
1

Mixing C and Assembly Code with IAR
Embedded Workbench™ for FPSLIC™

Features
• Passing Variables between C and

Assembly Code Functions
• Calling Assembly Code Functions

from C
• Calling C Functions from

Assembly Code
• Writing Interrupt Functions in

Assembly Code
• Accessing Global Variables in

Assembly Code

Introduction
This application note describes how to
use C to control the program flow and
main program and assembly modules to
control time-critical I/O functions.

The application note also describes how
to set up and use the IAR C-compiler for
the FPSLIC controller in projects includ-
ing both C and assembly code. By mix-
ing C and assembly, designers can
combine the powerfu l C language
instructions with the effective hardware-
near assembly code instructions.

Table 1. The Pluses and Minuses of C and Assembly

Assembly C

+ Full control of resource usage
+ Compact/fast code in small applications
- Inefficient code in larger applications

- Cryptic code
- Hard to maintain
- Non-portable

+ Efficient code in larger applications
+ Structured code
+ Easy to maintain

+ Portable
- Limited control of resource usage
- Larger/slower code in small applications

Mixing C and
Assembly

Application
Note

Rev. 1976A–11/00

PDF.Support

FPSLIC2

Passing Variables between C and
Assembly Code Functions
When the IAR C-compiler is used for the FPSLIC, the reg-
ister file is segmented as shown in Figure 1.

Scratch registers are not preserved across function calls.
Local registers are preserved across function calls. The Y
register (R28:R29) is used as a data stack pointer to
SRAM. The scratch registers are used for passing parame-
ters and return values between functions.

When a function is called, the parameters to be passed to
the function are placed in the register file (registers
R16 - R23). When a function is returning a value, this value
is placed in the register file (registers R16 - R19), depend-
ing on the size of the parameters and the returned value.

Table 2 shows example placement of parameters when
calling a function.

Figure 1. Segments in the Register File

For a complete reference of the supported data types and
corresponding sizes, see the AVR® IAR Compiler
Reference Guide from IAR Systems, Data Representation
section.

Example C function call:
int get_port(unsigned char temp, int num)

When calling this C function, the 1-byte parameter temp is
placed in R16 and the 2-byte parameter num is placed in
R20:R21. The function returns a 2-byte value, which is
placed in R16:R17 after return from the function.

If a function is called with more than two parameters, the
first two parameters are passed to the function as shown
above. The remaining parameters are passed to the func-
tion on the data stack. If a function is called with a struct or
union as a parameter, a pointer to the structure is passed
on to the function on the data stack.

If a function needs to use any local registers, it first pushes
the registers on the data stack. Then the return value from
the function is placed at addresses R16 - R19, depending
on the size of the returned value.

Scratch Register R0 - R3

Local Register R4 - R15

Scratch Register R16 - R23

Local Register R24 - R27

Data Stack Pointers (Y) R28 - R29

Scratch Register R30 - R31

Table 2. Placement and Parameters of C Functions

Function Parameter 1 Registers Parameter 2 Registers

func (char, char) R16 R20

func (char, int) R16 R20, R21

func (int, long) R16, R17 R20, R21, R22, R23

func (long, long) R16, R17, R18, R19 R20, R21, R22, R23

FPSLIC

3

Example 1

Calling Assembly Code Functions from a C Program – with No Parameters and No
Return Value
Example C Code for Calling Assembly Code Function

#include "ioat94k.h"

extern void get_port(void);/* Function prototype for asm function */

void main(void)

{

DDRD = 0x00; /* Initialization of the I/O ports */

DDRE = 0xFF;

while(1) /* Infinite loop */

{

get_port(); /* Call the assembler function */

}

}

The Called Assembly Code Function
NAME get_port

#include "ioat94k.h" ; The #include file must be within the module

PUBLIC get_port ; Declare symbols to be exported to C function

RSEG CODE ; This code is relocatable, RSEG

get_port; ; Label, start execution here

in R16,PIND ; Read in the pind value

swap R16 ; Swap the upper and lower nibble

out PORTE,R16 ; Output the data to the port register

ret ; Return to the main function

END

FPSLIC4

Calling Assembly Code Functions from a C Function – Passing Parameters and
Returning Values
This example C function is calling an assembler function.
The 1-byte mask is passed as a parameter to the assem-
bly function; mask is placed in R16 before the function call.

The assembly function is returning a value in R16 to the C
variable value.

#include "ioat94k.h"

char get_port(char mask); /*Function prototype for asm function */

void C_task main(void)

{

DDRE=0xFF

while(1) /* Infinite loop*/

{

char value, temp; /* Decalre local variables*/

temp = 0x0F;

value = get_port(temp); /* Call the assembler function */

if(value==0x01)

{

/* Do something if value is 0x01 */

PORTE=~(PORTE); /* Invert value on Port E */

}

}

}

The Called Assembly Code Function
NAME get_port

#include "ioat94k.h" ; The #include file must be within the module

PUBLIC get_port ; Symbols to be exported to C function

RSEG CODE ; This code is relocatable, RSEG

get_port: ; Label, start execution here

in R17,PIND ; Read in the pind value

eor R16,R17 ; XOR value with mask(in R16) from main()

swap R16 ; Swap the upper and lower nibble

rol R16 ; Rotate R16 to the left

brcc ret0 ; Jump if the carry flag is cleared

ldi r16,0x01 ; Load 1 into R16, return value

ret ; Return

ret0: clr R16 ; Load 0 into R16, return value

ret ; Return

END

FPSLIC

5

Calling C Functions from Assembly Code
Assuming that the assembly function calls the standard C
library routine rand() to get a random number to output
to the port. The rand() routine returns an integer value

(16 bits). This example writes only the lower byte/8 bits to
a port.

NAME get_port

#include "ioat94k.h" ; The #include file must be within the module

EXTERN rand, max_val ; External symbols used in the function

PUBLIC get_port ; Symbols to be exported to C function

RSEG CODE ; This code is relocatable, RSEG

get_port: ; Label, start execution here

clr R16 ; Clear R16

sbis PIND,0 ; Test if PIND0 is 0

rcall rand ; Call RAND() if PIND0 = 0

out PORTE,R16 ; Output random value to PORTE

lds R17,max_val ; Load the global variable max_val

cp R17,R16 ; Check if number higher than max_val

brlt nostore ; Skip if not

sts max_val,R16 ; Store the new number if it is higher

nostore:

ret ; Return

END

FPSLIC6

Writing Interrupt Functions in Assembly
Interrupt functions can be written in assembly. Interrupt
functions cannot have any parameters or return any value.
Because an interrupt can occur anywhere in the program
execution, it needs to store all used registers on the stack.

Care must be taken to avoid problems with the interrupt
functions in C when assembler code is placed at the inter-
rupt vector addresses.

Example Code Placed at Interrupt Vector
NAME EXT_INT1

#include "ioat94k.h"

extern c_int1

COMMON INTVEC(1) ; Code in interrupt vector segment

ORG INT1_vect ; Place code at interrupt vector

RJMP c_int1 ; Jump to assembler interrupt function

ENDMOD

;The interrupt vector code performs a jump to the function c_int1:

NAME c_int1

#include "ioat94k.h"

PUBLIC c_int1 ; Symbols to be exported to C function

RSEG CODE ; This code is relocatable, RSEG

c_int1:

st -Y,R16 ; Push used registers on stack

in R16,SREG ; Read status register

st -Y,R16 ; Push Status register

in R16,PIND ; Load in value from port D

com R16 ; Invert it

out PORTE,R16 ; Output inverted value to port E

ld R16,Y+ ; Pop status register

out SREG,R16 ; Store status register

ld R16,Y+ ; Pop Register R16

reti

END

FPSLIC

7

Accessing Global Variables in Assembly
The main program introduces a global variable called
max_val. To access this variable in assembly, the variable
must be declared as EXTERN max_val. To access the

variable, the assembly function uses LDS (Load Direct
from SRAM) and STS (STore Direct to SRAM) instructions.

#include "ioat94k.h"

char max_val;

void get_port(void); /* Function prototype for assembler function */

void C_task main(void)

{

DDRE = 0xFF; /* Set port E as output */

while(1) /* Infinite loop */

{

get_port(); /* Call assembly code function */

}

}

NAME get_port

#include "ioat94k.h" ; The #include file must be within the module

EXTERN rand, max_val ; External symbols used in the function

PUBLIC get_port ; Symbols to be exported to C function

RSEG CODE ; This code is relocatable, RSEG

get_port: ; Label, start execution here

clr R16 ; Clear R16

sbis PIND,0 ; Test if PIND0 is 0

rcall rand ; Call RAND() if PIND0 = 0

out PORTE,R16 ; Output random value to PORTE

lds R17,max_val ; Load the global variable max_val

cp R17,R16 ; Check if number higher than max_val

brlt nostore ; Skip if not

sts max_val,R16 ; Store the new number if it is higher

nostore:

ret ; Return

END

References
AVR® IAR Compiler Reference Guide from IAR Systems

© Atmel Corporation 2000.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard war-
ranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for
any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without
notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual prop-
erty of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are
not authorized for use as critical components in life support devices or systems.

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL (408) 441-0311
FAX (408) 487-2600

Europe
Atmel SarL
Route des Arsenaux 41
Casa Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500

Asia
Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
Atmel Japan K.K.
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Atmel Colorado Springs
1150 E. Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL (719) 576-3300
FAX (719) 540-1759

Atmel Rousset
Zone Industrielle
13106 Rousset Cedex
France
TEL (33) 4-4253-6000
FAX (33) 4-4253-6001

Atmel Smart Card ICs
Scottish Enterprise Technology Park
East Kilbride, Scotland G75 0QR
TEL (44) 1355-803-000
FAX (44) 1355-242-743

Atmel Grenoble
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex
France
TEL (33) 4-7658-3000
FAX (33) 4-7658-3480

Atmel FPSLIC Hotline
1-(408) 436-4119

Atmel FPSLIC e-mail
fpslic@atmel.com

FAQ
Available from Website

Fax-on-Demand
North America:
1-(800) 292-8635

International:
1-(408) 441-0732

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

BBS
1-(408) 436-4309

 Printed on recycled paper.

1976A–11/00/xM

Marks bearing ® and/or ™ are registered trademarks and trademarks of Atmel Corporation.

Terms and product names in this document may be trademarks of others.

	Features
	Introduction
	Passing Variables between C and Assembly Code Functions
	Example 1
	Calling Assembly Code Functions from a C Program – with No Parameters and No Return Value
	Example C Code for Calling Assembly Code Function
	The Called Assembly Code Function

	Calling Assembly Code Functions from a C Function – Passing Parameters and Returning�Values
	The Called Assembly Code Function

	Calling C Functions from Assembly Code
	Writing Interrupt Functions in Assembly
	Example Code Placed at Interrupt Vector

	Accessing Global Variables in Assembly
	References

