2013-2019 Microchip Technology Inc. DS20005216B-page 1
MCP3914
Features:
Eight Synchronous Sampling 24-Bit Resolution
Delta-Sigma Analog-to-Digital (A/D) Converters
94.5 dB SINAD, -107 dBc Total Harmonic
Distortion (THD) (up to 35th Harmonic), 112 dBFS
SFDR for Each Channel
Enables 0.1% Typical Active Power Measurement
Error Over a 10,000:1 Dynamic Range
Advanced Security Features:
- 16-Bit Cyclic Redundancy Check (CRC)
Checksum on All Communications for Secure
Data Transfers
- 16-Bit CRC checksum and Interrupt Alert for
Register Map Configuration
- Register Map Lock with 8-Bit Secure Key
2.7V-3.6V AVDD, DVDD
Programmable Data Rate Up to 125 ksps:
- 4 MHz Maximum Sampling Frequency
- 16 MHz Maximum Master Clock
Oversampling Ratio Up to 4096
Ultra-Low Power Shutdown Mode with < 10 µA
-122 dB Crosstalk Between Channels
Low-Drift 1.2V Internal Voltage Reference: 9 ppm/°C
Differential Voltage Reference Input Pins
High-Gain Programmable Gain Amplifier (PGA)
on Each Channel (up to 32 V/V)
Phase Delay Compensation with 1 µs Time
Resolution
Separate Data Ready Pin for Easy Synchronization
Individual 24-Bit Digital Offset and Gain Error
Correction for Each Channel
High-Speed 20 MHz Serial Peripheral Interface
(SPI) with Mode 0,0 and 1,1 Compatibility
Continuous Read/Write Modes for Minimum
Communication Time with Dedicated
16/32-Bit Modes
Available in a 40-Lead UQFN Package
Extended Temperature Range: -40°C to +125°C
Applications:
Polyphase Energy Meters
Energy Metering and Power Measurement
Automotive
Portable Instrumentation
Medical and Power Monitoring
Audio/Voice Recognition
Description:
The MCP3914 is a 3V eight-channel Analog Front End
(AFE) containing eight synchronous sampling Delta-
Sigma Analog-to-Digital Converters (ADC), eight PGAs,
phase delay compensation block, low-drift internal volt-
age reference, Digital Offset and Gain Error Calibration
registers, and high-speed 20 MHz SPI compatible serial
interface.
The MCP3914 ADCs are fully configurable with features
such as: 16/24-bit resolution, Oversampling Ratio (OSR)
from 32 to 4096, gain from 1x to 32x, independent
shutdown and Reset, dithering and auto-zeroing. The
communication is largely simplified with 8-bit commands,
including various continuous Read/Write modes and
16/24/32-bit data formats that can be accessed by the
Direct Memory Access (DMA) of an 8, 16 or 32-bit MCU,
and with the separate Data Ready pin that can directly be
connected to an Interrupt Request (IRQ) input of an MCU.
The MCP3914 includes advanced security features to
secure the communications and the configuration set-
tings, such as a CRC-16 checksum on both serial data
outputs and static register map configuration. It also
includes a register map lock through an 8-bit secure key
to stop unwanted WRITE commands from processing.
The MCP3914 is capable of interfacing with a variety of
voltage and current sensors, including shunts, Current
Transformers, Rogowski coils and Hall effect sensors.
Package Type
2
35
3
4
5
6
13 14 15 16 17
27
26
25
24
23
38 37 36 34
CH0+
CH0-
CH1+
CH2+
CH1-
CH4-
CH5+
CH6+
CH5-
NC
DGND
DVDD
SDI
SDO
RESET
AVDD
EP
41
7
CH2-
8
CH3-
18
CH6-
19
CH7-
28
29
33
SCK
32
CS
OSC2
DR
9
CH3+
22
31
OSC1/CLKI
20
CH7+
AGND
1
10
11 12
CH4+
40 39
DVDD
AVDD
DGND
30
21
REFIN+/
AGND
REFIN-
DGND
NC
NC
NC
NC
* Includes Exposed Thermal Pad (EP); see Ta b l e 3 - 1 .
OUT
MCP3914 (5x5 UQFN*)
3V Eight-Channel Analog Front End
MCP3914
DS20005216B-page 2 2013-2019 Microchip Technology Inc.
Functional Block Diagram
AMCLK
DMCLK/DRCLK
REFIN+/OUT
REFIN-
POR
AVDD
Monitoring
Vref+Vref-
VREFEXT
Voltage
Reference
Vref
+
-
Xtal Oscillator
MCLK OSC1
OSC2
Digital SPI
Interface
Clock
Generation
DMCLK OSR<2:0>
PRE<1:0>
ANALOG DIGITAL
SDO
SDI
SCK
DR
RESET
CS
AGND DGND
AVDD DVDD
CH0+
CH0- -
+
PGA
OSR/2-
PHASE1 <11:0>
MOD<3:0>
'6
Modulator
+
OFFCAL_CH0
<23:0>
GAINCAL_CH0
<23:0>
X
DATA_CH0<23:0>
)
SINC3+
SINC1
Phase
Shifter
Offset
Cal.
Gain
Cal.
CH1+
CH1- -
+
PGA
OSR/2
MOD<7:4>
'6
Modulator
+
OFFCAL_CH1
<23:0>
GAINCAL_CH1
<23:0>
X
DATA_CH1<23:0>
)
SINC3+
SINC1
Phase
Shifter
Offset
Cal.
Gain
Cal.
CH2+
CH2- -
+
PGA
OSR/2-
PHASE1 <23:12>
MOD<11:8>
'6
Modulator
+
OFFCAL_CH2
<23:0>
GAINCAL_CH2
<23:0>
X
DATA_CH2<23:0>
)
SINC3+
SINC1
Phase
Shifter
Offset
Cal.
Gain
Cal.
CH3+
CH3- -
+
PGA
OSR/2
MOD<15:12>
'6
Modulator
+
OFFCAL_CH3
<23:0>
GAINCAL_CH3
<23:0>
X
DATA_CH3<23:0>
)
SINC3+
SINC1
Phase
Shifter
Offset
Cal.
Gain
Cal.
CH4+
CH4- -
+
PGA
OSR/2-
PHASE0<11:0>
MOD<19:16>
'6
Modulator
+
OFFCAL_CH4
<23:0>
GAINCAL_CH4
<23:0>
X
DATA_CH4<23:0>
)
SINC3+
SINC1
Phase
Shifter
Offset
Cal.
Gain
Cal.
CH5+
CH5- -
+
PGA
OSR/2
MOD<23:20>
'6
Modulator
+
OFFCAL_CH5
<23:0>
GAINCAL_CH5
<23:0>
X
DATA_CH5<23:0>
)
SINC3+
SINC1
Phase
Shifter
Offset
Cal.
Gain
Cal.
CH6+
CH6- -
+
PGA
OSR/2-
PHASE0<23:12>
MOD<27:24>
'6
Modulator
+
OFFCAL_CH6
<23:0>
GAINCAL_CH6
<23:0>
X
DATA_CH6<23:0>
)
SINC3+
SINC1
Phase
Shifter
Offset
Cal.
Gain
Cal.
CH7+
CH7- -
+
PGA
OSR/2
MOD<31:28>
'6
Modulator
+
OFFCAL_CH7
<23:0>
GAINCAL_CH7
<23:0>
X
DATA_CH7<23:0>
)
SINC3+
SINC1
Phase
Shifter
Offset
Cal.
Gain
Cal.
POR
DVDD
Monitoring
2013-2019 Microchip Technology Inc. DS20005216B-page 3
MCP3914
1.0 ELECTRICAL
CHARACTERISTICS
Absolute Maximum Ratings†
VDD ..................................................................... -0.3V to 4.0V
Digital inputs and outputs w.r.t. AGND................. -0.3V to 4.0V
Analog input w.r.t. AGND ..................................... ....-2V to +2V
VREF input w.r.t. AGND .............................. -0.6V to VDD + 0.6V
Storage temperature .....................................-65°C to +150°C
Ambient temp. with power applied ................-65°C to +125°C
Soldering temperature of leads (10 seconds) ............. +300°C
ESD on the analog inputs (HBM,MM) .................1.5 kV, 300V
ESD on all other pins (HBM,MM) ...........................2 kV, 300V
† Notice: Stresses above those listed under “Absolute
Maximum Ratings” may cause permanent damage to
the device. This is a stress rating only and functional
operation of the device at those or any other condi-
tions, above those indicated in the operational listings
of this specification, is not implied. Exposure to
maximum rating conditions for extended periods may
affect device reliability.
1.1 Electrical Specifications
TABLE 1-1: ANALOG SPECIFICATIONS
Electrical Specifications: Unless otherwise indicated, all parameters apply at AVDD = DVDD = 2.7V to 3.6V;
MCLK = 4 MHz; PRE[1:0] = 00; OSR = 256; GAIN = 1; VREFEXT = 0; CLKEXT = 1; DITHER[1:0] = 11; BOOST[1:0] = 10;
VCM =0V; T
A= -40°C to +125°C; VIN = -0.5 dBFS @ 50/60 Hz on all channels.
Characteristic Sym Min Typ Max Units Conditions
ADC Performance
Resolution
(no missing codes)
24 bits OSR = 256 or greater
Sampling Frequency fS(DMCLK) 1 4 MHz For maximum condition,
BOOST[1:0] = 11
Output Data Rate fD(DRCLK) 4 125 ksps For maximum condition,
BOOST[1:0] = 11,
OSR = 32
Analog Input Absolute
Voltage on CHn+/- Pins,
n Between 0 and 7
CHn+/- -1 +1 V All analog input channels,
measured to AGND
Analog Input
Leakage Current
IIN ±1 nA RESET[7:0] = 11111111,
MCLK running continuously
Differential Input
Voltage Range
(CHn+ – CHn-) -600/GAIN +600/GAIN mV VREF =1.2V,
proportional to VREF
Offset Error VOS -1 0.2 1 mV Note 5
Offset Error Drift 0.5 µV/°C
Note 1: Dynamic performance specified at -0.5 dB below the maximum differential input value,
VIN =1.2V
PP =424mV
RMS @50/60Hz, V
REF = 1.2V. See Section 4.0 “Terminology and Formulas” for
definition. This parameter is established by characterization and not 100% tested.
2: For these operating currents, the following Configuration bit settings apply: SHUTDOWN[7:0] = 00000000,
RESET[7:0] = 00000000, VREFEXT = 0, CLKEXT = 0.
3: For these operating currents, the following Configuration bit settings apply: SHUTDOWN[7:0] = 11111111,
VREFEXT = 1, CLKEXT = 1.
4: Measured on one channel versus all others channels. The average of crosstalk performance over all
channels (see Figure 2-32 for individual channel performance).
5: Applies to all gains. Offset and gain errors depend on PGA gain setting; see Section 2.0 “Typical
Performance Curves” for typical performance.
6: Outside of this range, ADC accuracy is not specified. An extended input range of ±2V can be applied
continuously to the part with no damage.
7: For proper operation and for optimizing ADC accuracy, AMCLK should be limited to the maximum frequency
defined in Ta b l e 5 - 2 , as a function of the BOOST and PGA settings chosen. MCLK can take larger values as
long as the prescaler settings (PRE[1:0]) limit AMCLK = MCLK/PRESCALE in the defined range in Ta b l e 5 - 2 .
MCP3914
DS20005216B-page 4 2013-2019 Microchip Technology Inc.
Gain Error GE -4 +4 % Note 5
Gain Error Drift 1 ppm/°C
Integral Nonlinearity INL 5 ppm
Measurement Error ME 0.1 % Measured with a 10,000:1 dynamic
range (from 600 mVPeak to
60 µVPeak), AVDD =DV
DD =3V,
measurement points averaging
time: 20 seconds, measured on
each channel pair (CH0/1, CH2/3,
CH4/5 and CH6/7)
Differential Input
Impedance
ZIN 232 kG = 1, proportional to 1/AMCLK
142 kG = 2, proportional to 1/AMCLK
72 kG = 4, proportional to 1/AMCLK
38 kG = 8, proportional to 1/AMCLK
36 kG = 16, proportional to 1/AMCLK
33 kG = 32, proportional to 1/AMCLK
Signal-to-Noise and
Distortion Ratio (Note 1)
SINAD 92 94.5 dB
Total Harmonic Distortion
(Note 1)
THD -107 -103 dBc Includes the first 35 harmonics
Signal-to-Noise Ratio
(Note 1)
SNR 92 95 dB
Spurious Free Dynamic
Range (Note 1)
SFDR 112 dBFS
Crosstalk (50, 60 Hz) CTALK -122 dB Note 4
AC Power
Supply Rejection
AC PSRR -73 dB AVDD =DV
DD =3V+0.6 V
PP
,
50/60 Hz, 100/120 Hz
DC Power
Supply Rejection
DC PSRR -73 dB AVDD = DVDD = 2.7V to 3.6V
DC Common-mode
Rejection
DC CMRR -100 dB VCM from -1V to +1V
TABLE 1-1: ANALOG SPECIFICATIONS (CONTINUED)
Electrical Specifications: Unless otherwise indicated, all parameters apply at AVDD = DVDD = 2.7V to 3.6V;
MCLK = 4 MHz; PRE[1:0] = 00; OSR = 256; GAIN = 1; VREFEXT = 0; CLKEXT = 1; DITHER[1:0] = 11; BOOST[1:0] = 10;
VCM =0V; T
A= -40°C to +125°C; VIN = -0.5 dBFS @ 50/60 Hz on all channels.
Characteristic Sym Min Typ Max Units Conditions
Note 1: Dynamic performance specified at -0.5 dB below the maximum differential input value,
VIN =1.2V
PP =424mV
RMS @50/60Hz, V
REF = 1.2V. See Section 4.0 “Terminology and Formulas” for
definition. This parameter is established by characterization and not 100% tested.
2: For these operating currents, the following Configuration bit settings apply: SHUTDOWN[7:0] = 00000000,
RESET[7:0] = 00000000, VREFEXT = 0, CLKEXT = 0.
3: For these operating currents, the following Configuration bit settings apply: SHUTDOWN[7:0] = 11111111,
VREFEXT = 1, CLKEXT = 1.
4: Measured on one channel versus all others channels. The average of crosstalk performance over all
channels (see Figure 2-32 for individual channel performance).
5: Applies to all gains. Offset and gain errors depend on PGA gain setting; see Section 2.0 “Typical
Performance Curves” for typical performance.
6: Outside of this range, ADC accuracy is not specified. An extended input range of ±2V can be applied
continuously to the part with no damage.
7: For proper operation and for optimizing ADC accuracy, AMCLK should be limited to the maximum frequency
defined in Ta b l e 5 - 2 , as a function of the BOOST and PGA settings chosen. MCLK can take larger values as
long as the prescaler settings (PRE[1:0]) limit AMCLK = MCLK/PRESCALE in the defined range in Ta b l e 5 - 2 .
2013-2019 Microchip Technology Inc. DS20005216B-page 5
MCP3914
Internal Voltage Reference
Tolera n ce VREF 1.176 1.2 1.224 V VREFEXT = 0, TA = +25°C only
Temperature Coefficient TCVREF 9 ppm/°C TA = -40°C to +125°C,
VREFEXT = 0,
VREFCAL[7:0] = 0x50
Output Impedance ZOUTVREF —0.6 kVREFEXT = 0
Internal Voltage Reference
Operating Current
AIDDVREF 54 µA VREFEXT = 0,
SHUTDOWN[7:0] = 11111111
Voltage Reference Input
Input Capacitance 10 pF
Differential Input Voltage
Range (VREF+ – VREF-)
VREF 1.1 1.3 V VREFEXT = 1
Absolute Voltage on
REFIN+ Pin
VREF+V
REF-+1.1 V
REF- + 1.3 V VREFEXT = 1
Absolute Voltage
REFIN- Pin
VREF- -0.1 +0.1 V REFIN- should be connected to
AGND when VREFEXT = 0
Master Clock Input
Master Clock Input
Frequency Range
fMCLK 20 MHz CLKEXT = 1 (Note 7)
Crystal Oscillator Operating
Frequency Range
fXTAL 1 20 MHz CLKEXT = 0 (Note 7)
Analog Master Clock AMCLK 16 MHz (Note 7)
Crystal Oscillator
Operating Current
DIDDXTAL 80 µA CLKEXT = 0
Power Supply
Operating Voltage, Analog AVDD 2.7 3.6 V
Operating Voltage, Digital DVDD 2.7 3.6 V
Operating Current, Analog
(Note 2)
IDD,A 5.8 7.5 mA BOOST[1:0] = 00
7.2 10 mA BOOST[1:0] = 01
9.8 12.5 mA BOOST[1:0] = 10
17.2 22 mA BOOST[1:0] = 11
TABLE 1-1: ANALOG SPECIFICATIONS (CONTINUED)
Electrical Specifications: Unless otherwise indicated, all parameters apply at AVDD = DVDD = 2.7V to 3.6V;
MCLK = 4 MHz; PRE[1:0] = 00; OSR = 256; GAIN = 1; VREFEXT = 0; CLKEXT = 1; DITHER[1:0] = 11; BOOST[1:0] = 10;
VCM =0V; T
A= -40°C to +125°C; VIN = -0.5 dBFS @ 50/60 Hz on all channels.
Characteristic Sym Min Typ Max Units Conditions
Note 1: Dynamic performance specified at -0.5 dB below the maximum differential input value,
VIN =1.2V
PP =424mV
RMS @50/60Hz, V
REF = 1.2V. See Section 4.0 “Terminology and Formulas” for
definition. This parameter is established by characterization and not 100% tested.
2: For these operating currents, the following Configuration bit settings apply: SHUTDOWN[7:0] = 00000000,
RESET[7:0] = 00000000, VREFEXT = 0, CLKEXT = 0.
3: For these operating currents, the following Configuration bit settings apply: SHUTDOWN[7:0] = 11111111,
VREFEXT = 1, CLKEXT = 1.
4: Measured on one channel versus all others channels. The average of crosstalk performance over all
channels (see Figure 2-32 for individual channel performance).
5: Applies to all gains. Offset and gain errors depend on PGA gain setting; see Section 2.0 “Typical
Performance Curves” for typical performance.
6: Outside of this range, ADC accuracy is not specified. An extended input range of ±2V can be applied
continuously to the part with no damage.
7: For proper operation and for optimizing ADC accuracy, AMCLK should be limited to the maximum frequency
defined in Ta b l e 5 - 2 , as a function of the BOOST and PGA settings chosen. MCLK can take larger values as
long as the prescaler settings (PRE[1:0]) limit AMCLK = MCLK/PRESCALE in the defined range in Ta b l e 5 - 2 .
MCP3914
DS20005216B-page 6 2013-2019 Microchip Technology Inc.
1.2 Serial Interface Characteristics
Operating Current, Digital IDD,D 0.65 1.1 mA MCLK = 4 MHz,
proportional to MCLK (Note 2)
2.8 mA MCLK = 16 MHz,
proportional to MCLK (Note 2)
Shutdown Current, Analog IDDS,A —0.01 2 µAAV
DD pin only (Note 3)
Shutdown Current, Digital IDDS,D —0.01 7 µADV
DD pin only (Note 3)
Pull-Down Current on
OSC2 Pin (External Clock
mode only)
IOSC2 35 µA CLKEXT = 1
TABLE 1-2: SERIAL DC CHARACTERISTICS
Electrical Specifications: Unless otherwise indicated, all parameters apply at DVDD = 2.7V to 3.6V,
TA = -40°C to +125°C, CLOAD = 30 pF, applies to all digital I/Os.
Characteristic Sym Min Typ Max Units Conditions
High-Level Input Voltage VIH 0.7 DVDD V Schmitt triggered
Low-Level Input Voltage VIL ——0.3 DV
DD V Schmitt triggered
Input Leakage Current ILI ——±1µA
CS = DVDD,
VIN = DGND to DVDD
Output Leakage Current ILO ——±1µA
CS = DVDD,
VOUT = DGND or DVDD
Hysteresis of
Schmitt Trigger Inputs
VHYS —500 mVDV
DD = 3.3V only (Note 2)
Low-Level Output Voltage VOL ——0.2DV
DD VI
OL = +1.7 mA
High-Level Output Voltage VOH 0.8 DVDD —— VI
OH = -1.7 mA
Internal Capacitance
(all inputs and outputs)
CINT ——7 pFT
A = +25°C, SCK = 1.0 MHz,
DVDD = 3.3V (Note 1)
Note 1: This parameter is periodically sampled and not 100% tested.
2: This parameter is established by characterization and not production tested.
TABLE 1-1: ANALOG SPECIFICATIONS (CONTINUED)
Electrical Specifications: Unless otherwise indicated, all parameters apply at AVDD = DVDD = 2.7V to 3.6V;
MCLK = 4 MHz; PRE[1:0] = 00; OSR = 256; GAIN = 1; VREFEXT = 0; CLKEXT = 1; DITHER[1:0] = 11; BOOST[1:0] = 10;
VCM =0V; T
A= -40°C to +125°C; VIN = -0.5 dBFS @ 50/60 Hz on all channels.
Characteristic Sym Min Typ Max Units Conditions
Note 1: Dynamic performance specified at -0.5 dB below the maximum differential input value,
VIN =1.2V
PP =424mV
RMS @50/60Hz, V
REF = 1.2V. See Section 4.0 “Terminology and Formulas” for
definition. This parameter is established by characterization and not 100% tested.
2: For these operating currents, the following Configuration bit settings apply: SHUTDOWN[7:0] = 00000000,
RESET[7:0] = 00000000, VREFEXT = 0, CLKEXT = 0.
3: For these operating currents, the following Configuration bit settings apply: SHUTDOWN[7:0] = 11111111,
VREFEXT = 1, CLKEXT = 1.
4: Measured on one channel versus all others channels. The average of crosstalk performance over all
channels (see Figure 2-32 for individual channel performance).
5: Applies to all gains. Offset and gain errors depend on PGA gain setting; see Section 2.0 “Typical
Performance Curves” for typical performance.
6: Outside of this range, ADC accuracy is not specified. An extended input range of ±2V can be applied
continuously to the part with no damage.
7: For proper operation and for optimizing ADC accuracy, AMCLK should be limited to the maximum frequency
defined in Ta b l e 5 - 2 , as a function of the BOOST and PGA settings chosen. MCLK can take larger values as
long as the prescaler settings (PRE[1:0]) limit AMCLK = MCLK/PRESCALE in the defined range in Ta b l e 5 - 2 .
2013-2019 Microchip Technology Inc. DS20005216B-page 7
MCP3914
TABLE 1-3: SERIAL AC CHARACTERISTICS
Electrical Specifications: Unless otherwise indicated, all parameters apply at DVDD = 2.7 to 3.6 V,
TA = -40°C to +125°C, GAIN = 1, CLOAD = 30 pF
Characteristic Sym Min Typ Max Units Conditions
Serial Clock Frequency fSCK —— 20MHz
CS Setup Time tCSS 25 ns
CS Hold Time tCSH 50 ns
CS Disable Time tCSD 50 ns
Data Setup Time tSU 5— ns
Data Hold Time tHD 10 ns
Serial Clock High Time tHI 20 ns
Serial Clock Low Time tLO 20 ns
Serial Clock Delay Time tCLD 50 ns
Serial Clock Enable Time tCLE 50 ns
Output Valid from SCK Low tDO 25 ns
Output Hold Time tHO 0— nsNote 1
Output Disable Time tDIS 25 ns Note 1
Reset Pulse Width (RESET)t
MCLR 100 ns
Data Transfer Time to DR
(Data Ready)
tDODR —25nsNote 2
Modulator Mode Entry to
Modulator Data Present
tMODSU —100ns
Data Ready Pulse Low Time tDRP 1/(2 x DMCLK) — µs
Note 1: This parameter is periodically sampled and not 100% tested.
2: This parameter is established by characterization and not production tested.
TABLE 1-4: TEMPERATURE SPECIFICATIONS TABLE
Electrical Specifications: Unless otherwise indicated, all parameters apply at AVDD = 2.7V to 3.6V, DVDD = 2.7 to 3.6V.
Parameters Sym Min Typ Max Units Conditions
Temperature Ranges
Operating Temperature Range TA-40 +125 °C Note 1
Storage Temperature Range TA-65 +150 °C
Thermal Package Resistances
Thermal Resistance, 40-Lead 5x5 UQFN JA —41 °C/W
Note 1: The internal junction temperature (TJ) must not exceed the absolute maximum specification of +150°C.
MCP3914
DS20005216B-page 8 2013-2019 Microchip Technology Inc.
FIGURE 1-1: Serial Output Timing Diagram.
FIGURE 1-2: Serial Input Timing Diagram.
FIGURE 1-3: Data Ready Pulse/Sampling Timing Diagram.
H
FIGURE 1-4: Timing Waveforms.
tCSH
tDIS
tHI tLO
fSCK
CS
SCK
SDO MSB Out LSB Out
SDI
Mode 1,1
Mode 0,0
tHO
tDO
DON’T CARE
CS
SCK
SDI LSB InMSB In
Mode 1,1
Mode 0,0
tCSS
tSU tHD
tCSD
tCSH
tCLD
tCLE
SDO High-Z
tHI tLO
fSCK
DR
SCK
tDRP
SDO
1/fD
tDODR
CS
VIH
Waveform for tDIS
High-Z
90%
10%
tDIS
SDO
SCK
SDO
tDO
Timing Waveform for tDO
2013-2019 Microchip Technology Inc. DS20005216B-page 9
MCP3914
2.0 TYPICAL PERFORMANCE CURVES
Note: Unless otherwise indicated, AVDD = 3V; DVDD = 3V; TA = +25°C; MCLK = 4 MHz; PRESCALE = 1;
OSR = 256; GAIN = 1; Dithering = Maximum; VIN = -0.5 dBFS @ 60 Hz on all channels; VREFEXT = 0;
CLKEXT = 1; BOOST[1:0] = 10.
FIGURE 2-1: Spectral Response.
FIGURE 2-2: Spectral Response.
FIGURE 2-3: Spectral Response.
FIGURE 2-4: Spectral Response.
FIGURE 2-5: Measurement Error
with 1-Point Calibration.
FIGURE 2-6: Measurement Error
with 2-Point Calibration.
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
-180
-160
-140
-120
-100
-80
-60
-40
-20
0
0 500 1000 1500 2000
Amplitude (dB)
Frequency (Hz)
VIN = -0.5 dBFS @ 60 Hz
fD= 3.9 ksps
OSR = 256
Ditering = Off
16 kVDPSOHV FFT
-200
-180
-160
-140
-120
-100
-80
-60
-40
-20
0
0 500 1000 1500 2000
Amplitude (dB)
Frequency (Hz)
VIN =-60dBFS@60Hz
fD= 3.9 ksps
OSR = 256
Ditering = Off
16 kVDPSOHV FFT
-200
-180
-160
-140
-120
-100
-80
-60
-40
-20
0
0 500 1000 1500 2000
Amplitude (dB)
Frequency (Hz)
VIN = -0.5 dBFS @ 60 Hz
fD= 3.9 ksps
OSR = 256
Ditering = Maximum
16 ksDPSOHV FFT
-200
-180
-160
-140
-120
-100
-80
-60
-40
-20
0 500 1000 1500 2000
Amplitude (dB)
Frequency (Hz)
VIN =-60dBFS@60Hz
fD= 3.9 ksps
OSR = 256
Ditering = Maximum
16 kVDPSOHV FFT
-1.0%
-0.5%
0.0%
0.5%
1.0%
0.01 0.1 1 10 100 1000
Measurement Error (%)
Current Channel Input Amplitude (mVPeak)
% Error Channel 0,1
% Error Channel 2,3
% Error Channel 4,5
% Error Channel 6,7
-1.0%
-0.5%
0.0%
0.5%
1.0%
0.01 0.1 1 10 100 1000
Measurement Error (%)
Current Channel Input Amplitude (mVPeak)
% Error Channel 0,1
% Error Channel 2,3
% Error Channel 4,5
% Error Channel 6,7
MCP3914
DS20005216B-page 10 2013-2019 Microchip Technology Inc.
Note: Unless otherwise indicated, AVDD = 3V; DVDD = 3V; TA = +25°C; MCLK = 4 MHz; PRESCALE = 1;
OSR = 256; GAIN = 1; Dithering = Maximum; VIN = -0.5 dBFS @ 60 Hz on all channels; VREFEXT = 0;
CLKEXT = 1; BOOST[1:0] = 10.
FIGURE 2-7: THD Repeatability
Histogram.
FIGURE 2-8: Spurious Free Dynamic
Range Repeatability Histogram.
FIGURE 2-9: SINAD Repeatability
Histogram.
FIGURE 2-10: Output Noise Histogram.
FIGURE 2-11: THD vs.OSR.
FIGURE 2-12: SINAD vs. OSR.
-108.6
-108.5
-108.4
-108.3
-108.2
-108.1
-108
-107.9
-107.8
-107.7
-107.6
-107.5
-107.4
-107.3
-107.2
-107.1
Frequency of Occurrence
Total Harmonic Distortion (-dBc)
Frequency of Occurrence
Spurious Free Dynamic Range (dBFS)
94.4 94.45 94.5 94.55 94.6 94.65 94.7
Frequency Occurrence
Signtal-to-Noise Ratio (dB)
Frequency of Occurrence
Output Code (LSB)
Standard Deviation = 80.74 LSB
Noise = 9.62 µV
(16k samples)
-130
-125
-120
-115
-110
-105
-100
-95
-90
32 64 128 256 512 1024 2048 4096
Total Harmonic Distortion (dB)
Oversampling Ratio (OSR)
Dithering = Maximum
Dithering = Medium
Dithering = Minimum
Dithering = OFF
60
65
70
75
80
85
90
95
100
105
110
32 64 128 256 512 1024 2048 4096
Signal-to-Noise and Distortion
Ratio (dB)
Oversampling Ratio (OSR)
Dithering = Maximum
Dithering = Medium
Dithering = Minimum
Dithering = OFF
2013-2019 Microchip Technology Inc. DS20005216B-page 11
MCP3914
Note: Unless otherwise indicated, AVDD = 3V; DVDD = 3V; TA = +25°C; MCLK = 4 MHz; PRESCALE = 1;
OSR = 256; GAIN = 1; Dithering = Maximum; VIN = -0.5 dBFS @ 60 Hz on all channels; VREFEXT = 0;
CLKEXT = 1; BOOST[1:0] = 10.
L
FIGURE 2-13: SNR vs.OSR.
FIGURE 2-14: SFDR vs. OSR.
FIGURE 2-15: THD vs. MCLK.
FIGURE 2-16: SINAD vs. MCLK.
FIGURE 2-17: SNR vs. MCLK.
FIGURE 2-18: SFDR vs. MCLK.
0
20
40
60
80
100
120
32 64 128 256 512 1024 2048 4096
Signal-to-Noise Ratio (dB)
Oversampling Ratio (OSR)
Dithering = Maximum
Dithering = Medium
Dithering = Minimum
Dithering = OFF
80
85
90
95
100
105
110
115
120
32 64 128 256 512 1024 2048 4096
Spurious Free Dynamic Range
(dBFS)
Oversampling Ratio (OSR)
Dithering = Maximum
Dithering = Medium
Dithering = Minimum
Dithering = OFF
-110
-105
-100
-95
-90
-85
-80
-75
-70
-65
-60
2468101214161820
Total Harmonic Distortion (dB)
MCLK Frequency (MHz)
Boost = 00
Boost = 01
Boost = 10
Boost = 11
60
65
70
75
80
85
90
95
100
2468101214161820
Signal-to-Noise and Distortion
(dB)
MCLK Frequency (MHz)
Boost = 00
Boost = 11
Boost = 01
Boost = 10
60
65
70
75
80
85
90
95
100
2468101214161820
Signal-to-Noise Ratio (dB)
MCLK Frequency (MHz)
Boost = 00
Boost = 11
Boost = 01
Boost = 10
60
70
80
90
100
110
120
2468101214161820
Spurious Free Dynamic Range
(dBFS)
MCLK Frequency (MHz)
Boost = 00
Boost = 11
Boost = 01
Boost = 10
MCP3914
DS20005216B-page 12 2013-2019 Microchip Technology Inc.
Note: Unless otherwise indicated, AVDD = 3V; DVDD = 3V; TA = +25°C; MCLK = 4 MHz; PRESCALE = 1;
OSR = 256; GAIN = 1; Dithering = Maximum; VIN = -0.5 dBFS @ 60 Hz on all channels; VREFEXT = 0;
CLKEXT = 1; BOOST[1:0] = 10.
FIGURE 2-19: THD vs. Gain.
FIGURE 2-20: SINAD vs. Gain.
FIGURE 2-21: SNR vs. Gain.
FIGURE 2-22: SFDR vs. Gain.
FIGURE 2-23: THD vs. Input Signal
Amplitude.
FIGURE 2-24: SINAD vs. Input Signal
Amplitude.
-140
-120
-100
-80
-60
-40
-20
0
12481632
Total Harmonic Distorsion (dB)
Gain (V/V)
OSR = 32
OSR = 64
OSR = 128
OSR = 256
OSR = 512
OSR = 1024
OSR = 2048
OSR = 4096
0
20
40
60
80
100
120
12481632
Signal-to-Noise and Distortion
Ratio (dB)
Gain (V/V)
OSR = 32
OSR = 64
OSR = 128
OSR = 256
OSR = 512
OSR = 1024
OSR = 2048
OSR = 4096
0
20
40
60
80
100
120
12481632
Signal-to-Noise Ratio (dB)
Gain (V/V)
OSR = 32
OSR = 64
OSR = 128
OSR = 256
OSR = 512
OSR = 1024
OSR = 2048
OSR = 4096
0
20
40
60
80
100
120
140
12481632
Spurious Free Dynamic Range
(dBFS)
Gain (V/V)
OSR = 32
OSR = 64
OSR = 128
OSR = 256
OSR = 512
OSR = 1024
OSR = 2048
OSR = 4096
-120
-100
-80
-60
-40
-20
0.001 0.01 0.1 1 10 100 1000
Total Harmonic Distortion (dB)
Input Signal Amplitude (mVPK)
GAIN = 1x
GAIN = 2x
GAIN = 4x
GAIN = 8x
GAIN = 16x
GAIN = 32x
-20
0
20
40
60
80
100
0.001 0.01 0.1 1 10 100 1000
Signal-to-Noise and Distortion
Ratio (dB)
Input Signal Amplitude (mVPK)
GAIN = 1x
GAIN = 2x
GAIN = 4x
GAIN = 8x
GAIN = 16x
GAIN = 32x
2013-2019 Microchip Technology Inc. DS20005216B-page 13
MCP3914
Note: Unless otherwise indicated, AVDD = 3V; DVDD = 3V; TA = +25°C; MCLK = 4 MHz; PRESCALE = 1;
OSR = 256; GAIN = 1; Dithering = Maximum; VIN = -0.5 dBFS @ 60 Hz on all channels; VREFEXT = 0;
CLKEXT = 1; BOOST[1:0] = 10.
FIGURE 2-25: SNR vs. Input Signal
Amplitude.
FIGURE 2-26: SFDR vs. Input Signal
Amplitude.
FIGURE 2-27: SINAD vs. Input Frequency.
FIGURE 2-28: THD vs. Temperature.
FIGURE 2-29: SINAD vs. Temperature.
FIGURE 2-30: SNR vs. Temperature.
-20
0
20
40
60
80
100
0.001 0.01 0.1 1 10 100 1000
Signal-to-Noise Ratio (dB)
Input Signal Amplitude (mVPK)
GAIN = 1x
GAIN = 2x
GAIN = 4x
GAIN = 8x
GAIN = 16x
GAIN = 32x
0
20
40
60
80
100
120
140
0.001 0.01 0.1 1 10 100 1000
Spurious Free Dyanmic Range
(dBFS)
Input Signal Amplitude (mVPK)
GAIN = 1x
GAIN = 2x
GAIN = 4x
GAIN = 8x
GAIN = 16x
GAIN = 32x
0
20
40
60
80
100
120
10 100 1000 10000 100000
Signal-to-Noise and Distortion
Ratio (dB)
Signal Frequency (Hz)
OSR = 32
OSR = 64
OSR = 128
OSR = 256
OSR = 512
OSR = 1024
OSR = 2048
OSR = 4096
-120
-100
-80
-60
-40
-20
0
-50 -25 0 25 50 75 100 125
Total Harmonic Distortion (dB)
Temperature (°C)
GAIN = 1x
GAIN = 2x
GAIN = 4x
GAIN = 8x
GAIN = 16x
GAIN = 32x
0
10
20
30
40
50
60
70
80
90
100
-50 -25 0 25 50 75 100 125
Signal-to-Noise and Distortion
Reatio (dB)
Temperature (°C)
GAIN = 1x
GAIN = 2x
GAIN = 4x
GAIN = 8x
GAIN = 16x
GAIN = 32x
0
10
20
30
40
50
60
70
80
90
100
-50 -25 0 25 50 75 100 125
Signal-to-Noise Ratio (dB)
Temperature (°C)
GAIN = 1x
GAIN = 2x
GAIN = 4x
GAIN = 8x
GAIN = 16x
GAIN = 32x
MCP3914
DS20005216B-page 14 2013-2019 Microchip Technology Inc.
Note: Unless otherwise indicated, AVDD = 3V; DVDD = 3V; TA = +25°C; MCLK = 4 MHz; PRESCALE = 1;
OSR = 256; GAIN = 1; Dithering = Maximum; VIN = -0.5 dBFS @ 60 Hz on all channels; VREFEXT = 0;
CLKEXT = 1; BOOST[1:0] = 10.
FIGURE 2-31: SFDR vs. Temperature.
FIGURE 2-32: Crosstalk vs. Measured
Channel.
FIGURE 2-33: Offset vs. Temperature vs.
Gain.
FIGURE 2-34: Channel Offset Matching
vs. Temperature.
FIGURE 2-35: Gain Error vs. Temperature
vs. Gain.
FIGURE 2-36: Internal Voltage Reference
vs. Temperature.
0
20
40
60
80
100
120
-50 -25 0 25 50 75 100 125
Spurious Free Dyanmic Range
(dBFS)
Temperature (°C)
GAIN = 1x
GAIN = 2x
GAIN = 4x
GAIN = 8x
GAIN = 16x
GAIN = 32x
-140
-120
-100
-80
-60
-40
-20
0
01234567
Crosstalk (dB)
0HDVXUHG Channel*
SCK = 8 MHz
SCK = 13 MHz
SCK = 16 MHz
SCK = 20 MHz
* All other channels at maximum amplitude VIN =600mV
PK @60Hz
-1000
-800
-600
-400
-200
0
200
400
600
800
1000
-40 -20 0 20 40 60 80 100 120
Offset (µV)
Temperature (°C)
GAIN = 1x
GAIN = 2x
GAIN = 4x
GAIN = 8x
GAIN = 16x
GAIN = 32x
-1000
-800
-600
-400
-200
0
200
400
600
800
1000
-40 -20 0 20 40 60 80 100 120
Channel Offset (µV)
Temperature (°C)
Channel 0
Channel 1
Channel 2
Channel 3
Channel 4
Channel 5
Channel 6
Channel 7
-5
-3
-1
1
3
5
7
9
-40 -20 0 20 40 60 80 100 120
Gain Error (%)
Temperature (°C)
GAIN = 1x
GAIN = 2x
GAIN = 4x
GAIN = 8x
GAIN = 16x
GAIN = 32x
1.197
1.198
1.199
1.2
-40 -20 0 20 40 60 80 100 120 140
Internal Voltage Reference (V)
Temperature (°C)
2013-2019 Microchip Technology Inc. DS20005216B-page 15
MCP3914
Note: Unless otherwise indicated, AVDD = 3V; DVDD = 3V; TA = +25°C; MCLK = 4 MHz; PRESCALE = 1;
OSR = 256; GAIN = 1; Dithering = Maximum; VIN = -0.5 dBFS @ 60 Hz on all channels; VREFEXT = 0;
CLKEXT = 1; BOOST[1:0] = 10.
FIGURE 2-37: Internal Voltage Reference
vs. Supply Voltage.
FIGURE 2-38: Integral Nonlinearity
(Dithering Maximum).
FIGURE 2-39: Integral Nonlinearity
(Dithering Off).
FIGURE 2-40: Operating Current vs. MCLK
Frequency vs. Boost, VDD = 3.3V.
FIGURE 2-41: Operating Current vs. MCLK
Frequency vs. Boost, VDD = 2.7V.
1.1961
1.1962
1.1963
1.1964
1.1965
1.1966
1.1967
1.1968
1.1969
2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6
Internal Voltage Reference (V)
AVDD (V)
-10
-8
-6
-4
-2
0
2
4
6
8
10
-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
Integral Non Linearity Error
(ppm)
Input Voltage (V)
-10
-8
-6
-4
-2
0
2
4
6
8
10
-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
Integral Non Linearity Error
(ppm)
Input Voltage (V)
0
2
4
6
8
10
12
14
16
18
20
22
24
2 4 6 8 10 12 14 16 18 20
I
DD
(mA)
MCLK Frequency (MHz)
AIDD BOOST = 0.66
AIDD BOOST = 2
AIDD BOOST = 0.5
AIDD BOOST = 1
DIDD
0
2
4
6
8
10
12
14
16
18
20
22
24
2 4 6 8 10 12 14 16 18 20
I
DD
(mA)
MCLK )UHTXHQF\(MHz)
AIDD BOOST = 0.5 AIDD BOOST = 0.66
AIDD BOOST = 1 AIDD BOOST = 2
DIDD
MCP3914
DS20005216B-page 16 2013-2019 Microchip Technology Inc.
NOTES:
2013-2019 Microchip Technology Inc. DS20005216B-page 17
MCP3914
3.0 PIN DESCRIPTION
The description of the pins is listed in Ta b l e 3 - 1 .
TABLE 3-1: EIGHT-CHANNEL MCP3914 PIN FUNCTION
MCP3914
UQFN Symbol Function
1 CH2+ Noninverting Analog Input Pin for Channel 2
2 CH2- Inverting Analog Input Pin for Channel 2
3 CH3- Inverting Analog Input Pin for Channel 3
4 CH3+ Noninverting Analog Input Pin for Channel 3
5 NC No Connect
6 NC No Connect
7 CH4+ Noninverting Analog Input Pin for Channel 4
8 CH4- Inverting Analog Input Pin for Channel 4
9 CH5- Inverting Analog Input Pin for Channel 5
10 CH5+ Noninverting Analog Input Pin for Channel 5
11 CH6+ Noninverting Analog Input Pin for Channel 6
12 CH6- Inverting Analog Input Pin for Channel 6
13 CH7- Inverting Analog Input Pin for Channel 7
14 CH7+ Noninverting Analog Input Pin for Channel 7
15 REFIN+/OUT Noninverting Voltage Reference Input and Internal Reference Output Pin
16 REFIN- Inverting Voltage Reference Input Pin
17 AGND Analog Ground Pin, Return Path for Internal Analog Circuitry
18 AVDD Analog Power Supply Pin
19 NC No Connect
20 DVDD Digital Power Supply Pin
21 DGND Digital Ground Pin, Return Path for Internal Digital Circuitry
22 DR Data Ready Signal Output Pin
23 NC No Connect
24 DGND Digital Ground Pin, Return Path for Internal Digital Circuitry
25 OSC1/CLKI Oscillator Crystal Connection Pin or External Clock Input
26 OSC2 Oscillator Crystal Connection Pin
27 CS Serial Interface Chip Select Pin
28 SCK Serial Interface Clock Input Pin
29 SDO Serial Interface Data Output Pin
30 SDI Serial Interface Data Input Pin
31 RESET Master Reset Logic Input Pin
32 DGND Digital Ground Pin, Return Path for Internal Digital Circuitry
33 DVDD Digital Power Supply Pin
34 NC No Connect
35 AVDD Analog Power Supply Pin
36 AGND Analog Ground Pin, Return Path for Internal Analog Circuitry
37 CH0+ Noninverting Analog Input Pin for Channel 0
38 CH0- Inverting Analog Input Pin for Channel 0
39 CH1- Inverting Analog Input Pin for Channel 1
40 CH1+ Noninverting Analog Input Pin for Channel 1
41 EP Exposed Thermal Pad, must be Connected to AGND or Floating
MCP3914
DS20005216B-page 18 2013-2019 Microchip Technology Inc.
3.1 ADC Differential Analog Inputs
(CHn+/CHn-)
The CHn+/- pins (n comprised between 0 and 7) are
the eight fully differential analog voltage inputs for the
Delta-Sigma ADCs.
The linear and specified region of the channels are
dependent on the PGA gain. This region corresponds
to a differential voltage range of ±600 mV/Gain with
VREF = 1.2V.
The maximum absolute voltage with respect to AGND,
for each CHn+/- input pin, is ±1V with no distortion and
±2V with no breaking after continuous voltage. This
maximum absolute voltage is not proportional to the
VREF voltage.
3.2 Noninverting Reference Input,
Internal Reference Output
(REFIN+/OUT)
This pin is the noninverting side of the differential
voltage reference input for all ADCs or the internal volt-
age reference output.
When VREFEXT = 1, an external voltage reference
source can be used and the internal voltage reference
is disabled. When using an external differential voltage
reference, it should be connected to its VREF+ pin.
When using an external single-ended reference, it
should be connected to this pin.
When VREFEXT = 0, the internal voltage reference is
enabled and connected to this pin through a switch.
This voltage reference has minimal drive capability, and
thus needs proper buffering and bypass capacitances
(a 0.1 µF ceramic capacitor is sufficient in most cases)
if used as a voltage source.
If the voltage reference is only used as an internal
VREF
, adding bypass capacitance on REFIN+/OUT is
not necessary for keeping ADC accuracy, but a minimal
0.1 µF ceramic capacitance can be connected to avoid
EMI/EMC susceptibility issues due to the antenna,
created by the REFIN+/OUT pin, if left floating.
3.3 Inverting Reference Input (REFIN-)
This pin is the inverting side of the differential voltage
reference input for all ADCs. When using an external
differential voltage reference, it should be connected to
its VREF- pin. When using an external single-ended
voltage reference, or when VREFEXT = 0 (default) and
using the internal voltage reference, the pin should be
directly connected to AGND.
3.4 Analog Power Supply (AVDD)
AVDD is the power supply voltage for the analog
circuitry within the MCP3914. It is distributed on several
pins (pins 18 and 35). For optimal performance, con-
nect these pins together using a star connection and
connect the appropriate bypass capacitors (typically a
10 µF in parallel with a 0.1 µF ceramic). AVDD should
be maintained between 2.7V and 3.6V for specified
operation.
To ensure proper functionality of the device, at least
one of these pins must be properly connected. To
ensure optimal performance of the device, all the pins
must be properly connected. If any of these pins are left
floating, the accuracy and noise specifications are not
ensured.
3.5 Analog Ground (AGND)
AGND is the ground reference voltage for the analog
circuitry within the MCP3914. It is distributed on several
pins (pins 17 and 36). For optimal performance, it is
recommended to connect these pins together using a
star connection, and to connect it to the same ground
node voltage as DGND, again, preferably with a star
connection.
At least one of these pins needs to be properly
connected to ensure proper functionality of the device.
All of these pins need to be properly connected to
ensure optimal performance of the device. If any of
these pins are left floating, the accuracy and noise
specifications are not ensured. If an analog ground
plane is available, it is recommended that these pins be
tied to this plane of the PCB. This plane should also
reference all other analog circuitry in the system.
3.6 Digital Power Supply (DVDD)
DVDD is the power supply voltage for the digital circuitry
within the MCP3914. It is distributed on several pins
(pins 20 and 33). For optimal performance, it is recom-
mended to connect these pins together using a star
connection and to connect appropriate bypass capacitors
(typically a 10 µF in parallel with a 0.1 µF ceramic).
DVDD should be maintained between 2.7V and 3.6V for
specified operation.
At least one of these pins needs to be properly
connected to ensure proper functionality of the device.
All of these pins need to be properly connected to
ensure optimal performance of the device. If any of
these pins are left floating, the accuracy and noise
specifications are not ensured.
2013-2019 Microchip Technology Inc. DS20005216B-page 19
MCP3914
3.7 Digital Ground (DGND)
DGND is the ground reference voltage for the digital
circuitry within the MCP3914. It is distributed on several
pins: 21, 24 and 32. For optimal performance, connect
these pins together using a star connection and
connect it to the same ground node voltage as AGND,
again, preferably with a star connection.
At least one of these pins needs to be properly connected
to ensure proper functionality of the device. All of these
pins need to be properly connected to ensure optimal
performance of the device. If any of these pins are left
floating, the accuracy and noise specifications are not
ensured. If a digital ground plane is available, it is recom-
mended that these pins be tied to this plane of the Printed
Circuit Board (PCB). This plane should also reference all
other digital circuitry in the system.
3.8 Data Ready Output (DR)
The Data Ready pin indicates if a new conversion
result is ready to be read. The default state of this pin
is logic high when DR_HIZ = 1 and is high-impedance
when DR_HIZ = 0 (default). After each conversion is
finished, a logic low pulse will take place on the Data
Ready pin to indicate the conversion result is ready as
an interrupt. This pulse is synchronous with the master
clock, and has a defined and constant width.
The Data Ready pin is independent of the SPI interface
and acts like an interrupt output. The Data Ready pin
state is not latched, and the pulse width (and period)
are both determined by the MCLK frequency, over-
sampling rate and internal clock prescale settings. The
data ready pulse width is equal to half a DMCLK period
and the frequency of the pulses is equal to DRCLK (see
Figure 1-3).
3.9 Oscillator and Master Clock
Input Pin (OSC1/CLKI)
OSC1/CLKI and OSC2 provide the master clock for the
device. When CLKEXT = 0, a resonant crystal or clock
source with a similar sinusoidal waveform must be
placed across the OSC1 and OSC2 pins to ensure
proper operation.
The typical clock frequency specified is 4 MHz. For
proper operation, and for optimizing ADC accuracy,
AMCLK should be limited to the maximum frequency
defined in Table 5-2 for the function of the BOOST and
PGA setting chosen. MCLK can take larger values as
long as the prescaler settings (PRE[1:0]) limit
AMCLK = MCLK/PRESCALE in the defined range in
Table 5-2. Appropriate load capacitance should be
connected to these pins for proper operation.
3.10 Crystal Oscillator (OSC2)
When CLKEXT = 0 (default), a resonant crystal or clock
source with a similar sinusoidal waveform must be
placed across the OSC1 and OSC2 pins to ensure
proper operation. Appropriate load capacitance should
be connected to these pins for proper operation.
When CLKEXT = 1, this pin should be connected to
DGND at all times (an internal pull-down operates this
function if the pin is left floating).
3.11 Chip Select (CS)
This pin is the Serial Peripheral Interface (SPI) chip
select that enables serial communication. When this
pin is logic high, no communication can take place. A
chip select falling edge initiates serial communication
and a chip select rising edge terminates the communi-
cation. No communication can take place, even when
CS is logic low if RESET is also logic low.
This input is Schmitt triggered.
3.12 Serial Data Clock (SCK)
This is the serial clock pin for SPI communication. Data
are clocked into the device on the rising edge of SCK.
Data are clocked out of the device on the falling edge
of SCK.
The MCP3914 SPI interface is compatible with SPI 0,0
and 1,1 modes. SPI modes can be changed during a
CS high time.
The maximum clock speed specified is 20 MHz. SCK
and MCLK are two different and asynchronous clocks;
SCK is only required when a communication happens,
while MCLK is continuously required when the part is
converting analog inputs.
This input is Schmitt triggered.
3.13 Serial Data Output (SDO)
This is the SPI data output pin. Data are clocked out of
the device on the falling edge of SCK.
This pin remains in a high-impedance state during the
command byte. It also stays high-impedance during the
entire communication for WRITE commands and when
the CS pin is logic high, or when the RESET pin is logic
low. This pin is active only when a READ command is
processed. The interface is half-duplex (inputs and
outputs do not happen at the same time).
Note: This pin should not be left floating when the
DR_HIZ bit is low; a 100 k pull-up resistor
connected to DVDD is recommended.
Note: When CLKEXT = 1, the crystal oscillator is
disabled. OSC1 becomes the master
clock input, CLKI, a direct path for an
external clock source. For example, a
clock source generated by an MCU.
MCP3914
DS20005216B-page 20 2013-2019 Microchip Technology Inc.
3.14 Serial Data Input (SDI)
This is the SPI data input pin. Data are clocked into the
device on the rising edge of SCK. When CS is logic low,
this pin is used to communicate with a series of 8-bit
commands. The interface is half-duplex (inputs and
outputs do not happen at the same time).
Each communication starts with a chip select falling
edge, followed by an 8-bit command word entered
through the SDI pin. Each command is either a READ or
WRITE command. Toggling SDI after a READ command
or when CS is logic high has no effect.
This input is Schmitt triggered.
3.15 Master Reset (RESET)
This pin is active-low and places the entire chip in a
Reset state when active.
When RESET is logic low, all registers are reset to their
default value, no communication can take place and no
clock is distributed inside the part, except in the input
structure if MCLK is applied (if MCLK is Idle, then no clock
is distributed). This state is equivalent to a Power-on
Reset (POR) state.
Since the default state of the ADCs is on, the analog
power consumption when RESET is logic low is equiv-
alent to when RESET is logic high. Only the digital
power consumption is largely reduced because this
current consumption is essentially dynamic and is
reduced drastically when there is no clock running.
All the analog biases are enabled during a Reset, so
that the part is fully operational just after a RESET
rising edge if MCLK is applied when RESET is logic
low. If MCLK is not applied, there is a time after a Hard
Reset when the conversion may not accurately
correspond to the start-up of the input structure.
This input is Schmitt triggered.
3.16 Exposed Thermal Pad
This pin must be connected to AGND or left floating for
proper operation. Connecting it to AGND is preferable
for lowest noise performance and best thermal
behavior.
2013-2019 Microchip Technology Inc. DS20005216B-page 21
MCP3914
4.0 TERMINOLOGY AND
FORMULAS
This section defines the terms and formulas used
throughout this data sheet. The following terms are
defined:
MCLK – Master Clock
AMCLK – Analog Master Clock
DMCLK – Digital Master Clock
DRCLK – Data Rate Clock
OSR – Oversampling Ratio
Offset Error
Gain Error
Integral Nonlinearity Error
Signal-to-Noise Ratio (SNR)
Signal-to-Noise Ratio and Distortion (SINAD)
Total Harmonic Distortion (THD)
Spurious-Free Dynamic Range (SFDR)
MCP3914 Delta-Sigma Architecture
Idle Tones
Dithering
Crosstalk
PSRR
CMRR
ADC Reset Mode
Hard Reset Mode (RESET = 0)
ADC Shutdown Mode
Full Shutdown Mode
Measurement Error
4.1 MCLK – Master Clock
This is the fastest clock present on the device. This is
the frequency of the crystal placed at the OSC1/OSC2
inputs when CLKEXT = 0 or the frequency of the clock
input at the OSC1/CLKI inputs when CLKEXT = 1. See
Figure 4-1.
4.2 AMCLK – Analog Master Clock
AMCLK is the clock frequency that is present on the
analog portion of the device, after prescaling has
occurred, via the CONFIG0 PRE[1:0] register bits (see
Equation 4-1). The analog portion includes the PGAs
and the Delta-Sigma modulators.
EQUATION 4-1:
FIGURE 4-1: Clock Sub-Circuitry.
TABLE 4-1: MCP3914 OVERSAMPLING
RATIO SETTINGS
Config. Analog Master Clock
Prescale
PRE[1:0]
00 AMCLK = MCLK/1 (default)
01 AMCLK = MCLK/2
10 AMCLK = MCLK/4
11 AMCLK = MCLK/8
AMCLK MCLK
PRESCALE
-------------------------------
=
1
0
OUT
OSC1
OSC2 Xtal Oscillator Multiplexer Clock Divider Clock Divider Clock Divider
DRCLKDMCLKAMCLKMCLK
CLKEXT PRE[1:0] OSR[2:0]
1/OSR
1/4
1/PRESCALE
MCP3914
DS20005216B-page 22 2013-2019 Microchip Technology Inc.
4.3 DMCLK – Digital Master Clock
This is the clock frequency that is present on the digital
portion of the device after prescaling and division by
four (Equation 4-2). This is also the sampling
frequency, which is the rate at which the modulator
outputs are refreshed. Each period of this clock corre-
sponds to one sample and one modulator output. See
Figure 4-1.
EQUATION 4-2:
4.4 DRCLK – Data Rate Clock
This is the output data rate (i.e., the rate at which the
ADCs output new data). Each new data are signaled by
a data ready pulse on the DR pin.
This data rate is depending on the OSR and the
prescaler with the formula in Equation 4-3.
EQUATION 4-3:
Since this is the output data rate, and because the
decimation filter is a SINC (or notch) filter, there is a
notch in the filter transfer function at each integer
multiple of this rate.
Table 4-2 describes the various combinations of OSR
and PRESCALE, and their associated AMCLK,
DMCLK and DRCLK rates.
DMCLK AMCLK
4
---------------------MCLK
4 PRESCALE
----------------------------------------==
DRCLK DMCLK
OSR
---------------------- AMCLK
4OSR
--------------------- MCLK
4 OSR PRESCALE
-----------------------------------------------------------===
2013-2019 Microchip Technology Inc. DS20005216B-page 23
MCP3914
TABLE 4-2: DEVICE DATA RATES IN FUNCTION OF MCLK, OSR AND PRESCALE,
MCLK = 4 MHz
PRE[1:0] OSR[2:0] OSR AMCLK DMCLK DRCLK DRCLK
(ksps) SINAD (dB)(1)ENOB from
SINAD (bits)(1)
1 1 1114096 MCLK/8 MCLK/32 MCLK/131072 .035 102.5 16.7
1 1 1102048 MCLK/8 MCLK/32 MCLK/65536 .061 100 16.3
1 1 1011024 MCLK/8 MCLK/32 MCLK/32768 .122 97 15.8
1 1 100 512 MCLK/8 MCLK/32 MCLK/16384 .244 96 15.6
1 1 011 256 MCLK/8 MCLK/32 MCLK/8192 0.488 95 15.5
1 1 010 128 MCLK/8 MCLK/32 MCLK/4096 0.976 91 14.8
1 1 001 64 MCLK/8 MCLK/32 MCLK/2048 1.95 84 13.6
1 1 000 32 MCLK/8 MCLK/32 MCLK/1024 3.9 70 11.3
1 0 1114096 MCLK/4 MCLK/16 MCLK/65536 .061 102.5 16.7
1 0 1102048 MCLK/4 MCLK/16 MCLK/32768 .122 100 16.3
1 0 1011024 MCLK/4 MCLK/16 MCLK/16384 .244 97 15.8
1 0 100 512 MCLK/4 MCLK/16 MCLK/8192 .488 96 15.6
1 0 011 256 MCLK/4 MCLK/16 MCLK/4096 0.976 95 15.5
1 0 010 128 MCLK/4 MCLK/16 MCLK/2048 1.95 91 14.8
1 0 001 64 MCLK/4 MCLK/16 MCLK/1024 3.9 84 13.6
1 0 000 32 MCLK/4 MCLK/16 MCLK/512 7.8125 70 11.3
0 1 1114096 MCLK/2 MCLK/8 MCLK/32768 .122 102.5 16.7
0 1 1102048 MCLK/2 MCLK/8 MCLK/16384 .244 100 16.3
0 1 1011024 MCLK/2 MCLK/8 MCLK/8192 .488 97 15.8
0 1 100 512 MCLK/2 MCLK/8 MCLK/4096 .976 96 15.6
0 1 011 256 MCLK/2 MCLK/8 MCLK/2048 1.95 95 15.5
0 1 010 128 MCLK/2 MCLK/8 MCLK/1024 3.9 91 14.8
0 1 001 64 MCLK/2 MCLK/8 MCLK/512 7.8125 84 13.6
0 1 000 32 MCLK/2 MCLK/8 MCLK/256 15.625 70 11.3
0 0 1114096 MCLK MCLK/4 MCLK/16384 .244 102.5 16.7
0 0 1102048 MCLK MCLK/4 MCLK/8192 .488 100 16.3
0 0 1011024 MCLK MCLK/4 MCLK/4096 .976 97 15.8
0 0 100 512 MCLK MCLK/4 MCLK/2048 1.95 96 15.6
0 0 011 256 MCLK MCLK/4 MCLK/1024 3.9 95 15.5
0 0 010 128 MCLK MCLK/4 MCLK/512 7.8125 91 14.8
0 0 001 64 MCLK MCLK/4 MCLK/256 15.625 84 13.6
0 0 000 32 MCLK MCLK/4 MCLK/128 31.25 70 11.3
Note 1: For OSR = 32 and 64, DITHER = None. For OSR = 128 and higher, DITHER = Maximum. The SINAD
values are given from GAIN = 1.
MCP3914
DS20005216B-page 24 2013-2019 Microchip Technology Inc.
4.5 OSR – Oversampling Ratio
This is the ratio of the sampling frequency to the output
data rate; OSR = DMCLK/DRCLK. The default OSR[2:0]
is 256, or with MCLK = 4 MHz, PRESCALE = 1,
AMCLK = 4 MHz, fS = 1 MHz and fD = 3.90625 ksps. The
OSR[2:0] bits in Ta b l e 4 - 3 in the CONFIG0 register are
used to change the Oversampling Ratio (OSR).
4.6 Offset Error
This is the error induced by the ADC when the inputs
are shorted together (VIN = 0V). The specification
incorporates both PGA and ADC offset contributions.
This error varies with PGA and OSR settings. The
offset is different on each channel and varies from chip-
to-chip. The offset is specified in µV. The offset error
can be digitally compensated independently on each
channel, through the OFFCAL_CHn registers, with a
24-bit Calibration Word.
The offset on the MCP3914 has a low-temperature
coefficient.
4.7 Gain Error
This is the error induced by the ADC on the slope of the
transfer function. It is the deviation expressed in %
compared to the ideal transfer function defined in
Equation 5-3. The specification incorporates both PGA
and ADC gain error contributions, but not the VREF
contribution (it is measured with an external VREF).
This error varies with PGA and OSR settings. The gain
error can be digitally compensated independently on
each channel, through the GAINCAL_CHn registers,
with a 24-bit Calibration Word.
The gain error on the MCP3914 has a low-temperature
coefficient.
4.8 Integral Nonlinearity Error
Integral nonlinearity error is the maximum deviation of
an ADC transition point from the corresponding point of
an ideal transfer function, with the offset and gain
errors removed, or with the end points equal to zero.
It is the maximum remaining error after calibration of
offset and gain errors for a DC input signal.
4.9 Signal-to-Noise Ratio (SNR)
For the MCP3914 ADCs, the Signal-to-Noise Ratio is a
ratio of the output fundamental signal power to the
noise power (not including the harmonics of the signal),
when the input is a sine wave at a predetermined
frequency (see Equation 4-4). It is measured in dB.
Usually, only the maximum Signal-to-Noise Ratio is
specified. The SNR figure depends mainly on the OSR
and DITHER settings of the device.
EQUATION 4-4: SIGNAL-TO-NOISE RATIO
4.10 Signal-to-Noise Ratio and
Distortion (SINAD)
The most important Figure of Merit for analog perfor-
mance of the ADCs present on the MCP3914 is the
Signal-to-Noise and Distortion (SINAD) specification.
The Signal-to-Noise and Distortion ratio is similar to the
Signal-to-Noise Ratio with the exception that you must
include the harmonics power in the noise power calcu-
lation (see Equation 4-5). The SINAD specification
depends mainly on the OSR and DITHER settings.
EQUATION 4-5: SINAD CALCULATION
The calculated combination of SNR and THD per the
following formula also yields SINAD (see Equation 4-6).
EQUATION 4-6: SINAD, THD AND SNR
RELATIONSHIP
TABLE 4-3: MCP3914 OVERSAMPLING
RATIO SETTINGS
OSR[2:0] Oversampling Ratio
(OSR)
000 32
001 64
010 128
011 256 (Default)
100 512
101 1024
110 2048
111 4096
SNR dB 10 SignalPower
NoisePower
----------------------------------


log=
SINAD dB 10 SignalPower
Noise HarmonicsPower+
---------------------------------------------------------------------


log=
SINAD dB 10 10
SNR
10
-----------


10
THD
10
----------------


+log=
2013-2019 Microchip Technology Inc. DS20005216B-page 25
MCP3914
4.11 Total Harmonic Distortion (THD)
The Total Harmonic Distortion is the ratio of the output
harmonic’s power to the fundamental signal power for
a sine wave input and is defined in Equation 4-7.
EQUATION 4-7:
The THD calculation includes the first 35 harmonics for
the MCP3914 specifications. The THD is usually
measured only with respect to the ten first harmonics,
which leads artificially to better figures. THD is sometimes
expressed in %. Equation 4-8 converts the THD in %.
EQUATION 4-8:
This specification depends mainly on the DITHER
setting.
4.12 Spurious-Free Dynamic Range
(SFDR)
SFDR is the ratio between the output power of the
fundamental and the highest spur in the frequency
spectrum (see Equation 4-9). The spur frequency is not
necessarily a harmonic of the fundamental, even
though it is usually the case. This figure represents the
dynamic range of the ADC when a full-scale signal is
used at the input. This specification depends mainly on
the DITHER setting.
EQUATION 4-9:
4.13 MCP3914 Delta-Sigma
Architecture
The MCP3914 incorporates eight Delta-Sigma ADCs
with a multibit architecture. A Delta-Sigma ADC is an
oversampling converter that incorporates a built-in
modulator, which digitizes the quantity of charges
integrated by the modulator loop (see Figure 5-1). The
quantizer is the block that is performing the Analog-to-
Digital conversion. The quantizer is typically 1-bit, or a
simple comparator, which helps maintain the linearity
performance of the ADC (the DAC structure is, in this
case, inherently linear).
Multibit quantizers help to lower the quantization error
(the error fed back in the loop can be very large with
1-bit quantizers) without changing the order of the
modulator or the OSR, which leads to better SNR
figures.
The quantizer present in each ADC channel in the
MCP3914 is a Flash ADC composed of four compara-
tors, arranged with equally spaced thresholds and a
thermometer coding. The MCP3914 also includes
proprietary 5-level DAC architecture that is inherently
linear for improved THD figures.
4.14 Idle Tones
A Delta-Sigma converter is an integrating converter. It
also has a finite quantization step (Least Significant bit
or LSb) which can be detected by its quantizer. A DC
input voltage that is below the quantization step should
only provide an all zeros result, since the input is not
large enough to be detected. As an integrating device,
any Delta-Sigma ADC will show Idle tones. This means
that the output will have spurs in the frequency content
that depend on the ratio between quantization step
voltage and the input voltage. These spurs are the
result of the integrated sub-quantization step inputs
that will eventually cross the quantization steps after a
long enough integration. This will induce an AC
frequency at the output of the ADC and can be shown
in the ADC output spectrum.
These Idle tones are residues that are inherent to the
quantization process and the fact that the converter is
integrating at all times without being reset. They are
residues of the finite resolution of the conversion
process. They are very difficult to attenuate and they
are heavily signal-dependent. They can degrade the
SFDR and THD of the converter, even for DC inputs.
They can be localized in the baseband of the converter
and are thus difficult to filter from the actual input signal.
For power metering applications, Idle tones can be very
disturbing because energy can be detected, even at
the 50 or 60 Hz frequency, depending on the DC offset
of the ADCs, while no power is really present at the
inputs. The only practical way to suppress or attenuate
the Idle tones phenomenon is to apply dithering to the
ADC. The amplitudes of the Idle tones are a function of
the order of the modulator, the OSR and the number of
levels in the quantizer of the modulator. A higher order,
a higher OSR or a higher number of levels for the
quantizer will attenuate the amplitudes of the Idle tones.
THD dB 10 HarmonicsPower
FundamentalPower
-----------------------------------------------------


log=
THD % 100 10
THD dB
20
------------------------
=
SFDR dB 10 FundamentalPower
HighestSpurPower
-----------------------------------------------------


log=
MCP3914
DS20005216B-page 26 2013-2019 Microchip Technology Inc.
4.15 Dithering
In order to suppress or attenuate the Idle tones present
in any Delta-Sigma ADCs, dithering can be applied to
the ADC. Dithering is the process of adding an error to
the ADC feedback loop in order to “decorrelate” the
outputs and “break” the Idle tone’s behavior. Usually a
random or pseudorandom generator adds an analog or
digital error to the feedback loop of the Delta-Sigma
ADC in order to ensure that no tonal behavior can
happen at its outputs. This error is filtered by the feed-
back loop and typically has a zero average value, so
that the converter static transfer function is not dis-
turbed by the dithering process. However, the dithering
process slightly increases the noise floor (it adds noise
to the part) while reducing its tonal behavior and thus
improving SFDR and THD. The dithering process
scrambles the Idle tones into baseband white noise
and ensures that dynamic specs (SNR, SINAD, THD,
SFDR) are less signal-dependent. The MCP3914
incorporates a proprietary dithering algorithm on all
ADCs in order to remove Idle tones and improve THD,
which is crucial for power metering applications.
4.16 Crosstalk
Crosstalk is defined as the perturbation caused on one
ADC channel by all the other ADC channels present in
the chip. It is a measurement of the isolation between
each channel present in the chip.
This measurement is a two-step procedure:
1. Measure one ADC input with no perturbation on
the other ADC (ADC inputs shorted).
2. Measure the same ADC input with a perturba-
tion sine wave signal on all the other ADCs at a
certain predefined frequency.
Crosstalk is the ratio between the output power of the
ADC when the perturbation is and is not present,
divided by the power of the perturbation signal. A lower
crosstalk value implies more independence and
isolation between the channels.
The measurement of this signal is performed under the
default conditions of MCLK = 4 MHz:
•GAIN = 1
PRESCALE = 1
OSR = 256
MCLK = 4 MHz
Step 1 for CH0 Crosstalk Measurement:
CH0+ = CH0- = AGND
CHn+ = CHn- = AGND
n comprised between 1 and 7
Step 2 for CH0 Crosstalk Measurement:
CH0+ = CH0- = AGND
CHn+ – CHn- = 1.2 VP-P @ 50/60 Hz (full-scale
sine wave), n comprised between 1 and 7
The crosstalk for Channel 0 is then calculated with the
formula in Equation 4-10.
EQUATION 4-10:
The crosstalk depends slightly on the position of the
channels in the MCP3914 device. This dependency is
shown in Figure 2-32, where the inner channels show
more crosstalk than the outer channels, since they are
located closer to the perturbation sources. The outer
channels have the preferred locations to minimize
crosstalk.
4.17 PSRR
This is the ratio between a change in the power supply
voltage and the ADC output codes. It measures the
influence of the power supply voltage on the ADC
outputs.
The PSRR specification can be DC (the power supply
is taking multiple DC values) or AC (the power supply
is a sine wave at a certain frequency with a certain
Common-mode). In AC, the amplitude of the sine wave
represents the change in the power supply; it is defined
in Equation 4-11.
EQUATION 4-11:
Where: VOUT is the equivalent input voltage that the
output code translates to, with the ADC transfer
function.
In the MCP3914 specification for DC PSRR, AVDD
varies from 2.7V to 3.6V, and for AC PSRR, a 50/60 Hz
sine wave is chosen centered around 3.0V, with a
maximum 300 mV amplitude. The PSRR specification
is measured with AVDD = DVDD.
4.18 CMRR
CMRR is the ratio between a change in the
Common-mode input voltage and the ADC output
codes. It measures the influence of the Common-mode
input voltage on the ADC outputs.
The CMRR specification can be DC (the
Common-mode input voltage is taking multiple DC
values) or AC (the Common-mode input voltage is a
sine wave at a certain frequency with a certain common
mode). In AC, the amplitude of the sine wave
represents the change in the power supply; it is defined
in Equation 4-12.
CTalk dB 10
CH0Power
CHnPower
---------------------------------


log=
PSRR dB 20
VOUT
AVDD
-------------------


log=
2013-2019 Microchip Technology Inc. DS20005216B-page 27
MCP3914
EQUATION 4-12:
Where: VCM = (CHn+ + CHn-)/2 is the Common-mode
input voltage and VOUT is the equivalent input voltage
that the output code translates to, with the ADC transfer
function.
In the MCP3914 specification, VCM varies from -1V
to +1V.
4.19 ADC Reset Mode
ADC Reset mode (also called Soft Reset mode) can
only be entered through setting the RESET[7:0] bits
high in the Configuration register. This mode is defined
as the condition where the converters are active, but
their output is forced to ‘0’.
The Flash ADC output of the corresponding channel
will be reset to its default value (‘0011’) in the MOD
register.
The ADCs can immediately output meaningful codes
after leaving Reset mode (and after the SINC filter
settling time). This mode is both entered and exited
through bit settings in the Configuration register.
Each converter can be placed in Soft Reset mode
independently. The Configuration registers are not
modified by the Soft Reset mode. A data ready pulse
will not be generated by an ADC channel in Reset
mode.
When an ADC exits ADC Reset mode, any phase delay
present before Reset was entered will still be present.
If one ADC was not in Reset, the ADC leaving Reset
mode will automatically resynchronize the phase delay,
relative to the other ADC channel per the phase delay
register block, and give data ready pulses accordingly.
If an ADC is placed in Reset mode while others are
converting, it does not shut down the internal clock.
When coming out of Reset, it will be automatically
resynchronized with the clock, which did not stop
during Reset.
If all ADCs are in Soft Reset mode, the clock is no longer
distributed to the digital core for low-power operation.
Once any of the ADCs are back to normal operation, the
clock is automatically distributed again.
However, when the eight channels are in Soft Reset
mode, the input structure is still clocking, if MCLK is
applied, in order to properly bias the inputs so that no
leakage current is observed. If MCLK is not applied,
large analog input leakage currents can be observed for
highly negative input voltages (typically below -0.6V,
referred to as AGND).
4.20 Hard Reset Mode (RESET = 0)
This mode is only available during a POR or when the
RESET pin is pulled logic low. The RESET pin logic low
state places the device in Hard Reset mode. In this
mode, all internal registers are reset to their default state.
The DC biases for the analog blocks are still active (i.e.,
the MCP3914 is ready to convert). However, this pin
clears all conversion data in the ADCs. The compara-
tors’ outputs of all ADCs are forced to their Reset state
(‘0011’). The SINC filters are all reset, as well as their
double-output buffers. The Hard Reset mode requires
a minimum pulse low time (see Section 1.0 “Electrical
Characteristics. During a Hard Reset, no communi-
cation with the part is possible. The digital interface is
maintained in a Reset state.
During this state, the clock, MCLK, can be applied to the
part in order to properly bias the input structures of all
channels. If not applied, large analog input leakage
currents can be observed for highly negative input sig-
nals, and after removing the Hard Reset state, a certain
start-up time is necessary to bias the input structure
properly. During this delay, the ADC conversions can be
inaccurate.
4.21 ADC Shutdown Mode
ADC Shutdown mode is defined as a state where the
converters and their biases are off, consuming only
leakage current. When one of the SHUTDOWN[7:0]
bits is reset to ‘0’, the analog biases of the correspond-
ing channel will be enabled, as well as the clock and the
digital circuitry. The ADC of the corresponding channel
will give a data ready after the SINC filter settling time
has occurred. However, since the analog biases are
not completely settled at the beginning of the conver-
sion, the sampling may not be accurate during about
1 ms (corresponding to the settling time of the biasing
in worst-case conditions). In order to ensure accuracy,
the data ready pulse, within the delay of 1 ms + settling
time of the SINC filter, should be discarded.
Each converter can be placed in Shutdown mode
independently. The Configuration registers are not
modified by the Shutdown mode. This mode is only
available through programming the SHUTDOWN[7:0]
bits of the CONFIG1 register.
The output data are flushed to all zeros while in ADC
Shutdown mode. No data ready pulses are generated
by any ADC while in ADC Shutdown mode.
When an ADC exits ADC Shutdown mode, any phase
delay present before shutdown was entered will still be
present. If one ADC was not in Shutdown, the ADC leav-
ing Shutdown mode will automatically resynchronize the
phase delay relative to the other ADC channel, per the
Phase Delay register block, and give data ready pulses
accordingly.
CMRR dB 20
VOUT
VCM
-----------------


log=
MCP3914
DS20005216B-page 28 2013-2019 Microchip Technology Inc.
If an ADC is placed in Shutdown mode while others are
converting, it is not shutting down the internal clock.
When coming back out of Shutdown mode, it will auto-
matically be resynchronized with the clock that did not
stop during Reset.
If all ADCs are in ADC Shutdown mode, the clock is not
distributed to the input structure or to the digital core for
low-power operation. This can potentially cause high
analog input leakage currents at the analog inputs if the
input voltage is highly negative (typically below -0.6V,
referred to as AGND). Once either of the ADCs is back
to normal operation, the clock is automatically
distributed again.
4.22 Full Shutdown Mode
The lowest power consumption can be achieved when
SHUTDOWN[7:0] =
11111111
, VREFEXT = CLKEXT =
1
.
This mode is called Full Shutdown mode and no analog
circuitry is enabled. In this mode, both AVDD and DVDD
POR monitoring are also disabled, and no clock is
propagated throughout the chip. All ADCs are in Shut-
down mode and the internal voltage reference is
disabled. This mode does not reset the writable part of
the register map to its default values.
The clock is no longer distributed to the input structure
as well. This can potentially cause high analog input
leakage currents at the analog inputs if the input volt-
age is highly negative (typically below -0.6V, referred to
as AGND).
The only circuit that remains active is the SPI interface,
but this circuit does not induce any static power con-
sumption. If SCK is Idle, the only current consumption
comes from the leakage currents induced by the
transistors and is less than 5 µA on each power supply.
This mode can be used to power down the chip
completely and avoid power consumption when there
are no data to convert at the analog inputs. Any SCK or
MCLK edge occurring while in this mode will induce
dynamic power consumption.
Once any of the SHUTDOWN[7:0], CLKEXT and
VREFEXT bits return to ‘0’, the two POR monitoring
blocks are operational, and AVDD and DVDD monitoring
can take place.
4.23 Measurement Error
The measurement error specification is typically used
in power meter applications. This specification is a
measurement of the linearity of the active energy of a
given power meter across its dynamic range.
For this measurement, the goal is to measure the
active energy of one phase when the voltage Root
Mean Square (RMS) value is fixed, and the current
RMS value is sweeping across the dynamic range
specified by the meter. The measurement error is the
nonlinearity error of the energy power across the
current dynamic range. It is expressed in percent (%).
Equation 4-13 shows the formula that calculates the
measurement error:
EQUATION 4-13:
In the present device, the calculation of the active
energy is done externally as a post-processing step that
typically happens in the microcontroller, considering, for
example, the even channels as current channels and the
odd channels as voltage channels. To obtain the active
energy measurement error graphs, the odd channels
(voltages) are fed with a full-scale sine wave at
100 mV peak, and are configured with GAIN = 1 and
DITHER = Maximum. To obtain the active energy
measurement error graphs, the even channels are fed
with sine waves which amplitudes vary from 600 mV
peak to 60 µV peak, representing a 10000:1 dynamic
range. The offset is removed on both current and voltage
channels, and the channels are multiplied together to
give the instantaneous power. The active energy is
calculated by multiplying the current and voltage
channel, and averaging the results of this power during
20 seconds to extract the active energy. The sampling
frequency is chosen as a multiple integer of line
frequency (coherent sampling). Therefore, the calculation
does not take into account any residue coming from bad
synchronization.
The measurement error is a function of IRMS and varies
with the OSR, averaging time and MCLK frequency,
and is tightly coupled with the noise and linearity
specifications. The measurement error is a function of
the linearity and THD of the ADCs, while the standard
deviation of the measurement error is a function of the
noise specification of the ADCs. Overall, the low THD
specification enables low measurement error on a very
large dynamic range (e.g., 10,000:1). A low noise and
high SNR specification enables the decreasing of the
measurement time, and therefore, the calibration time
to obtain a reliable measurement error specification.
Figure 2-5 shows the typical measurement error curves
obtained with the samples acquired by the MCP3914,
using the default settings with a 1-point and 2-point cali-
bration. These calibrations are detailed in Section 7.0
“Basic Application Recommendations”.
Measurement Error IRMS

Measured Active Energy Active Energy present at inputs
Active Energy present at inputs
-------------------------------------------------------------------------------------------------------------------------------------------- 1 0 0 %
=
2013-2019 Microchip Technology Inc. DS20005216B-page 29
MCP3914
5.0 DEVICE OVERVIEW
5.1 Analog Inputs (CHn+/-)
The MCP3914 analog inputs can be connected directly
to current and voltage transducers (such as shunts,
Current Transformers or Rogowski coils). Each input
pin is protected by specialized Electrostatic Discharge
(ESD) structures that allow bipolar ±2V continuous volt-
age, with respect to AGND, to be present at their inputs
without the risk of permanent damage.
All channels have fully differential voltage inputs for
better noise performance. The absolute voltage at each
pin, relative to AGND, should be maintained in the ±1V
range during operation in order to ensure the specified
ADC accuracy. The Common-mode signals should be
adapted to respect both the previous conditions and the
differential input voltage range. For best performance,
the Common-mode signals should be maintained to
AGND.
5.2 Programmable Gain Amplifiers
(PGA)
The eight Programmable Gain Amplifiers (PGAs)
reside at the front end of each Delta-Sigma ADC. They
have two functions: translate the Common-mode of the
input from AGND to an internal level between AGND and
AVDD, and amplify the input differential signal. The
translation of the Common-mode does not change the
differential signal, but recenters the Common-mode so
that the input signal can be properly amplified.
The PGA block can be used to amplify very low signals,
but the differential input range of the Delta-Sigma
modulator must not be exceeded. The PGA on each
channel is independent and is controlled by the
PGA_CHn[2:0] bits in the GAIN register. Table 5-1
displays the gain settings for the PGA.
5.3 Delta-Sigma Modulator
5.3.1 ARCHITECTURE
All ADCs are identical in the MCP3914 and they
include a proprietary second-order modulator with a
multibit 5-level DAC architecture (see Figure 5-1). The
quantizer is a Flash ADC composed of four compara-
tors with equally spaced thresholds and a thermometer
output coding. The proprietary 5-level architecture
ensures minimum quantization noise at the outputs of
the modulators, without disturbing linearity or inducing
additional distortion. The sampling frequency is
DMCLK (typically 1 MHz with MCLK = 4 MHz), so the
modulators are refreshed at a DMCLK rate.
Figure 5-1 represents a simplified block diagram of the
Delta-Sigma ADC present on the MCP3914.
FIGURE 5-1: Simplified Delta-Sigma ADC
Block Diagram.
Note: If the analog inputs are held to a potential
of -0.6 to -1V for extended periods of time,
MCLK must be present inside the device
in order to avoid large leakage currents at
the analog inputs. This is true even during
Hard Reset mode or the Soft Reset of all
ADCs. However, during the Shutdown
mode of all the ADCs or POR state, the
clock is not distributed inside the circuit.
During these states, it is recommended to
keep the analog input voltages above
-0.6V, referred to as AGND, to avoid high
analog input leakage currents.
TABLE 5-1: PGA CONFIGURATION
SETTING
Gain
PGA_CHn[2:0]
Gain
(V/V)
Gain
(dB)
VIN = (CHn+) (CHn-)
Differential
Input Range (V)
000 10±0.6
001 26±0.3
010 4 12 ±0.15
011 8 18 ±0.075
10016 24 ±0.0375
10132 30 ±0.01875
Note: The two undefined settings are G = 1. This table
is defined with VREF = 1.2V.
Second-
Order
Integrator
Loop
Filter Quantizer
DAC
Differential
Voltage Input
Output
Bitstream
5-Level
Flash ADC
MCP3914 Delta-Sigma Modulator
MCP3914
DS20005216B-page 30 2013-2019 Microchip Technology Inc.
5.3.2 MODULATOR INPUT RANGE AND
SATURATION POINT
For a specified voltage reference value of 1.2V, the
specified differential input range is ±600 mV. The input
range is proportional to VREF and scales according to
the VREF voltage. This range ensures the stability of the
modulator over amplitude and frequency. Outside of
this range, the modulator is still functional; however, its
stability is no longer ensured, and therefore, it is not
recommended to exceed this limit. The saturation point
for the modulator is VREF/1.5, since the transfer
function of the ADC includes a gain of 1.5 by default
(independent from the PGA setting). See Section 5.5
“ADC Output Coding”.
5.3.3 BOOST SETTINGS
The Delta-Sigma modulators include a programmable
biasing circuit in order to further adjust the power
consumption to the sampling speed applied through
the MCLK. This can be programmed through the
BOOST[1:0] bits, which are applied to all channels
simultaneously.
The maximum achievable Analog Master Clock
(AMCLK) speed, the maximum sampling frequency
(DMCLK) and the maximum achievable data rate
(DRCLK) highly depend on the BOOST[1:0] and
PGA_CHn[2:0] bits settings. Ta b l e 5 - 2 specifies the
maximum AMCLK possible to keep optimal accuracy in
the function of the BOOST[1:0] and PGA_CHn[2:0]
settings.
TABLE 5-2: MAXIMUM AMCLK LIMITS AS A FUNCTION OF BOOST AND PGA GAIN
Conditions VDD = 3.0V to 3.6V,
TA from -40°C to +125°C
VDD = 2.7V to 3.6V,
TA from -40°C to +125°C
Boost Gain
Maximum AMCLK (MHz)
(SINAD within -3 dB
from its maximum)
Maximum AMCLK (MHz)
(SINAD within -5 dB
from its maximum)
Maximum AMCLK (MHz)
(SINAD within -3 dB
from its maximum)
Maximum AMCLK (MHz)
(SINAD within -5 dB
from its maximum)
0.5x14444
0.66x 1 6.4 7.3 6.4 7.3
1x 1 11.4 11.4 10.6 10.6
2x 1 16 16 16 16
0.5x24444
0.66x 2 6.4 7.3 6.4 7.3
1x 2 11.4 11.4 10.6 10.6
2x 2 16 16 13.3 14.5
0.5x 4 2.9 2.9 2.9 2.9
0.66x 4 6.4 6.4 6.4 6.4
1x 4 10.7 10.7 9.4 10.7
2x 4 16 16 16 16
0.5x 8 2.9 4 2.9 4
0.66x 8 7.3 8 6.4 7.3
1x 8 11.4 12.3 8 8.9
2x 8 16 16 10 11.4
0.5x 16 2.9 2.9 2.9 2.9
0.66x 16 6.4 7.3 6.4 7.3
1x 16 11.4 11.4 9.4 10.6
2x 16 13.3 16 8.9 11.4
0.5x 32 2.9 2.9 2.9 2.9
0.66x 32 7.3 7.3 7.3 7.3
1x 32 10.6 12.3 9.4 10,6
2x 32 13.3 16 10 11.4
2013-2019 Microchip Technology Inc. DS20005216B-page 31
MCP3914
5.3.4 DITHER SETTINGS
All modulators include a dithering algorithm that can be
enabled through the DITHER[1:0] bits in the Configura-
tion register. This dithering process improves THD and
SFDR (for high OSR settings), while slightly increasing
the noise floor of the ADCs. For power metering appli-
cations and applications that are distortion-sensitive, it
is recommended to keep DITHER at maximum settings
for best THD and SFDR performance. In the case of
power metering applications, THD and SFDR are
critical specifications. Optimizing SNR (noise floor) is
not problematic due to the large averaging factor at the
output of the ADCs. Therefore, even for low OSR
settings, the dithering algorithm will show a positive
impact on the performance of the application.
5.4 SINC3 + SINC1 Filter
The decimation filter present in all channels of the
MCP3914 is a cascade of two SINC filters
(SINC3+SINC
1): a third-order SINC filter with a
decimation ratio of OSR3, followed by a first-order
SINC filter with a decimation ratio of OSR1 (moving
average of OSR1 values). Figure 5-2 represents the
decimation filter architecture.
FIGURE 5-2: MCP3914 Decimation Filter Block Diagram.
Equation 5-1 calculates the filter z-domain transfer
function.
EQUATION 5-1: SINC FILTER TRANSFER
FUNCTION
Equation 5-2 calculates the settling time of the ADC as
a function of DMCLK periods.
EQUATION 5-2:
The SINC1 filter following the SINC3 filter is only enabled
for the high OSR settings (OSR > 512). This SINC1 filter
provides additional rejection at a low cost with little
modification to the -3 dB bandwidth. The resolution
(number of possible output codes expressed in powers
of two or in bits) of the digital filter is 24-bit maximum for
any OSR and data format choice. The resolution
depends only on the OSR[2:0] settings in the CONFIG0
register per Table 5-3. Once the OSR is chosen, the
resolution is fixed and the output code respects the data
format defined by the WIDTH_DATA[1:0] setting in the
STATUSCOM register (see Section 5.5 “ADC Output
Coding”).
Modulator
Output
SINC3SINC1Decimation
Filter Output
OSR3OSR1
416 (WIDTH = 0)
24 (WIDTH = 1)
Decimation Filter
OSR1=1
Hz
1z
- OSR3


3
OSR31z
1

3
----------------------------------------------
1z
- OSR1OSR3


OSR11z
- OSR3


---------------------------------------------------------
=
Where z EXP 2
jf
in

DMCLK
=
ettlingTime DMCLKperiods3OSR
3
OSR11OSR
+=
MCP3914
DS20005216B-page 32 2013-2019 Microchip Technology Inc.
The gain of the transfer function of this filter is one at
each multiple of DMCLK (typically 1 MHz), so a proper
anti-aliasing filter must be placed at the inputs. This will
attenuate the frequency content around DMCLK and
keep the desired accuracy over the baseband of the
converter. This anti-aliasing filter can be a simple, first-
order RC network, with a sufficiently low time constant
to generate high rejection at the DMCLK frequency.
Any unsettled data are automatically discarded to avoid
data corruption. Each data ready pulse corresponds to
fully settled data at the output of the decimation filter.
The first data available at the output of the decimation
filter are present after the complete settling time of the
filter (see Table 5-3). After the first data have been
processed, the delay between two data ready pulses
coming from the same ADC channel is one DRCLK
period. The data stream from input to output is delayed
by an amount equal to the settling time of the filter
(which is the group delay of the filter).
The resolution achievable, the -3 dB bandwidth and the
settling time at the output of the decimation filter (the
output of the ADC) is dependent on the OSR of each
SINC filter and is summarized in Table 5-3 .
FIGURE 5-3: SINC Filter Frequency
Response, OSR = 256, MCLK = 4 MHz,
PRE[1:0] = 00.
FIGURE 5-4: SINC Filter Frequency
Response, OSR = 4096 (in pink), OSR = 512
(in blue), MCLK = 4 MHz, PRE[1:0] = 00.
TABLE 5-3: OVERSAMPLING RATIO AND SINC FILTER SETTLING TIME
OSR[2:0] OSR3OSR1Total OSR Resolution in Bits
(No Missing Code) Settling Time -3 dB Bandwidth
000 32 1 32 17 96/DMCLK 0.26 * DRCLK
001 64 1 64 20 192/DMCLK 0.26 * DRCLK
010 128 1 128 23 384/DMCLK 0.26 * DRCLK
011 256 1 256 24 768/DMCLK 0.26 * DRCLK
100 512 1 512 24 1536/DMCLK 0.26 * DRCLK
101 512 2 1024 24 2048/DMCLK 0.37 * DRCLK
110 512 4 2048 24 3072/DMCLK 0.42 * DRCLK
111 512 8 4096 24 5120/DMCLK 0.43 * DRCLK
-80
-60
-40
-20
0
a
gnitude (dB)
-120
-100
1 10 100 1000 10000 100000
M
a
Input Frequency (Hz)
-100
-80
-60
-40
-20
0
gnitude (dB)
-160
-140
-120
1 100 10000 1000000
Ma
Input Frequency (Hz)
2013-2019 Microchip Technology Inc. DS20005216B-page 33
MCP3914
5.5 ADC Output Coding
The second-order modulator, SINC3 + SINC1 filter,
PGA, VREF and the analog input structure all work
together to produce the device transfer function for the
Analog-to-Digital conversion (see Equation 5-3).
Each channel data are calculated on 24-bit (23-bit plus
sign) and coded in two’s complement format, Most
Significant bit (MSb) first. The output format can then
be modified by the WIDTH_DATA[1:0] settings in the
STATUSCOM register to allow 16-/24-/32-bit format
compatibility (see Section 8.6 “STATUSCOM Regis-
ter – Status and Communication Register” for more
information).
In case of positive saturation (CHn+ – CHn- > VREF/1.5),
the output is locked to 7FFFFF for 24-bit mode. In case
of negative saturation (CHn+ – CHn- < -VREF/1.5), the
output code is locked to 800000 for 24-bit mode.
Equation 5-3 is only true for DC inputs. For AC inputs,
this transfer function needs to be multiplied by the
transfer function of the SINC3 + SINC1 filter (see
Equation 5-1 and Equation 5-3).
EQUATION 5-3:
For other than the default 24-bit data formats,
Equation 5-3 should be multiplied by a scaling factor,
depending on the data format used (defined by
WIDTH_DATA<1:0>). The data format and associated
scaling factors are given in Figure 5-5.
FIGURE 5-5: Output Data Formats.
DATA_CHn
CHn+ CHn-

VREF+ VREF-
-----------------------------------------



8,388,608 G 1.5
=
For 24-Bit Mode, WIDTH_Data[1:0] = 01 (Default)
DATA
<7>
WIDTH_DATA[1:0] = 11
32-Bit with Sign Extension DATA
[23] DATA
[23:16]
31 0
DATA
[15:8] DATA
[7:0]
WIDTH_DATA[1:0] = 10
32-Bit with Zeros Padded 0x00
31 0
DATA
[23:16] DATA
[7:0]
DATA
[15:8]
WIDTH_DATA[1:0] = 01
24-Bit DATA
[23:16] DATA
[15:8] DATA
[7:0]
23 0
WIDTH_DATA[1:0] = 00
16-Bit DATA
[15:8]
15 0
DATA
[23:16]
Rounded
Unformatted ADC Data DATA
[23:16] DATA
[15:8] DATA
[7:0]
23 0
x1/256
x1
x256
x1
Scaling
Factor
MCP3914
DS20005216B-page 34 2013-2019 Microchip Technology Inc.
The ADC resolution is a function of the OSR
(Section 5.4 “SINC3 + SINC1 Filter”). The resolution is
the same for all channels. No matter what the resolution
is, the ADC output data are always calculated in 24-bit
words, with added zeros at the end if the OSR is not
large enough to produce 24-bit resolution (left
justification).
TABLE 5-4: OSR = 256 (AND HIGHER) OUTPUT CODE EXAMPLES
ADC Output Code (MSb First) Hexadecimal Decimal,
24-Bit Resolution
0111 1111 1111 1111 1111 1111 0x7FFFFF + 8,388,607
0111 1111 1111 1111 1111 1110 0x7FFFFE + 8,388,606
0000 0000 0000 0000 0000 0000 0x000000 0
1111 1111 1111 1111 1111 1111 0xFFFFFF – 1
1000 0000 0000 0000 0000 0001 0x800001 8,388,607
1000 0000 0000 0000 0000 0000 0x800000 8,388,608
TABLE 5-5: OSR = 128 OUTPUT CODE EXAMPLES
ADC Output Code (MSb First) Hexadecimal Decimal,
23-Bit Resolution
0111 1111 1111 1111 1111 11100x7FFFFE + 4,194,303
0111 1111 1111 1110 1111 11000x7FFFFC + 4,194,302
0000 0000 0000 0000 0000 0000 0x000000 0
1111 1111 1111 1111 1111 11100xFFFFFE – 1
1000 0000 0000 0000 0000 00100x800002 – 4,194,303
1000 0000 0000 0000 0000 00000x800000 – 4,194,304
TABLE 5-6: OSR = 64 OUTPUT CODE EXAMPLES
ADC Output Code (MSb First) Hexadecimal Decimal,
20-Bit Resolution
0111 1111 1111 1111 1111 0 0 0 0 0x7FFFF0 + 524, 287
0111 1111 1111 1111 1110 0 0 0 0 0x7FFFE0 + 524, 286
0000 0000 0000 0000 0000 0 0 0 0 0x000000 0
1111 1111 1111 1111 1111 0 0 0 0 0xFFFFF0 1
1000 0000 0000 0000 0001 0 0 0 0 0x800010 – 524,287
1000 0000 0000 0000 0000 0 0 0 0 0x800000 – 524, 288
TABLE 5-7: OSR = 32 OUTPUT CODE EXAMPLES
ADC Output Code (MSb First) Hexadecimal Decimal,
17-Bit Resolution
0111 1111 1111 1111 1000 0000 0x7FFF80 + 65, 535
0111 1111 1111 1111 0000 0000 0x7FFF00 + 65, 534
0000 0000 0000 0000 0000 0000 0x000000 0
1111 1111 1111 1111 1000 0000 0xFFFF80 – 1
1000 0000 0000 0000 1000 0000 0x800080 – 65,535
1000 0000 0000 0000 0000 0000 0x800000 – 65, 536
2013-2019 Microchip Technology Inc. DS20005216B-page 35
MCP3914
5.6 Voltage Reference
5.6.1 INTERNAL VOLTAGE REFERENCE
The MCP3914 contains an internal voltage reference
source specially designed to minimize drift over tempera-
ture. In order to enable the internal voltage reference, the
VREFEXT bit in the Configuration register must be set to
0 (Default mode). This internal VREF supplies reference
voltage to all channels. The typical value of this voltage
reference is 1.2V, ±2%. The internal reference has a very
low typical temperature coefficient of ±7 ppm/°C, allowing
the output to have minimal variation with respect to
temperature, since they are proportional to (1/VREF).
The noise of the internal voltage reference is low
enough not to significantly degrade the SNR of the
ADC if compared to a precision external low noise
voltage reference. The output pin for the internal
voltage reference is REFIN+/OUT.
If the voltage reference is only used as an internal
VREF
, adding bypass capacitance on REFIN+/OUT is
not necessary for keeping ADC accuracy, but a minimal
0.1 µF ceramic capacitance can be connected to avoid
EMI/EMC susceptibility issues due to the antenna,
created by the REFIN+/OUT pin, if left floating.
The bypass capacitors also help applications where the
voltage reference output is connected to other circuits.
In this case, additional buffering may be needed since
the output drive capability of this output is low.
Adding too much capacitance on the REFIN+/OUT pin
may slightly degrade the THD performance of the
ADCs.
5.6.2 DIFFERENTIAL EXTERNAL
VOLTAGE INPUTS
When the VREFEXT bit is set to ‘1’, the two reference
pins (REFIN+/OUT, REFIN-) become a differential volt-
age reference input. The voltage at the REFIN+/OUT is
noted VREF+ and the voltage at the REFIN- pin is noted
VREF-. The differential voltage input value is shown in
Equation 5-4.
EQUATION 5-4:
The specified VREF range is from 1.1V to 1.3V. The
REFIN- pin voltage (VREF-) should be limited to ±0.1V,
with respect to AGND. Typically, for single-ended refer-
ence applications, the REFIN- pin should be directly
connected to AGND, with its own separate track, to
avoid any spike due to switching noise.
These buffers are injecting a certain quantity of
1/f noise into the system; noise that can be modulated
with the incoming input signals and that can limit the
SNR at very high OSR (OSR > 256). To overcome this
limitation, these buffers include an auto-zeroing algo-
rithm that greatly diminishes their 1/f noise, as well as
their offset, so that the SNR of the system is not limited
by this noise component, even at maximum OSR. This
auto-zeroing algorithm is performed synchronously
with the MCLK coming to the device.
5.6.3 TEMPERATURE COMPENSATION
(VREFCAL[7:0])
The internal voltage reference consists of a proprietary
circuit and algorithm to compensate first-order and
second-order temperature coefficients. The compensa-
tion enables very low-temperature coefficients (typically
9 ppm/°C) on the entire range of temperatures, from
-40°C to +125°C. This temperature coefficient varies
from part to part.
This temperature coefficient can be adjusted on each part
through the VREFCAL[7:0] bits present in the CONFIG0
register (bits 7 to 0). These register settings are only for
advanced users. VREFCAL[7:0] should not be modified
unless the user wants to calibrate the temperature coeffi-
cient of the whole system or application. The default value
of this register is set to 0x50. The default value (0x50) was
chosen to optimize the standard deviation of the tempco
across process variation. The value can be slightly
improved to around 7 ppm/°C if the VREFCAL[7:0] bits
are written at 0x42, but this setting degrades the standard
deviation of the VREF tempco. The typical variation of the
temperature coefficient of the internal voltage reference,
with respect to the VREFCAL register code, is given by
Figure 5-6. Modifying the value stored in the VREF-
CAL[7:0] bits may also vary the voltage reference, in
addition to the temperature coefficient.
FIGURE 5-6: VREF Tempco vs. VREFCAL
Trim Code Chart.
5.6.4 VOLTAGE REFERENCE BUFFERS
Each channel includes a voltage reference buffer tied
to the REFIN+/OUT pin, which allows the internal
capacitors to properly charge with the voltage refer-
ence signals, even in the case of an external voltage
reference connection with weak load regulation
specifications. This ensures that the correct amount of
current is sourced to each channel to ensure their
accuracy specifications and diminishes the constraints
on the voltage reference load regulation.
VREF =V
REF+–V
REF-
0
10
20
30
40
50
60
0 64 128 192
256
V
REF
Drift (ppm)
VREFCAL Register Trim Code (decimal)
MCP3914
DS20005216B-page 36 2013-2019 Microchip Technology Inc.
5.7 Power-on Reset
The MCP3914 contains an internal POR circuit that
monitors both analog and digital supply voltages during
operation. The typical threshold for a power-up event
detection is 2.0V, ±10% and a typical start-up time
(tPOR) of 50 µs. The POR circuit has a built-in hysteresis
for improved transient spike immunity that has a typical
value of 200 mV. Proper decoupling capacitors (0.1 µF
in parallel with 10 µF) should be mounted as close as
possible to the AVDD and DVDD pins, providing
additional transient immunity.
Figure 5-7 illustrates the different conditions at a
power-up and a power-down event in typical
conditions. All internal DC biases are not settled until at
least 1 ms in worst-case conditions after a system
POR. Any data ready pulse occurring within 1 ms, plus
the SINC filter settling time after system Reset, should
be ignored to ensure proper accuracy. After POR, data
ready pulses are present at the pin with all the default
conditions in the Configuration registers.
Both AVDD and DVDD are monitored, so either power
supply can sequence first.
FIGURE 5-7: Power-on Reset Operation.
Note: In order to ensure a proper power-up
sequence, the ramp rate of DVDD should
not exceed 3V/µs when coming out of the
POR state.
Additionally, the user should try to lower
the DVDD residual voltage as close to 0V
as possible when the device is kept in a
POR state (below DVDD POR threshold)
for a long time to ensure a proper power-
up sequence. The user can verify if the
power-up sequence has been correctly
performed by reading the default state of
all the registers in the register map right
after powering up the device. If one or
more of the registers do not show the
proper default settings when being read, a
new power-up cycle should be launched
to recover from this condition.
POR
State Power-up Normal POR
State
Biases are
unsettled.
Conversions
started here may
not be accurate
Biases are settled.
Conversions started
here are accurate.
Analog Biases
Settling Time
SINC Filter
Settling
Time
Voltage
(AVDD, DVDD)
Time
POR Threshold
Up (2.0V typical)
(1.8V typical)
tPOR
Operation
Any data read pulse occurring
during this time can yield
inaccurate output data. It is
recommended to discard them.
2013-2019 Microchip Technology Inc. DS20005216B-page 37
MCP3914
5.8 Hard Reset Effect on Delta-Sigma
Modulator/SINC Filter
When the RESET pin is logic low, all ADCs will be in
Reset and output code: 0x000000h. The RESET pin
performs a Hard Reset (DC biases are still on, the part
is ready to convert) and clears all charges contained in
the Delta-Sigma modulators. The comparator’s output
is ‘0011’ for each ADC.
The SINC filters are all reset, as well as their
double-output buffers. This pin is independent of the
serial interface. It brings all the registers to the default
state. When RESET is logic low, any write with the SPI
interface will be disabled and will have no effect. All
output pins (SDO, DR) are high-impedance.
If an external clock (MCLK) is applied, the input
structure is enabled and is properly biasing the sub-
strate of the input transistors. In this case, the leakage
current on the analog inputs is low if the analog input
voltages are kept between -1V and +1V.
If MCLK is not applied when in Reset mode, the
leakage can be high if the analog inputs are below
-0.6V, as referred to AGND.
5.9 Phase Delay Block
The MCP3914 incorporates a phase delay generator,
which ensures that each pair of ADCs (CH0/1, CH2/3,
CH4/5, CH6/7) are converting the inputs with a fixed delay
between them. The eight ADCs are synchronously
sampling, but the averaging of modulator outputs is
delayed so that the SINC filter outputs (thus the ADC
outputs) show a fixed phase delay, as determined by the
PHASE0/1 register setting. The odd channels
(CH1,3,5,7) are the reference channels for the phase
delays of each pair; they set the time reference. Typically,
these channels can be the voltage channels for a
polyphase energy metering application. These odd chan-
nels are synchronous at all times, so they are becoming
ready and output a data ready pulse at the same time.
The even channels (CH0/2/4/6) are delayed compared to
the time reference (CH1/3/5/7) by a fixed amount of time
defined for each pair channel in the PHASE0/1 registers.
The two PHASE0/1 registers are split into four 12-bit
banks that represent the delay between each pair of
channels. The equivalence is defined in Table 5-8.
Each phase value (PHASEA/B/C/D) represents the
delay of the even channel, with respect to the associ-
ated odd channel, with an 11-bit plus sign, MSB first
two’s complement code. This code indicates how many
DMCLK periods there are between each channel in the
pair (see Equation 5-5). Since the odd channels are the
time reference, when PHASEx[11:0] are positive, the
even channel of the pair is lagging and the odd channel
is leading. When PHASEx[11:0] are negative, the even
channel of the pair is leading and the odd channel is
lagging.
EQUATION 5-5:
The timing resolution of the phase delay is 1/DMCLK or
1 µs in the default configuration with MCLK = 4 MHz.
Given the definition of DMCLK, the phase delay is
affected by a change in the prescaler settings
(PRE[1:0]) and the MCLK frequency.
The data ready signals are affected by the phase delay
settings. Typically, the time difference between the data
ready pulses of odd and even channels is equal to the
associated phase delay setting.
Each ADC conversion start, and therefore, each data
ready pulse is delayed by a timing of OSR/2 x DMCLK
periods (equal to half a DRCLK period). This timing
allows for the odd channels’ data ready signals to be
located at a fixed time reference (OSR/2 x DMCLK
periods from the Reset), while the even channel can be
leading or lagging around this time reference with the
corresponding PHASEx[11:0] delay value.
TABLE 5-8: PHASE DELAYS
EQUIVALENCE
Pair of
Channels Phase Bank Register Map
Position
CH1/CH0 PHASEA[11:0] PHASE1[11:0]
CH3/CH2 PHASEB[11:0] PHASE1[23:12]
CH5/CH4 PHASEC[11:0] PHASE0[11:0]
CH7/CH6 PHASED[11:0] PHASE0[23:12]
Note: For a detailed explanation of the Data
Ready pin (DR) with phase delay, see
Figure 5.11.
Where: x = A/B/C/D
Total Delay = PHASEx[11:0] Decimal Code
DMCLK
MCP3914
DS20005216B-page 38 2013-2019 Microchip Technology Inc.
5.9.1 PHASE DELAY LIMITS
The limits of the phase delays are determined by the
OSR settings: the phase delays can only go from
-OSR/2 to +OSR/2-1 DMCLK periods.
If larger delays between the two channels are needed,
they can be implemented externally to the chip with an
MCU. A FIFO in the MCU can save incoming data from
the leading channel for a number N of DRCLK clocks.
In this case, DRCLK would represent the coarse timing
resolution and DMCLK the fine timing resolution. The
total delay will then be equal to:
EQUATION 5-6:
The Phase Delay registers can be programmed once
with the OSR = 4096 setting and will adjust the OSR
automatically afterwards without the need to change
the value of the PHASE registers.
OSR = 4096: The delay can go from -2048 to
+2047. PHASEx[11] is the sign bit. PHASEx[10] is
the MSB and PHASEx[0] the LSB.
OSR = 2048: The delay can go from -1024 to
+1023. PHASEx[10] is the sign bit. PHASEx[9] is
the MSB and PHASEx[0] the LSB.
OSR = 1024: The delay can go from -512 to +511.
PHASEx[9] is the sign bit. PHASEx[8] is the MSB
and PHASEx[0] the LSB.
•OSR = 512: The delay can go from -256 to +255
PHASEx[8] is the sign bit. PHASEx[7] is the MSB
and PHASEx[0] the LSB.
OSR = 256: The delay can go from -128 to +127.
PHASEx[7] is the sign bit. PHASEx[6] is the MSB
and PHASEx[0] the LSB.
OSR = 128: The delay can go from -64 to +63.
PHASEx[6] is the sign bit. PHASEx[5] is the MSB
and PHASEx[0] the LSB.
OSR = 64: The delay can go from -32 to +31.
PHASEx[5] is the sign bit. PHASEx[4] is the MSB
and PHASEx[0] the LSB.
OSR = 32: The delay can go from -16 to +15.
PHASEx[4] is the sign bit. PHASEx[3] is the MSB
and PHASEx[0] the LSB.
5.10 Data Ready Link
There are two modes defined with the DR_LINK bit in
the STATUSCOM register that control the data ready
pulses. The position of the data ready pulses varies
with respect to this mode, to the OSR[2:0] bits and to
the PHASE0/1 register settings. Figure 5-8 represents
the behavior of the Data Ready pin with the two
DR_LINK configurations.
DR_LINK = 0: Both data ready pulses from ADC
Channel 0 and ADC Channel 1 are output on the
DR pin.
DR_LINK = 1 (Recommended and Default mode):
Only the data ready pulses from the most lagging
ADC between all the active ADCs are present on
the DR pin.
The lagging ADC data ready position depends on the
PHASE0/1 registers, the PRE[1:0] and the OSR[2:0]
bits settings. In this mode, the active ADCs are linked
together, so their data are latched together when the
lagging ADC output is ready. For power metering appli-
cations, DR_LINK = 1 is recommended (Default
mode); it allows the host MCU to gather all channels
synchronously within a unique interrupt pulse and it
ensures that all channels have been latched at the
same time, so that no data corruption is happening.
Note: Rewriting the PHASE registers with the
same value automatically resets and
restarts all ADCs.
Total Delay = N/DRCLK + PHASE/DMCLK
TABLE 5-9: PHASE VALUES WITH
MCLK = 4 MHz, OSR = 4096,
PRE[1:0] = 00
PHASEx[11:0] for the
Channel Pair
CH[n/n+1]
Hex
Delay
(CH[n] relative to
CH[n+1])
011111111111 0x7FF + 2047 µs
011111111110 0x7FE + 2046 µs
000000000001 0x001 + 1 µs
000000000000 0x000 0 µs
111111111111 0xFFF – 1 µs
100000000001 0x801 – 2047 µs
100000000000 0x800 – 2048 µs
2013-2019 Microchip Technology Inc. DS20005216B-page 39
MCP3914
5.11 Data Ready Status Bits
In addition to the Data Ready pin indicator, the
MCP3914 device includes a separate data ready status
bit for each channel. Each ADC channel, CHn, is asso-
ciated to the corresponding DRSTATUS[n] that can be
read at all times in the STATUSCOM register. These
status bits can be used to synchronize the data retrieval
in case the DR pin is not connected (see Section 6.8
“ADC Channels Latching and Synchronization”).
The DRSTATUS[7:0] bits are not writable; writing on
them has no effect. They have a default value of ‘1’,
which indicates that the data of the corresponding ADC
are not ready. This means that the ADC Output register
has not been updated since the last reading (or since
the last Reset). The DRSTATUS bits take the ‘0’ state
once the ADC Channel register is updated (which
happens at a DRCLK rate). A simple read of the
STATUSCOM register clears all the DRSTATUS bits to
their default value (‘1’).
In the case of DR_LINK = 1, the DRSTATUS[7:0] bits are
all updated synchronously with the most lagging channel
in the same time the DR pulse is generated. In case of
DR_LINK = 0, each DRSTATUS bit is updated
independently and synchronously with its corresponding
channel.
5.12 Crystal Oscillator
The MCP3914 includes a Pierce-type crystal oscillator
with very high stability, and ensures very low tempco and
jitter for the clock generation. This oscillator can handle
crystal frequencies up to 20 MHz, provided proper load
capacitances and quartz quality factors are used. The
crystal oscillator is enabled when CLKEXT = 0 in the
CONFIG1 register.
For a proper start-up, the load capacitors of the crystal
should be connected between OSC1 and DGND, and
between OSC2 and DGND. They should also respect
Equation 5-7.
EQUATION 5-7:
When CLKEXT = 1, the crystal oscillator is bypassed by
a digital buffer to allow direct clock input for an external
clock (see Figure 4-1). In this case, the OSC2 pin is pulled
down internally to DGND and should be connected to
DGND externally for better Electromagnetic Compatibility/
Electromagnetic Interference (EMI/EMC) immunity.
FIGURE 5-8: DR_LINK Configurations.
The external clock should not be higher than 20 MHz
before prescaling (MCLK < 20 MHz) for proper
operation.
RM1.6 106
1
fCLOAD
------------------------


2
<
Where:
f = Crystal frequency in MHz
CLOAD = Load capacitance in pF including
parasitics from the PCB
RM= Motional resistance in ohms of the quartz
DR
One DRCLK Period (OSR times DMCLK periods)
DR_LINK = 1
Only the Most Lagging Data Ready is Present
All Channels are Latched Together at DR Falling Edge
DR
DR_LINK = 0
All Channels Data
Ready are Present Data Ready Pulse
from Odd Channels
(reference)
PHASE = 0
Data Ready Pulse
from Odd Channels
(reference) PHASE = 0
PHASE < 0 PHASE > 0
Data Ready Pulse
from Most Lagging
ADC Channel
Data Ready Pulse from
Most Lagging ADC
Channel
Note: In addition to the conditions defining the
maximum MCLK input frequency range, the
AMCLK frequency should be maintained
inferior to the maximum limits, defined in
Ta b l e 5 - 2 , to ensure the accuracy of the
ADCs. If these limits are exceeded, it is
recommended to choose either a larger
OSR or a larger prescaler value so that
AMCLK can respect these limits.
MCP3914
DS20005216B-page 40 2013-2019 Microchip Technology Inc.
5.13 Digital System Offset and Gain
Calibration Registers
The MCP3914 incorporates two sets of additional
registers per channel to perform system digital offset
and gain error calibration. Each channel has its own set
of associated registers that will modify the output result
of the channel if calibration is enabled. The gain and
offset calibrations can be enabled or disabled through
two CONFIG0 bits (EN_OFFCAL and EN_GAINCAL).
These two bits enable or disable system calibration on
all channels at the same time. When both calibrations
are enabled, the output of the ADC is modified per
Section 5.13.1 “Digital Offset Error Calibration”.
5.13.1 DIGITAL OFFSET ERROR
CALIBRATION
The OFFCAL_CHn registers are 23-bit plus two’s
complement registers and whose LSB value is the
same as the channel ADC data. These registers are
added, bit by bit, to the ADC output codes if the
EN_OFFCAL bit is enabled. Enabling the EN_OFFCAL
bit does not create a pipeline delay; the offset addition
is instantaneous. For low OSR values, only the signifi-
cant digits are added to the output (up to the resolution
of the ADC; for example, at OSR = 32, only the 17 first
bits are added).
The offset is not added when the corresponding channel
is in Reset or Shutdown mode. The corresponding
input voltage offset value added by each LSB in these
24-bit registers is:
These registers are a “Don’t Care” if EN_OFFCAL = 0
(offset calibration disabled), but their value is not
cleared by the EN_OFFCAL bit.
5.13.2 DIGITAL GAIN ERROR
CALIBRATION
These registers are signed 24-bit MSB first registers
coded with a range of -1x to +(1 – 2-23)x (from
0x800000 to 0x7FFFFF). The gain calibration adds 1x
to this register and multiplies it to the output code of the
channel, bit-by-bit, after offset calibration. The range of
the gain calibration is thus from 0x to 1.9999999x (from
0x800000 to 0x7FFFFF). The LSB corresponds to
a2
-23 increment in the multiplier.
Enabling EN_GAINCAL creates a pipeline delay of
24 DMCLK periods on all channels. All data ready
pulses are delayed by 24 DMCLK periods, starting from
the data ready following the command enabling the
EN_GAINCAL bit. The gain calibration is effective on
the next data ready following the command enabling
the EN_GAINCAL bit.
The digital gain calibration does not function when the
corresponding channel is in Reset or Shutdown mode.
The gain multiplier value for an LSB in these 24-bit
registers is:
This register is a “Don’t Care” if EN_GAINCAL = 0
(offset calibration disabled), but its value is not cleared
by the EN_GAINCAL bit.
The output data on each channel are kept to either
7FFF or 8000 (16-bit mode), or 7FFFFF or 800000
(24-bit mode) if the output results are out of bounds
after all calibrations are performed.
EQUATION 5-8: DIGITAL OFFSET AND GAIN ERROR CALIBRATION REGISTERS CALCULATIONS
OFFSET(1LSB) = VREF/(PGA_CHn x 1.5 x 8388608)
GAIN (1LSB) = 1/8388608
DATA_CHn post calDATA_CHn pre calOFFCAL_CHn+1 GAINCAL_CHn+
=
2013-2019 Microchip Technology Inc. DS20005216B-page 41
MCP3914
6.0 SPI SERIAL INTERFACE
DESCRIPTION
6.1 Overview
The MCP3914 device includes a four-wire (CS, SCK,
SDI, SDO) digital serial interface that is compatible with
SPI Modes 0,0 and 1,1. Data are clocked out of the
MCP3914 on the falling edge of SCK and data are
clocked into the MCP3914 on the rising edge of SCK. In
these modes, the SCK clock can Idle either high (1,1) or
low (0,0). The digital interface is asynchronous with the
MCLK clock that controls the ADC sampling and digital
filtering. All the digital input pins are Schmitt triggered to
avoid system noise perturbations on the communications.
Each SPI communication starts with a CS falling edge
and stops with the CS rising edge. Each SPI communi-
cation is independent. When CS is logic high, SDO is
in high-impedance, transitions on SCK and SDI has no
effect. Changing from an SPI Mode 1,1 to an SPI Mode
0,0 and vice-versa is possible, and can be done while
the CS pin is logic high. Any CS rising edge clears the
communication and resets the SPI digital interface.
Additional control pins (RESET, DR) are also provided
on separate pins for advanced communication
features. The Data Ready pin (DR) outputs pulses
when new ADC channel data are available for reading,
which can be used as an interrupt for an MCU. The
Master Reset pin (RESET) acts like a Hard Reset and
can reset the part to its default power-up configuration
(equivalent to a POR state).
The MCP3914 interface has a simple command
structure. Every command is either a READ command
from a register or a WRITE command to a register. The
MCP3914 device includes 32 registers defined in the
register map at Table 8-1. The first byte (8-bit wide)
transmitted is always the control byte that defines the
address of the register and the type of command (READ
or WRITE). It is followed by the register itself, which can
be in a 16, 24 or 32-bit format, depending on the
multiple format settings defined in the STATUSCOM
register. The MCP3914 is compatible with multiple
formats that help reduce overhead in the data handling
for most MCUs and processors available on the market
(8, 16 or 32-bit MCUs) and improve MCU code
compaction and efficiency.
The MCP3914 digital interface is capable of handling
various continuous Read and Write modes, which allow
it to perform ADC data streaming or full register map
writing within only one communication (and therefore,
with only one unique control byte). The internal
registers can be grouped together with various config-
urations through the READ[1:0] and WRITE bits. The
internal address counter of the serial interface can be
automatically incremented with no additional control
byte needed in order to loop through the various groups
of registers within the register map. The groups are
defined in Table 8-2.
The MCP3914 device also includes advanced security
features. These features secure each communication,
to avoid unwanted WRITE commands being processed
to change the desired configuration and to alert the
user in case of a change in the desired configuration.
Each SPI read communication can be secured through
a selectable CRC-16 checksum provided on the SDO
pin at the end of every communication sequence. This
CRC-16 computation is compatible with the DMA CRC
hardware of the PIC24 and PIC32 MCUs, resulting in
no additional overhead for the added security.
For securing the entire configuration of the device, the
MCP3914 includes an 8-bit lock code (LOCK[7:0]),
which blocks all WRITE commands to the full register
map if the value of the LOCK[7:0] bits are not equal to
a defined password (0xA5). The user can protect its
configuration by changing the LOCK[7:0] value to 0x00
after the full programming, so that any unwanted
WRITE command will not result in a change in the
configuration (because the LOCK[7:0] bits are different
than the password 0xA5).
An additional CRC-16 calculation is also running
continuously in the background to ensure the integrity
of the full register map. All writable registers of the
register map (except the MOD register) are processed
through a CRC-16 calculation engine and give a
CRC-16 checksum that depends on the configuration.
This checksum is readable on the LOCK/CRC register
and updated at all times. If a change in this checksum
happens, a selectable interrupt can give a flag on the
DR pin (DR pin becomes logic low) to warn the user
that the configuration is corrupted.
6.2 Control Byte
The control byte of the MCP3914 contains two device
Address bits (A[6:5]), five register Address bits (A[4:0])
and a Read/Write bit (R/W). The first byte transmitted
to the MCP3914 in any communication is always the
control byte. During the control byte transfer, the SDO
pin is always in a high-impedance state. The MCP3914
interface is device-addressable (through A[6:5]), so
that multiple chips can be present on the same SPI bus
with no data bus contention. Even if they use the same
CS pin, they use a provided half-duplex SPI interface
with a different address identifier. This functionality
enables, for example, a serial EEPROM, such as
24AAXXX/24LCXXX or 24FCXXX and the MCP3914,
to share all the SPI pins and consume less I/O pins in
the application processor, since all these serial
EEPROM circuits use A[6:5] = 00.
.
FIGURE 6-1: Control Byte.
A[6] A[5] A[4] A[3] A[2] A[1] A[0] R/W
Device
Address
Register Address Read/
Write
MCP3914
DS20005216B-page 42 2013-2019 Microchip Technology Inc.
The default device Address bits are A[6:5] = 01
(contact the Microchip factory for other available device
Address bits). For more information, see the Product
Identification System section. The register map is
defined in Table 8-1.
6.3 Reading from the Device
The first register read on the SDO pin is the one defined
by the address (A[4:0]) given in the control byte. After
this first register is fully transmitted, if the CS pin is
maintained logic low, the communication continues
without an additional control byte and the SDO pin
transmits another register with the address automati-
cally incremented or not, depending on the READ[1:0]
bits setting.
Four different Read mode configurations can be defined
through the READ[1:0] bits in the STATUSCOM register
for the address increment (see Section 6.5, Continuous
Communications, Looping on Register Sets and
Table 8-2). The data on SDO are clocked out of the
MCP3914 on the falling edge of SCK. The reading format
for each register is defined in Section 6.5 “Continuous
Communications, Looping on Register Sets”.
FIGURE 6-2: Read on a Single Register with 24-Bit Format (WIDTH_DATA[1:0] = 01,
SPI Mode 1,1).
FIGURE 6-3: Read on a Single Register with 24-Bit Format (WIDTH_DATA[1:0] = 01,
SPI Mode 0,0).
Read Communication (SPI Mode 1,1)
Don’t careDon’t care
A[6]
DATA[22]
SCK
SDI
SDO
A[5]
A[4]
A[3]
A[2]
A[1]
A[0]
CS
DATA[21]
DATA[20]
DATA[19]
DATA[18]
DATA[17]
DATA[16]
DATA[15]
DATA[14]
DATA[13]
DATA[12]
DATA[11]
DATA[10]
DATA[9]
DATA[8]
DATA[7]
DATA[6]
DATA[5]
DATA[4]
DATA[3]
DATA[2]
DATA[1]
DATA[0]
High-Z High-Z
Device latches SDI on rising edge Device latches SDO on falling edge
R/W
DATA[23]
Read Communication (SPI Mode 0,0)
Don’t careDon’t care
Don’t care
A[6]
DATA[22]
SCK
SDI
SDO
A[5]
A[4]
A[3]
A[2]
A[1]
A[0]
R/W
CS
DATA[23]
DATA[21]
DATA[20]
DATA[19]
DATA[18]
DATA[17]
DATA[16]
DATA[15]
DATA[14]
DATA[13]
DATA[12]
DATA[11]
DATA[10]
DATA[9]
DATA[8]
DATA[7]
DATA[6]
DATA[5]
DATA[4]
DATA[3]
DATA[2]
DATA[1]
DATA[0]
High-Z High-Z
Device latches SDI on rising edge Device latches SDO on falling edge
2013-2019 Microchip Technology Inc. DS20005216B-page 43
MCP3914
6.4 Writing to the Device
The first register written from the SDI pin to the device
is the one defined by the address (A[4:0]) given in the
control byte. After this first register is fully transmitted,
if the CS pin is maintained logic low, the communication
continues without an additional control byte and the
SDI pin transmits another register with the address
automatically incremented or not, depending on the
WRITE bit setting.
Two different Write mode configurations for the address
increment can be defined through the WRITE bit in the
STATUSCOM register (see Section 6.5, Continuous
Communications, Looping on Register Sets and
Table 8-2 ). The SDO pin stays in a high-impedance state
during a write communication. The data on SDI are
clocked into the MCP3914 on the rising edge of SCK.
The writing format for each register is defined in
Section 6.5, Continuous Communications, Looping
on Register Sets. A write on an undefined or non-
writable address, such as the ADC channel’s register
addresses, will have no effect and also will not increment
the address counter.
FIGURE 6-4: Write to a Single Register with 24-Bit Format (SPI Mode 1,1).
FIGURE 6-5: Write to a Single Register with 24-bit Format (SPI Mode 0,0).
Write Communication (SPI Mode 1,1)
Don’t care
A[6]
SCK
SDI
SDO
A[5]
A[4]
A[3]
A[2]
A[1]
A[0]
CS
High-Z
Device latches SDI on rising edge
R/W
DATA[22]
DATA[21]
DATA[20]
DATA[19]
DATA[18]
DATA[17]
DATA[16]
DATA[15]
DATA[14]
DATA[13]
DATA[12]
DATA[11]
DATA[10]
DATA[9]
DATA[8]
DATA[7]
DATA[6]
DATA[5]
DATA[4]
DATA[3]
DATA[2]
DATA[1]
DATA[23]
Don’t
care
DATA[0]
Write Communication (SPI Mode 0,0)
Don’t care
A[6]
SCK
SDI
SDO
A[5]
A[4]
A[3]
A[2]
A[1]
A[0]
R/W
CS
High-Z
Device latches SDI on rising edge
Don’t care
DATA[22]
DATA[23]
DATA[21]
DATA[20]
DATA[19]
DATA[18]
DATA[17]
DATA[16]
DATA[15]
DATA[14]
DATA[13]
DATA[12]
DATA[11]
DATA[10]
DATA[9]
DATA[8]
DATA[7]
DATA[6]
DATA[5]
DATA[4]
DATA[3]
DATA[2]
DATA[1]
DATA[0]
MCP3914
DS20005216B-page 44 2013-2019 Microchip Technology Inc.
6.5 Continuous Communications,
Looping on Register Sets
The MCP3914 digital interface can process communi-
cations in Continuous mode, without having to enter an
SPI command between each read or write to a register.
This feature allows the user to reduce communication
overhead to the strict minimum, which diminishes EMI
emissions and reduces switching noise in the system.
The registers can be grouped into multiple sets for
continuous communications. The grouping of the regis-
ters in the different sets is defined by the READ[1:0]
and WRITE bits that control the internal SPI Communi-
cation Address Pointer. For a graphical representation
of the register map sets in function of the READ[1:0]
and WRITE bits, please see Table 8-2.
In the case of a continuous communication, there is
only one control byte on SDI to start the communication
after a CS pin falling edge. The part stays within the
same communication loop until the CS pin returns logic
high. The SPI internal Register Address Pointer starts
by transmitting/receiving the address defined in the
control byte. After this first transmission/reception, the
SPI internal Register Address Pointer automatically
increments to the next available address in the register
set for each transmission/reception. When it reaches
the last address of the set, the communication
sequence is finished. The Address Pointer loops auto-
matically back to the first address of the defined set and
restarts a new sequence with auto-increment (see
Table 6-6). The internal Address Pointer automatic
selection allows the following functionality:
Read one ADC channel data, pairs of ADC
channels or all ADC channels continuously
Continuously read the entire register map
Continuously read or write each separate register
Continuously read or write all Configuration
registers
FIGURE 6-6: Continuous Communication Sequences.
Don’t care
Continuous Read Communication (24-bit format)
Don’t care
SCK
SDI
SDO
CS
High-Z
8x
CONTROL
BYTE
24x
ADDR ... ADDR + n
Starts Read Sequence
at Address ADDR
Complete Read Sequence
ADDR + 1
24x ... 24x 24x
ADDR ...
Complete Read Sequence
ADDR + 1
24x ... 24x
ADDR + n
Continuous Write Communication (24-bit format)
Don’t care
SCK
SDI
SDO
CS
High-Z
8x
CONTROL
BYTE
24x
ADDR ... ADDR + n
Starts Write Sequence
at Address ADDR
Complete Write Sequence
ADDR + 1
24x ... 24x 24x
ADDR ...
Complete Write Sequence
ADDR + 1
24x ... 24x
ADDR + n
ADDR
ADDR + 1
...
ADDR + n
Complete
Read
Sequence
Rollover
ADDRESS SET
ADDR
ADDR + 1
...
ADDR + n
Complete
Write
Sequence
Rollover
ADDRESS SET
2013-2019 Microchip Technology Inc. DS20005216B-page 45
MCP3914
6.5.1 CONTINUOUS READ
The STATUSCOM register contains the read communi-
cation loop settings for the internal Register Address
Pointer (READ[1:0] bits). For Continuous Read modes,
the address selection can take the four following values:
Any SDI data coming after the control byte are not
considered during a continuous read communication.
The following figures represent a typical, continuous
read communication on all eight ADC channels in
Types mode with the default settings (DR_LINK = 1,
READ[1:0] = 10, WIDTH_DATA[1:0] = 01) in the case
of the SPI Mode 0,0 (Figure 6-7) and SPI Mode 1,1
(Figure 6-8).
In SPI Mode (1,1), the SDO pin stays in the last state
(LSB of previous data) after a complete reading, which
also allows seamless Continuous Read mode (see
Figure 6-8).
FIGURE 6-7: Typical Continuous Read Communication (WIDTH_DATA[1:0] = 01, SPI Mode 0,0).
FIGURE 6-8: Typical Continuous Read Communication (WIDTH_DATA[1:0] = 01, SPI Mode 1,1).
TABLE 6-1: ADDRESS SELECTION IN
CONTINUOUS READ
READ[1:0]
Register Address Set Grouping
for Continuous Read
Communications
00 Static (no incrementation)
01 Groups
10 Types (default)
11 Full Register Map
Note: For continuous reading of ADC data in
SPI Mode 0,0 (see Figure 6-7), once the
data have been completely read after a
data ready, the SDO pin will take the MSB
value of the previous data at the end of the
reading (falling edge of the last SCK
clock). If SCK stays Idle at logic low (by
definition of Mode 0,0), the SDO pin will
be updated at the falling edge of the next
data ready pulse (synchronously with the
DR pin falling edge with an output timing
of tDODR) with the new MSB of the data
corresponding to the data ready pulse.
This mechanism allows the MCP3914 to
continuously read ADC data outputs
seamlessly, even in SPI Mode (0,0).
Don’t care
SCK
SDI
SDO
CS
High-Z
8x
0x01
24x
DATA_CH0 ... DATA_CH5
Starts Read Sequence
at Address 00000
Complete Read Sequence on ADC Output Channels 0 to 5
DATA_CH1
24x ... 24x 24x
DATA_CH0 ...DATA_CH1
24x ... 24x
DATA_CH5
Don’t care
DR
DATA_CH0[23]
New Data
DATA_CH0[23]
Old Data
Complete Read Sequence on New ADC Output Channels 0 to 5
Don’t care
SCK
SDI
SDO
CS
High-Z
8x
0x01
24x
DATA_CH0 ... DATA_CH5
Starts Read Sequence
at Address 00000
Complete Read Sequence on ADC Output Channels 0 to 5
DATA_CH1
24x ... 24x 24x
DATA_CH0 ...DATA_CH1
24x ... 24x
DATA_CH5
Don’t care
DR
Complete Read Sequence on New ADC Output Channels 0 to 5
Stays at
DATA_CH5[0]
MCP3914
DS20005216B-page 46 2013-2019 Microchip Technology Inc.
6.5.2 CONTINUOUS WRITE
The STATUSCOM register contains the write loop
settings for the internal Register Address Pointer
(WRITE). For a continuous write, the address selection
can take the two following values:
SDO is always in a high-impedance state during a
continuous write communication. Writing to a nonwritable
address (such as addresses: 0x00 to 0x07) has no effect
and does not increment the Address Pointer. In this case,
the user needs to stop the communication and restart a
communication with a control byte pointing to a writable
address (0x08 to 0x1F).
6.6 Situations that Reset and Restart
Active ADCs
Immediately after the following actions, the active
ADCs (the ones not in Soft Reset or Shutdown modes)
are reset and automatically restarted in order to provide
proper operation:
1. Change in PHASE0/1 registers.
2. Overwrite of the same PHASE0/1 register value.
3. Change in the OSR[2:0] setting.
4. Change in the PRE[1:0] setting.
5. Change in the CLKEXT setting.
6. Change in the VREFEXT setting.
After these temporary Resets, the ADCs go back to
normal operation, with no need for an additional
command. Each ADC Data Output register is cleared
during this process. The PHASE0/1 registers can be
used to serially soft reset the ADCs, without using the
RESET[7:0] bits in the Configuration register, if the
same value is written in one the PHASE0/1 registers.
6.7 Data Ready Pin (DR)
To communicate when channel data are ready for
transmission, the data ready signal is available on the
Data Ready pin (DR) at the end of a channel conver-
sion. The Data Ready pin outputs an active-low pulse
with a pulse width equal to half a DMCLK clock period.
After a data ready pulse falling edge has occurred, the
ADC output data are updated within the tDODR timing
and can then be read through SPI communication.
The first data ready pulse after a Hard or Soft Reset is
located after the settling time of the SINC filter (see
Table 5-3), plus the phase delay of the corresponding
channel (see Section 5.9 “Phase Delay Block”).
Each subsequent pulse is then periodic and the period
is equal to a DRCLK clock period (see Equation 4-3
and Figure 1-3). The data ready pulse is always
synchronous with the internal DRCLK clock.
The DR pin can be used as an interrupt pin when
connected to an MCU or DSP, which will synchronize
the readings of the ADC data outputs. When not
active-low, this pin can either be in high-impedance
(when DR_HIZ = 0) or in a defined logic high state
(when DR_HIZ = 1). This is controlled through the
STATUSCOM register. This allows multiple devices to
share the same Data Ready pin (with a pull-up resistor
connected between DR and DVDD). If only the
MCP3914 device is connected on the interrupt bus, the
DR pin does not require a pull-up resistor, and therefore,
it is recommended to use DR_HIZ = 1 configuration for
such applications.
The CS pin has no effect over the DR pin, which means
even if the CS pin is logic high, the data ready pulses
coming from the active ADC channels will still be
provided; the DR pin behavior is independent from the
SPI interface. While the RESET pin is logic low, the DR
pin is not active. The DR pin is latched in the logic low
state when the interrupt flag on the CRCREG is present
to signal that the desired register’s configuration has
been corrupted (see Section 6.11 “Detecting Config-
uration Change Through CRC-16 Checksum on
Register Map and its Associated Interrupt Flag”).
TABLE 6-2: ADDRESS SELECTION IN
CONTINUOUS WRITE
WRITE Register Address Set Grouping for
Continuous Read Communications
0Static (No incrementation)
1Types (Default)
Note: When the LOCK[7:0] bits are different
than 0xA5, all the addresses, except 0x1F,
become nonwritable (see Section 4.13
“MCP3914 Delta-Sigma Architecture”).
2013-2019 Microchip Technology Inc. DS20005216B-page 47
MCP3914
6.8 ADC Channels Latching and
Synchronization
The ADC Channel Data Output registers (addresses:
0x00 to 0x07) have a double-buffer output structure. The
two sets of latches in series are triggered by the data
ready signal and an internal signal indicating the
beginning of a read communication sequence (read start).
The first set of latches holds each ADC Channel Data
Output register when the data are ready and latches all
active outputs together when DR_LINK = 1. This
behavior is synchronous with the DMCLK clock.
The second set of latches ensures that when reading
starts on an ADC output, the corresponding data are
latched, so that no data corruption can occur within a
read. This behavior is synchronous with the SCK clock.
If an ADC read has started, in order to read the follow-
ing ADC output, the current reading needs to be fully
completed (all bits must be read on the SDO pin from
the ADC Output Data registers).
Since the double-output buffer structure is triggered
with two events that depend on two asynchronous
clocks (data ready with DMCLK and read start with
SCK), implement one of the three following methods on
the MCU or processor in order to synchronize the
reading of the channels:
1. Use the Data Ready pin pulses as an interrupt:
Once a falling edge occurs on the DR pin, the
data are available for reading on the ADC Output
registers after the tDODR timing. If this timing is
not respected, data corruption can occur.
2. Use a timer clocked with MCLK as a synchro-
nization event: Since the Data Ready pin is
synchronous with DMCLK, the user can calculate
the position of the Data Ready pin depending on
the PHASE0/1 registers, the OSR[2:0] and
PRE[1:0] bits settings for each channel. Again,
the tDODR timing needs to be added to this
calculation, to avoid data corruption.
3. Poll the DRSTATUS[7:0] bits in the
STATUSCOM register: This method consists of
continuously reading the STATUSCOM register
and waiting for the DRSTATUS bits to be equal
to ‘0’. When this event happens, the user can
start a new communication to read the desired
ADC data. In this case, no additional timing is
required.
The first method is the preferred one, as it can be used
without adding additional MCU code space, but
requires connecting the DR pin to an I/O pin of the
MCU. The last two methods require more MCU code
space and execution time, but they allow synchronized
reading of the channels without connecting the DR pin,
which saves one I/O pin on the MCU.
6.9 Securing Read Communications
Through CRC-16 Checksum
Since power/energy metering systems can generate or
receive large EMI/EMC interferences and large
transient spikes, it is helpful to secure SPI communica-
tions as much as possible to maintain data integrity and
desired configurations during the lifetime of the
application.
The communication data on the SDO pin can be
secured through the insertion of a Cyclic Redundancy
Check (CRC) checksum at the end of each continuous
reading sequence. The CRC checksum on communi-
cations can be enabled or disabled through the
EN_CRCCOM bit in the STATUSCOM register. The
CRC message ensures the integrity of the read
sequence bits transmitted on the SDO pin and the CRC
checksum is inserted in between each read sequence
(see Figure 6-9).
MCP3914
DS20005216B-page 48 2013-2019 Microchip Technology Inc.
FIGURE 6-9: Continuous Read Sequences with and without CRC Checksum Enabled.
The CRC checksum in the MCP3914 device uses the
16-bit CRC-16 ANSI polynomial, as defined in the
IEEE 802.3 standard: x16 + x15 + x2 + 1. This polynomial
can also be noted as 0x8005. CRC-16 detects all single
and double-bit errors, all errors with an odd number of
bits, all burst errors of length 16 or less and most errors
for longer bursts. This allows an excellent coverage of the
SPI communication errors that can happen in the system
and heavily reduces the risk of a miscommunication,
even under noisy environments.
The CRC-16 format displayed on the SDO pin depends
on the WIDTH_CRC bit in the STATUSCOM register
(see Figure 6-10). It can be either 16-bit or 32-bit format,
to be compatible with both 16-bit and 32-bit MCUs. The
CRCCOM[15:0] bits, calculated by the MCP3914
device, are not dependent on the format (the device
always calculates only a 16-bit CRC checksum). If a
32-bit MCU is used in the application, it is recommended
to use 32-bit formats (WIDTH_CRC = 1) only.
FIGURE 6-10: CRC Checksum Format.
The CRC calculation computed by the MCP3914
device is fully compatible with CRC hardware
contained in the Direct Memory Access (DMA) of the
PIC24 and PIC32 MCU product lines. The CRC
message that should be considered in the PIC® device
DMA is the concatenation of the read sequence and its
associated checksum. When the DMA CRC hardware
computes this extended message, the resulted check-
sum should be 0x0000. Any other result indicates that
a miscommunication has happened and that the
current communication sequence should be stopped
and restarted.
Continuous Read Communication without CRC Checksum (EN_CRCCOM = 0)
Don’t care
SCK
SDI
SDO
CS
High-Z
8x
CONTROL
BYTE
16x/24x/32x
Depending on
Data Format
ADDR ... ADDR + n
Starts Read Sequence
at Address ADDR
Complete Read Sequence
ADDR + 1
16x/24x/32x
Depending on
Data Format
...
16x/24x/32x
Depending on
Data Format
16x/24x/32x
Depending on
Data Format
ADDR ...
Complete Read Sequence
ADDR + 1
16x/24x/32x
Depending on
Data Format
...
16x/24x/32x
Depending on
Data Format
ADDR + n
Don’t care
ADDR
ADDR + 1
...
ADDR + n*
Complete
Read
Sequence
Rollover
ADDRESS SET
Continuous Read Communication with CRC Checksum (EN_CRCCOM = 1)
Don’t care
SCK
SDI
SDO
CS
High-Z
8x
CONTROL
BYTE
16x/24x/32x
Depending on
Data Format
ADDR ... ADDR + n
Starts Read Sequence
at Address ADDR
Complete Read Sequence = Message for CRC Calculation
ADDR + 1
16x/24x/32x
Depending on
Data Format
...
16x/24x/32x
Depending on
Data Format
16x/24x/32x
Depending on
Data Format
ADDR ...
New Message
ADDR + 1
16x/24x/32x
Depending on
Data Format
...
16x/24x/32x
Depending on
Data Format
ADDR + n
Don’t care
ADDR
ADDR + 1
...
ADDR + n*
Complete
Read
Sequence
Rollover
ADDRESS SET
CRC Checksum CRC Checksum
16x or 32x
Depending on
CRC Format
16x or 32x
Depending on
CRC Format
CRC Checksum (not part of register map)
New ChecksumChecksum
* n depends on the READ[1:0] bits.
WIDTH_CRC = 0
16-Bit Format CRCCOM
[15:8] CRCCOM
[7:0]
15 0
WIDTH_CRC = 1
32-Bit Format CRCCOM
[15:8] CRCCOM
[7:0]
31 0
0x00 0x00
Note: The CRC will be generated only at the end
of the selected address set, before the
rollover of the Address Pointer occurs
(see Figure 6-9).
2013-2019 Microchip Technology Inc. DS20005216B-page 49
MCP3914
6.10 Locking/Unlocking Register Map
Write Access
The MCP3914 digital interface includes an advanced
security feature that permits locking or unlocking the
register map write access. This feature prevents the
miscommunications that can corrupt the desired
configuration of the device, especially an SPI read
becoming an SPI write because of the noisy
environment.
The last register address of the register map
(0x1F: LOCK/CRC) contains the LOCK[7:0] bits. If
these bits are equal to the password value (which is
equal to the default value of 0xA5), the register map
write access is not locked. Any write can take place and
the communications are not protected.
When the LOCK[7:0] bits are different than 0xA5, the
register map write access is locked. The register map,
and therefore, the full device configuration, is write-
protected. Any write to an address other than 0x1F will
yield no result. All the register addresses, except the
address 0x1F, become read-only. In this case, if the
user wants to change the configuration, the LOCK[7:0]
bits have to be reprogrammed back to 0xA5 before
sending the desired WRITE command.
The LOCK[7:0] bits are located in the last register, so
the user can program the whole register map, starting
from 0x09 to 0x1E, within one continuous write
sequence, and then lock the configuration at the end of
the sequence by writing all zeros, in the address 0x1F,
for example.
6.11 Detecting Configuration Change
Through CRC-16 Checksum on
Register Map and its Associated
Interrupt Flag
In order to prevent internal corruption of the register and
to provide additional security on the register map config-
uration, the MCP3914 device includes an automatic and
continuous CRC checksum calculation on the full register
map Configuration bits. This calculation is not the same
as the communication CRC checksum described in
Section 6.9 “Securing Read Communications
Through CRC-16 Checksum. This calculation takes
the full register map as the CRC message and outputs a
checksum on the CRCREG[15:0] bits located in the
LOCK/CRC register (address 0x1F).
Since this feature is intended for protecting the
configuration of the device, this calculation is run
continuously only when the register map is locked
(LOCK[7:0] bits are different than 0xA5; see
Section 6.10, Locking/Unlocking Register Map
Write Access). If the register map is unlocked, the
CRCREG[15:0] bits are cleared and no CRC is
calculated.
The calculation is fully completed in 25 DMCLK periods
and refreshed every 25 DMCLK periods continuously.
The CRCREG[15:0] bits are reset when a POR or a
Hard Reset occurs. All the bits contained in the regis-
ters, from addresses 0x09-0x1F, are processed by the
CRC engine to give the CRCREG[15:0] bits. The
DRSTATUS[7:0] bits are set to ‘1’ (default) and the
CRCREG[15:0] bits are set to ‘0’ (default) for this
calculation engine, as they could vary during the
calculation.
An interrupt flag can be enabled through the EN_INT
bit in the STATUSCOM register and provided on the DR
pin when the configuration has changed without a
WRITE command being processed. This interrupt is a
logic low state. This interrupt is cleared when the
register map is unlocked (since the CRC calculation is
not processed).
At power-up, the interrupt is not present and the register
map is unlocked. As soon as the user finishes writing its
configuration, the user needs to lock the register map
(writing 0x00, for example, in the LOCK bits) to be able
to use the interrupt flag. The CRCREG[15:0] bits will be
calculated for the first time in 25 DMCLK periods. This
first value will then be the reference checksum value and
will be latched internally until a Hard Reset, a POR
or an unlocking of the register map happens. The
CRCREG[15:0] bits will then be calculated continuously
and checked against the reference checksum. If the
CRCREG[15:0] bits are different than the reference, the
interrupt sends a flag by setting the DR pin to a logic low
state until it is cleared.
MCP3914
DS20005216B-page 50 2013-2019 Microchip Technology Inc.
NOTES:
2013-2019 Microchip Technology Inc. DS20005216B-page 51
MCP3914
7.0 BASIC APPLICATION
RECOMMENDATIONS
7.1 Typical Application Examples
For power strip power metering applications
(Figure 7-1), the most common solution is to use one
channel for voltage measurement and the rest of the
channels for current measurement. Since all current
lines are at the same potential, shunts can be used as
current sensors, even if they do not provide any
galvanic isolation.
Since all channels are identical in the MCP3914, any
channel can be chosen as the voltage channel (prefer-
ably CH0 or CH7 since they are on the edges and can
lead to a cleaner layout).
For polyphase metering applications, such as three-
phase meters, it is recommended to use a current
sensor that provides galvanic isolations: Current
Transformers, Rogowski coils, Hall sensors, etc.
FIGURE 7-1: 6-Channel Power Strip Application.
MCP3914
MCP3914
DS20005216B-page 52 2013-2019 Microchip Technology Inc.
7.2 Power Supply Design and
Bypassing
The MCP3914 device was designed to measure posi-
tive and negative voltages that might be generated by
a current-sensing device. This current-sensing device,
with a Common-mode voltage close to 0V, is referred to
as AGND, which is a shunt or Current Transformer (CT)
with burden resistors attached to ground. The high per-
formance and good flexibility that characterize these
ADCs enables them to be used in other applications, as
long as the absolute voltage on each pin, referred to as
AGND, stays in the -1V to +1V interval.
In any system, the analog ICs (such as references or
operational amplifiers) are always connected to the
analog ground plane. The MCP3914 should also be
considered as a sensitive analog component and con-
nected to the analog ground plane. The ADC features
two pairs of pins: AGND and AVDD, DGND and DVDD. For
best performance, it is recommended to keep the two
pairs connected to two different networks (Figure 7-2).
This way, the design will feature two ground traces and
two power supplies (Figure 7-3).
This means the analog circuitry (including MCP3914)
and the digital circuitry (MCU) should have separate
power supplies and return paths to the external ground
reference, as described in Figure 7-2. An example of a
typical power supply circuit, with different lines for ana-
log and digital power, is shown in Figure 7-3. A possible
split example is shown in Figure 7-4, where the ground
star connection can be done at the bottom of the device
with the exposed pad. The split here between analog
and digital can be done under the device, and AVDD
and DVDD can be connected together with lines coming
under the ground plane.
Another possibility, sometimes easier to implement in
terms of PCB layout, is to consider the MCP3914 as an
analog component, and therefore, connect both AVDD
and DVDD together, and AGND and DGND together, with
a star connection. In this scheme, the decoupling
capacitors may be larger due to the ripple on the digital
power supply (caused by the digital filters and the SPI
interface of the MCP3914) now causing glitches on the
analog power supply.
FIGURE 7-2: All Analog and Digital
Return Paths Need to Stay Separate with Proper
Bypass Capacitors.
FIGURE 7-3: Power Supply with Separate Lines for Analog and Digital Sections. Note the “Net Tie”
Object NT2 that Represents the Start Ground Connection.
V
A
V
D
“Star” Point
I
A
I
D
I
D
I
A
D
-
= A
-
=
0.1 μF0.1 μFC
AV
DD
DV
DD
A
GND
D
GND
MCP39XX
MCU
2013-2019 Microchip Technology Inc. DS20005216B-page 53
MCP3914
FIGURE 7-4: Separation of Analog and
Digital Circuits on Layout.
Figure 7-5 shows a more detailed example with a direct
connection to a high-voltage line (e.g., a two-wire 120V
or 220V system). A current-sensing shunt is used for
current measurement on the high side/line side that
also supplies the ground for the system. This is neces-
sary as the shunt is directly connected to the channel
input pins of the MCP3914. To reduce sensitivity to
external influences, such as EMI, these two wires
should form a twisted pair, as noted in Figure 7-5. The
power supply and MCU are separated on the right side
of the PCB, surrounded by the digital ground plane.
The MCP3914 is kept on the left side, surrounded by
the analog ground plane. There are two separate
power supplies going to the digital section of the sys-
tem and the analog section, including the MCP3914.
With this placement, there are two separate current
supply paths and current return paths, IA and ID.
FIGURE 7-5: Connection Diagram.
The ferrite bead between the digital and analog ground
planes helps keep high-frequency noise from entering
the device. This ferrite bead is recommended to be low
resistance; most often it is a Through-Hole Technology
(THT) component. Ferrite beads are typically placed on
the shunt inputs and into the power supply circuit for
additional protection.
7.3 SPI Interface Digital Crosstalk
The MCP3914 incorporates a high-speed 20 MHz SPI
digital interface. This interface can induce a crosstalk,
especially with the outer channels (CH0 and CH7) if it
is running at its full speed without any precautions. The
crosstalk is caused by the switching noise created by
the digital SPI signals (also called ground bouncing).
This crosstalk would negatively impact the SNR in this
case. The noise is attenuated if a proper separation
between the analog and digital power supplies is put in
place (see Section 7.2 “Power Supply Design and
Bypassing”).
In order to further remove the influence of the SPI
communication on measurement accuracy, it is
recommended to add series resistors on the SPI lines
to reduce the current spikes caused by the digital
switching noise (see Figure 7-5 where these resistors
have been implemented). The resistors also help to
keep the level of electromagnetic emissions low.
The measurement graphs provided in this MCP3914
data sheet have been performed with 100 series
resistors connected on each SPI I/O pin. Measurement
accuracy disturbances have not been observed, even
at the full speed of 20 MHz interfacing.
7.4 Sampling Speed and Bandwidth
If ADC power consumption is not a concern in the
design, the BOOST settings can be increased for best
performance so that the OSR is always kept at the
maximum settings to improve the SINAD performance
(see Table 7-1). If the MCU cannot generate a clock
fast enough, it is possible to tap the OSC1/OSC2 pins
of the MCP3914 crystal oscillator directly to the crystal
of the microcontroller. When the sampling frequency is
enlarged, the phase resolution is improved, and with
the OSR increased, the phase compensation range
can be kept in the same range as the default settings.
MCU
Power Supply
Circuitry
LINE
NEUTRAL
Twisted
Pair
I
A
I
D
I
D
I
A
“Star” Point
V
A
V
D
Analog Ground Plane Digital Ground Plane
MCP3914
SHUNT
TABLE 7-1: SAMPLING SPEED vs.
MCLK AND OSR,
ADC PRESCALE 1:1
MCLK
(MHz) BOOST[1:0] OSR Sampling
Speed (ksps)
16 11 1024 3.91
14 11 1024 3.42
12 11 1024 2.93
10 10 1024 2.44
810 512 3.91
601 512 2.93
401 256 3.91
MCP3914
DS20005216B-page 54 2013-2019 Microchip Technology Inc.
7.5 Differential Inputs
Anti-Aliasing Filter
Due to the nature of the ADCs used in the MCP3914
(oversampling converters), each differential input of the
ADC channels requires an anti-aliasing filter so that the
oversampling frequency (DMCLK) is largely attenuated
and does not generate any disturbances on the ADC
accuracy. This anti-aliasing filter also needs to have a
gain close to one in the signal bandwidth of interest.
Typically for 50/60 Hz measurement and default
settings (DMCLK = 1 MHz), a simple RC filter with 1 k
and 100 nF can be used. The anti-aliasing filter used
for the measurement graphs is a first-order RC filter
with 1 k and 15 nF. The typical schematic for connect-
ing a Current Transformer to the ADC is shown in
Figure 7-6. If wires are involved, twisting them is also
recommended.
FIGURE 7-6: First-Order Anti-Aliasing
Filter for CT-Based Designs.
The di/dt current sensors, such as Rogowski coils, can
be an alternative to Current Transformers. Since these
sensing elements are highly sensitive to high-
frequency electromagnetic fields, using a second-order
anti-aliasing filter is recommended to increase the
attenuation of potential perturbing RF signals.
FIGURE 7-7: Second-Order Anti-Aliasing
Filter for Rogowski Coil-Based Designs.
The MCP3914 is highly recommended in applications
using di/dt as current sensors because of the extremely
low noise floor at low frequencies. In such applications,
a Low-Pass Filter (LPF) with a cutoff frequency much
lower than the signal frequency (50-60 Hz for metering)
is used to compensate for the 90-degree shift and for the
20 db/decade attenuation induced by the di/dt sensor.
Because of this filter, the SNR will be decreased, since
the signal will attenuate by a few orders of magnitude,
while the low-frequency noise will not be attenuated.
Usually, a high-order High-Pass Filter (HPF) is used to
attenuate the low-frequency noise in order to prevent a
dramatic degradation of the SNR, which can be very
important in other parts. A high-order filter will also con-
sume a significant portion of the computation power of
the MCU. When using the MCP3914, such a high-order
HPF is not required, since this part has a low noise floor
at low frequencies. A first-order HPF is enough to
achieve very good accuracy.
7.6 Energy Measurement
Error Considerations
The measurement error is a typical representation of the
nonlinearity of a pair of ADCs (see Section 4.0 “Termi-
nology and Formulas for the definition of measurement
error). The measurement error is dependent on the THD
and on the noise floor of the ADCs.
Improving the measurement error specification on the
MCP3914 can be realized by increasing the OSR (to
get a better SINAD and THD performance), and to
some extent, the BOOST settings (if the bandwidth of
the measurements is too limited by the bandwidth of
the amplifiers in the Sigma-Delta ADCs). In most of the
energy metering AC applications, High-Pass Filters are
used to cancel the offset on each ADC channel (current
and voltage channels), and therefore, a single-point
calibration is necessary to calibrate the system for
active energy measurement. This calibration is a
system gain calibration, and the user can utilize the
EN_GAINCAL bit and the GAINCAL_CHn registers to
perform this digital calibration. After such calibration,
typical measurement error curves, such as shown in
Figure 2-7, can be generated by sweeping the current
channel amplitude and measuring the energy at the
outputs (the energy calculations are here being real-
ized off-chip). The error is measured using a gain of 1x,
as it is commonly used in most CT-based applications.
2013-2019 Microchip Technology Inc. DS20005216B-page 55
MCP3914
At low signal amplitude values (typically 1000:1
dynamic range and higher), the crosstalk between
channels, mainly caused by the PCB, becomes a sig-
nificant part of the perturbation as the measurement
error increases. The 1-point measurement error curves
in Figure 2-5 have been performed with a full-scale
sine wave on all the inputs that are not measured,
which means that these channels induce a maximum
amount of crosstalk on the measurement error curve.
In order to avoid such behavior, a 2-point calibration
can be put in place in the calculation section.
This 2-point calibration can be a simple linear interpola-
tion between two calibration points (one at high
amplitudes, one at low amplitudes at each end of the
dynamic range) and helps to significantly lower the effect
of crosstalk between channels. A 2-point calibration is
very effective in maintaining the measurement error
close to zero on the whole dynamic range, since the
nonlinearity and distortion of the MCP3914 is very low.
Figure 2-6 shows the measurement error curves
obtained with the same ADC data taken for Figure 2-5,
but where a 2-point calibration has been applied. The
difference is significant only at the low end of the
dynamic range, where all the perturbing factors are a
bigger part of the ADC output signals. These curves
show extremely tight measurement error across the full
dynamic range (here, typically 10,000:1), which is
required in high-accuracy class meters.
MCP3914
DS20005216B-page 56 2013-2019 Microchip Technology Inc.
NOTES:
2013-2019 Microchip Technology Inc. DS20005216B-page 57
MCP3914
8.0 MCP3914 INTERNAL
REGISTERS
The addresses associated with the internal registers
are listed in Table 8-1. This section also describes the
registers in detail. All registers are 24-bit long registers
(except for the MOD register, which is a 32-bit), which
can be addressed and read separately.
The format of the data registers (0x00 to 0x07) can be
changed with the WIDTH_DATA[1:0] bits in the
STATUSCOM register. The READ[1:0] and WRITE bits
define the groups and types of registers for continuous
read/write communication or looping on address sets,
as shown in Table 8-2.
TABLE 8-1: MCP3914 REGISTER MAP
Address Name Bits R/W Description
0x00 CHANNEL0 24 R Channel 0 ADC Data[23:0], MSB First
0x01 CHANNEL1 24 R Channel 1 ADC Data[23:0], MSB First
0x02 CHANNEL2 24 R Channel 2 ADC Data[23:0], MSB First
0x03 CHANNEL3 24 R Channel 3 ADC Data[23:0], MSB First
0x04 CHANNEL4 24 R Channel 4 ADC Data[23:0], MSB First
0x05 CHANNEL5 24 R Channel 5 ADC Data[23:0], MSB First
0x06 CHANNEL6 24 R Channel 6 ADC Data[23:0], MSB First
0x07 CHANNEL7 24 R Channel 7 ADC Data[23:0], MSB First
0x08 MOD 32 R/W Delta-Sigma Modulators Output Value
0x09 PHASE0 24 R/W Phase Delay Configuration Register – Channel Pairs 4/5 and 6/7
0x0A PHASE1 24 R/W Phase Delay Configuration Register – Channel Pairs 0/1 and 2/3
0x0B GAIN 24 R/W Gain Configuration Register
0x0C STATUSCOM 24 R/W Status and Communication Register
0x0D CONFIG0 24 R/W Configuration Register
0x0E CONFIG1 24 R/W Configuration Register
0x0F OFFCAL_CH0 24 R/W Offset Correction Register – Channel 0
0x10 GAINCAL_CH0 24 R/W Gain Correction Register – Channel 0
0x11 OFFCAL_CH1 24 R/W Offset Correction Register – Channel 1
0x12 GAINCAL_CH1 24 R/W Gain Correction Register – Channel 1
0x13 OFFCAL_CH2 24 R/W Offset Correction Register – Channel 2
0x14 GAINCAL_CH2 24 R/W Gain Correction Register – Channel 2
0x15 OFFCAL_CH3 24 R/W Offset Correction Register – Channel 3
0x16 GAINCAL_CH3 24 R/W Gain Correction Register – Channel 3
0x17 OFFCAL_CH4 24 R/W Offset Correction Register – Channel 4
0x18 GAINCAL_CH4 24 R/W Gain Correction Register – Channel 4
0x19 OFFCAL_CH5 24 R/W Offset Correction Register – Channel 5
0x1A GAINCAL_CH5 24 R/W Gain Correction Register – Channel 5
0x1B OFFCAL_CH6 24 R/W Offset Correction Register – Channel 6
0x1C GAINCAL_CH6 24 R/W Gain Correction Register – Channel 6
0x1D OFFCAL_CH7 24 R/W Offset Correction Register – Channel 7
0x1E GAINCAL_CH7 24 R/W Gain Correction Register – Channel 7
0x1F LOCK/CRC 24 R/W Security Register (Password and CRC-16 on Register Map)
MCP3914
DS20005216B-page 58 2013-2019 Microchip Technology Inc.
TABLE 8-2: REGISTER MAP GROUPING FOR ALL CONTINUOUS READ/WRITE MODES
Function Address
READ[1:0] WRITE
= 11 = 10 = 01 = 00 = 1= 0
CHANNEL 0 0x00
LOOP ENTIRE REGISTER MAP
TYPE
GROUP Static
Not Writable
(Address undefined for Write access)
Not Writable
(Address undefined for Write access)
CHANNEL 1 0x01 Static
CHANNEL 2 0x02 GROUP Static
CHANNEL 3 0x03 Static
CHANNEL 4 0x04 GROUP Static
CHANNEL 5 0x05 Static
CHANNEL 6 0x06 GROUP Static
CHANNEL 7 0x07 Static
MOD 0x08
TYPE
GROUP Static
LOOP ONLY ON WRITABLE REGISTERS
Static
PHASE0 0x09 Static Static
PHASE1 0x0A Static Static
GAIN 0x0B Static Static
STATUSCOM 0x0C GROUP Static Static
CONFIG0 0x0D Static Static
CONFIG1 0x0E Static Static
OFFCAL_CH0 0x0F GROUP Static Static
GAINCAL_CH0 0x10 Static Static
OFFCAL_CH1 0x11 GROUP Static Static
GAINCAL_CH1 0x12 Static Static
OFFCAL_CH2 0x13 GROUP Static Static
GAINCAL_CH2 0x14 Static Static
OFFCAL_CH3 0x15 GROUP Static Static
GAINCAL_CH3 0x16 Static Static
OFFCAL_CH4 0x17 GROUP Static Static
GAINCAL_CH4 0x18 Static Static
OFFCAL_CH5 0x19 GROUP Static Static
GAINCAL_CH5 0x1A Static Static
OFFCAL_CH6 0x1B GROUP Static Static
GAINCAL_CH6 0x1C Static Static
OFFCAL_CH7 0x1D GROUP Static Static
GAINCAL_CH7 0x1E Static Static
LOCK/CRC 0x1F GROUP Static Static
2013-2019 Microchip Technology Inc. DS20005216B-page 59
MCP3914
8.1 CHANNEL Registers
ADC Channel Data
Output Registers
The ADC Channel Data Output registers always
contain the most recent A/D conversion data for each
channel. These registers are read-only. They can be
accessed independently or linked together (with the
READ[1:0] bits). These registers are latched when an
ADC read communication occurs. When a data ready
event occurs during a read communication, the most
current ADC data are also latched to avoid data
corruption issues. These registers are updated and
latched together if DR_LINK = 1 synchronously with
the data ready pulse (toggling on the most lagging
ADC channel data ready event).
Name Bits Address Cof.
CHANNEL0 24 0x00 R
CHANNEL1 24 0x01 R
CHANNEL2 24 0x02 R
CHANNEL3 24 0x03 R
CHANNEL4 24 0x04 R
CHANNEL5 24 0x05 R
CHANNEL6 24 0x06 R
CHANNEL7 24 0x07 R
REGISTER 8-1: MCP3914 CHANNEL REGISTERS
R-0 (MSB) R-0 R-0 R-0 R-0 R-0 R-0 R-0
DATA_CHn[23:16]
bit 23 bit 16
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
DATA_CHn[15:8]
bit 15 bit 8
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
DATA_CHn[7:0]
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
-n = Value at POR ‘1’ = Bit is set 0’ = Bit is cleared x = Bit is unknown
bit 23-0 DATA_CHn[23:0]: Output Code from ADC Channel n bits
These data are post-calibration if the EN_OFFCAL or EN_GAINCAL bits are enabled. These data can
be formatted in 16-/24-/32-bit modes, depending on the WIDTH_DATA[1:0] bits setting (see
Section 5.5 “ADC Output Coding”).
MCP3914
DS20005216B-page 60 2013-2019 Microchip Technology Inc.
8.2 MOD Register – Modulators
Output Register
The MOD register contains the most recent modulator
data output and is updated at a DMCLK rate. The
default value corresponds to an equivalent input of 0V
on all ADCs. Each bit in this register corresponds to
one comparator output on one of the channels. The
MOD register is the only one to have a 32-bit format. Do
not write to this register to ensure the accuracy of each
ADC.
.
Name Bits Address Cof.
MOD 32 0x08 R/W
REGISTER 8-2: MOD REGISTER
R/W-0 R/W-0 R/W-1 R/W-1 R/W-0 R/W-0 R/W-1 R/W-1
COMP3_CH7 COMP2_CH7 COMP1_CH7 COMP0_CH7 COMP3_CH6 COMP2_CH6 COMP1_CH6 COMP0_CH6
bit 31 bit 24
R/W-0 R/W-0 R/W-1 R/W-1 R/W-0 R/W-0 R/W-1 R/W-1
COMP3_CH5 COMP2_CH5 COMP1_CH5 COMP0_CH5 COMP3_CH4 COMP2_CH4 COMP1_CH4 COMP0_CH4
bit 23 bit 16
R/W-0 R/W-0 R/W-1 R/W-1 R/W-0 R/W-0 R/W-1 R/W-1
COMP3_CH3 COMP2_CH3 COMP1_CH3 COMP0_CH3 COMP3_CH2 COMP2_CH2 COMP1_CH2 COMP0_CH2
bit 15 bit 8
R/W-0 R/W-0 R/W-1 R/W-1 R/W-0 R/W-0 R/W-1 R/W-1
COMP3_CH1 COMP2_CH1 COMP1_CH1 COMP0_CH1 COMP3_CH0 COMP2_CH0 COMP1_CH0 COMP0_CH0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 31-28 COMPn_CH7: Comparator Outputs from ADC Channel 7 bits
bit 27-24 COMPn_CH6: Comparator Outputs from ADC Channel 6 bits
bit 23-20 COMPn_CH5: Comparator Outputs from ADC Channel 5 bits
bit 19-16 COMPn_CH4: Comparator Outputs from ADC Channel 4 bits
bit 15-12 COMPn_CH3: Comparator Outputs from ADC Channel 3 bits
bit 11-8 COMPn_CH2: Comparator Outputs from ADC Channel 2 bits
bit 7-4 COMPn_CH1: Comparator Outputs from ADC Channel 1 bits
bit 3-0 COMPn_CH0: Comparator Outputs from ADC Channel 0 bits
2013-2019 Microchip Technology Inc. DS20005216B-page 61
MCP3914
8.3 PHASE0 Register – Phase
Configuration Register for
Channel Pairs 6/7 and 4/5
Any write to this register automatically resets and
restarts all active ADCs.
Name Bits Address Cof.
PHASE0 24 0x09 R/W
REGISTER 8-3: PHASE0 REGISTER
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PHASED[11:4]
bit 23 bit 16
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PHASED[3:0] PHASEC[11:8]
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PHASEC[7:0]
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 23-12 PHASED[11:0]: Phase Delay Between Channels CH6 and CH7 (reference) bits
Delay = PHASED[11:0] decimal code/DMCLK.
bit 11-0 PHASEC[11:0]: Phase Delay Between Channels CH4 and CH5 (reference) bits
Delay = PHASEC[11:0] decimal code/DMCLK.
MCP3914
DS20005216B-page 62 2013-2019 Microchip Technology Inc.
8.4 PHASE1 Register – Phase
Configuration Register for
Channel Pairs 2/3 and 0/1
Any write to this register automatically resets and
restarts all active ADCs.
Name Bits Address Cof.
PHASE1 24 0x0A R/W
REGISTER 8-4: PHASE1 REGISTER
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PHASEB[11:4]
bit 23 bit 16
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PHASEB[3:0] PHASEA[11:8]
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PHASEA[7:0]
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 23-12 PHASEB[11:0]: Phase Delay Between Channels CH2 and CH3 (reference) bits
Delay = PHASEB[11:0] decimal code/DMCLK.
bit 11-0 PHASEA[11:0]: Phase Delay Between Channels CH0 and CH1(reference) bits
Delay = PHASEA[11:0] decimal code/DMCLK.
2013-2019 Microchip Technology Inc. DS20005216B-page 63
MCP3914
8.5 GAIN Register – PGA Gain
Configuration Register
Name Bits Address Cof.
GAIN 24 0x0B R/W
REGISTER 8-5: GAIN REGISTER
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PGA_CH7[2] PGA_CH7[1] PGA_CH7[0] PGA_CH6[2] PGA_CH6[1] PGA_CH6[0] PGA_CH5[2] PGA_CH5[1]
bit 23 bit 16
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PGA_CH5[0] PGA_CH4[2] PGA_CH4[1] PGA_CH4[0] PGA_CH3[2] PGA_CH3[1] PGA_CH3[0] PGA_CH2[2]
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PGA_CH2[1] PGA_CH2[0] PGA_CH1[2] PGA_CH1[1] PGA_CH1[0] PGA_CH0[2] PGA_CH0[1] PGA_CH0[0]
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 23-0 PGA_CHn[2:0]: PGA Setting for Channel n bits
111 = Reserved (Gain = 1)
110 = Reserved (Gain = 1)
101 = Gain is 32
100 = Gain is 16
011 = Gain is 8
010 = Gain is 4
001 = Gain is 2
000 = Gain is 1 (default)
MCP3914
DS20005216B-page 64 2013-2019 Microchip Technology Inc.
8.6 STATUSCOM Register – Status
and Communication Register
Name Bits Address Cof.
STATUSCOM 24 0x0C R/W
REGISTER 8-6: STATUSCOM REGISTER
R/W-1 R/W-0 R/W-1 R/W-0 R/W-1 R/W-0 R/W-0 R/W-1
READ[1:0] WRITE DR_HIZ DR_LINK WIDTH_ CRC WIDTH_ DATA[1:0]
bit 23 bit 16
R/W-0 R/W-0 r-0 r-0 U-0 U-0 U-0 U-0
EN_CRCCOM EN_INT
bit 15 bit 8
R-1 R-1 R-1 R-1 R-1 R-1 R-1 R-1
DRSTATUS[7:0]
bit 7 bit 0
Legend: r = Reserved bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 23-22 READ[1:0]: Address Counter Increment Setting for Read Communication bits
11 = Address counter auto-increments, loops on the entire register map
10 = Address counter auto-increments, loops on register TYPES (default)
01 = Address counter auto-increments, loops on register GROUPS
00 = Address not incremented, continually reads the same single register address
bit 21 WRITE: Address Counter Increment Setting for Write Communication bit
1 = Address counter auto-increments and loops on writable part of the register map (default)
0 = Address not incremented, continually writes to the same single register address
bit 20 DR_HIZ: Data Ready Pin Inactive State Control bit
1 = The DR
pin state is a logic high when data are NOT ready
0 = The DR pin state is high-impedance when data are NOT ready (default)
bit 19 DR_LINK: Data Ready Link Control bit
1 = Data ready link enabled; only one pulse is generated on the DR pin for all ADC channels,
corresponding to the data ready pulse of the most lagging ADC
0 = Data ready link disabled; each ADC produces its own data ready pulse on the DR pin
bit 18 WIDTH_CRC: CRC-16 Format on Communications bit
1 = 32-bit (CRC-16 code is followed by sixteen zeros); this coding is compatible with CRC implementation
in most 32-bit MCUs (including PIC32 MCUs).
0 = 16 bit (default)
bit 17-16 WIDTH_DATA[1:0]: ADC Data Format Settings for all ADCs bits
(see Section 5.5 “ADC Output Coding”)
11 = 32-bit with sign extension
10 = 32-bit with zeros padding
01 = 24-bit (default)
00 = 16-bit (with rounding)
2013-2019 Microchip Technology Inc. DS20005216B-page 65
MCP3914
bit 15 EN_CRCCOM: CRC-16 Checksum on Serial Communications Enable bit
1 = CRC-16 checksum is provided at the end of each communication sequence (therefore, each com-
munication is longer); the CRC-16 message is the complete communication sequence (see
Section 6.9 “Securing Read Communications Through CRC-16 Checksum” for more details)
0 = Disabled (default)
bit 14 EN_INT: CRCREG Interrupt Function Enable bit
1 = The interrupt flag for the CRCREG checksum verification is enabled. The Data Ready pin (DR)
will become logic low and stays logic low if a CRCREG checksum error happens. This interrupt
is cleared if the LOCK[7:0] value is made equal to the PASSWORD value (0xA5).
0 = The interrupt flag for the CRCREG checksum verification is disabled. The CRCREG[15:0] bits are
still calculated properly and can still be read in this mode. No interrupt is generated, even when
a CRCREG checksum error happens (default).
bit 13-12 Reserved: Keep equal to ‘0’ at all times
bit 11-8 Unimplemented: Read as ‘0
bit 7-0 DRSTATUS[7:0]: individual ADC Channel Data Ready Status bit
DRSTATUS[n] = 1 – Channel CHn data are not ready (default)
DRSTATUS[n] = 0 – Channel CHn data are ready. The status bit is set back to1’ after reading the
STATUSCOM register. The status bit is not set back to ‘1’ by the read of the corresponding channel
ADC data.
REGISTER 8-6: STATUSCOM REGISTER (CONTINUED)
MCP3914
DS20005216B-page 66 2013-2019 Microchip Technology Inc.
8.7 CONFIG0 Register –
Configuration Register 0
Name Bits Address Cof.
CONFIG0 24 0x0D R/W
REGISTER 8-7: CONFIG0 REGISTER
R/W-0 R/W-0 R/W-1 R/W-1 R/W-1 R/W-0 R/W-0 R/W-0
EN_OFFCAL EN_GAINCAL DITHER[1:0] BOOST[1:0] PRE[1:0]
bit 23 bit 16
R/W-0 R/W-1 R/W-1 U-0 U-0 U-0 U-0 U-0
OSR[2:0]
bit 15 bit 8
R/W-0 R/W-1 R/W-0 R/W-1 R/W-0 R/W-0 R/W-0 R/W-0
VREFCAL[7:0]
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 23 EN_OFFCAL: 24-Bit Digital Offset Error Calibration on All Channels Enable bit
1 = Enabled; this mode does not add any group delay to the ADC data
0 = Disabled (default)
bit 22 EN_GAINCAL: 24-Bit Digital Gain Error Calibration on All Channels Enable/Disable bit
1 = Enabled; this mode adds a group delay on all channels of 24 DMCLK periods, all data ready pulses
are delayed by 24 DMCLK clock periods compared to the mode with EN_GAINCAL = 0.
0 = Disabled (default)
bit 21-20 DITHER[1:0]: Dithering Circuit for Idle Tone’s Cancellation and Improved THD on All Channels Control bits
11 = Dithering on, Strength = Maximum (default)
10 = Dithering on, Strength = Medium
01 = Dithering on, Strength = Minimum
00 = Dithering turned off
bit 19-18 BOOST[1:0]: Bias Current Selection for all ADCs bits
(impacts achievable maximum sampling speed, see Ta b l e 5 - 2 )
11 = All channels have current x 2
10 = All channels have current x 1 (default)
01 = All channels have current x 0.66
00 = All channels have current x 0.5
bit 17-16 PRE[1:0]: Analog Master Clock (AMCLK) Prescaler Value bits
11 = AMCLK = MCLK/8
10 = AMCLK = MCLK/4
01 = AMCLK = MCLK/2
00 = AMCLK = MCLK (default)
2013-2019 Microchip Technology Inc. DS20005216B-page 67
MCP3914
bit 15-13 OSR[2:0]: Oversampling Ratio for Delta-Sigma A/D Conversion bits (all channels, fd/fS)
111 = 4096 (fd= 244 sps for MCLK = 4 MHz, fs= AMCLK = 1 MHz)
110 = 2048 (fd= 488 sps for MCLK = 4 MHz, fs= AMCLK = 1 MHz)
101 = 1024 (fd= 976 sps for MCLK = 4 MHz, fs= AMCLK = 1 MHz)
100 = 512 (fd= 1.953 ksps for MCLK = 4 MHz, fs=AMCLK=1MHz)
011 = 256 (fd= 3.90625 ksps for MCLK = 4 MHz, fs= AMCLK = 1 MHz) (default)
010 = 128 (fd= 7.8125 ksps for MCLK = 4 MHz, fs= AMCLK = 1 MHz)
001 = 64 (fd= 15.625 ksps for MCLK = 4 MHz, fs=AMCLK=1MHz)
000 = 32 (fd= 31.25 ksps for MCLK = 4 MHz, fs=AMCLK=1MHz)
bit 12-8 Unimplemented: Read as ‘0
bit 7-0 VREFCAL[7:0]: Internal Voltage Temperature Coefficient VREFCAL[7:0] Value bits
See Section 5.6.3 “Temperature Compensation (VREFCAL[7:0])” for complete description.
REGISTER 8-7: CONFIG0 REGISTER (CONTINUED)
MCP3914
DS20005216B-page 68 2013-2019 Microchip Technology Inc.
8.8 CONFIG1 Register –
Configuration Register 1
Name Bits Address Cof.
CONFIG1 24 0x0F R/W
REGISTER 8-8: CONFIG1 REGISTER
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RESET[7:0]
bit 23 bit 16
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SHUTDOWN[7:0]
bit 15 bit 8
R/W-0 R/W-1 U-0 U-0 U-0 U-0 U-0 U-0
VREFEXT CLKEXT
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 23-16 RESET[7:0]: Each Individual ADC Soft Reset Mode Setting bits
RESET[n] = 1: Channel CHn is in Soft Reset mode
RESET[n] = 0: Channel CHn is not in Soft Reset mode
bit 15-8 SHUTDOWN[7:0]: Each Individual ADC Shutdown Mode Setting bits
SHUTDOWN[n] = 1: ADC Channel CHn is in Shutdown mode
SHUTDOWN[n] = 0: ADC Channel CHn is not in Shutdown mode
bit 7 VREFEXT: Internal Voltage Reference Selection bit
1 = Internal Voltage Reference Disabled: An external reference voltage needs to be applied across the
REFIN+/- pins; the analog power consumption (AIDD) is slightly diminished in this mode since the
internal voltage reference is placed into Shutdown mode
0 = Internal Voltage Reference Enabled: For optimal accuracy, the REFIN+/OUT pin needs proper
decoupling capacitors; REFIN- pin should be connected to AGND, when in this mode
bit 6 CLKEXT: Internal Clock Selection bit
1 = MCLK is generated externally and should be provided on the OSC1 pin; the crystal oscillator is
disabled and consumes no current (default)
0 = Crystal oscillator is enabled; a crystal must be placed between OSC1 and OSC2 with proper decoupling
capacitors, the digital power consumption (DIDD) is increased in this mode due to the oscillator
bit 5-0 Unimplemented: Read as ‘0
2013-2019 Microchip Technology Inc. DS20005216B-page 69
MCP3914
8.9 OFFCAL_CHn and GAINCAL_CHn
Registers – Digital Offset and Gain
Error Calibration Registers
Name Bits Address Cof.
OFFCAL_CH0 24 0x0F R/W
GAINCAL_CH0 24 0x10 R/W
OFFCAL_CH1 24 0x11 R/W
GAINCAL_CH1 24 0x12 R/W
OFFCAL_CH2 24 0x13 R/W
GAINCAL_CH2 24 0x14 R/W
OFFCAL_CH3 24 0x15 R/W
GAINCAL_CH3 24 0x16 R/W
OFFCAL_CH4 24 0x17 R/W
GAINCAL_CH4 24 0x18 R/W
OFFCAL_CH5 24 0x19 R/W
GAINCAL_CH5 24 0x1A R/W
OFFCAL_CH6 24 0x1B R/W
GAINCAL_CH6 24 0x1C R/W
OFFCAL_CH7 24 0x1D R/W
GAINCAL_CH7 24 0x1E R/W
REGISTER 8-9: OFFCAL_CHn REGISTERS
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
OFFCAL_CHn[23:16]
bit 23 bit 16
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
OFFCAL_CHn[15:8]
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
OFFCAL_CHn[7:0]
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
-n = Value at POR ‘1’ = Bit is set 0’ = Bit is cleared x = Bit is unknown
bit 23-0 OFFCAL_CHn[23:0]: Corresponding Channel CHn Digital Offset Calibration Value bits
This register is simply added to the output code of the channel, bit-by-bit. This register is a 24-bit two’s
complement MSB first coding register. CHn Output Code = OFFCAL_CHn + ADC CHn Output Code.
This register is a Don’t Care if EN_OFFCAL = 0 (offset calibration disabled), but its value is not cleared
by the EN_OFFCAL bit.
MCP3914
DS20005216B-page 70 2013-2019 Microchip Technology Inc.
REGISTER 8-10: GAINCAL_CHn REGISTERS
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
GAINCAL_CHn[23:16]
bit 23 bit 16
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
GAINCAL_CHn[15:8]
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
GAINCAL_CHn[7:0]
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
-n = Value at POR ‘1’ = Bit is set 0’ = Bit is cleared x = Bit is unknown
bit 23-0 GAINCAL_CHn[23:0]: Corresponding Channel CHn Digital Gain Error Calibration Value bits
This register is a 24-bit signed MSB first coding with a range of -1x to +0.9999999x (from 0x800000 to
0x7FFFFF). The gain calibration adds 1x to this register and multiplies it to the output code of the
channel, bit-by-bit, after offset calibration. The range of the gain calibration is thus from 0x to
1.9999999x (from 0x800000 to 0x7FFFFF). The LSB corresponds to a 2-23 increment in the multiplier.
CHn Output Code = (GAINCAL_CHn + 1) * ADC CHn Output Code. This register is a Don’t Care if
EN_GAINCAL = 0 (gain calibration disabled), but its value is not cleared by the EN_GAINCAL bit.
2013-2019 Microchip Technology Inc. DS20005216B-page 71
MCP3914
8.10 SECURITY Register – Password
and CRC-16 on Register Map
Name Bits Address Cof.
LOCK/CRC 24 0x1F R/W
REGISTER 8-11: LOCK/CRC REGISTER
R/W-1 R/W-0 R/W-1 R/W-0 R/W-0 R/W-1 R/W-0 R/W-1
LOCK[7:0]
bit 23 bit 16
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
CRCREG[15:8]
bit 15 bit 8
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
CRCREG[7:0]
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 23-16 LOCK[7:0]: Lock Code for Writable Part of Register Map bits
LOCK[7:0] = PASSWORD = 0xA5 (default value): The entire register map is writable. The CRCREG[15:0]
bits and the CRC interrupt are cleared. No CRC-16 checksum on register map is calculated.
LOCK[7:0] Bits are Different than 0xA5: The only writable register is the LOCK/CRC register. All other
registers will appear as undefined while in this mode. The CRCREG checksum is calculated continu-
ously and can generate interrupts if the CRC interrupt EN_INT bit has been enabled. If a write to a
register needs to be performed, the user needs to unlock the register map beforehand by writing 0xA5
to the LOCK[7:0] bits.
bit 15-0 CRCREG[15:0]: CRC-16 Checksum Calculated with Writable Part of Register Map as a Message bits
This is a read-only 16-bit code. This checksum is continuously recalculated and updated every
25 DMCLK periods. It is reset to its default value (0x0000) when LOCK[7:0] = 0xA5.
MCP3914
DS20005216B-page 72 2013-2019 Microchip Technology Inc.
NOTES:
2013-2019 Microchip Technology Inc. DS20005216B-page 73
MCP3914
9.0 PACKAGING INFORMATION
9.1 Package Marking Information
Legend: XX...X Customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ‘01’)
NNN Alphanumeric traceability code
Pb-free JEDEC designator for Matte Tin (Sn)
*This package is Pb-free. The Pb-free JEDEC designator ( )
can be found on the outer packaging for this package.
Note: In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.
3
e
3
e
XXXXXXX
40-Lead UQFN (5x5x0.5 mm)
PIN 1
XXXXXXX
XXXXXXX
YYWWNNN
MCP3914
Example
PIN 1
A1
E/MV
1902256
3
e
MCP3914
DS20005216B-page 74 2013-2019 Microchip Technology Inc.
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
2013-2019 Microchip Technology Inc. DS20005216B-page 75
MCP3914
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
MCP3914
DS20005216B-page 76 2013-2019 Microchip Technology Inc.
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
2013-2019 Microchip Technology Inc. DS20005216B-page 77
MCP3914
APPENDIX A: REVISION HISTORY
Revision B (February 2019)
Updated Section 5.7, Power-on Reset.
Revision A (August 2013)
Original Release of this Document.
2013-2019 Microchip Technology Inc. DS20005216B-page 78
MCP3914
NOTES:
2013-2019 Microchip Technology Inc. DS20005216B-page 79
MCP3914
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.
Device: MCP3914: Eight-Channel Analog Front-End Converter
Address Options: XX A6 A5
A0 = 0 0
A1* = 0 1
A2 = 1 0
A3 = 1 1
* Default option. Contact Microchip factory for other address
options.
Tape and Reel Option:
Blank
= Standard packaging (tube or tray)
T = Tape and Reel(1)
Temperature Range: E = -40°C to +125°C
Package: MV = Ultra Thin Plastic Quad Flat, No Lead (UQFN)
Examples:
a) MCP3914A1-E/MV: Extended Temperature,
40-Lead UQFN package.
b) MCP3914A1T-E/MV: Tape and Reel,
Extended Temperature,
40-Lead UQFN package.
PART NO. X
Temperature
Range
Device
/XX
Package
[X](1)
Tape and
Reel
Note 1: Tape and Reel identifier only appears in the
catalog part number description. This identi-
fier is used for ordering purposes and is not
printed on the device package. Check with
your Microchip sales office for package
availability for the Tape and Reel option.
2013-2019 Microchip Technology Inc. DS20005216B-page 80
MCP3914
NOTES:
2013-2019 Microchip Technology Inc. DS20005216B-page 81
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights unless otherwise stated.
Trademarks
The Microchip name and logo, the Microchip logo, AnyRate, AVR,
AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo,
CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo,
JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXStylus,
maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip
Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo,
SuperFlash, tinyAVR, UNI/O, and XMEGA are registered
trademarks of Microchip Technology Incorporated in the U.S.A.
and other countries.
ClockWorks, The Embedded Control Solutions Company,
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,
mTouch, Precision Edge, and Quiet-Wire are registered
trademarks of Microchip Technology Incorporated in the U.S.A.
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any
Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard,
CryptoAuthentication, CryptoAutomotive, CryptoCompanion,
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial
Programming, ICSP, INICnet, Inter-Chip Connectivity,
JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi,
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB,
MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation,
PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon,
QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O,
SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total
Endurance, TSHARC, USBCheck, VariSense, ViewSpan,
WiperLock, Wireless DNA, and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.
SQTP is a service mark of Microchip Technology Incorporated in
the U.S.A.
Silicon Storage Technology is a registered trademark of Microchip
Technology Inc. in other countries.
GestIC is a registered trademark of Microchip Technology
Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.
All other trademarks mentioned herein are property of their
respective companies.
© 2019, Microchip Technology Incorporated, All Rights Reserved.
ISBN: 978-1-5224-4220-2
Note the following details of the code protection feature on Microchip devices:
Microchip products meet the specification contained in their particular Microchip Data Sheet.
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
Microchip is willing to work with the customer who is concerned about the integrity of their code.
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.
QUALITY MANAGEMENT S
YSTEM
CERTIFIED BY DNV
== ISO/TS 16949 ==
DS20005216B-page 82 2013-2019 Microchip Technology Inc.
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078
ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040
ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100
EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-67-3636
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7288-4388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820
Worldwide Sales and Service
08/15/18