10MHz clock with a 20nsec positive pulse width is used for all production testing. Figure 4. ADS-947 Timing DiagramADS-947 D LIATEL DATA NOT AVAILABLE Figure 5. FFT Analysis of ADS-947 (fs = 8MHz, fin = 3.85MHz, Vin = -0.5qB, 16,384 point FFT) DATA NOT AVAILABLE Figure 6. ADS-947 Histogram and Differential NonlinearityADS-947 (4p6a-Say) Sneweyss pleog UoHenjeag /p6-Say 2 enbiy QD = a age! 2pZ10H t OLDS 65S 'S9S-1NS aSC10 z SBLOH FL wa o18s SHIHO NI Su SHOLSISSY TY al. wT cb Ace dU 29-19 6 oe eas dq "AOS SU SHCLIOWE YO T C514 D345 ASIMYSHLO SSSINN'L a b = an = zg SALON tT > = aast Las eal ones oL Jast SBL9 auvds sn = e 3 S2S1LOHPs Le = pepeo oe = o za T 297 uaz ran eh ce tr ast AAAS bho gh Ll mee as F- yesav - SL ok ; Ee on ha - : oo < = La stoo size fh Mb > 5 ape |= (EE ea ansq| atyo + 351 ce b vAS- p?> als ae orelia sla, lig Po jw wz e 76 6 Zz aaa Luapey Hiloz = re _ pt 0g] Ta anva viva ogo sz we }__y Aa Luvis}st 7 h Zora ana ype _ 4 3 [ ea nee [eb ASL hoot = f T Ss Dz z atoo snzz } = PL NIv 5 Fog Lz + Lz cae vast oa 80 [-> tz z elie Las440 FS T AT Hiloz p$ oz T ALi ONS | Ly fz LL 4 . } Gz 6 = = Le o AST = = e1 6 atLoo azz |, > z ne zo eT eT we = etl -s SLSLONRS = = za athoo slzz 90 4 lza' rc + Hiloz. | ASL- WASH AAAS trevend o Jes 53 ] dio 610 | | Yeuado) = PSEIH | og I 1, wn | zoro79 1 " T en Ob td LHSANCO he LYVLS (revendoy treuondo} advo. ANA | | ed slo l VAST ASLt NCOADS-947 D OATEL MECHANICAL DIMENSIONS INCHES (mm) 1.31 MAX. (33.27) * 24-Pin DDIP rararararararararararara Dimension Tolerances (urjess otherwise indicated): . LALALALILILILILALILILILG 2 place decimal {. XX) 0.00 (0.254) Versions 24 43 3 place dacimal (. XXX} +0.005 (+0.127} Lead Material: Kovar alloy 0.80 MAX, | ADS-947MC (20.32) Lead Finish: 50 microinches (minimum) gold plating over 100 microinches (nominal) nickel plating ADS-947MM 1 2 mirara if i ee ea) byt bd bd be Std ed ed ed ed ed Ld _| 0.100 TYP. (2.540) 1.100 (27 940) 0.285 MAX. 5.969] PIN 1 INDEX 1 0.200 MAX | / (5.080) 40.002 0.010 3.001 er EN) Te 0.190 MAX. lL 0.100 0.100 (4.826) - 2 ro | (2.540) SEATING 0.800 0.010 PLANE (15.240) a ne a 1.31 MAX. (33,02) 24-Pin L l l l l l l l l | L Dimension Tolerances (unless otherwise indicated) Surface Mount | Rseeayeasraseas, Versions 0.50 MAX Lead Materlal: Kovar alloy (20.32) Lead Finish: 50 microinches (minimum) gold plating over 100 microinches (nominal) nickel platin: ADS-947GC | = Ponnapneseiyens ADS-947GM | 12 ee 0.020 TYP. 0.060 TYP. 0.190 MAX. (0.508) (1.524) ose") (4.826) PIN 4 0.130 TYP. MAX. radius INDEX \ae (3.302) for any pin Yo _,| _, Le 0.100 (2.540) 0.020 0.010 TYP, (0.508) (0.254) 0.100 TYP. 0.040 (2.540) (1.016) ORDERING INFORMATION OPERATING 24-PIN MODEL TEMP. RANGE PACKAGE ACCESSORIES ADS-947MC 0 to +70C DDIP ADS-B947 = Evaluation Board (without ADS-947) ADS-947MM 55 to +125C DDIP HS-24 Heat Sink for all ADS-947 DDIP models ADS-947/883 55 to +125C DDIP ADS-947GC 0 to +70C SMT ADS-947GM 55 to +125C SMT Receptacles for PC board mounting can be ordered through AMP. Inc., Part # 3-331272-8 (Component Lead Socket), 24 required. For MIL-STD-883 product specifcation, contact DATEL. D OATEL INNOVATION and EXCELLENCE REGISTERED DS-0346 01/97 DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1151 DATEL (UK) LTD. Tadley, England Tel: (01256)-880444 Tel: (508) 339-3000 / Fax: (508) 339-6356 DATEL S.AR.L. Montigny Le Bretonneux, France Tel: 1-34-60-01-01 For immediate assistance: (800) 233-2765 DATEL GmbH Munchen, Germany Tel: 89-544334-0 DATEL KK Tokyo, Japan Tel: 3-3779-1031, Gsaka Tel: 6-354-2025 DATEL makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses te make, use, or sell equipment constructed in accordance therewith. Specifications are subject te change without notice. The DATEL lage is aregistered DATEL, Inc. trademark,