Energy Management
7SR21 & 7SR22 Argus
Overcurrent Relay
Reyrolle
Protection
Devices
The copyright and other intellectual property rights in this document, and in any model or article produced from it
(and including any registered or unregistered design rights) are the property of Siemens Protection Devices
Limited. No part of this document shall be reproduced or modified or stored in another form, in any data retrieval
system, without the permission of Siemens Protection Devices Limited, nor shall any model or article be
reproduced from this document unless Siemens Protection Devices Limited consent.
While the information and guidance given in this document is believed to be correct, no liability shall be accepted
for any loss or damage caused by any error or omission, whether such error or omission is the result of
negligence or any other cause. Any and all such liability is disclaimed.
© 2013 Siemens Protection Devices Limited
Contents
Technical Manual Sections
1. Description of Operation
2. Configuration Guide
3. 7SR210 Instrumentation Guide
4. 7SR210 Settings Guide
5. 7SR220 Instrumentation Guide
6. 7SR220 Settings Guide
7. Performance Specification
8. Data Communications Definitions
9. Installation Guide
10. Commissioning and Maintenance Guide
11. Applications Guide
Contents 7SR11 and 7SR12
Page 2 of 2 ©2018 Siemens Protection Devices Limited
7SR210 & 7SR220 Description of Operation
Unrestricted The copyright and other intellectual property rights in this document, and in any model or article
produced from it (and including any registered or unregistered design rights) are the property of Siemens
Protection Devices Limited. No part of this document shall be reproduced or modified or stored in another form, in
any data retrieval system, without the permission of Siemens Protection Devices Limited, nor shall any model or
article be reproduced from this document unless Siemens Protection Devices Limited consent.
While the information and guidance given in this document is believed to be correct, no liability shall be accepted
for any loss or damage caused by any error or omission, whether such error or omission is the result of
negligence or any other cause. Any and all such liability is disclaimed.
©2018 Siemens Protection Devices Limited
7SR210 Non-Directional Relay
7SR220 Directional Relay
Description Of Operation
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 2 of 94
Document Release History
This document is issue 2018/09. The list of revisions up to and including this issue is: -
2011/05 First issue.
2013/01 Typographical revisions and added data. Updated in line with software release.
2014/06 Typographical revisions and added data. Updated in line with software release.
2015/06 Typographical revisions amended drawings and added data. Updated in line with software
release.
2015/07 Amended drawings.
2016/02 Typographical revisions and added data. Updated in line with software release.
2016/11 Redundancy added to electrical ethernet interface
2017/08 Typographical revisions and added data. Updated in line with software release.
2017/12 Typographical revisions and added data.
2018/09 Typographical revisions.
Software Revision History
2011/05 2435H85008R7a-7a (7SR210)
2435H85009R7a-7a (7SR220)
First Release
2013/01 2435H85008R7c-7b (7SR210)
2435H85009R7c-7b (7SR220)
Introduced journaling file system.
Added 61850 logical nodes for CB Counters, metering, 50BF,
46BC, 81HBL2 and line check.
Added Line Check on non-AR devices.
Added 74CCS Close Circuit Supervision.
2014/06 2435H85008R7f-7d (7SR210)
2435H85009R7f-7d (7SR220)
Added Fault Locator feature and Check Sync feature.
Fault data transmission over IEC 60870-5-103.
Additional communications data, control features, meters.
2015/06 2435H85008R8a-7f (7SR210)
2435H85009R8a-7f (7SR220)
Added Power Factor Meters, Load Blinding feature, Arc Flash
Detector. Over current TM Setting Range extended.
2016/02 2435H85008R8b-7f (7SR210)
2435H85009R8b-7f (7SR220)
EN100+ Compatibility.
2017/08 2435H85008R8e-8a (7SR210)
2435H85009R8e-8a (7SR220)
Added 32 Directional Power, 32S Sensitive Power, 55 Power
Factor, 81HLB5 Overfluxing, 67SEF Compensated Network,
67SEF Wattmetric. Increased I/O. Event Data on LCD.
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 3 of 94
Contents
Document Release History ................................................................................................................................. 2
Software Revision History .................................................................................................................................. 2
Contents ............................................................................................................................................................ 3
List of Figures .................................................................................................................................................... 5
Section 1: Introduction ....................................................................................................................................... 8
1.1 Current Transformer Circuits .............................................................................................................. 8
1.2 External Resistors.............................................................................................................................. 8
1.3 Fibre Optic Communication ................................................................................................................ 8
1.4 Front Cover ....................................................................................................................................... 8
1.5 Disposal ............................................................................................................................................ 8
Section 2: Hardware Description ...................................................................................................................... 15
2.1 General ........................................................................................................................................... 15
2.2 Case ............................................................................................................................................... 16
2.3 Front Cover ..................................................................................................................................... 16
2.4 Power Supply Unit (PSU) ................................................................................................................. 16
2.5 Operator Interface/ Fascia................................................................................................................ 16
2.6 Current Inputs.................................................................................................................................. 21
2.7 Voltage Inputs ................................................................................................................................. 21
2.8 Binary Inputs ................................................................................................................................... 21
2.9 Binary Outputs (Output Relays) ........................................................................................................ 22
2.10 Virtual Input/Outputs ........................................................................................................................ 23
2.11 Self Monitoring ................................................................................................................................ 23
2.11.1 Protection Healthy/Defective ............................................................................................... 24
Section 3: Protection Functions ........................................................................................................................ 25
3.1 Current Protection: Phase Overcurrent (67, 51, 50) ........................................................................... 25
3.1.1 Directional Control of Overcurrent Protection (67) – 7SR22 ................................................. 25
3.1.2 Instantaneous Overcurrent Protection (50) .......................................................................... 27
3.1.3 Time Delayed Overcurrent Protection (51) .......................................................................... 28
3.2 Current Protection: Voltage Controlled Overcurrent (51V) – 7SR22 ................................................... 30
3.3 Current Protection: Derived Earth Fault (67N, 51N, 50N)................................................................... 31
3.3.1 Directional Control of Derived Earth Fault Protection (67N) – 7SR22.................................... 31
3.3.2 Instantaneous Derived Earth Fault Protection (50N) ............................................................ 32
3.3.3 Time Delayed Derived Earth Fault Protection (51N) ............................................................. 33
3.4 Current Protection: Measured Earth Fault (67G, 51G, 50G)............................................................... 35
3.4.1 Directional Control of Measured Earth Fault Protection (67G) – 7SR22 ................................ 35
3.4.2 Instantaneous Measured Earth Fault Protection (50G) ......................................................... 36
3.4.3 Time Delayed Measured Earth Fault Protection (51G) ......................................................... 37
3.5 Current Protection: Sensitive Earth Fault (67SEF, 51SEF, 50SEF) .................................................... 38
3.5.1 Directional Control of Sensitive Earth Fault Protection (67SEF) – 7SR22 ............................. 38
3.5.2 Instantaneous Sensitive Earth Fault Protection (50SEF) ...................................................... 39
3.5.3 Time Delayed Sensitive Earth Fault Protection (51SEF) ...................................................... 41
3.6 Current Protection: High Impedance Restricted Earth Fault (64H) ..................................................... 43
3.7 Current Protection: Cold Load (51c) ................................................................................................. 44
3.8 Current Protection: Negative Phase Sequence Overcurrent (46NPS) ................................................ 45
3.9 Current Protection: Under-Current (37, 37G & 37SEF) ...................................................................... 46
3.10 Current Protection: Under-Current Guarded (37) ............................................................................... 46
3.11 Current Protection: Thermal Overload (49) ....................................................................................... 47
3.12 Current Protection: Arc Flash Detector (50 AFD) ............................................................................... 49
3.13 Voltage Protection: Phase Under/Over Voltage (27/59) - 7SR22 ....................................................... 50
3.14 Voltage Protection: Negative Phase Sequence Overvoltage (47) – 7SR22 ........................................ 51
3.15 Voltage Protection: Neutral Overvoltage (59N) – 7SR22 ................................................................... 52
3.16 Voltage Protection: Under/Over Frequency (81) – 7SR22.................................................................. 53
3.17 Power Protection: Power (32) – 7SR22 ............................................................................................ 54
3.18 Power Protection: Sensitive Power (32S) – 7SR22 ........................................................................... 55
3.19 Power Protection: Power Factor (55) – 7SR22 ................................................................................. 56
Section 4: Control & Logic Functions ................................................................................................................ 57
4.1 Auto-Reclose (79) ............................................................................................................................ 57
4.1.1 Overview............................................................................................................................ 57
4.1.2 Auto Reclose sequences .................................................................................................... 59
4.2 Autoreclose Prot’n Menu .................................................................................................................. 60
4.3 Autoreclose Config Menu ................................................................................................................. 60
4.4 P/F Shots Sub-Menu........................................................................................................................ 62
4.5 E/F Shots Sub-Menu........................................................................................................................ 62
4.6 SEF Shots Sub-Menu ...................................................................................................................... 62
7SR210 & 7SR220 Description of Operation
Unrestricted Page 4 of 94 ©2018 Siemens Protection Devices Limited
4.7 Extern Shots Sub-Menu .................................................................................................................. 63
4.8 Manual Control................................................................................................................................ 65
4.9 Synchronising ................................................................................................................................. 66
4.9.1 Reclosure Modes ............................................................................................................... 66
4.9.2 Charge Delays ................................................................................................................... 66
4.9.3 Voltage monitoring elements .............................................................................................. 66
4.9.4 Check Synchronising Mode ................................................................................................ 68
4.9.5 System Split Detector ........................................................................................................ 69
4.9.6 System Sync Reversion ..................................................................................................... 69
4.9.7 System Synchronising Mode .............................................................................................. 70
4.9.8 Close on Zero Mode .......................................................................................................... 70
4.10 Live/Dead Indication ........................................................................................................................ 71
4.11 Circuit Breaker ................................................................................................................................ 72
4.12 Quick Logic ..................................................................................................................................... 75
Section 5: Supervision Functions ..................................................................................................................... 77
5.1 Circuit Breaker Failure (50BF) ......................................................................................................... 77
5.2 VT Supervision (60VTS) 7SR22 .................................................................................................... 78
5.3 Busbar VT Fail (60VTF-Bus) – 7SR22 ............................................................................................. 79
5.4 CT Supervision (60CTS & 60CTS-I) ................................................................................................. 80
5.4.1 (60CTS-I) – 7SR21 & 7SR22 ............................................................................................. 80
5.4.2 (60CTS) – 7SR22 .............................................................................................................. 80
5.5 Broken Conductor (46BC) ............................................................................................................... 81
5.6 Trip / Close Circuit Supervision (74TCS & 74CCS) ........................................................................... 81
5.7 Inrush Restraint (81HBL2) ............................................................................................................... 82
5.8 Over Fluxing Detector (81HLB5) ...................................................................................................... 83
5.9 Load Blinder (21) ............................................................................................................................ 84
5.9.1 Load Blinder (21) Three-Phase .......................................................................................... 84
5.9.2 Load Blinder (21) Single-Phase. ......................................................................................... 85
Section 6: Other Features ................................................................................................................................ 87
6.1 Data Communications ..................................................................................................................... 87
6.2 Maintenance ................................................................................................................................... 87
6.2.1 I2t CB Wear ....................................................................................................................... 88
6.2.2 Output Matrix Test ............................................................................................................. 88
6.3 Data Storage................................................................................................................................... 89
6.3.1 General ............................................................................................................................. 89
6.3.2 Event Records ................................................................................................................... 89
6.3.3 Waveform Records. ........................................................................................................... 89
6.3.4 Fault Records .................................................................................................................... 90
6.3.5 Demand ............................................................................................................................ 90
6.3.6 Data Log ........................................................................................................................... 90
6.3.7 Energy Storage ................................................................................................................. 91
6.3.8 Fault Locator ..................................................................................................................... 92
6.4 Metering ......................................................................................................................................... 92
6.5 Operating Mode .............................................................................................................................. 93
6.6 Control Mode .................................................................................................................................. 93
6.7 Real Time Clock .............................................................................................................................. 93
6.7.1 Time Synchronisation - Data Communication Interface ....................................................... 94
6.7.2 Time Synchronisation – Binary Input .................................................................................. 94
6.7.3 Time Synchronisation – IRIG-B (Optional) .......................................................................... 94
6.8 Settings Groups .............................................................................................................................. 94
6.9 Password Feature ........................................................................................................................... 94
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 5 of 94
List of Figures
Figure 1.5-1 Functional Diagram of 7SR21 Relay .............................................................................. 10
Figure 1.5-2 Connections Diagram for 7SR21 Relay ......................................................................... 11
Figure 1.5-3 Functional Diagram of 7SR22 Relay .............................................................................. 13
Figure 1.5-4 Connection Diagram for 7SR22 Relay ........................................................................... 14
Figure 2.5-1 7SR21 with 3 + 8 LEDs in E6 Case ............................................................................... 17
Figure 2.5-2 7SR220 with 3 + 16 LEDs in E8 Case ........................................................................... 17
Figure 2.5-3 7SR22 with Function Keys and 3 + 8 LEDs in E8 Case .................................................. 17
Figure 2.5-4 7SR22 with Function Keys & 3 + 8 LEDs in E8 Case and Ethernet
Communication Interface ............................................................................................... 18
Figure 2.8-1 Binary Input Logic.......................................................................................................... 21
Figure 2.9-1 Binary Output Logic ....................................................................................................... 22
Figure 2.11-1 Start-up Counter Meter ................................................................................................ 23
Figure 2.11-2 Start-up Counter Meter ................................................................................................ 23
Figure 2.11-3 Start-up Counter Meter Events .................................................................................... 24
Figure 3.1.1-1 Logic Diagram: Directional Overcurrent Element (67) ............................................. 26
Figure 3.1.2-1 Logic Diagram: Instantaneous Over-current Element .............................................. 27
Figure 3.1.3-1 Logic Diagram: Time Delayed Overcurrent Element ............................................... 29
Figure 3.2-1 Logic Diagram: Voltage Controlled Overcurrent Protection............................................. 30
Figure 3.3.1-1 Logic Diagram: Derived Directional Earth Fault Element ......................................... 32
Figure 3.3.2-1 Logic Diagram: Derived Instantaneous Earth Fault Element ................................... 33
Figure 3.3.3-1 Logic Diagram: Derived Time Delayed Earth Fault Protection ................................. 34
Figure 3.4.1-1 Logic Diagram: Measured Directional Earth Fault Protection .................................. 35
Figure 3.4.2-1 Logic Diagram: Measured Instantaneous Earth-fault Element ................................. 36
Figure 3.4.3-1 Logic Diagram: Measured Time Delayed Earth Fault Element (51G) ...................... 37
Figure 3.5.1-1 Logic Diagram: SEF Directional Element (67SEF) .................................................. 39
Figure 3.5.2-1 Logic Diagram: 50 SEF Instantaneous Element...................................................... 40
Figure 3.5.2-2 Logic Diagram: 50 SEF Instantaneous Element Compensated Networks................ 40
Figure 3.5.3-1 Logic Diagram: 51 SEF Time Delayed Element ...................................................... 42
Figure 3.5.3-2 Logic Diagram: 51 SEF Time Delayed Element Compensated Networks ................ 42
Figure 3.6-1 Logic Diagram: High Impedance REF (64H) .................................................................. 43
Figure 3.7-1 Logic Diagram: Cold Load Settings (51c) ....................................................................... 44
Figure 3.8-1 Logic Diagram: Negative Phase Sequence Overcurrent (46NPS) .................................. 45
Figure 3.9-1 Logic Diagram: Undercurrent Detector (37, 37G & 37SEF) ............................................ 46
Figure 3.10-1 Logic Diagram: Undercurrent Guarded Detector (37) .............................................. 46
Figure 3.11-1 Logic Diagram: Thermal Overload Protection (49S) ................................................ 48
Figure 3.12-1 Logic Diagram: Arc Flash Detector (50 AFD) .......................................................... 49
Figure 3.13-1 Logic Diagram: Under/Over Voltage Elements (27/59) ........................................... 50
Figure 3.14-1 Logic Diagram: NPS Overvoltage Protection (47) ................................................... 51
Figure 3.15-1 Logic Diagram: Neutral Overvoltage Element ......................................................... 52
Figure 3.16-1 Logic Diagram: Under/Over Frequency Detector (81) ............................................. 53
Figure 3.17-1 Logic Diagram: Power Protection (32) .................................................................... 54
Figure 3.18-1 Logic Diagram: Sensitive Power Protection (32S) ................................................... 55
Figure 3.19-1 Logic Diagram: Power Factor Protection (55) ......................................................... 56
Figure 4.1.2-1 Typical Sequence with 3 Instantaneous and 1 Delayed trip .................................... 59
Figure 4.7-1 Basic Auto-Reclose Sequence Diagram ........................................................................ 64
Figure 4.9.3-1 Voltage Detector Operation .................................................................................... 67
Figure 4.9.4-1 Check Sync Function ............................................................................................. 68
Figure 4.9.7-1 System Sync Function ........................................................................................... 70
Figure 4.9.8-1 Close On Zero Function ......................................................................................... 71
Figure 4.9.8-2 Close On Zero Timing ............................................................................................ 71
Figure 4.10-1 Voltage Detector Operation .................................................................................... 72
Figure 4.11-1 Logic Diagram: Circuit Breaker Status .................................................................... 73
Figure 4.12-1Sequence Diagram: Quick Logic PU/DO Timers (Counter Reset Mode Off) .................. 76
Figure 5.1-1 Logic Diagram: Circuit Breaker Fail Protection (50BF) ................................................... 77
Figure 5.2-1 Logic Diagram: VT Supervision Function (60VTS) ......................................................... 79
Figure 5.4.1-1 Logic Diagram: CT Supervision Function (60CTS-I) – 7SR21 & 7SR22 .................. 80
Figure 5.4.2-1 Logic Diagram: CT Supervision Function (60CTS) – 7SR22 ................................... 80
Figure 5.5-1 Logic Diagram: Broken Conductor Function (46BC) ....................................................... 81
7SR210 & 7SR220 Description of Operation
Unrestricted Page 6 of 94 ©2018 Siemens Protection Devices Limited
Figure 5.6-1 Logic Diagram: Trip Circuit Supervision Feature (74TCS) ............................................. 81
Figure 5.6-2 Logic Diagram: Close Circuit Supervision Feature (74CCS) .......................................... 82
Figure 5.7-1 Logic Diagram: Harmonic Block Feature (81HBL2) ........................................................ 82
Figure 5.8-1 Logic Diagram: Over Fluxing Detector (81HLB5) ........................................................... 83
Figure 5.9.1-1 Logic Diagram: Load Blinder Three-Phase ............................................................. 84
Figure 5.9.2-1 Logic Diagram: Load Blinder Single-Phase ............................................................ 85
Figure 5.9.2-2 Load Blinder and Angle .......................................................................................... 86
Figure 6.3.7-1 Energy Direction Convention .................................................................................. 91
LIST OF TABLES
Table 1.5-1 Ordering Information – 7SR21 Non-Directional Overcurrent ............................................. 9
Table 1.5-2 Ordering Information – 7SR22 Directional Overcurrent .................................................. 12
Table 2.1-1 Summary of Overcurrent Relay Configurations .............................................................. 15
Table 6.5-1 Operation Mode ............................................................................................................ 93
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 7 of 94
Symbols and Nomenclature
The following notational and formatting conventions are used within the remainder of this
document:
· Setting Menu Location MAIN MENU>SUB-MENU
·Setting: Elem name -Setting
· Setting value: value
·Alternatives: [1st] [2nd] [3rd]
c
start
trip
Elem Starter
Elem Inhibit
Elem Reset Delay
c
Forward
Reverse
Elem Char Dir
Non-Dir
L1 Dir Blk
PhaseAFwd
Binary input signal
Binary Output visible to user
Digital signal to/from another
element
List of settings associated with a specific
function
Appropriate list is TRUE when setting
selected.
Digital signal not visible to
user, internal to this element
IL1
Analogue signal with signal
description
Common setting for multiple functions
c
start
trip
Function.
Individual functions are enabled when
associated control input (c) is TRUE.
Common control input (c) for multiple
functions. All functions are enabled
when control input is TRUE.
&
And Gate
(2 inputs shown)
1
Or Gate
(3 inputs shown) INST.
EVENT
EVENT: IEC, Modbus or DNP
Where applicable
Relay instrument
1
Exclusive Or (XOR) Gate
(3 inputs shown)
7SR210 & 7SR220 Description of Operation
Unrestricted Page 8 of 94 ©2018 Siemens Protection Devices Limited
Section 1: Introduction
This manual is applicable to the following relays:
· 7SR210 Multi-Function Non-directional Overcurrent and Earth Fault Relay
· 7SR220 Multi-Function Directional Overcurrent and Directional Earth Fault Relay
The 7SR210 and 7SR220 relays integrate the protection and control elements required to provide a complete
overcurrent based protection.
The ‘Ordering Options’ Tables summarise the features available in each model.
General Safety Precautions
1.1 Current Transformer Circuits
The secondary circuit of a live CT must not be open circuited. Non-observance of this precaution can result in
injury to personnel or damage to equipment.
1.2 External Resistors
Where external resistors are fitted to the circuit, these may present a danger of electric shock or burns, if touched.
1.3 Fibre Optic Communication
Where fibre optic communication ports are fitted, the lasers are Class 1 devices but recommend they should not
be viewed directly. Optical power meters should be used to determine the operation or signal level of the device.
1.4 Front Cover
The front cover provides additional securing of the relay element within the case. The relay cover
should be in place during normal operating conditions.
1.5 Disposal
The Relay should be disposed of in a manner which does not provide a threat to health or the environment. All
laws and regulations specific to the country of disposal should be adhered to.
The relays and protection systems manufactured under the Reyrolle brand currently do not come within the scope
of either the European WEEE or RoHS directives as they are equipment making up a fixed installation.
!
!
!
!
!
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 9 of 94
Table 1.5-1 Ordering Information – 7SR21 Non-Directional Overcurrent
Product description Variants Order No.
7 S R 2 1 0 - 1 A - 0 A 0
Protection Product Family
Overcurrent - Non Directional
1
Relay Type
0
Case, I/O and Fascia
1)
E6 case, 4 CT, 9 Binary Inputs, 8 Binary Outputs, 8 LEDs
2
E8 case, 4 CT, 19 Binary Inputs, 16 Binary Outputs, 16 LEDs
3
E8 case, 4 CT, 19 Binary Inputs, 16 Binary Outputs, 8 LEDs + 6 keys
4
E12 case, 4 CT, 39 Binary Inputs / 16 Binary Outputs, 32 LEDs
5
E12 case, 4 CT, 39 Binary Inputs / 16 Binary Outputs, 16 LEDs, 12 keys
6
Measuring input
1 A or 5 A, 50 Hz or 60 Hz
1
Auxiliary voltage
PSU Rated: 30 to 220V DC. Binary Input threshold 19V DC (Rated: 24-250V DC)
A
B
PSU Rated: 24-250V DC / 100-230V AC. Binary Input threshold 19V DC (Rated: 24-250V DC)
M
PSU Rated: 24-250V DC / 100-230V AC. Binary Input threshold 88V DC (Rated: 110-250V DC)
N
Spare
A
Communication Interface
Standard version - included in all models, USB front port, RS485 rear port
1
Standard version - plus additional rear F/O ST connectors (x2) and IRIG-B
2
Standard version - plus additional rear RS485 and IRIG-B
3
Standard version - plus additional rear RS232 and IRIG-B
4
Standard version - plus additional rear Electrical Ethernet RJ45 (x2)
7
7
Standard version - plus additional rear Optical Ethernet Duplex (x2)
8
7
Protocol
IEC 60870-5-103 and Modbus RTU (user selectable)
1
IEC 60870-5-103 and Modbus RTU and DNP 3.0 (user selectable)
2
IEC 60870-5-103 and Modbus RTU and DNP 3.0 (user selectable) and IEC61850 7-8 7
Spare
0
Protection Function Packages
Standard version - included in all models
C
37 Undercurrent
46BC Broken conductor/load unbalance
46NPS Negative phase sequence overcurrent
49 Thermal overload
50 Instantaneous phase fault overcurrent
50BF Circuit breaker fail
50G/50N
Instantaneous earth fault/SEF
50 AFD Arc Flash Detector
51 Time delayed phase fault overcurrent
51G/51N Time delayed earth fault/SEF
60CTS-I CT supervision
64H High impedance REF
74TC/CCS Trip & close circuit supervision
81HBL2 Inrush Detector
81HBL5 Overfluxing Detector
86
Lockout
Cold load pickup
Programmable logic
CB Control
Standard version - plus
D
79
Autoreclose
Additional Functionality
No additional functionality
A
Spare
0
Export Data
HS: 8536900
ECCN: N
AL: N
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 10 of 94
Figure 1.5-1 Functional Diagram of 7SR21 Relay
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 11 of 94
GND.
BI 1
+ve
-ve
+ve
-ve
IL1
(IA)
22
24
28
2
4
BI 2
+ve
-ve
6
8
BI 3
+ve
-ve
10
12
IL2
(IB)
IL3
(IC)
I4(IG/ISEF)
13
14
15
16
BI 4
+ve 18
BI 5
+ve 20
BI 6
+ve
-ve
22
25
BI 7
+ve 24
BI 8
+ve 26
BI 9
+ve
-ve
28
27
BO 7 19
17
BO 8 23
21
1A
5A
1
2
3
4
1A
5A
5
6
7
8
1A
5A
9
10
11
12
1A
5A
7SR21
BI 10
+ve
-ve
2
4
BI 11
+ve
-ve
6
8
BI 12
+ve
10
BO 9 3
1
BO 10 7
5
BO 11 11
9
BI 13
+ve
12
BI 14
+ve
14
BI 15
+ve
-ve
16
18
BI 16
20
BI 17
+ve
22
BI 18
+ve
24
BI 19
+ve
-ve
26
28
+ve
BO 12 15
13
21
19
17
BO 13
BO 14
27
25
23
BO 15
BO 16
A
B
C
A
Screen
B
Term.
14
16
18
20
Rear View
Arrangement of terminals and modules
Shows contacts internal to relay case
assembly.
Contacts close when the relay chassis is
withdrawn from case
NOTES
BI = Binary Input
BO = Binary Output
BO 1
BO 2
9
5
7
BO 3
BO 4
BO 5
BO 6
27
3
1
15
11
13
19
17
23
21
25
26
A
Analogue
B
PSU
C
Optional
I/O
1 2
27 28
1 21 2
27 2827 28
Data
Comms
(Optional)
D
Optional
I/O
1 2
27 28
E
Blank
1 2
27 28
BI 20
+ve
-ve
2
4
BI 21
+ve
-ve
6
8
BI 22
+ve
10
BI 23
+ve
12
BI 24
+ve
14
BI 25
+ve
-ve
16
18
BI 26
20
BI 27
+ve
22
BI 28
+ve
24
BI 29
+ve
-ve
26
28
+ve
D
BI 30
+ve
-ve
1
3
BI 31
+ve
-ve
5
7
BI 32
+ve 9
BI 33
+ve 11
BI 34
+ve 13
BI 35
+ve
-ve
15
17
BI 36
19
BI 37
+ve 21
BI 38
+ve 23
BI 39
+ve
-ve
25
27
+ve
Figure 1.5-2 Connections Diagram for 7SR21 Relay
7SR210 & 7SR220 Description of Operation
Unrestricted Page 12 of 94 ©2018 Siemens Protection Devices Limited
Table 1.5-2 Ordering Information – 7SR22 Directional Overcurrent
Product description Variants Order No.
7 S R 2 2 0 - 2 A - 0 A 0
Protection Product Family
Overcurrent - Directional
2
Relay Type
0
Case, I/O and Fascia
1)
E6 case, 5 CT, 4 VT, 3 Binary Inputs, 6 Binary Outputs, 8 LEDs
2
C
E8 case, 5 CT, 4 VT, 13 Binary Inputs, 14 Binary Outputs, 16 LEDs
3
E8 case, 5 CT, 4 VT, 13 Binary Inputs, 14 Binary Outputs, 8 LEDs + 6 keys
4
E12 case, 5 CT, 4 VT, 33 Binary Inputs / 14 Binary Outputs, 32 LEDs
5
E12 case, 5 CT, 4 VT, 33 Binary Inputs / 14 Binary Outputs, 16 LEDs, 12 keys
6
Measuring input
1 A or 5 A, 40 V to 160 V, 50 Hz or 60 Hz
2
Auxiliary voltage
PSU Rated: 30 to 220V DC. Binary Input threshold 19V DC (Rated: 24-250V DC)
A
PSU Rated: 30 to 220V DC. Binary Input threshold 88V DC (Rated: 110-250V DC)
B
PSU Rated: 24-250V DC / 100-230V AC. Binary Input threshold 19V DC (Rated: 24-250V DC)
M
PSU Rated: 24-250V DC / 100-230V AC. Binary Input threshold 88V DC (Rated: 110-250V DC)
N
Spare
A
Communication Interface
Standard version - included in all models, USB front port, RS485 rear port
1
Standard version - plus additional rear F/O ST connectors (x2) and IRIG-B
2
Standard version - plus additional rear RS485 and IRIG-B
3
Standard version - plus additional rear RS232 and IRIG-B
4
Standard version - plus additional rear Electrical Ethernet RJ45 (x2)
7
7
Standard version - plus additional rear Optical Ethernet Duplex (x2)
8
7
Protocol
IEC 60870-5-103 and Modbus RTU (user selectable)
1
IEC 60870-5-103 and Modbus RTU and DNP 3.0 (user selectable)
2
IEC 60870-5-103 and Modbus RTU and DNP 3.0 (user selectable) and IEC61850 7-8 7
Spare
0
Protection Function Packages
Standard version - included in all models
C
21FL Fault Locator
21LB Load Blinder
27/59
1)
Under/overvoltage
32 Power
32S Sensitive Power
37 Undercurrent
37G
1)
Ground Undercurrent
37SEF
1)
SEF Undercurrent
46BC Broken conductor/load unbalance
46NPS Negative phase sequence overcurrent
47
1)
Negative phase sequence voltage
49 Thermal overload
50 Instantaneous phase fault overcurrent
50BF Circuit breaker fail
50G/50N Instantaneous earth fault
50 AFD Arc Flash Detector
51V Voltage dependent overcurrent
55 Power factor
59N Neutral voltage displacement
60CTS CT supervision
60CTS-I CT supervision
60VTS VT supervision
64H High impedance REF
67/50 Directional instantaneous phase fault overcurrent
67/50G
67/50N
Directional instantaneous earth fault/SEF
67/51 Directional time delayed phase fault overcurrent
67/51G
67/51N
Directional tIme delayed earth fault/SEF
74TC/CCS Trip & close circuit supervision
81 Under/overfrequency
81HBL2 Inrush Detector
81HBL5 Overfluxing
86
Lockout
Cold load pickup
Programmable logic
CB Control
Standard version - plus
D
79
Autoreclose
Standard version - plus
E
79 + 25
Additional Functionality
No additional functionality
A
Spare
0
Export Data
HS: 8536900
ECCN: N
AL: N
1) 5CT is configured as 3PF + EF/SEF + EF/SEF (user selectable setting).
Autoreclose + Check Sync
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 13 of 94
7SR22
46
BC
46
NPS
(x2)
37
(x2) 49 50
BF
VL1
(VA)
VL2
(VB)
VL3
(VC)
V4
(VX)
IL1
(IA)
81
HBL
2/5
37
(x2) 49 50
BF
IL2
(IB)
81
HBL
2/5
37
(x2) 49 50
BF
IL3
(IC)
81
HBL
2/5
60
CTS
I4
(IG)
I5
(ISEF)
74
TCS
NOTE: The use of some
functions are mutually exclusive
67/
50/51
(x4)
67/
50/51N
(x4)
67/
50/51
(x4)
67/
50/51
(x4)
67/
50/51G
(x4)
67/
50/51S
(x4)
64
H
27
59
27
59
(x4)
27
59
(x4)
27
59
(x4)
47
(x2)
81
(x6)
79 Optional
59N
(x2)
81
HBL
2/5N
37G
(x2)
37S
(x2)
51c
60
CTS-
I
60
CTS-
I
60
CTS-
I
37 50
BF
37 50
BF
25
50
AFD
50
AFD
50
AFD
51c
51c
51c
32S32 55
21
LB
21
LB
21
LB
51V
21FL
60
VTS
51V
51V
Figure 1.5-3 Functional Diagram of 7SR22 Relay
7SR210 & 7SR220 Description of Operation
Unrestricted Page 14 of 94 ©2018 Siemens Protection Devices Limited
7SR22
GND.
BI 1
+ve
-ve
+ve
-ve
IL1
(IA)
22
24
28
2
4
BI 2
+ve
-ve
6
8
BI 3
+ve
-ve
10
12
1
2
5
6
9
10
13
14
A
17
18
19
20
VL1
(VA)
21
22
VL2
(VB)
23
24
VL3
(VC)
25
26
V4
(VX)
27
28
BI 4
+ve
-ve
2
4
BI 5
+ve
-ve
6
8
BI 6
+ve
10
BO 7
BO 8
BO 9
BI 7
+ve
12
BI 8
+ve
14
BI 9
+ve
-ve
16
18
BI 10
20
BI 11
+ve
22
BI 12
+ve
24
BI 13
+ve
-ve
26
28
+ve
BO 10
BO 11
BO 12
BO 13
BO 14
1A
5A
1A
5A
IL2
(IB)
1A
5A
IL3
(IC)
1A
5A
I4
(IG)
15
16
11
12
1A
5A
I5
(ISEF)
3
4
7
8
A
Analogue
B
PSU
C
Optional
I/O
1 2
27 28
1 21 2
27 2827 28
Data
Comms
(Optional)
Rear View
Arrangement of terminals and modules
B
C
A
Screen
B
Term.
14
16
18
20
Shows contacts internal to relay case
assembly.
Contacts close when the relay chassis is
withdrawn from case
NOTES
BI = Binary Input
BO = Binary Output
21
19
17
23
25
27
3
1
7
5
11
9
15
13
BO 1
BO 2
9
5
7
BO 3
BO 4
BO 5
BO 6
27
3
1
15
11
13
19
17
23
21
25
26
D
Optional
I/O
1 2
27 28
E
Blank
1 2
27 28
BI 14
+ve
-ve
2
4
BI 15
+ve
-ve
6
8
BI 16
+ve
10
BI 17
+ve
12
BI 18
+ve
14
BI 19
+ve
-ve
16
18
BI 20
20
BI 21
+ve
22
BI 22
+ve
24
BI 23
+ve
-ve
26
28
+ve
D
BI 24
+ve
-ve
1
3
BI 25
+ve
-ve
5
7
BI 26
+ve 9
BI 27
+ve 11
BI 28
+ve 13
BI 29
+ve
-ve
15
17
BI 30
19
BI 31
+ve 21
BI 32
+ve 23
BI 33
+ve
-ve
25
27
+ve
Figure 1.5-4 Connection Diagram for 7SR22 Relay
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 15 of 94
Section 2: Hardware Description
2.1 General
The structure of the relay is based upon the Multi-function hardware platform. The relays are supplied in either
size E6 or size E8 cases (where 1 x E = width of 26 mm). The hardware design provides commonality between
products and components across the Multi-function range of relays.
Table 2.1-1 Summary of Overcurrent Relay Configurations
Relay Current
Inputs
Voltage
Inputs
Binary
Inputs
Output
Relays
LEDs Function
Keys
Case
7SR2102 4 9 8 8 E6
7SR2103 4 19 16 16 E8
7SR2104 4 19 16 8 6 E8
7SR2105 4 39 16 32 E12
7SR2106 4 39 16 16 12 E12
7SR2202 5 4 3 6 8 E6
7SR2203 5 4 13 14 16 E8
7SR2204 5 4 13 14 8 6 E8
7SR2205 5 4 33 14 32 E12
7SR2206 5 4 33 14 16 12 E12
Relays are assembled from the following modules: -
1. Front Fascia with three fixed function LEDs and ordering options of configurable LEDs/Function Keys.
2. Processor module
3. Analogue Input module, either
· 4 x Current + 6 x Binary Inputs + 2 x Binary Outputs (7SR21), or
· 5 x Current + 4 x Voltage (7SR22).
4. Power Supply and 3 x Binary Inputs (BI) and 6 x Binary Outputs (BO).
5. Optional Binary Input/Output Module
· 10 x Binary Inputs + 8 x Binary Outputs
· 20 x Binary Inputs
6. Optional Communications Module (2x rear fibre optic + 1x IRIG-B ports), (1x rear RS485 + 1x IRIG-B
port), (1x rear RS232 + 1x IRIG-B port), (2x Electrical Ethernet for IEC 61850), (2x Optical Ethernet for
IEC 61850).
7SR210 & 7SR220 Description of Operation
Unrestricted Page 16 of 94 ©2018 Siemens Protection Devices Limited
2.2 Case
The relays are housed in cases designed to fit directly into standard panel racks. The three case options have
widths of 156 mm (E6), 208 mm (E8) and 304 mm (E12), with a height of 177 mm (4U). The required panel depth
(with wiring clearance) is 242 mm. An additional 75 mm depth clearance should be allowed to accommodate the
bending radius of fibre optic data communications cables if fitted. Relays with IEC 61850 communications option
require a depth of 261.5 mm to allow for the communication module and a clearance from devices fitted below the
relay of 75 mm to accommodate fitment of the Ethernet cables.
The complete relay assembly is withdrawable from the front of the case. Contacts in the case ensure that the CT
circuits remain short-circuited when the relay is removed. For the IEC 61850 variant options the rear retaining
screw must be re-fitted following re-insertion to ensure relay performance claims.
The rear terminal blocks comprise M4 female terminals for wire connections. Each terminal can accept two 4 mm
crimps. Located at the top rear of the case is a screw-clamp earthing point, this must be connected to the main
panel earth.
2.3 Front Cover
With the transparent front cover in place the user only has access to the and TEST/RESET buttons, via blue
push buttons, allowing all areas of the menu system to be viewed, but preventing setting changes and control
actions. The only ‘action’ that is permitted is to reset the Fault Data display, latched binary outputs and LEDs by
using the TEST/RESET 4 button. The front cover is used to secure the relay assembly in the case.
2.4 Power Supply Unit (PSU)
The relay PSU can be directly connected to any substation dc system rated from 24 V dc to 250 V dc / 100 V ac
to 230 V ac.
In the event of the station battery voltage level falling below the relay minimum operating level, the PSU will
automatically switch itself off and latch out this prevents any PSU overload conditions occurring. The PSU is
reset by switching the auxiliary supply off and on.
Typically the PSU is connected to the auxiliary supply via an external HRC fuse rated at 6A (BS88/IEC60259).
Isolation links may also be installed in accordance with user requirements.
2.5 Operator Interface/ Fascia
The operator interface is designed to provide a user-friendly method of controlling, entering settings and retrieving
data from the relay.
The warning and information labels on the relay fascia provide the following information: -
Dielectric Test Voltage 2kV
Impulse Test Above 5kV
Caution: Risk of Electric Shock
Caution: Refer to Equipment Documentation
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 17 of 94
Figure 2.5-1 7SR21 with 3 + 8 LEDs in E6 Case
Figure 2.5-2 7SR220 with 3 + 16 LEDs in E8 Case
Figure 2.5-3 7SR22 with Function Keys and 3 + 8 LEDs in E8 Case
NOTE: Pushbuttons on cover not shown
7SR210 & 7SR220 Description of Operation
Unrestricted Page 18 of 94 ©2018 Siemens Protection Devices Limited
The fascia is an integral part of the relay. Handles are located at each side of the element to allow it to be
withdrawn from the relay case.
Figure 2.5-4 7SR22 with Function Keys & 3 + 8 LEDs in E8 Case and Ethernet Communication Interface
Relay Information
Above the LCD three labels are provided, these provide the following information: -
1) Product name and order code.
2) Nominal current rating, rated frequency, voltage rating, auxiliary dc supply rating, binary input supply
rating, configuration and serial number.
3) Blank label for user defined information.
A ‘template’ is available to allow users to create and print customised labels.
Liquid Crystal Display (LCD)
A 4-line by 20-character liquid crystal display indicates settings, instrumentation, fault data and control
commands.
To conserve power the display backlighting is extinguished when no buttons are pressed for a user defined
period. A setting within the “SYSTEM CONFIG” menu allows the timeout to be adjusted from 1 to 60 minutes and
“Off” (backlight permanently on). Pressing any key will re-activate the display.
The LCD contrast can be adjusted using a flat blade screwdriver to turn the screw located below the contrast
symbol . Turning the screw clockwise increases the contrast, anti-clockwise reduces the contrast.
User defined indentifying text can be programmed into the relay using the System config/Relay Identifier
setting. The ‘Relay Identifier’ text is displayed on the LCD display at the top level of the menu structure and is
used in communication with Reydisp to identify the relay. Pressing the Cancel button several times will always
return the user to this screen.
‘PROTECTION HEALTHY’ LED
This green LED is steadily illuminated to indicate that DC voltage has been applied to the relay power supply and
that the relay is operating correctly. If the internal relay watchdog detects an internal fault then this LED will
continuously flash.
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 19 of 94
‘PICKUPLED
This yellow LED is illuminated to indicate that a user selectable function(s) has picked up. The LED will self reset
after the initiating condition has been removed. The same LED can be assigned two different colours dependent
upon whether a Pickup (PU) or Operate condition exists.
Functions are assigned to the PICKUP LED in the OUTPUT CONFIG>PICKUP CONFIG menu.
‘TRIPLED
This red LED is steadily illuminated to indicate that a user selectable function has operated to trip the circuit
breaker. Functions are assigned to the ‘Trip’ LED using the OUTPUT CONFIG>Trip Contacts setting.
Operation of the LED is latched and can be reset by either pressing the TEST/RESET button, energising a
suitably programmed binary input, or, by sending an appropriate command over the data communications
channel(s).
Indication LEDs (Numbered 1 to 8, 1 to 16 or 1 to 32)
Relays have either 8, 16 or 32 user programmable Tri-colour (red, green or yellow) LED indicators, depending
upon the variant ordered. They are configured via the menu: -
Settings\ Output Config\LED Config menu or
LED tab in Reydisp Evolution.
They can be designated as either: -
Pick-Up (PU) LEDs (they respond upon the detection of a condition i.e. overcurrent detection), or
Operation LEDs (they respond to the action of a condition i.e. CB trip operation).
Configuration options are: -
Self Reset LEDs - automatically reset upon loss of initiating condition.
PU Self Reset LEDs - automatically reset upon loss of initiating condition
Green LEDs - illuminate green
Red LEDs - illuminate red
Yellow LEDs - illuminate yellow (when both red and green are selected)
PU Green LEDs - illuminate green in response to the detection of a condition
PU Red LEDs - illuminate red in response to the detection of a condition
Colour selection is achieved by checking (ticking) the appropriate box i.e. red or green. To select yellow, check
both red & green boxes.
Functions are assigned to the LEDs in the OUTPUT CONFIG>OUTPUT MATRIX menu.
Each LED can be labelled by withdrawing the relay and inserting a label strip into the pocket behind the front
fascia. A ‘template’ is available to allow users to create and print customised legends.
This can be found in: -
Reydisp Evolution\Help\Open Relay LED Template\Open RM LED Template
Each LED can be user programmed as hand or self –resetting. Hand reset LEDs can be reset by either pressing
the TEST/RESET button, energising a suitably programmed binary input, or, by sending an appropriate
command over the data communications channel(s).
The status of hand reset LEDs is maintained by a back up storage capacitor in the event of an interruption to the
d.c. supply voltage.
Standard Pushbuttons
The relay is supplied as standard with five pushbuttons. The buttons are used to navigate the menu structure and
control relay functions. They are labelled: -
Increases a setting or moves up menu.
Decreases a setting or moves down menu.
TEST/RESETMoves right, can be used to reset selected functionality and for LED test (at
relay identifier screen).
ENTER Used to initiate and accept settings changes.
CANCEL Used to cancel settings changes and/or move up the menu structure by one
level per press.
NOTE: All settings and configuration of LEDs, BI, BO and function keys can be accessed and set by the user
using these keys. Alternatively configuration/settings files can be loaded into the relay using ‘Reydisp Evolution’.
7SR210 & 7SR220 Description of Operation
Unrestricted Page 20 of 94 ©2018 Siemens Protection Devices Limited
Function Keys/ LEDs (Ordering Option)
Six additional programmable pushbuttons can be specified. These can be configured by the user to initiate
selected functions from the Control menu (INPUT CONFIG > FUNCTION KEY MATRIX).
Each pushbutton has an associated LED. LEDs can be programmed as hand or self reset and can be illuminated
as green, yellow or red (OUTPUT CONFIG > LED CONFIG).
Function keys can be used with Quick Logic.
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 21 of 94
2.6 Current Inputs
Four current inputs are provided in the 7SR21 relay and five inputs are provided in the 7SR22 relay. Current
inputs are located on the Analogue Input module. Terminals are available for both 1 A and 5 A inputs. Current is
sampled at 1600 Hz for both 50 Hz and 60 Hz system frequencies. Protection and monitoring functions of the
relay use either the Fundamental Frequency RMS or the True RMS value of current appropriate to the individual
function. The waveform recorder samples and displays current input waveforms at 1600 Hz.
NB: The Relay has a flat frequency response measuring harmonic currents up to and including the 50th Harmonic
but does not measure the content at the aliasing frequencies i.e. 800 Hz (16th harmonic) + 1600 Hz (32nd
harmonic) + 2400 Hz (48th harmonic).
2.7 Voltage Inputs
Four voltage inputs are provided in the 7SR22 relay. Voltage inputs are located on the Analogue Input module.
Voltage is sampled at 1600 Hz for both 50 Hz and 60 Hz system frequencies. Protection and monitoring functions
of the relay use fundamental frequency voltage measurement. The waveform recorder samples and displays
voltage input waveforms at 1600 Hz.
2.8 Binary Inputs
The binary inputs are operated from a suitably rated dc supply.
Relays are fitted with 3, 9, 13, 19, 33 or 39 binary inputs (BI). The user can assign any binary input to any of the
available functions (INPUT CONFIG > INPUT MATRIX).
The Power Supply module includes the relay basic I/O. The module includes 3 x BI and 6 x BO.
Non-directional (7SR21) relays have an additional 6 x BI on the analogue module.
Additional I/O modules may be fitted, these provide 10 x BI.
Pick-up (PU) and drop-off (DO) time delays are associated with each binary input. Where no pick-up time delay
has been applied the input may pick up due to induced ac voltage on the wiring connections (e.g. cross site
wiring). The default pick-up time of 20 ms provides ac immunity. Each input can be programmed independently.
Each input may be logically inverted to facilitate integration of the relay within the user scheme. When inverted the
relay indicates that the BI is energised when no d.c. is applied. Inversion occurs before the PU & DO time delay,
see fig. 2.8-1.
Each input may be mapped to any front Fascia indication LED and/or to any Binary output contact and can also
be used with the internal user programmable logic. This allows the relay to provide panel indications and alarms.
The binary inputs are sampled every 5 ms.
Figure 2.8-1 Binary Input Logic
7SR210 & 7SR220 Description of Operation
Unrestricted Page 22 of 94 ©2018 Siemens Protection Devices Limited
2.9 Binary Outputs (Output Relays)
Relays are fitted with 6, 8, 14 or 16 binary outputs (BO). All outputs are fully user configurable and can be
programmed to operate from any or all of the available functions.
The Power Supply module includes the relay basic 6 x BO contacts configured as 1 x normally closed (NC), 2 x
change-over (CO) and 3 x normally open (NO) contacts.
Non-directional (7SR21) relays have two additional binary outputs providing 2 x NO contacts on the analogue
module. Additional I/O modules may be fitted providing an extra 8 x NO contacts.
In the default mode of operation binary outputs are self reset and remain energised for a user configurable
minimum time of up to 60 seconds. If required, outputs can be programmed to operate as ‘hand reset’ or ‘pulsed’.
If the output relay is programmed to be ‘hand reset’ and ‘pulsed’ then the output will be ‘hand reset’ only.
The binary outputs can be used to operate the trip coils of the circuit breaker directly where the trip coil current
does not exceed the 'make and carry' contact rating. The circuit breaker auxiliary contacts or other in-series
auxiliary device must be used to break the trip coil current.
Any BO can be assigned as a ‘Trip Contact’ in the OUTPUT CONFIG>TRIP CONFIG menu. Operation of a ‘Trip
Contact’ will operate any LED or virtual assigned from the trip triggered feature in the same menu and will initiate
the fault record storage, actuate the ‘Trip Alert’ screen where enabled and CB Fail protection when enabled.
When the relay is withdrawn from the case all normally closed contacts will be open circuited. This should be
considered in the design of the control and protection circuitry.
Notes on Pulsed Outputs
When operated, the output will reset after a user configurable time of up to 60 seconds regardless of the initiating
condition.
Notes on Self Reset Outputs
Self reset operation has a minimum reset time of 100 ms.
With a failed breaker condition the relay may remain operated until current flow is interrupted by an upstream
device. When the current is removed the relay will then reset and attempt to interrupt trip coil current flowing via
its output contact. Where this current level is above the break rating of the output contact an auxiliary relay with
heavy-duty contacts should be utilised in the primary system to avoid damage to the relay.
Notes on Hand Reset Outputs
Hand reset outputs can be reset by either pressing the TEST/RESET button, by energising a suitably
programmed binary input, or, by sending an appropriate command over the data communications channel(s).
On loss of the auxiliary supply hand-reset outputs will reset. When the auxiliary supply is re-established the binary
output will remain in the reset state unless the initiating condition is still present.
Event
Output 1
Min Operate Time
Hand Reset
BO 1 hand reset
S
RQ
OUTPUT CONFIG>
OUTPUT MATRIX
(Or gates)
Logic signals,
e.g. '51-1' Reset LEDs & Outputs (TEST/RESET key, Binary Input, Data Comms)
&&
&
1
1
Event
Output n
BO n hand reset
S
RQ
&&
&
1
1
BO 1
BO n
OUTPUT
CONFIG>
BINARY
OUTPUT
CONFIG
OUTPUT
CONFIG>
BINARY
OUTPUT
CONFIG
Figure 2.9-1 Binary Output Logic
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 23 of 94
2.10 Virtual Input/Outputs
The relays have 16 virtual input/outputs, these are internal logic states. Virtual I/O is assigned in the same way as
physical Binary Inputs and Binary Outputs. Virtual I/O is mapped from within the INPUT CONFIG > INPUT
MATRIX and OUTPUT CONFIG > OUTPUT MATRIX menus.
The status of the virtual inputs and outputs is volatile i.e. not stored during power loss.
2.11 Self Monitoring
The relay incorporates a number of self-monitoring features. Each of these features can initiate a controlled reset
recovery sequence.
Supervision includes a power supply watchdog, code execution watchdog, memory checks by checksum and
processor/ADC health checks. When all checks indicate the relay is operating correctly the ‘Protection Healthy’
LED is illuminated.
If an internal failure is detected, a message will be displayed. The relay will reset in an attempt to rectify the
failure. This will result in de-energisation of any binary output mapped to ‘protection healthy’ and flashing of the
protection healthy LED. If a successful reset is achieved by the relay the LED and output contact will revert back
to normal operational mode, and the relay will restart, therefore ensuring the circuit is protected for the maximum
time.
A Start-up Counter Meter is provided to display the number of start-ups the relay has performed. Once the
number of start-ups has exceeded a set number, an Alarm output can be given.
Figure 2.11-1 Start-up Counter Meter
Reset of the counter can be done from the meter or via a binary input or a command.
Various types of start-up are monitored by the relay:
1. power-on starts (auxiliary supply initiation)
2. expected starts (user initiated via comms, language changes, custom protection curve etc.)
3. unexpected starts (caused by the relay watchdog)
Any combination of these can be selected for the start-up count. This is done in the MAINTENANCE
MENU>START COUNT menu using the Start Up Types setting. All the start-up types selected will be added to
the overall start-up count.
The number of restarts before the alarm output is raised is set in the MAINTENANCE MENU>START COUNT
menu using the Start Up Count Target setting.
When the number of relay start-ups reaches the target value an output is raised, OUTPUT MATRIX>Start Up
Count Alarm, which can be programmed to any combination of binary outputs, LED’s or virtual outputs.
As a further safeguard, if the Relay performs a number of unexpected starts SYSTEM CONFIG>Unexpected
Restart Count in a given time SYSTEM CONFIG>Unexpected Restart Period, it can be configured using the
SYSTEM CONFIG>Unexpected Restart Blocking setting to remove itself from service. In this case the Relay
will display a typical error message such as: -
Figure 2.11-2 Start-up Counter Meter
7SR210 & 7SR220 Description of Operation
Unrestricted Page 24 of 94 ©2018 Siemens Protection Devices Limited
The relay will enter a locked-out mode, while in this mode it will disable operation of all LED’s, Binary Outputs,
including Protection Healthy, pushbuttons and any data communications activity. Once the Relay has failed in this
manner, it is non-recoverable at site and must be returned to the manufacturer for repair.
A meter, Miscellaneous Meters>Unexpected Restarts, is provided to show how many Unexpected Restarts have
occurred during the previous Unexpected Restart Period. This is resettable from the front fascia.
The following screen-shot shows the events, which are generated when the relay re-starts. The highlighted events
show the cause of the re-start. The event which comes next shows the type of restart followed by the relay:
Warm, Cold or Re-Start.
Figure 2.11-3 Start-up Counter Meter Events
2.11.1 Protection Healthy/Defective
When the relay has an auxiliary DC supply and it has successfully passed its self-checking procedure then the
front facia Protection Healthy LED is turned on.
A normally open contact can be used to signal protection healthy. When the relay has DC supply and it has
successfully passed its self-checking procedure then the Protection Healthy contacts are made.
A changeover or normally closed contact can be mapped via the binary output matrix to provide an external
protection defective signal. With the ‘Protection Healthy’ this contact is open. When the auxiliary DC supply is not
applied to the relay or a problem is detected within the relay then this output contact closes to provide external
indication.
An alarm can be provided if the relay is withdrawn from the case. A contact is provided in the case at positions
25-26 of the PSU module, this contact closes when the relay is withdrawn.
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 25 of 94
Section 3: Protection Functions
3.1 Current Protection: Phase Overcurrent (67, 51, 50)
All phase overcurrent elements can be set to measure either fundamental frequency RMS or True RMS current
i.e.
True RMS current: - 50 Measurement = RMS
51 Measurement = RMS
Fundamental Frequency RMS current: - 50 Measurement = Fundamental
51 Measurement = Fundamental
3.1.1 Directional Control of Overcurrent Protection (67) – 7SR22
The directional element produces forward and reverse outputs for use with overcurrent elements. These outputs
can then be mapped as controls to each shaped and instantaneous over-current element.
If a protection element is set as non-directional then it will operate independently of the output of the directional
detector. However, if a protection element is programmed for forward directional mode then operation will occur
only for a fault lying within the forward operate zone. Conversely, if a protection element is programmed for
reverse directional mode then operation will occur only for a fault lying within the reverse operate zone. Typically
the forward direction is defined as being ‘away’ from the busbar or towards the protected zone.
The Characteristic angle is the phase angle by which the polarising voltage must be adjusted such that the
directional detector gives maximum sensitivity in the forward operate zone when the current is in phase with it.
The reverse operate zone is the mirror image of the forward zone.
Voltage polarisation is achieved for the phase-fault elements using the quadrature voltage i.e. at unity power
factor I leads V by 90°. Each phase current is compared to the voltage between the other two phases: -
IL1 ~ V23 IL2 ~ V31 IL3 ~ V12
The characteristic angle can be user programmed to any angle between -95° and +95° using the 67 Char Angle
setting. The voltage is the reference phasor (Vref) and the 67 Char Angle setting is added to this to adjust the
forward and reverse zones.
The centre of the forward zone is set by (Vref Angle + 67 Char Angle) and should be set to correspond with Ifault
Angle for maximum sensitivity i.e.
For fault current of -60° (I lagging V by 60°) a 67 Char Angle of +30° is required for maximum sensitivity
(i.e. due to quadrature connection 90° - 60°= 30°)
OR
For fault current of -45° (I lagging V by 45°) a 67 Char Angle of +45° is required for maximum sensitivity
(i.e. due to quadrature connection 90° - 45°= 45°).
Two-out-of-three Gate
When the 67 2-Out-Of-3 Logic setting is set to Enabled, the directional elements will only operate for the
majority direction, e.g. if IL1 and IL3 are detected as forward flowing currents and IL2 is detected as reverse current
flow, phases L1 and L3 will operate forwards, while phase L2 will be inhibited.
7SR210 & 7SR220 Description of Operation
Unrestricted Page 26 of 94 ©2018 Siemens Protection Devices Limited
Minimum Polarising Voltage
The 67 Minimum Voltage setting defines the minimum polarising voltage level. Where the measured polarising
voltage is below this level no directional output is given and operation of protection elements set as directional will
be inhibited. This prevents mal-operation under fuse failure/MCB tripped conditions where noise voltages can be
present.
Figure 3.1.1-1 Logic Diagram: Directional Overcurrent Element (67)
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 27 of 94
3.1.2 Instantaneous Overcurrent Protection (50)
Two instantaneous overcurrent elements are provided in the 7SR21 relay. Four elements are provided in the
7SR22 e.g. giving the option of using two elements set to forward and two to reverse.
Each instantaneous element (50-n) has independent settings. 50-n Setting for pick-up current and 50-n Delay
follower time delay. The instantaneous elements have transient free operation.
Where directional elements are present the direction of operation can be set using 50-n Dir. Control setting.
Directional logic is provided independently for each 50-n element.
Operation of the instantaneous overcurrent elements can be inhibited from:
Inhibit 50-n A binary input, virtual input, function key or remote data Comms.
79 P/F Inst Trips: 50-n When ‘delayed’ trips only are allowed in the auto-reclose sequence
(79 P/F Prot’n Trip n = Delayed).
50-n Inrush Action: Inhibit Operation of the inrush current detector function.
50-n VTS Action: Inhibit Operation of the VT Supervision function (7SR22).
Figure 3.1.2-1 Logic Diagram: Instantaneous Over-current Element
7SR210 & 7SR220 Description of Operation
Unrestricted Page 28 of 94 ©2018 Siemens Protection Devices Limited
3.1.3 Time Delayed Overcurrent Protection (51)
Two time delayed overcurrent elements are provided in the 7SR21 relay. Four elements are provided in the
7SR22 relay e.g. giving the option of using two elements set to forward and two to reverse.
51-n Setting sets the pick-up current level. Where the voltage controlled overcurrent function (51VCO) is used
(7SR22 relays only) a multiplier is applied to this setting where the voltage drops below the setting VCO Setting,
see section 3.2.
A number of shaped characteristics are provided. An inverse definite minimum time (IDMT) characteristic is
selected from IEC and ANSI curves using 51-n Char. A time multiplier is applied to the characteristic curves using
the 51-n Time Mult setting. Alternatively, a definite time lag delay (DTL) can be chosen using 51-n Char. When
Delay (DTL) is selected the time multiplier is not applied and the 51-n Delay (DTL) setting is used instead.
The 51-n Reset setting can apply a definite time delayed reset, or when configured as an ANSI characteristic an
ANSI (DECAYING) reset. If ANSI (DECAYING) reset is selected for an IEC characteristic, the reset will be
instantaneous. The reset mode is significant where the characteristic has reset before issuing a trip output see
‘Applications Guide’.
A minimum operate time for the characteristic can be set using 51-n Min. Operate Time setting.
A fixed additional operate time can be added to the characteristic using 51-n Follower DTL setting.
Where directional elements are present the direction of operation can be set using 51-n Dir. Control setting.
Directional logic is provided independently for each 51-n element.
Operation of the time delayed overcurrent elements can be inhibited from: -
Inhibit 51-n A binary input, virtual input, function key or remote data Comms
79 P/F Inst Trips: 51-n When ‘delayed’ trips only are allowed in the auto-reclose sequence
(79 P/F Prot’n Trip n = Delayed).
51c Activation of the cold load settings (see section 3.7).
51-n Inrush Action: Inhibit Operation of the inrush current detector function.
51-n VTSAction: Inhibit Operation of the VT Supervision function (7SR22).
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 29 of 94
1
1
General Pickup
51-n
If directional elements are not present this block is
omitted and all 'Lx Dir En' signals are set TRUE.
51-n Setting
51-n Charact
51-n Time Mult
51-n Delay (DTL)
51-n Reset
c
Forward
Reverse
51-n Dir Control
Non-Dir
1
&
&
1
&
&
1
&
&
51-n Follower DTL
L1 Dir En
L2 Dir En
L3 Dir En
L1 Dir En
L2 Dir En
L3 Dir En
IL1 Fwd
IL1 Rev
IL2 Fwd
IL2 Rev
IL3 Fwd
IL3 Rev
&
&
&
1
1
1
Non Dir
51-n VTS Action
Off
Inhibit
60VTS
&
51-n Min. Operate Time
&
IL1
IL2
IL3
50/51
Measurement
&
See Voltage Controlled
Overcurrent (51V)
L1 81HBL2
51c
51-n Inrush
Action
Off
Inhibit
&
L3
L2
L1
L2 81HBL2
L3 81HBL2
&
&
&
&
&
cPickup
trip
cPickup
trip
cPickup
trip
Inhibit 51-n
51-n Element
Enabled
Disabled
&
79 P/F Inst Trips
= 51-n
79 P/F Prot’n Trip n
= Delayed
AUTORECLOSE
NB: For a comprehensive
list of input & output signals
see Data Comms Definitions
Inhibit 51-n
51-n
General Pickup
Figure 3.1.3-1 Logic Diagram: Time Delayed Overcurrent Element
7SR210 & 7SR220 Description of Operation
Unrestricted Page 30 of 94 ©2018 Siemens Protection Devices Limited
3.2 Current Protection: Voltage Controlled Overcurrent (51V)
– 7SR22
Voltage controlled overcurrent is available in the 7SR22 relay.
Each shaped overcurrent element 51-n Setting can be independently controlled by the level of measured
(control) input voltage.
For applied voltages above VCO Setting the 51-n element operates in accordance with its normal current setting
(see 3.1.3). For input Ph-Ph control voltages below VCO Setting a multiplier (51-n Multiplier) is applied to
reduce the 51-n pickup current setting.
51-n Multiplier is applied to each phase independently when its control phase-phase voltage falls below VCO
Setting. The voltage levels used for each phase over-current element are shown in the table below. Relays with a
Ph-N connection automatically calculate the correct Ph-Ph control voltage.
Current Element Control Voltage
IL1 V12
IL2 V23
IL3 V31
The Voltage Controlled Overcurrent function (51V) can be inhibited from: -
VCO VTSAction: Inhibit Operation of the VT Supervision function.
VL1
51V Setting
c
&
51V Element
Enabled
Disabled
<
<
<
VL2
VL3
51V VTS Action
Off
Inhibit
See
Delayed
Overcurrent
(51-n)
VT Fail
&
51-n Multiplier
c
V12
V31
V23
c
x IL1 51-n Setting
c
x IL2 51-n Setting
c
x IL3 51-n Setting L3
L2
L1
Figure 3.2-1 Logic Diagram: Voltage Controlled Overcurrent Protection
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 31 of 94
3.3 Current Protection: Derived Earth Fault (67N, 51N, 50N)
The earth current is derived by calculating the sum of the measured line currents. The elements measure the
fundamental frequency RMS current.
3.3.1 Directional Control of Derived Earth Fault Protection (67N) – 7SR22
The directional element produces forward and reverse outputs for use with derived earth fault elements. These
outputs can be mapped as controls to each shaped and instantaneous element.
If a protection element is set as non-directional then it will operate independently of the output of the directional
detector. However, if a protection element is programmed for forward directional mode then operation will occur
only for a fault lying within the forward operate zone. Conversely, if a protection element is programmed for
reverse directional mode then operation will occur only for a fault lying within the reverse operate zone. Typically
the forward direction is defined as being ‘away’ from the busbar or towards the protected zone.
The Characteristic angle is the phase angle by which the polarising voltage must be adjusted such that the
directional detector gives maximum sensitivity in the forward operate zone when the current is in phase with it.
The reverse operate zone is the mirror image of the forward zone.
The derived directional earth fault elements can use either zero phase sequence (ZPS) or negative phase
sequence (NPS) polarising. This is selected using the 67N Polarising Quantity setting. Whenever a zero-
sequence voltage is available (a five-limb VT that can provide a zero sequence path or an open-delta VT
connection) the earth-fault element can use zero-sequence voltage and current for polarisation. If zero-sequence
polarising voltage is not available e.g. when a two phase (phase to phase) connected VT is installed, then
negative-sequence voltage and negative-sequence currents must be used. The type of VT connection is specified
by Voltage Config (CT/VT CONFIG menu). Settings advice is given in the Applications Guide.
Voltage polarisation is achieved for the earth-fault elements by comparison of the appropriate current with its
equivalent voltage: -
67N Polarising Quantity: ZPS I0~ V0
67N Polarising Quantity: NPS I2~ V2
The characteristic angle can be user programmed to any angle between -95° and +95° using the 67N Char Angle
setting. The voltage is the reference phasor (Vref) and the 67N Char Angle setting is added to this to adjust the
forward and reverse zones.
The centre of the forward zone is set by (Vref Angle + 67N Char Angle) and should be set to correspond with Ifault
Angle for maximum sensitivity e.g.
For fault current of -15° (I lagging V by 15°) a 67N Char Angle of -15° is required for maximum sensitivity
OR
For fault current of -45° (I lagging V by 45°) a 67 Char Angle of -45° is required for maximum sensitivity.
7SR210 & 7SR220 Description of Operation
Unrestricted Page 32 of 94 ©2018 Siemens Protection Devices Limited
Minimum Polarising Voltage
The 67N Minimum Voltage setting defines the minimum polarising voltage level. Where the measured polarising
voltage is below this level no directional output is given and operation of protection elements set as directional will
be inhibited. This prevents mal-operation under fuse failure/MCB tripped conditions where noise voltages can be
present.
Figure 3.3.1-1 Logic Diagram: Derived Directional Earth Fault Element
3.3.2 Instantaneous Derived Earth Fault Protection (50N)
Two instantaneous derived earth fault elements are provided in the 7SR21 relay. Four elements are provided in
the 7SR22 relay e.g. giving the option of using two elements set to forward and two to reverse.
Each instantaneous element has independent settings for pick-up current 50N-n Setting and a follower time
delay 50N-n Delay. The instantaneous elements have transient free operation.
Where directional elements are present the direction of operation can be set using 50N-n Dir. Control setting.
Directional logic is provided independently for each 50-n element.
Operation of the instantaneous earth fault elements can be inhibited from: -
Inhibit 50N-n A binary input, virtual input, function key or remote data Comms.
79 E/F Inst Trips: 50N-n When ‘delayed’ trips only are allowed in the auto-reclose sequence
(79 E/F Prot’n Trip n = Delayed).
50N-n VTSAction: Inhibit Operation of the VT Supervision function (7SR22).
50N-n Inrush Action: Inhibit Operation of the current inrush detector function.
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 33 of 94
50N-n
>
c
50N-n
Setting
If directional elements are not present this block is
omitted and the '50N-n Dir En' signal is set TRUE.
Forward
Reverse
50N-n Dir
Non-Dir
1
&
&
50N-n Dir En
67N Fwd
67N Rev
50N-n Delay
50N-n VTS Action
Off
Non Dir
Inhibit
VT Fail
& &
&
1
IL1
IL2
IL3
IN
Inhibit 50N-n
50N-n Element
Enabled
Disabled
81HBL2
50N-n Inrush
Action
Off
Inhibit &
50N-n Dir En
General Pickup
&
79 P/F Inst Trips
= 50N-n
79 P/F Prot’n Trip n
= Delayed
AUTORECLOSE
Inhibit 50N-n
General Pickup
50N-n
&
Figure 3.3.2-1 Logic Diagram: Derived Instantaneous Earth Fault Element
3.3.3 Time Delayed Derived Earth Fault Protection (51N)
Two time-delayed derived earth fault elements are provided in the 7SR21 relay. Four elements are provided in the
7SR22 relay e.g. giving the option of using two elements set to forward and two to reverse.
51N-n Setting sets the pick-up current level.
A number of shaped characteristics are provided. An inverse definite minimum time (IDMT) characteristic is
selected from IEC and ANSI curves using 51N-n Char. A time multiplier is applied to the characteristic curves
using the 51N-n Time Mult setting. Alternatively, a definite time lag delay (DTL) can be chosen using 51N-n
Char. When Delay (DTL) is selected the time multiplier is not applied and the 51N-n Delay (DTL) setting is used
instead.
The 51N-n Reset setting can apply a definite time delayed reset, or when configured as an ANSI characteristic
an ANSI (DECAYING) reset. If ANSI (DECAYING) reset is selected for an IEC characteristic, the reset will be
instantaneous. The reset mode is significant where the characteristic has reset before issuing a trip output see
‘Applications Guide’.
A minimum operate time for the characteristic can be set using the 51N-n Min. Operate Time setting.
A fixed additional operate time can be added to the characteristic using the 51N-n Follower DTL setting.
Where directional elements are present the direction of operation can be set using 51N-n Dir. Control setting.
Directional logic is provided independently for each 51N-n element.
7SR210 & 7SR220 Description of Operation
Unrestricted Page 34 of 94 ©2018 Siemens Protection Devices Limited
Operation of the time delayed earth fault elements can be inhibited from: -
Inhibit 51N-n A binary or virtual input, function key or remote data Comms.
79 E/F Inst Trips: 51N-n When ‘delayed’ trips only are allowed in the auto-reclose sequence
(79 E/F Prot’n Trip n = Delayed).
51N-n Inrush Action: Inhibit Operation of the current inrush detector function.
51N-n VTSAction: Inhibit Operation of the VT Supervision function (7SR22).
Figure 3.3.3-1 Logic Diagram: Derived Time Delayed Earth Fault Protection
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 35 of 94
3.4 Current Protection: Measured Earth Fault (67G, 51G, 50G)
The earth current is measured directly via a dedicated current analogue input.
All phase overcurrent elements can be set to measure either fundamental frequency RMS or True RMS current
i.e.
True RMS current: - 50 Measurement = RMS
51 Measurement = RMS
Fundamental Frequency RMS current: - 50 Measurement = Fundamental
51 Measurement = Fundamental
3.4.1 Directional Control of Measured Earth Fault Protection (67G) – 7SR22
The directional element produces forward and reverse outputs for use with measured earth fault elements. These
outputs can be mapped as controls to each shaped and instantaneous element.
If a protection element is set as non-directional then it will operate independently of the output of the directional
detector. However, if a protection element is programmed for forward directional mode then operation will occur
only for a fault lying within the forward operate zone. Conversely, if a protection element is programmed for
reverse directional mode then operation will occur only for a fault lying within the reverse operate zone. Typically
the forward direction is defined as being ‘away’ from the busbar or towards the protected zone.
The Characteristic angle is the phase angle by which the polarising voltage must be adjusted such that the
directional detector gives maximum sensitivity in the forward operate zone when the current is in phase with it.
The reverse operate zone is the mirror image of the forward zone.
The measured directional earth fault elements use zero phase sequence (ZPS) polarising.
Voltage polarisation is achieved for the earth-fault elements by comparison of the appropriate current with its
equivalent voltage: -
I0~ V0
The characteristic angle can be user programmed to any angle between -95° and +95° using the 67G Char
Angle setting. The voltage is the reference phasor (Vref) and the 67G Char Angle setting is added to this to adjust
the forward and reverse zones.
The centre of the forward zone is set by (Vref Angle + 67G Char Angle) and should be set to correspond with Ifault
Angle for maximum sensitivity e.g.
For fault current of -15° (I lagging V by 15°) a 67G Char Angle of -15° is required for maximum
sensitivity, OR
For fault current of -45° (I lagging V by 45°) a 67G Char Angle of -45° is required for maximum
sensitivity.
Minimum Polarising Voltage
The 67G Minimum Voltage setting defines the minimum polarising voltage level. Where the measured polarising
voltage is below this level no directional output is given and. Operation of protection elements set as directional
will be inhibited. This prevents mal-operation under fuse failure/MCB tripped conditions where noise voltages can
be present.
Figure 3.4.1-1 Logic Diagram: Measured Directional Earth Fault Protection
7SR210 & 7SR220 Description of Operation
Unrestricted Page 36 of 94 ©2018 Siemens Protection Devices Limited
3.4.2 Instantaneous Measured Earth Fault Protection (50G)
Two instantaneous measured earth fault elements are provided in the 7SR21 relay. Four elements are provided in
the 7SR22 relay e.g. giving the option of using two elements set to forward and two to reverse.
Each instantaneous element has independent settings for pick-up current 50G-n Setting and a follower time
delay 50G-n Delay. The instantaneous elements have transient free operation.
Where directional elements are present the direction of operation can be set using 50G-n Dir. Control setting.
Directional logic is provided independently for each 50G-n element.
Operation of the instantaneous measured earth fault elements can be inhibited from: -
Inhibit 50G-n A binary or virtual input, function key or remote data Comms.
79 E/F Inst Trips: 50G-n When ‘delayed’ trips only are allowed in the auto-reclose sequence
(79 E/F Prot’n Trip n = Delayed).
50G-n Inrush Action: Inhibit Operation of the current inrush detector function.
50G-n VTSAction: Inhibit Operation of the VT Supervision function (7SR22).
Figure 3.4.2-1 Logic Diagram: Measured Instantaneous Earth-fault Element
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 37 of 94
3.4.3 Time Delayed Measured Earth Fault Protection (51G)
Two time delayed measured earth fault elements are provided in the 7SR21 relay. Four elements are provided in
the 7SR22 relay e.g. giving the option of using two elements set to forward and two to reverse.
51G-n Setting sets the pick-up current level.
A number of shaped characteristics are provided. An inverse definite minimum time (IDMT) characteristic is
selected from IEC and ANSI curves using 51G-n Char. A time multiplier is applied to the characteristic curves
using the 51G-n Time Mult setting. Alternatively, a definite time lag (DTL) can be chosen using 51G-n Char.
When DTL is selected the time multiplier is not applied and the 51G-n Delay (DTL) setting is used instead.
The 51G-n Reset setting can apply a definite time delayed reset, or when configured as an ANSI characteristic
an ANSI (DECAYING) reset. If ANSI (DECAYING) reset is selected for an IEC characteristic, the reset will be
instantaneous. The reset mode is significant where the characteristic has reset before issuing a trip output see
‘Applications Guide’.
A minimum operate time for the characteristic can be set using 51G-n Min. Operate Time setting.
A fixed additional operate time can be added to the characteristic using 51G-n Follower DTL setting.
Where directional elements are present the direction of operation can be set using 51G-n Dir. Control setting.
Directional logic is provided independently for each 51G-n element.
Operation of the time delayed measured earth fault elements can be inhibited from:
Inhibit 51G-n A binary or virtual input, function key or remote data Comms.
79 E/F Inst Trips: 51G-n When ‘delayed’ trips only are allowed in the auto-reclose sequence
(79 E/F Prot’n Trip n = Delayed).
51G-n Inrush Action: Inhibit Operation of the inrush current detector function.
51G-n VTSAction: Inhibit Operation of the VT Supervision function (7SR22).
Figure 3.4.3-1 Logic Diagram: Measured Time Delayed Earth Fault Element (51G)
7SR210 & 7SR220 Description of Operation
Unrestricted Page 38 of 94 ©2018 Siemens Protection Devices Limited
3.5 Current Protection: Sensitive Earth Fault (67SEF, 51SEF,
50SEF)
Current for the Sensitive Earth Fault (SEF) elements is measured directly via a dedicated current analogue input.
SEF elements measure the fundamental frequency RMS current.
3.5.1 Directional Control of Sensitive Earth Fault Protection (67SEF) – 7SR22
The directional element produces forward and reverse outputs for use with SEF elements. These outputs can be
mapped as controls to each shaped and instantaneous element.
If a protection element is set as non-directional then it will operate independently of the output of the directional
detector. However, if a protection element is programmed for forward directional mode then operation will occur
only for a fault lying within the forward operate zone. Conversely, if a protection element is programmed for
reverse directional mode then operation will occur only for a fault lying within the reverse operate zone. Typically
the forward direction is defined as being ‘away’ from the busbar or towards the protected zone.
The Characteristic angle is the phase angle by which the polarising voltage must be adjusted such that the
directional detector gives maximum sensitivity in the forward operate zone when the current is in phase with it.
The reverse operate zone is the mirror image of the forward zone.
The directional sensitive earth fault elements use zero phase sequence (ZPS) polarising.
Voltage polarisation is achieved for the earth-fault elements by comparison of the appropriate current with its
equivalent voltage: -
I0~ V0
The characteristic angle can be user programmed to any angle between -95° and +95° using the 67SEF Char
Angle setting. The voltage is the reference phasor (Vref) and the 67SEF Char Angle setting is added to this to
adjust the forward and reverse zones.
The centre of the forward zone is set by (Vref Angle + 67SEF Char Angle) and should be set to correspond with
Ifault Angle for maximum sensitivity i.e.
For fault current of -15° (I lagging V by 15°) a 67SEF Char Angle of -15° is required for maximum
sensitivity
OR
For fault current of -45° (I lagging V by 45°) a 67SEF Char Angle of -45° is required for maximum
sensitivity.
For resonant grounded systems where compensation (Petersen) coils are fitted, earth fault current is deliberately
reduced to zero and therefore is difficult to measure for protection purposes. However, the wattmetric component
in the capacitive charging currents, which are close to the directional zone boundary, can be used to indicate fault
location. It is advantageous to increase the directional limits towards ±90º so that the directional boundary can be
used to discriminate between faulted and healthy circuits. A 67SEF Compensated Network Enable user setting
is provided to provide this feature for use with compensated networks only.
Minimum Polarising Voltage
The 67SEF Minimum Voltage setting defines the minimum polarising voltage level. Where the measured
polarising voltage is below this level no directional output is given and. Operation of protection elements set as
directional will be inhibited. This prevents mal-operation under fuse failure/MCB tripped conditions where noise
voltages can be present.
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 39 of 94
Figure 3.5.1-1 Logic Diagram: SEF Directional Element (67SEF)
3.5.2 Instantaneous Sensitive Earth Fault Protection (50SEF)
Two instantaneous SEF elements are provided in the 7SR21 relay. Four elements are provided in the 7SR22
relay e.g. giving the option of using two elements set to forward and two to reverse.
Each instantaneous element has independent settings for pick-up current 50SEF-n Setting and a follower time
delay 50SEF-n Delay. The instantaneous elements have transient free operation.
Where directional elements are present the direction of operation can be set using 50SEF-n Dir. Control setting.
Directional logic is provided independently for each 50SEF-n element.
Operation of the instantaneous earth fault elements can be inhibited from: -
Inhibit 50SEF-n A binary or virtual input, function key or remote data Comms
79 SEF Inst Trips: 50SEF-n When ‘delayed’ trips only are allowed in the auto-reclose sequence
(79 SEF Prot’n Trip n = Delayed).
50SEF-n VTSAction: Inhibit Operation of the VT Supervision function (7SR22).
Directional elements will not operate unless the zero sequence voltage (V0) is above the 67SEF Minimum
Voltage setting i.e. the residual voltage is greater than 3 times this setting and the phase is in the
Forward/Reverse operating range. If 67SEF Wattmetric is set to Enabled, the calculated residual real power
must be above the 67SEF Wattmetric Power setting for any SEF element operation. The residual power Pres is
equal to the wattmetric component of 3V0ISEF and therefore the wattmetric component of 9V0I0
7SR210 & 7SR220 Description of Operation
Unrestricted Page 40 of 94 ©2018 Siemens Protection Devices Limited
Figure 3.5.2-1 Logic Diagram: 50 SEF Instantaneous Element
Figure 3.5.2-2 Logic Diagram: 50 SEF Instantaneous Element Compensated Networks
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 41 of 94
3.5.3 Time Delayed Sensitive Earth Fault Protection (51SEF)
Two time delayed sensitive earth fault elements are provided in the 7SR21 relay. Four elements are provided in
the 7SR22 relay e.g. giving the option of using two elements set to forward and two to reverse.
51SEF-n Setting sets the pick-up current level.
A number of shaped characteristics are provided. An inverse definite minimum time (IDMT) characteristic is
selected from IEC and ANSI curves using 51SEF-n Char. A time multiplier is applied to the characteristic curves
using the 51SEF-n Time Mult setting. Alternatively, a definite time lag (DTL) can be chosen using 51SEF-n Char.
When DTL is selected the time multiplier is not applied and the 51SEF-n Delay (DTL) setting is used instead.
The 51SEF-n Reset setting can apply a definite time delayed reset, or when configured as an ANSI
characteristic an ANSI (DECAYING) reset. If ANSI (DECAYING) reset is selected for an IEC characteristic, the
reset will be instantaneous. The reset mode is significant where the characteristic has reset before issuing a trip
output – see ‘Applications Guide’.
A minimum operate time for the characteristic can be set using 51SEF-n Min. Operate Time setting.
A fixed additional operate time can be added to the characteristic using 51SEF-n Follower DTL setting.
Where directional elements are present the direction of operation can be set using 51SEF-n Dir. Control setting.
Directional logic is provided independently for each 51SEF-n element.
Operation of the time delayed earth fault elements can be inhibited from: -
Inhibit 51SEF-n A binary or virtual input, function key or remote data Comms
79 SEF Inst Trips: 51SEF-n When ‘delayed’ trips only are allowed in the auto-reclose sequence
(79 SEF Prot’n Trip n = Delayed).
51SEF-n VTSAction: Inhibit Operation of the VT Supervision function (7SR22).
Directional elements will not operate unless the zero sequence voltage (V0) is above the 67SEF Minimum
Voltage setting i.e. the residual voltage is greater than 3 times this setting and the phase is in the
Forward/Reverse operating range. If 67SEF Wattmetric is set to Enabled, the calculated residual real power
must be above the 67SEF Wattmetric Power setting. The residual power Pres is equal to the wattmetric
component of 3V0ISEF and therefore the wattmetric component of 9V0I0
7SR210 & 7SR220 Description of Operation
Unrestricted Page 42 of 94 ©2018 Siemens Protection Devices Limited
Figure 3.5.3-1 Logic Diagram: 51 SEF Time Delayed Element
Figure 3.5.3-2 Logic Diagram: 51 SEF Time Delayed Element Compensated Networks
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 43 of 94
3.6 Current Protection: High Impedance Restricted Earth
Fault (64H)
One high impedance Restricted Earth Fault (REF) element is provided.
The relay utilises fundamental current measurement values for this function.
The single phase current input is derived from the residual output of line/neutral CTs connected in parallel. An
external stabilising resistor must be connected in series with this input to ensure that this element provides a high
impedance path.
64H Current Setting sets the pick-up current level. An output is given after elapse of the 64H Delay setting.
External components a series stabilising resistor and a non-linear resistor are used with this function. See
‘Applications Guide’ for advice in specifying suitable component values.
Operation of the high impedance element can be inhibited from: -
Inhibit 64H A binary or virtual input, function key or remote data Comms
Figure 3.6-1 Logic Diagram: High Impedance REF (64H)
7SR210 & 7SR220 Description of Operation
Unrestricted Page 44 of 94 ©2018 Siemens Protection Devices Limited
3.7 Current Protection: Cold Load (51c)
The setting of each shaped overcurrent element (51-n) can be inhibited and alternative ‘cold load’ settings (51c-n)
can be applied for a period following circuit switch in.
The Cold Load settings are applied after the circuit breaker has been open for longer than the Pick-Up Time
setting.
Following circuit breaker closure the ‘cold load’ overcurrent settings will revert to those defined in the Phase
Overcurrent menu (51-n) after either elapse of the Drop-Off Time setting or when the measured current falls
below the Reduced Current Level setting for a time in excess of Reduced Current Time setting.
During cold load settings conditions any directional settings applied in the Phase Overcurrent menu are still
applicable.
A CB ‘Don’t Believe It’ (DBI) condition is not acted on, causing the element to remain operating in accordance
with the relevant 51-n settings. Where the Reduced Current setting is set to OFF reversion to 51-n settings will
only occur at the end of the Drop-Off Time. If any element is picked up on expiry of Drop-Off Time the relay will
issue a trip (and lockout if a recloser is present).
If the circuit breaker is re-opened before expiry of the Drop-Off Time the drop-off timer is held but not reset.
Resetting the timer for each trip could result in damaging levels of current flowing for a prolonged period during a
rapid sequence of trips/closes.
Cold load trips use the same binary output(s) as the associated 51-n element.
Figure 3.7-1 Logic Diagram: Cold Load Settings (51c)
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 45 of 94
3.8 Current Protection: Negative Phase Sequence
Overcurrent (46NPS)
The negative sequence phase (NPS) component of current (I2) is derived from the three phase currents. It is a
measure of the quantity of unbalanced current in the system.
Two NPS current elements are provided – 46IT and 46DT.
The 46IT element can be configured to be either definite time lag (DTL) or inverse definite minimum time (IDMT),
46IT Setting sets the pick-up current level for the element.
A number of shaped characteristics are provided. An inverse definite minimum time (IDMT) characteristic is
selected from IEC and ANSI curves using 46IT Char. A time multiplier is applied to the characteristic curves using
the 46IT Time Mult setting. Alternatively, a definite time lag delay (DTL) can be chosen using 46ITChar. When
Delay (DTL) is selected the time multiplier is not applied and the 46IT Delay (DTL) setting is used instead.
The 46IT Reset setting can apply a, definite time delayed or ANSI (DECAYING) reset.
The 46DT element has a DTL characteristic. 46DT Setting sets the pick-up current and 46DT Delay the follower
time delay.
Operation of the negative phase sequence overcurrent elements can be inhibited from:
Inhibit 46IT A binary or virtual input, function key or remote data Comms
Inhibit 46DT A binary or virtual input, function key or remote data Comms
Figure 3.8-1 Logic Diagram: Negative Phase Sequence Overcurrent (46NPS)
7SR210 & 7SR220 Description of Operation
Unrestricted Page 46 of 94 ©2018 Siemens Protection Devices Limited
3.9 Current Protection: Under-Current (37, 37G & 37SEF)
Two under-current elements are provided for each 37, 37G & 37SEF protection function.
Each phase has an independent level detector and current-timing element. 37-n Setting sets the pick-up current.
An output is given after elapse of the 37-n Delay setting.
Operation of the under-current elements can be inhibited from: -
Inhibit 37-n A binary or virtual input, function key or remote data Comms
Figure 3.9-1 Logic Diagram: Undercurrent Detector (37, 37G & 37SEF)
3.10 Current Protection: Under-Current Guarded (37)
A level detector 37-n U/I Guard Setting sets the pick-up current.
Figure 3.10-1 Logic Diagram: Undercurrent Guarded Detector (37)
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 47 of 94
3.11 Current Protection: Thermal Overload (49)
The relay provides a thermal overload suitable for the protection of static plant. Phase segregated elements are
provided. The temperature of the protected equipment is not measured directly. Instead, thermal overload
conditions are calculated using the measure True RMS current.
Should the current rise above the 49 Overload Setting for a defined time an output signal will be initiated.
Operate Time (t): -
Where
T = Time in minutes
t = 49 Time Constant setting (minutes)
In = Log Natural
I = measured current
IP = Previous steady state current level
k = Constant
IB = Basic current, typically the same as In
k.IB = 49 Overload Setting (Iq)
Additionally, an alarm can be given if the thermal state of the system exceeds a specified percentage of the
protected equipment’s thermal capacity 49 Capacity Alarm setting.
For the heating curve: -
Where: q = thermal state at time t
I = measured thermal current
Iq = 49 Overload setting (or k.IB)
The final steady state thermal condition can be predicted for any steady state value of input current where t >t,
Where: qF = final thermal state before disconnection of device
49 Overload Setting Iqis expressed as a multiple of the relay nominal current and is equivalent to the factor k.IB
as defined in the IEC255-8 thermal operating characteristics. It is the value of current above which 100% of
thermal capacity will be reached after a period of time and it is therefore normally set slightly above the full load
current of the protected device.
The thermal state may be reset from the fascia or externally via a binary input.
Thermal overload protection can be inhibited from: -
Inhibit 49 A binary or virtual input, function key or remote data Comms.
( )
þ
ý
ü
î
í
ì
´-
-
´= 2
B
2
2
P
2
IkI
II
lnt
t
100%)e(1
I
I
θτ
t
2
θ
2
´-×= -
100%
I
I
θ2
θ
2
F´=
7SR210 & 7SR220 Description of Operation
Unrestricted Page 48 of 94 ©2018 Siemens Protection Devices Limited
Figure 3.11-1 Logic Diagram: Thermal Overload Protection (49S)
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 49 of 94
3.12 Current Protection: Arc Flash Detector (50 AFD)
By employing an optical detection technique, Arc Fault Protection results in fast clearance of arcing faults.
Arc fault protection is achieved in the relays via the 7XG31xx series of equipment being connected to the binary
inputs.
Should the sensor operate when the current is above the 50AFD Setting then an output signal will be initiated.
Refer to 7XG31 documentation for further details.
&
Enabled
Disabled
50AFD
Setting
c
IA
IB
IC
&
50AFD
Arc Detector
Binary Input
AFD Zone 1AFD Zone 1 Flash
AFD Zone 6 Flash AFD Zone 6
AFD Zone 1 Flash
AFD Zone 6 Flash
50 AFD
50 AFD PhA
50 AFD PhB
50 AFD PhC
Figure 3.12-1 Logic Diagram: Arc Flash Detector (50 AFD)
7SR210 & 7SR220 Description of Operation
Unrestricted Page 50 of 94 ©2018 Siemens Protection Devices Limited
3.13 Voltage Protection: Phase Under/Over Voltage (27/59) -
7SR22
In total five under/over voltage elements are provided in the 7SR22 relay. Four elements are provided for the
‘Phase’ Voltages and one for the ‘Auxiliary’ input voltage.
The relay utilises fundamental frequency RMS voltage for this function. All under/over voltage elements have a
common setting to measure phase to phase (Ph-Ph) or phase to neutral (Ph-N) voltage using the Voltage Input
Mode setting.
Voltage elements can be blocked if all phase voltages fall below the 27/59 U/V Guard setting.
27/59-n (27/59-Vx) Setting sets the pick-up voltage level for the element.
The sense of the element (undervoltage or overvoltage) is set by the 27/59-n Operation (27/59-Vx Operation)
setting.
The 27/59-n O/P Phases setting determines whether the time delay is initiated for operation of any phase or only
when all phases have detected the appropriate voltage condition. An output is given after elapse of the 27/59-n
Delay (27/59-Vx Delay) setting.
The 27/59-n Hysteresis (27/59-Vx Hysteresis) setting allows the user to vary the pick-up/drop-off ratio for the
element.
Operation of the under/over voltage elements can be inhibited from: -
Inhibit 27/59-n A binary or virtual input, function key or remote data Comms.
27/59-n VTSInhibit: Yes Operation of the VT Supervision function.
27/59-n U/V Guarded Under voltage guard element.
Figure 3.13-1 Logic Diagram: Under/Over Voltage Elements (27/59)
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 51 of 94
3.14 Voltage Protection: Negative Phase Sequence
Overvoltage (47) – 7SR22
Negative phase sequence (NPS) voltage (V2) is a measure of the quantity of unbalanced voltage in the system.
The relay derives the NPS voltage from the three input voltages (VL1, VL2 and VL3).
Two elements are provided in the 7SR22 relay.
47-n Setting sets the pick-up voltage level for the element.
The 47-n Hysteresis setting allows the user to vary the pick-up/drop-off ratio for the element.
An output is given after elapse of the 47-n Delay setting.
Operation of the negative phase sequence voltage elements can be inhibited from: -
Inhibit 47-n A binary or virtual input, function key or remote data Comms.
Figure 3.14-1 Logic Diagram: NPS Overvoltage Protection (47)
7SR210 & 7SR220 Description of Operation
Unrestricted Page 52 of 94 ©2018 Siemens Protection Devices Limited
3.15 Voltage Protection: Neutral Overvoltage (59N) – 7SR22
Two Neutral Overvoltage (or Neutral Voltage Displacement) elements are provided in the 7SR22 relay.
59N Voltage Source setting selects the source of the residual voltage to be measured. The voltage is measured
directly from the Vx input or derived from the line voltages where suitable VT connections are present. The relay
utilises fundamental voltage measurement values for this function.
One of the elements can be configured to be either definite time lag (DTL) or inverse definite minimum time
(IDMT).
The Neutral Inverse Time Lag 59NIT Setting sets the pick-up voltage level (3V0) for the element.
An inverse definite minimum time (IDMT) can be selected using 59NIT Char. A time multiplier is applied to the
characteristic curves using the 59NIT Time Mult setting (M): -
Alternatively, a definite time lag delay (DTL) can be chosen using 59NITChar. When Delay (DTL) is selected the
time multiplier is not applied and the 59NIT Delay (DTL) setting is used instead.
An instantaneous or definite time delayed reset can be applied using the 59NIT Reset setting.
The second element has a DTL characteristic. The Neutral Definite Time Lag 59NDT Setting sets the pick-up
voltage (3V0) and 59NDT Delay the follower time delay.
Operation of the neutral overvoltage elements can be inhibited from:
Inhibit 59NIT A binary or virtual input, function key or remote data Comms.
Inhibit59NDT A binary or virtual input, function key or remote data Comms.
It should be noted that neutral voltage displacement can only be applied to VT arrangements that allow zero
sequence flux to flow in the core i.e. a 5-limb VT or 3 single phase VTs. The VT primary winding neutral must be
earthed to allow the flow of zero sequence current.
Figure 3.15-1 Logic Diagram: Neutral Overvoltage Element
[ ]
s
ú
û
ù
ê
ë
é
-
=1
M
t
Vs
3Vo
op
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 53 of 94
3.16 Voltage Protection: Under/Over Frequency (81) – 7SR22
Six under/over frequency elements are provided in the 7SR22 relay.
The relay utilises fundamental voltage measurement values for this function. The frequency calculation is based
on the highest input voltage derived from the voltage selection algorithm.
Frequency elements are blocked if all phase voltages fall below the 81 U/V Guard setting.
The sense of the element (under-frequency or over-frequency) is set by the 81-n Operation setting.
81-n Setting sets the pick-up voltage level for the element.
An output is given after elapse of the 81-n Delay setting.
The 81-n Hysteresis setting allows the user to vary the pick-up/drop-off ratio for the element.
Operation of the under/over frequency elements can be inhibited from: -
Inhibit 81-n A binary or virtual input, function key or remote data Comms.
81-n U/V Guarded Under voltage guard element.
or
> <
General Pickup
81-n
Inhibit 81-n
81-n Hysteresis
81-n Delay
c
&
81-n Setting
81-n Operation
81-n Element
Enabled
Disabled
81-n U/V Guarded
Yes &
Voltage
Selection
VL1
VL2
VL3
F
<
&
81 U/V Guard
Setting
<
<
Inhibit 81-n
General Pickup
81-n
Figure 3.16-1 Logic Diagram: Under/Over Frequency Detector (81)
7SR210 & 7SR220 Description of Operation
Unrestricted Page 54 of 94 ©2018 Siemens Protection Devices Limited
3.17 Power Protection: Power (32) – 7SR22
Two under/over power elements are provided and can measure real, reactive or apparent power.
Gn 32-n Setting sets the pick-up power level for the element.
Under-power or over-power operation can be set by the Gn 32-n Operation setting.
Gn 32-n 1ph/3ph Power allows the settings to be based on any one phase exceeding the power pick up level or
on the total power of all three phases.
An output is given after elapse of the Gn 32-n Delay setting.
Operation of the under/over power elements can be inhibited when:
The measured current is below the Gn 32-n U/C Guard setting
A VT Fail condition is detected
Inhibit 32-n A binary or virtual input.
V1
IL1
V2
V3
IL3
IL2
&
Enabled
Enabled
<&
<
<
&
En.
Inhibit
VT Fail
&
+W
-VAr
-W
-VAr
-W
+VAr
+W
+VAr
Gn32: Operation: Under/Over
Gn 32-n U/C Guard
Setting
Gn 32-n Delay
Gn32: 1ph/3ph Power
Gn32: Power: P, Q, R
Gn32: Direction
Gn32: Setting
Gn 32-n U/C
Guarded
Gn 32-n VTS
Action
Gn 32-n Element
32-n
General Pickup
Inhibit 32-n
Figure 3.17-1 Logic Diagram: Power Protection (32)
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 55 of 94
3.18 Power Protection: Sensitive Power (32S) – 7SR22
Two under/over sensitive power elements are provided in the 7SR22 models. The elements can measure real,
reactive or apparent power.
Sensitive power functionality utilises the ISEF current input i.e. a single CT input is used. Balanced load conditions
are assumed. Any one of the three phase currents can be wired to the IG current input the POWER PROT’N >
SENSITIVE POWER > Gn 32S Phase Selection setting is used to ensure that the correct power is measured.
Gn 32S-n Setting sets the pick-up power level for the element.
Under-power or over-power operation can be set by the Gn 32S-n Operation setting.
An output is given after elapse of the Gn 32S-n Delay setting.
Operation of the under/over power elements can be inhibited when:
The measured current is below the Gn 32S U/C Guard setting
A VT Fail condition is detected
Inhibit 32S-n A binary or virtual input.
V1
V2
V3
Enabled
<&
Gn 32S-n U/C
Guard Setting
Gn32S-n: Power: P, Q, R
Gn32S-n: Direction
Gn32S-n: Setting
Gn 32S-n U/C
Guard
ISEF
32S CT Angle Comp
Gn 32S-n Delay
32S-n
General Pickup
En.
+W
-VAr
-W
-VAr
-W
+VAr
+W
+VAr
Enabled
Inhibit
VT Fail
&
Gn 32S-n VTS
Action
Gn 32S-n Element
Inhibit 32S-n
&
Gn32S: Phase Selection
Gn32S-n: Operation: Under/Over
Figure 3.18-1 Logic Diagram: Sensitive Power Protection (32S)
7SR210 & 7SR220 Description of Operation
Unrestricted Page 56 of 94 ©2018 Siemens Protection Devices Limited
3.19 Power Protection: Power Factor (55) – 7SR22
Two power factor elements are provided.
Gn 55-n Setting sets the pick-up power factor of the element.
Under-power factor or over-power factor operation can be set by the Gn 55-n Operation setting.
Gn 55-n 1ph/3ph Power allows the settings to be based on any one phase power factor or the average power
factor of all three phases.
An output is given after elapse of the Gn 55-n Delay setting.
Operation of the power factor elements can be inhibited when:
The measured current is below the Gn 55 U/C Guard setting
A VT Fail condition is detected
Inhibit 55-n A binary or virtual input.
Figure 3.19-1 Logic Diagram: Power Factor Protection (55)
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 57 of 94
Section 4: Control & Logic Functions
4.1 Auto-Reclose (79)
4.1.1 Overview
A high proportion of faults on an Overhead Line (OHL) network are transient. These faults can be cleared and the
network restored quickly by using Instantaneous (Fast) Protection trips followed by an automated sequence of
Circuit Breaker (CB) re-closures after the line has been dead for a short time. This ‘deadtime’ allows the fault
current arc to fully extinguish.
Typically this auto reclose (AR) sequence of Instantaneous Trip(s) and Reclose Delays (Dead times) followed by
Delayed Trip(s) provide the automatic optimum method of clearing all types of fault i.e. both Transient and
Permanent, as quickly as possible and achieving the desired outcome of keeping as much of the Network in-
service as possible.
The AR function, therefore, has to: -
Control the type of Protection trip applied at each stage of a sequence
Control the Auto Reclose of the Circuit Breaker to provide the necessary network Dead times, to allow
time for Arc extinction
Co-ordinate its Protection and Auto Reclose sequence with other fault clearing devices.
A typical sequence would be – 2 INST+1Delayed+HighSet Trips with 1 sec & 10 sec dead times.
The Auto Reclose feature may be switched in and out of service by a number of methods, these are:
79 Autoreclose ENABLE/DISABLE (AUTORECLOSE CONFIG menu)
A keypad change from the CONTROL MODE
Via the data communications channel(s),
From a 79 OUT binary input. Note the 79 OUT binary input has priority over the 79 IN binary input - if
both are raised the auto-reclose will be Out of Service.
Knowledge of the CB position status is integral to the auto-reclose functionality. CB auxiliary switches must be
connected to CB Closed and CB Open binary inputs. A circuit breaker’s service status is determined by its
position i.e. from the binary inputs programmed CB Open and CB Closed. The circuit breaker is defined as being
in service when it is closed. The circuit memory functionality prevents autoreclosing when the line is de-energised,
or normally open.
AR is started by a valid protection operation that is internally mapped to trip in the 79 Autoreclose protection menu
or an external trip received via a binary input 79 Ext Trip, while the associated circuit breaker is in service.
The transition from AR started to deadtime initiation takes place when the CB has opened and the protection
pickups have reset and the trip relay has reset. If any of these do not occur within the 79 Sequence Fail Timer
setting the relay will Lockout. This prevents the AR being primed indefinitely. 79 Sequence Fail Timer can be
switched to 0 (= OFF).
Once an AR sequence has been initiated, up to 4 reclose operations can be attempted before the AR is locked-
out. The relay is programmed to initiate a number of AR attempts, the number is determined by 79 Num Shots.
Each reclosure (shot) is preceded by a time delay - 79 Elem Deadtime n - giving transient faults time to clear.
Separate dead-time settings are provided for each of the 4 recloses and for each of the four fault types – P/F, E/F,
SEF and External.
Once a CB has reclosed and remained closed for a specified time period (the Reclaim time), the AR sequence is
re-initialised and a Successful Close output issued. A single, common Reclaim time is used (Reclaim Timer).
When an auto-reclose sequence does not result in a successful reclosure the relay goes to the lockout state.
7SR210 & 7SR220 Description of Operation
Unrestricted Page 58 of 94 ©2018 Siemens Protection Devices Limited
Indications
The Instruments Menu includes the following meters relevant to the status of the Auto-Reclose and Manual
Closing of the circuit breaker: -
Autoreclose Status
Out of Service
Close Shot.
CB Open Countdown Timer
CB Close Countdown Timer
Inputs
External inputs to the recloser functionality need to be wired to the binary inputs. Functions which can be mapped
to these binary inputs include: -
79 Out (edge triggered)
79 In (edge triggered)
CB Closed
CB Open
79 Ext Trip
79 Ext Pickup
79 Block Reclose
Block Close CB
Close CB
79 Trip & Reclose
79 Trip & Lockout
79 Line Check
Hot Line In
Hot Line Out
Outputs
Outputs are fully programmable to either binary outputs or LEDs. Programmable outputs include: -
79 Out Of Service
79 In Service
79 In Progress
79 AR Close CB
79 Successful AR
79 Lockout
79 Close Onto Fault
79 CB Fail to Close
79 Trip _Reclose
79 Trip _Lockout
79 Block Extern
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 59 of 94
1st Trip (Inst) 2nd Trip (Inst) 3rd Trip (Inst) 4th Trip (Delayed)
4th Dead Time
3rd Dead Time
2nd Dead Time
1st Dead Time
4.1.2 Auto Reclose sequences
The CONTROL & LOGIC>AUTO RECLOSE PROT’N and CONTROL & LOGIC>AUTORECLOSE CONFIG’
menus, allow the user to set independent Protection and Auto Reclose sequences for each type of fault i.e. Phase
Fault (P/F), Derived/Measured Earth Fault (E/F), Sensitive Earth Fault (SEF) or External Protections (EXTERN).
Each Auto Reclose sequence can be user set to up to four-shots i.e. five trips + four reclose sequence, with
independently configurable type of Protection Trip. Overcurrent and earth fault elements can be assigned to any
combination of Fast (Inst), Delayed or highset (HS) trips.Deadtime Delay time settings are independent for each
AR shot. The user has programming options for Auto Reclose Sequences up to the maximum shot count i.e.:-
Inst or Delayed Trip 1 + (DeadTime 1: 0.1s-14400s)
+Inst or Delayed Trip 2 + (DeadTime 2: 0.1s-14400s)
+Inst or Delayed Trip 3 + (DeadTime 3: 0.1s-14400s)
+Inst or Delayed Trip 4 + (DeadTime 4: 0.1s-14400s)
+Inst or Delayed Trip 5 – Lockout.
The AR function recognizes developing faults and, as the shot count advances, automatically applies the correct
type of Protection and associated Dead time for that fault-type at that point in the sequence.
A typical sequence would consist of two Inst trips followed by at least one Delayed trip. This sequence enables
transient faults to be cleared quickly by the Inst trip(s) and permanent fault to be cleared by the combined
Delayed trip. The delayed trip must be ‘graded’ with other Recloser/CB’s to ensure system discrimination is
maintained, ie. that as much of the system as possible is live after the fault is cleared.
AHS trips to lockout setting is provided such that when the number of operations of elements assigned as HS
trips reach the setting the relay will go to lockout.
The number of Shots (Closes) is user programmable, note: - only one Shot Counter is used to advance the
sequence, the Controller selects the next Protection characteristic/Dead time according to the type of the last Trip
in the sequence e.g. PF, EF, SEF or EXTERNAL.
Reclose Dead Time
User programmable dead times are available for each protection trip operation.
The dead time is initiated when the trip output contact reset, the pickup is reset and the CB is open.
The CB close output relay is energised after the dead time has elapsed.
Figure 4.1.2-1 Typical Sequence with 3 Instantaneous and 1 Delayed trip
7SR210 & 7SR220 Description of Operation
Unrestricted Page 60 of 94 ©2018 Siemens Protection Devices Limited
4.2 Autoreclose Prot’n Menu
This menu presents the Overcurrent Protection elements available for each type of Fault i.e. P/F, E/F or SEF and
allows the user to select those that are to be applied as Inst trips; those that are to be applied as Delayed Trips;
and those that are to be applied as HS Trips (HighSet), as required by the selected sequence. There is no
corresponding setting for External as the External protection type is not normally controlled by the Auto Reclose
Relay. The resultant configuration enables the Auto Reclose function to correctly apply the required Protection for
each shot in a sequence.
4.3 Autoreclose Config Menu
This menu allows the following settings to be made:-
79 Autoreclose Enabled turns ON all AutoReclose Functions.
79 Num Shots Sets the allowed number of AutoReclose attempts in a sequence.
79 Retry Enable Enabled configures the relay to perform further attempts to automatically Close the
Circuit Breaker where the CB has initially failed to close in response to a Close
command. If the first attempt fails the relay will wait for the 79 Retry Interval to expire
then attempt to Close the CB again.
79 Retry Attempts Sets the maximum number of retry attempts.
79 Retry Interval Sets the time delay between retry attempts.
79 Reclose Blocked Delay If the CB is not ready to receive a Close command or if system conditions are such
that the CB should not be closed immediately e.g. a close-spring is not charged, then
a Binary input mapped to Reclose Block can be raised and the Close pulse will not be
issued but will be held-back. The 79 Reclose Blocked Delay sets the time Reclose
Block is allowed to be raised, if this time delay expires the Relay will go to Lockout. If
Reclose Block is cleared, before this time expires, then the CB Close pulse will be
issued at that point in time. Dead Time + Reclose Blocked Delay = Lockout.
79 Sequence Fail Timer Sets the time that AutoReclose start can be primed. Where this time expires before all
the DAR start signals are not received i.e. the CB has opened, protection pickups have
reset and the trip relay has reset, the Relay goes to Lockout.
79 Minimum LO Delay Sets the time that the Relay’s Lockout condition is maintained. After the last allowed
Trip operation in a specific sequence the Circuit Breaker will be left locked-out in the
open position and can only be closed by manual or remote SCADA operation. The 79
Minimum Lockout Delay timer can be set to delay a too-fast manual close after
lockout, this prevents an operator from manually closing onto the same fault too
quickly and thus performing multiple sequences and possibly burning-out Plant.
79 Reset LO by Timer Set to Enabled this ensures that the Lockout condition is reset when the timer expires,
Lockout indication will be cleared; otherwise, set to Disabled, the Lockout condition will
be maintained until the CB is Closed by a Close command.
79 Sequence Co-Ord When set to Enabled the Relay will co-ordinate its sequence and shot count such that
it automatically keeps in step with downstream devices as they advance through their
sequence. The Relay detects that a pickup has operated followed by current switch-
off. It then increments its Shot count and advances to the next stage of the auto-
reclose sequence without issuing a trip. This is repeated as long as the fault is being
cleared by the downstream device such that the Relay moves through the sequence
bypassing the INST Trips and moving on to the Delayed Trip to maintain Grading
margins.
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 61 of 94
Notes on theLockout’ State
The Lockout state can be reached for a number of reasons. Lockout will occur for the following: -
·At the end of the 79 Sequence Fail Timer.
· At the end of the Reclaim timer if the CB is in the open position.
· A protection operates during the final Reclaim time.
· If a Close Pulse is given and the CB fails to close.
· The 79 Lockout binary input is active.
· At the end of the 79 Reclose Blocked Delay due to presence of a persistent Block signal.
· When the 79 Elem HS Trips to Lockout count is reached.
·When the 79 Elem Delayed Trips to Lockout count is reached.
Once lockout has occurred, an alarm (79 Lockout) is issued and all further Close commands, except manual
close, are inhibited.
If the Lockout command is received while a Manual Close operation is in progress, the feature is immediately
locked-out.
Once the Lockout condition has been reached, it will be maintained until reset. The following will reset lockout: -
· By a Manual Close command, from fascia, comms or Close CB binary input.
· By a 79 Reset Lockout binary input, provided there is no signal present that will cause
Lockout.
· At the end of the 79 Minimum LO Delay time setting if 79 Reset LO by Timer is selected to
ENABLED, provided there is no signal present which will cause Lockout.
· Where Lockout was entered by an A/R Out signal during an Autoreclose sequence then a 79
In signal must be received before Lockout can reset.
· By the CB Closed binary input, provided there is no signal present which will cause Lockout.
The Lockout condition has a delayed drop-off time of 2s. The Lockout condition cannot be reset if there is an
active lockout input.
Note: If the ‘CB Total Trip Count’ or the ‘CB Frequent Ops Count’ target is reached the relay will do one delayed
tip and lockout.
7SR210 & 7SR220 Description of Operation
Unrestricted Page 62 of 94 ©2018 Siemens Protection Devices Limited
4.4 P/F Shots Sub-Menu
This menu allows the Phase fault trip/reclose sequence to be parameterized:-
79 P/F Prot’n Trip1 The first protection Trip in the P/F sequence can be set to either Inst or Delayed.
79 P/F Deadtime 1 Sets the first Reclose Delay (Dead time) in the P/F sequence.
79 P/F Prot’n Trip2 The second protection Trip in the P/F sequence can be set to either Inst or Delayed.
79 P/F Deadtime 2 Sets the second Reclose Delay (Dead time) in the P/F sequence.
79 P/F Prot’n Trip3 The third protection Trip in the P/F sequence can be set to either Inst or Delayed.
79 P/F Deadtime 3 Sets the third Reclose Delay (Dead time) in the P/F sequence.
79 P/F Prot’n Trip 4 The fourth protection Trip in the P/F sequence can be set to either Inst or Delayed.
79 P/F Deadtime 4 Sets the fourth Reclose Delay (Dead time) in the P/F sequence.
79 P/F Prot’n Trip5 The fifth and last protection Trip in the P/F sequence can be set to either Inst or
Delayed.
79 P/F HighSet Trips to Lockout Sets the number of allowed HighSet trips. The relay will go to Lockout on the
last HighSet Trip. This function can be used to limit the duration and number of high
current trips that the Circuit Breaker is required to perform, if the fault is permanent
and close to the Circuit Breaker then there is no point in forcing a number of Delayed
Trips before the Relay goes to Lockout – that sequence will be truncated.
79 P/F Delayed Trips to Lockout Sets the number of allowed Delayed trips, Relay will go to Lockout on the last
Delayed Trip. This function limits the number of Delayed trips that the Relay can
perform when the Instantaneous protection Elements are externally inhibited for
system operating reasons - sequences are truncated.
4.5 E/F Shots Sub-Menu
This menu allows the Earth Fault trip/reclose sequence to be parameterized:-
As above but E/F settings.
4.6 SEF Shots Sub-Menu
This menu allows the Sensitive Earth trip/reclose sequence to be parameterized:-
As above but SEF Settings, Note: - SEF does not have HighSets
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 63 of 94
4.7 Extern Shots Sub-Menu
This menu allows the External Protection auto-reclose sequence to be parameterized:-
79 P/F Prot’n Trip1 Not Blocked/Blocked - Blocked raises an output which can be mapped to a Binary
output to Block an External Protection’s Trip Output.
79 P/F Deadtime 1 Sets the first Reclose Delay (Deadtime) for the External sequence.
79 P/F Prot’n Trip2 Not Blocked/Blocked - Blocked raises an output which can be mapped to a Binary
Output to Block an External Protection’s second Trip output.
79 P/F Deadtime 2 Sets the second Reclose Delay (Deadtime) in the External sequence.
79 P/F Prot’n Trip3 Not Blocked/Blocked - Blocked raises an output which can be mapped to a Binary
output to Block an External Protection’s third Trip Output.
79 P/F Deadtime 3 Sets the third Reclose Delay (Deadtime) in the External sequence.
79 P/F Prot’n Trip4 Not Blocked/Blocked - Blocked raises an output which can be mapped to a Binary
output to Block an External Protection’s fourth Trip Output.
79 P/F Deadtime 4 Sets the fourth Reclose Delay (Deadtime) in the External sequence.
79 P/F Prot’n Trip5 Not Blocked/Blocked - Blocked raises an output which can be mapped to a Binary
output to Block an External Protection’s fifth Trip Output.
79 P/F Extern Trips to Lockout - Sets the number of allowed External protection’ trips, Relay will go to Lockout
on the last Trip.
These settings allow the user to set-up a separate AutoReclose sequence for external protection(s) having a
different sequence to P/F, E/F or SEF protections. The Blocked setting allows the Autoreclose sequence to
raise an output at any point in the sequence to Block further Trips by the External Protection thus allowing the
Overcurrent P/F or Earth Fault or SEF elements to apply Overcurrent Grading to clear the fault.
Other Protection Elements in the Relay can also be the cause of trips and it may be that AutoReclose is required;
the External AutoReclose sequence can be applied for this purpose. By setting-up internal Quick Logic
equation(s) the user can define and set what should occur when any one of these other elements operates.
7SR210 & 7SR220 Description of Operation
Unrestricted Page 64 of 94 ©2018 Siemens Protection Devices Limited
Figure 4.7-1 Basic Auto-Reclose Sequence Diagram
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 65 of 94
4.8 Manual Control
A Manual Close Command can be initiated in one of three ways: via a Close CB binary input, via the data
communication Channel(s) or from the relay CONTROL MODE menu. It causes an instantaneous operation via
Manual Close CB binary output, over-riding any DAR sequence in progress.
Repeated Manual Closes are avoided by checking for Positive edge triggers. Even if the Manual Close input is
constantly energised the relay will only attempt one close.
A Manual Close will initiate Line Check if Line Check Trip is enabled. If a fault appears on the line during the
Close Pulse or during the Reclaim Time with Line Check enabled, the relay will initiate a Trip and Lockout. This
prevents a CB being repeatedly closed onto a faulted line. Where Line Check Trip = DELAYED then
instantaneous protection is inhibited until the reclaim time has elapsed.
Manual Close resets Lockout, if the conditions that caused Lockout have reset, i.e. there is no trip or Lockout
input present.
Manual Close cannot proceed if there is a Lockout input present.
With the Autoreclose function set to Disabled the Manual Close control is still active.
Close CB Delay
The Close CB Delay is applicable to manual CB close commands received through a Close CB binary input or
via the Control Menu. Operation of the Manual Close CB binary output is delayed by the Close CB Delay
setting. The status of this delay is displayed on the relay fascia as it decrements towards zero. Only when the
delay reaches zero will the close command be issued and related functionality initiated.
Blocked Close Delay
The close command may be delayed by a Block Close CB signal applied to a binary input. This causes the
feature to pause before it issues the CB close command and can be used, for example, to delay CB closure until
the CB energy has reached an acceptable level. If the Block signal has not been removed before the end of the
defined time, Blocked Close Delay, the relay will go to the lockout state. The output Close CB Blocked
indicates this condition.
Open CB Delay
The Open CB Delay setting is applicable to CB trip commands received through an Open CB binary input or via
the Control Menu. Operation of the Open CB binary output is delayed by the Open CB Delay setting. The status
of this delay is displayed on the relay fascia as it decrements towards zero. Only when the delay reaches zero will
the trip command be issued and related functionality initiated.
It should be noted that a CB trip initiated by an Open CB command is fundamentally different from a CB trip
initiated by a protection function. A CB trip caused by a CB Open command will not initiate functionality such as
circuit-breaker fail, fault data storage, I2t measurement and operation counter.
CB Controls Latched
CB controls for manually closing and tripping can be latched for extra security.
With Reset operation, the control resets when the binary input drops off. This can lead to multiple control restarts
due to bounce on the binary input signal.
With Latch operation, the close or trip sequence always continues to completion (or sequence failure) and bounce
on the binary input is ignored.
Reset operation can be useful, however, as it allows a close or trip sequence to be aborted by dropping off the
binary input signal.
7SR210 & 7SR220 Description of Operation
Unrestricted Page 66 of 94 ©2018 Siemens Protection Devices Limited
4.9 Synchronising
The optional Synchronising function is used to check that the voltage conditions, measured by the voltage
transformers on either side of the open circuit breaker, indicate that it is safe to close without risk of damage to
the circuit breaker of disturbance to the system. The timing of closure, for charging lines which are dead following
fault clearance, is controlled to co-ordinate with other devices.
The window of time in which voltage conditions must be met is applied as a setting or can be disabled such that
an indefinite period is allowed.
4.9.1 Reclosure Modes
The Synchronising element can be set to allow the autoreclose sequence to proceed for various system voltage
conditions. The voltage conditions selected must be met within the Synch Close Window time if this is Enabled,
this time can be set and starts at the end of the deadtime for autoreclose or the receipt of a Close CB command.
The voltage applied to the V4 input is considered to be the BUSBAR voltage and the voltages applied to inputs
V1,V2 & V3 are the LINE voltage.
79 Dead Bar Charge, when set to Enabled, allows AR to proceed when the Line voltage is live and the Busbar is
dead.
Manual Close DBC, when set to Enabled, allows MC to proceed when the Line voltage is live and the Busbar is
dead.
79 Dead Line Charge, when set to Enabled, allows AR to proceed when the Busbar voltage is live and the Line is
dead.
Manual Close DLC, when set to Enabled, allows MC to proceed when the Busbar voltage is live and the Line is
dead.
79 Dead Line & Dead Bar Close, when set to Enabled, allows AR to proceed when the Line voltage and the
Busbar voltage are dead.
Manual Close DLDB, when set to Enabled, allows MC to proceed when the Line voltage and the Busbar voltage
are dead.
79 Check Sync Close, when set to Enabled, allows AR to proceed when both the Line and Busbar are
considered live AND other synchronising requirements are met.
Manual Close CS, when set to Enabled, allows MC to proceed when both the Line and Busbar are considered
live AND other synchronising requirements are met.
79 Unconditional Close, when set to Enabled, allows AR to proceed regardless of the voltage condition of the
Bus or Line.
Unconditional Manual Close, when set to Enabled, allows MC to proceed regardless of the voltage condition of
the Bus or Line.
Separate Enable/Disable settings are thus provided for each option for Autoreclose and Manual Close.
4.9.2 Charge Delays
Separate autoreclose delay settings are provided for Dead Line Charge and Dead Bus Charge closure by the 79
DLC Delay and 79 DBC Delay settings. These are applied after the autoreclose Dead Time when voltage
conditions are checked and met, at the Close Inhibit stage of the sequence. This feature effectively allows the
dead time to be set differently for faults on each side of the recloser.
4.9.3 Voltage monitoring elements
The single phase voltage source used for synchronising can be selected as any phase-to-phase or phase-to-earth
voltage for flexibility. The voltage is compared to the corresponding voltage from the three-phase arrangement on
the other side of the circuit-breaker. Voltage settings are set as a percentage of the nominal voltage specified in
the CT/VT Config menu.
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 67 of 94
Voltage detectors
Voltage detectors determine the status of the line or bus. If the voltages on either the line or bus are below a set
threshold level they can be considered to be ‘dead’. If the voltages are within a setting around the nominal voltage
they are classed as ‘live’. Independent voltage detectors are provided for both line and bus.
If a voltage is in the dead band range then it will be classed as dead until it has reached the live band area.
Similarly, if a voltage is live, it continues to be live until it has reached the dead band area. This effectively allows
for variable amounts of hysteresis to be set. Figure 4.9.3-1 illustrates the voltage detector operation.
Note: the area between the dead and live zones is not indeterminate. When any voltage is applied to the relay it
will ramp up the software RMS algorithm and always pass through the dead zone first.
A wide range is provided for live and dead voltage detector levels but the live and dead zones must not overlap.
Figure 4.9.3-1 Voltage Detector Operation
Under-voltage detectors
The under-voltage detectors, if enabled, can block a close output command if either the line voltage is below the
25 Line Undervolts setting value or the bus voltage is below the 25 Bus Undervolts setting value. Both line and
bus have their own independent settings and are applied to the single-phase voltage inputs.
Differential voltage detectors
The differential voltage detector, if enabled, can block a close output command if the difference between the line
and bus voltages is greater than the differential voltage setting value.
7SR210 & 7SR220 Description of Operation
Unrestricted Page 68 of 94 ©2018 Siemens Protection Devices Limited
4.9.4 Check Synchronising Mode
The Man Override Sync input is provided to bypass the voltage and synchronising checks to provide an
emergency close function. Similarly, check synchronising can be overridden by the 79 Override Sync input
during autoreclose. Override can be set by binary inputs, Control commands and the function keys.
For the relay to issue a Check Sync Close the following conditions have to be met: -
The Line and Bus voltages must both be considered live.
25 Check Sync Angle the phase difference between the line and bus voltages has to be less than the phase
angle setting value. Whilst within the limits the phase angle can be increasing or decreasing and the element will
still issue a valid close signal.
25 Check Sync Slip, [if enabled] the frequency difference between line and bus has to be less than the slip
frequency setting value.
25 Check Sync Timer, [if enabled] the phase angle and voltage blocking features have to be within their
parameters for the length of the slip timer setting. If either the phase angle or the voltage elements fall outside of
their limits the slip timer is reset. If they subsequently come back in then the slip timer has to time out before an
output is given. (This ensures that a close output will not be given if there is a transient disturbance on the system
due to e.g. some remote switching operations).
25 Line Undervolts, [if enabled] the line voltage has to be above the line under-voltage setting value and also
above 5V for an output to be given.
25 Bus Undervolts, [if enabled] the bus voltage has to be above the bus under-voltage setting value and also
above 5V for an output to be given.
25 Volt Differential, [if enabled] the difference between the line and bus voltages has to be less than the
differential voltage detector setting value for an output to be given.
The synchronising is always started in the Check Synchronising mode of operation and the Check Synchronising
limits are applied. To proceed to System Synchronisation a system split must be detected as described in section
4.9.5
Phase Within Range ?
SLIP
Line U/V
Block
Bus U/V
BLock
V Block
D
Phase Angle Setting
&
Slip Frequency Setting
Block
Block
Block
CheckSync
Close
&
Slip Timer
Setting
Slip Timer
FAngle
Slip Within Range ?
Figure 4.9.4-1 Check Sync Function
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 69 of 94
4.9.5 System Split Detector
A system split occurs where part of the system becomes islanded and operates separately. Under these
conditions the frequencies of the voltages either side of the breaker are asynchronous and therefore high phase
angle differences can occur as the voltage phasors slip past each other.
The decision to change to System Split settings, apply Close on Zero function, Lockout or ignore, during
autoreclose and manual closing is set separately by the 25 DAR Split Mode and 25 MC Split Mode settings. The
System Split condition is detected when either the measured phase difference angle exceeds the pre-set 25 Slip
Angle value or if the slip frequency exceeds a pre-set 25 Split Slip rate based on the selection of 25 System
Split Mode setting.
Note : the system split setting is effectively an absolute value and therefore a split will occur at the value
regardless of the direction of the frequency slip e.g. if an angle of 17is selected, then starting from 0°, a split
will occur at +170° or -170° (effectively +190°).
If a system split occurs during an autoreclose Check Sync operation, with 25 System Sync set to Enabled, the
following events occur: -
· A System Split event is recorded.
· If the 25 DAR Split Mode is set to CS, Check Sync will continue.
· If the 25 DAR Split Mode setting has been set to SS, the System Sync function is started.
The 25 SS In Progress can be mapped to an output relay or led for alarm indication. The
mapped LED will stay on for a minimum time, or can be latched using non self reset LEDs.
· If the 25 DAR Split Mode setting has been set to COZ, the Close On Zero function is started.
The 25 COZ In Progress can be mapped to an output relay or led for alarm indication.
· If the 25 DAR Split Mode has been set to LO, then, a 25 System Split LO output is given
which can be mapped to an output relay or led for alarm indication. The relay will stay in this
lockout mode until one of the following methods of resetting it is performed: -
· 1. The relay is reset from Lockout by binary input or a command.
· 2. The CB is manually closed
Similarly if a system split occurs during a Manual Close Check Sync operation, with 25 System Sync set to
Enabled, the following events occur: -
· A System Split event is recorded.
· If the 25 MC Split Mode is set to CS, Check Sync will continue.
· If the 25 MC Split Mode setting has been set to SS, the System Sync function is started. The
25 SS In Progress can be mapped to an output relay or led for alarm indication.
· If the 25 DAR Split Mode setting has been set to COZ, the Close On Zero function is started.
The 25 COZ In Progress can be mapped to an output relay or led for alarm indication.
4.9.6 System Sync Reversion
If the close conditions of System Sync are not met and a zero slip condition is subsequently detected, by the slip
falling below the 25 Split Slip setting, the relay will exit from System Sync mode and revert to Check
Synchronising mode. The reversion allows the device to use the wider Check Sync parameters, to allow a close
following the restoration of normal operation when the islanded network has been reconnected to the main
network by successful reclosure of a parallel connection.
7SR210 & 7SR220 Description of Operation
Unrestricted Page 70 of 94 ©2018 Siemens Protection Devices Limited
4.9.7 System Synchronising Mode
For the relay to issue a System Sync Close the following conditions have to be met: -
Both the Bus and Line voltages must be considered Live by the Voltage Monitoring elements.
25 System Sync Angle the phase difference between the line and bus voltages has to be less than the phase
angle setting value and the phase angle has to be decreasing before the element will issue a valid close signal.
25 System Sync Slip, [if Enabled] the frequency difference between line and bus has to be less than the slip
frequency setting value. Slip frequency must be above the 25 Split Slip setting to avoid reversion to Check
Synchronising conditions. The settings for 25 System Sync Slip and 25 Split Slip must differ by at least 20 mHz.
25 System Sync Timer, [if Enabled] the phase angle and voltage blocking features have to be within their
parameters for the length of the slip timer setting. If either the phase angle or the voltage elements fall outside of
their limits the slip timer is reset. If they subsequently come back in then the slip timer has to time out before an
output is given. (This ensures that a close output will not be given if there is a transient disturbance on the
system due to e.g. some remote switching operations).
25 Line Undervolts, [if Enabled] the line voltage has to be above the line under-voltage setting value and also
above 5V for an output to be given.
25 Bus Undervolts, [if Enabled] the bus voltage has to be above the line under-voltage setting value and also
above 5V for an output to be given.
25 Volt Differential, [if Enabled] the difference between the line and bus voltages has to be less than the V
detector setting value for an output to be given.
The System Synchronising operation of the relay will only be started after a System Split is detected as described
in section 4.9.6 during an autoreclose or manual close sequence.
Phase Within Range ?
AND
Phase Decreasing ?
SLIP
Line U/V
Block
Bus U/V
BLock
V Block
D
Phase Angle Setting
&
Slip Frequency Setting
Block
Block
Block
&
Slip Timer
Setting
Slip Timer
FAngle
Slip Within Range ?
SystemSync
Close
Live Line
Live Bus
Figure 4.9.7-1 System Sync Function
4.9.8 Close on Zero Mode
If the 25 DAR Split Mode or 25 MC Split Mode is set to COZ the relay will apply a Close-On-Zero to the respective
closing operation if the synchronising mode changes to System Split. The measured slip frequency and the
measured phase difference are used to provide a Close Pulse which will close the CB when the phase difference
is reducing and timed with the setting 25 CB Close Time such that the instant of closure is when the phase
difference is zero. The slip frequency must be less than the 25 COZ Slip Freq but greater than the 25 Split Slip
setting to avoid reversion to Check Synchronising conditions.
Since this feature is part of the System Synchronising function, 25 System Sync must also be set to Enabled.
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 71 of 94
Phase Difference &
Phase Decreasing ?
SLIP
Line U/ V
Block
Bus U/ V
BLock
V BlockD
&
COZ Slip Frequency Setting
Block
Block
Block
&
CB Close Time
FAngle
Slip Within Range ?
COZ
Close
&
(> Split Slip & < COZ slip)
Split Slip Setting
Live Line
Live Bus
Figure 4.9.8-1 Close On Zero Function
Close on Zero will not be accurate if slow CB times are applied in conjunction with fast slip rates during testing.
Practical application limits are shown below: -
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
0 200 400 600 800
CB Close Time (ms)
Maximum Slip Frequency (Hz)
Figure 4.9.8-2 Close On Zero Timing
4.10 Live/Dead Indication
Outputs are provided to identify each voltage input as either Live or Dead using voltage user settings. These
outputs are controlled independently of the 25 Check Synchronising Voltage monitoring elements but operate in
the same way.
Voltage detectors are provided for each phase input A, B, C & X and inputs Y & Z when fitted. If the voltage on
the respective input is below a set threshold level they can be considered to be ‘dead’. If the voltages are above a
voltage setting they are classed as ‘live’. Independent voltage detectors are provided for both line and bus.
If a voltage is in the dead band range then it will be classed as dead until it has reached the live band area.
Similarly, if a voltage is live, it continues to be live until it has reached the dead band area. This effectively allows
for variable amounts of hysteresis to be set. Figure 4.10-1 illustrates the voltage detector operation.
Note: the area between the dead and live zones is not indeterminate. When any voltage is applied to the relay it
will ramp up the software RMS algorithm and always pass through the dead zone first.
A wide range is provided for live and dead voltage detector levels but the live and dead zones must not overlap.
7SR210 & 7SR220 Description of Operation
Unrestricted Page 72 of 94 ©2018 Siemens Protection Devices Limited
Figure 4.10-1 Voltage Detector Operation
Live and Dead outputs are provided for each voltage input:
A Live, B Live, C Live, A Dead, B Dead, C Dead, X Live, Y Live, Z Live, X Dead, Y Dead & Z Dead,
Combined outputs are also provided separately to indicate ALL phases Live or Dead:
ABC Live, ABC Dead, XYZ Live & XYZ Dead
4.11 Circuit Breaker
This menu includes relay settings applicable to both manual close (MC) and auto-reclose (AR) functionality.
CB Controls Latched
CB controls for closing and tripping can be latched i.e. until confirmation that the action has been completed i.e.
binary input is edge triggered when latched.
Close CB Delay
The Close CB Delay is applicable to manual CB close commands received through a Close CB binary input or
via the Control Menu. Operation of the Manual Close CB binary output is delayed by the Close CB Delay
setting.
NB: During the close countdown period the operation can be terminated by pressing ‘Cancel’ on the fascia.
Close CB Pulse
The duration of the CB Close Pulse is settable to allow a range of CBs to be used. The Close pulse will be
terminated if any protection pick-up operates or a trip occurs. This is to prevent Close and Trip Command pulses
existing simultaneously. A 79 Close On Fault Output is given if a pick-up or trip operates during the Close Pulse.
This can be independently wired to Lockout.
‘CB Failed To Open’ and ‘CB Failed to Close’ features are used to confirm that a CB has not responded correctly
to each Trip and Close Command. If a CB fails to operate, the AR feature will go to lockout.
’79 CB Close Fail’ is issued if the CB is not closed at the end of the close pulse, CB Close Pulse.
Reclaim Timer
The ‘Reclaim time’ will start each time a Close Pulse has timed out and the CB has closed.
Where a protection pickup is raised during the reclaim time the relay advances to the next part of the reclose
sequence.
The relay goes to the Lockout state if the CB is open at the end of the reclaim time or a protection operates during
the final reclaim time.
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 73 of 94
Blocked Close Delay
The close command may be delayed by a Block Close CB signal applied to a binary input. This causes the
feature to pause before it issues the CB close command and can be used, for example, to delay CB closure until
the CB energy has reached an acceptable level. If the Block signal has not been removed before the end of the
defined time, Blocked Close Delay, the relay will go to the lockout state.
Open CB Delay
The Open CB Delay setting is applicable to CB trip commands received through an Open CB binary input or via
the Control Menu. Operation of the Open CB binary output is delayed by the Open CB Delay setting.
NB: During the open countdown period the operation can be terminated by pressing ‘Cancel’ on the fascia.
Open CB Pulse
The duration of the CB open Command pulse is user settable to allow a range of CBs to be used.
CB Failed to Open is taken from the Circuit Breaker Failure Element.
CB Travel Alarm (DBI)
The CB Open and CB Closed binary inputs are continually monitored to track the CB Status.
The CB should only ever be in 3 states:
CB
Status
CB Open
binary input
CB Closed
binary input
CB is Open 1 0
CB is Closed 0 1
CB is Travelling between the above 2 states 0 0
The Relay goes to Lockout and the CB Alarm output is given where the Travelling condition exists for longer than
the CB Travel Alarm setting.
An instantaneous CB Alarm is given for a 1/1 state i.e. where the CB indicates it is both Open and Closed at
the same time.
Figure 4.11-1 Logic Diagram: Circuit Breaker Status
7SR210 & 7SR220 Description of Operation
Unrestricted Page 74 of 94 ©2018 Siemens Protection Devices Limited
Trip Time Alarm
The CB Trip Time meter displays the measured time between the trip being issued and the CB auxiliary contacts
changing state. If this measured time exceeds the Trip Time Alarm time, a Trip Time Alarm output is issued.
Trip Time Adjust
This allows for the internal delays caused by the relay especially the delay before a binary input operates to
be subtracted from the measured CB trip time. This gives a more accurate measurement of the time it took for the
CB to actually trip.
Hot Line In/Out
The Hot Line function can be used to provide an immediate trip and auto-reclose inhibit for any Overcurrent, Earth
Fault or Sensitive Earth Fault detection. This function is used to increase safety when personnel are working in
the vicinity of live primary equipment.
When Hot Line is enabled, pickup of any 50, 51, 50G, 51G, 50SEF or 51SEF element will cause an instantaneous
trip, bypassing any time delay setting of the element. Any auto-reclose sequence will be inhibited and Auto-
reclose Lockout will be raised. This feature is not triggered by pick-up or operation of other protection elements
such as under/over voltage, frequency, thermal or negative sequence over-current.
Additionally, when Hot Line is In, Manual Close is inhibited. This can help to prevent unintended energisation of a
dead circuit whilst personnel are working nearby. Hot Line must be switched to Out before the Manual Close
action will be successful.
Hot Line can be configured to be switched In/Out by binary inputs, function keys or by commands via the
communications protocols. There are no other configurable options for Hot Line.
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 75 of 94
4.12 Quick Logic
The ‘Quick Logic’ feature allows the user to input up to 16 logic equations (E1 to E16) in text format. Equations
can be entered using Reydisp or at the relay fascia.
Each logic equation is built up from text representing control characters. Each can be up to 20 characters long.
Allowable characters are: -
0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Digit
( ) Parenthesis
!‘NOT’ Function
.‘AND’ Function
^‘EXCLUSIVE OR’ Function
+‘OR’ Function
EnEquation (number)
FnFunction Key (number)
‘1’ = Key pressed, ‘0’ = Key not pressed
InBinary Input (number)
‘1’ = Input energised, ‘0’ = Input de-energised
LnLED (number)
‘1’ = LED energised, ‘0’ = LED de-energised
OnBinary output (number)
‘1’ = Output energised, ‘0’ = Output de-energised
VnVirtual Input/Output (number)
‘1’ = Virtual I/O energised, ‘0’ = Virtual I/O de-energised
Example Showing Use of Nomenclature
E1= ((I1^F1).!O2)+L1
Equation 1 = ((Binary Input 1 XOR Function Key 1) AND NOT Binary Output 2) OR LED 1
When the equation is satisfied (=1) it is routed through a pick-up timer (En Pickup Delay), a drop-off timer (En
Dropoff Delay), and a counter which instantaneously picks up and increments towards its target (En Counter
Target).
The counter will either maintain its count value En Counter Reset Mode = OFF, or reset after a time delay: -
En Counter Reset Mode = Single Shot: The En Counter Reset Time is started only when the counter
is first incremented (i.e. counter value = 1) and not for subsequent counter operations. Where En
Counter Reset Time elapses and the count value has not reached its target the count value is reset to
zero.
En Counter Reset Mode = Multi Shot: The En Counter Reset Time is started each time the counter is
incremented. Where En Counter Reset Time elapses without further count increments the count value
is reset to zero.
7SR210 & 7SR220 Description of Operation
Unrestricted Page 76 of 94 ©2018 Siemens Protection Devices Limited
P.U. DELAY
D.O. DELAY
Figure 4.12-1Sequence Diagram: Quick Logic PU/DO Timers (Counter Reset Mode Off)
When the count value = En Counter Target the output of the counter (En) = 1 and this value is held until the
initiating conditions are removed when En is instantaneously reset.
The output of En is assigned in the OUTPUT CONFIG>OUTPUT MATRIX menu where it can be programmed to
any binary output (O), LED (L) or Virtual Input/Output (V) combination.
Protection functions can be used in Quick Logic by mapping them to a Virtual Input / Output.
Refer to Applications Guide for examples of Logic schemes.
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 77 of 94
Section 5: Supervision Functions
5.1 Circuit Breaker Failure (50BF)
The circuit breaker fail function has two time delayed outputs that can be used for combinations of re-tripping or
back-tripping. CB Fail outputs are given after elapse of the 50BF-1 Delay or 50BF-2 Delay settings. The two
timers run concurrently.
The circuit breaker fail protection time delays are initiated either from: -
An output Trip Contact of the relay (MENU: OUTPUT CONFIG\BINARY OUTPUT CONFIG\Trip
Contacts), or
A binary or virtual input assigned to 50BF Ext Trig (MENU: INPUT CONFIG\INPUT MATRIX\50BF Ext
Trig).
A binary or virtual input assigned to 50BF Mech Trip (MENU: INPUT CONFIG\INPUT MATRIX\ 50BF
Mech Trip).
CB Fail outputs will be issued providing any of the 3 phase currents are above the 50BF Setting or the current in
the fourth CT is above 50BF-I4 for longer than the 50BF-n Delay setting, or for a mechanical protection trip the
circuit breaker is still closed when the 50BF-n Delay setting has expired indicating that the fault has not been
cleared.
Both 50BF-1 and 50BF-2 can be mapped to any output contact or LED.
If the CB Faulty input (MENU: INPUT CONFIG\INPUT MATRIX\50BF CB Faulty) is energised when a CB trip is
given the time delays 50BF-n Delay will be by-passed and the output given immediately.
Operation of the CB Fail elements can be inhibited from: -
Inhibit 50BF A binary input, virtual input or remote data Comms.
Figure 5.1-1 Logic Diagram: Circuit Breaker Fail Protection (50BF)
7SR210 & 7SR220 Description of Operation
Unrestricted Page 78 of 94 ©2018 Siemens Protection Devices Limited
5.2 VT Supervision (60VTS) – 7SR22
1 or 2 Phase Failure Detection
Normally the presence of negative phase sequence (NPS) or zero phase sequence (ZPS) voltage in a power
system is accompanied by NPS or ZPS current. The presence of either of these sequence voltages without the
equivalent level of the appropriate sequence current is used to indicate a failure of one or two VT phases.
The 60VTS Component setting selects the method used for the detection of loss of 1 or 2 VT phases i.e. ZPS or
NPS components. The sequence component voltage is derived from the line voltages; suitable VT connections
must be available. The relay utilises fundamental voltage measurement values for this function.
The element has user settings 60VTS V and 60VTS I. A VT is considered to have failed where the voltage
exceeds 60VTS V while the current is below 60VTS I for a time greater than 60VTS Delay.
3 Phase Failure Detection
Under normal load conditions rated PPS voltage would be expected along with a PPS load current within the
circuit rating. Where PPS load current is detected without corresponding PPS voltage this could indicate a three
phase VT failure. To ensure these conditions are not caused by a 3 phase fault the PPS current must also be
below the fault level.
The element has a 60VTS VPPS setting, an 60VTS IPPS Load setting and a setting for 60VTS IPPS Fault. A VT is
considered to have failed where positive sequence voltage is below 60VTS VPPS while positive sequence current
is above IPPS Load and below IPPS Fault level for more than 60VTS Delay then a VT failure will be detected.
External MCB
A binary input can be set as Ext_Trig 60VTS to allow the 60VTS Delay element to be started from an external
MCB operating.
Once a VT failure condition has occurred the output is latched on and is reset by any of the following: -
Voltage is restored to a healthy state i.e. above VPPS setting while NPS voltage is below VNPS setting.
Ext Reset 60VTS A binary or virtual input, or function key and a VT failure condition no longer
exists.
Inhibit 60VTS A binary, virtual input, function key or remote data Comms.
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 79 of 94
Enabled
Disabled
&
60VTS Element
&
&
>1
60VTS Ext_Trig
&
S
RQ
>1
60VTS Operated
&
60VTS Inhibit
1 or 2 Phase Fail
V
V Setting
>
I
I Setting
<
V1
Vpps Setting
<
I1
Ipps
<
3 Phase Fail
I1
Ipps Load
>
60VTS Ext_Reset
60VTS Delay
NPS/ZPS
60VTS
Component
VL1
VL2
VL3
Phase
Seq.
Filter
IL1
IL2
IL3
Phase
Seq.
Filter
V2
V0
I2
I0
V1
I1
60VTS Inhibit
60VTS Pick-Up
60VTS Operated
Figure 5.2-1 Logic Diagram: VT Supervision Function (60VTS)
5.3 Busbar VT Fail (60VTF-Bus) – 7SR22
When the optional synchronising function is fitted, the synchronising voltage transformer is utilised to provide an
additional monitoring function to check the validity of the measured line and busbar voltages. When the circuit
breaker is closed, both voltages should be either Live or Dead. If the Bus voltage indicates that the VT is Dead
but the corresponding Line voltage is Live, this raises the Bus VT Fail output. A time delay setting is provided to
avoid spurious operations during transient switching conditions. Additionally, this output can be enabled by a
setting, 79 LO Bus VT Fail, to apply a Lockout signal to the autoreclose function so that a sequence will not be
attempted after a trip occurs if it is known that the voltage measurement is not reliable. A similar setting is
available, 79 LO Line VT Fail, which when Enabled will provide a Lockout for a Line VT failure detected by the
60VTS function.
7SR210 & 7SR220 Description of Operation
Unrestricted Page 80 of 94 ©2018 Siemens Protection Devices Limited
5.4 CT Supervision (60CTS & 60CTS-I)
The relay has two methods of detecting a CT failure, depending on the relay variant.
5.4.1 (60CTS-I) – 7SR21 & 7SR22
The current from each of the Phase Current Transformers is monitored. If one or two of the three input currents
falls below the CT supervision current setting CTS-I for more than 60CTS-I Delay then a CT failure output
(60CTS-I Operated) is given. If all three input currents fall below the setting, CT failure is not raised.
Operation of the CT supervision elements can be inhibited from: -
Inhibit 60CTS-I A binary input, virtual input or remote data Comms.
60CTS-I Delay
IL1
IL2
IL3
60CTS I
<
Any 2 phases
but not all 3
&
Inhibit 60CTS
60CTS-I Element
Enabled
Disabled
60CTS-I Operated
Inhibit 60CTS 60CTS-I Pick-UP
60CTS-I Operated
&
Figure 5.4.1-1 Logic Diagram: CT Supervision Function (60CTS-I) – 7SR21 & 7SR22
5.4.2 (60CTS) – 7SR22
Normally the presence of negative phase sequence (NPS) current in a power system is accompanied by NPS
voltage. The presence of NPS current without NPS voltage is used to indicate a current transformer failure.
The element has a setting for NPS current level 60CTS Inps and a setting for NPS voltage level 60CTS Vnps. If
the negative sequence current exceeds its setting while the negative sequence voltage is below its setting for
more than 60CTS Delay then a CT failure output (60CTS Operated) is given.
Operation of the CT supervision elements can be inhibited from: -
Inhibit 60CTS A binary input, virtual input or remote data Comms.
&
60CTS Delay
VL1
VL2
VL3
NPS
Filter V2
60CTS Vnps
<
IL1
IL2
IL3
NPS
Filter I2
60CTS Inps
>
&
Inhibit 60CTS
60CTS Element
Enabled
Disabled
&
60CTS Operated
Inhibit 60CTS
60CTS Pick-Up
60CTS Operated
Figure 5.4.2-1 Logic Diagram: CT Supervision Function (60CTS) – 7SR22
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 81 of 94
5.5 Broken Conductor (46BC)
The element calculates the ratio of NPS to PPS currents. Where the NPS:PPS current ratio is above 46BC
Setting an output is given after the 46BC Delay.
The Broken Conductor function can be inhibited from: -
Inhibit 46BC A binary input, virtual input or remote data Comms.
Gn 46BC U/I Guarded Operation of the undercurrent guard function.
Figure 5.5-1 Logic Diagram: Broken Conductor Function (46BC)
5.6 Trip / Close Circuit Supervision (74TCS & 74CCS)
The relay provides three trip and three close circuit supervision elements. All elements are identical in operation
and independent from each other allowing three trip and three close circuits to be monitored.
One or more binary inputs can be mapped to 74TCS-n. The inputs are connected into the trip circuit such that at
least one input is energised when the trip circuit wiring is intact. If all mapped inputs become de-energised, due to
a break in the trip circuit wiring or loss of supply an output is given.
The 74TCS-n Delay setting prevents failure being incorrectly indicated during circuit breaker operation. This delay
should be greater than the operating time of the circuit breaker.
The use of one or two binary inputs mapped to the same Trip Circuit Supervision element (e.g. 74TCS-n) allows
the user to realise several alternative monitoring schemes – see ‘Applications Guide’.
Figure 5.6-1 Logic Diagram: Trip Circuit Supervision Feature (74TCS)
7SR210 & 7SR220 Description of Operation
Unrestricted Page 82 of 94 ©2018 Siemens Protection Devices Limited
Figure 5.6-2 Logic Diagram: Close Circuit Supervision Feature (74CCS)
5.7 Inrush Restraint (81HBL2)
Inrush restraint detector elements are provided, these monitor the line currents.
The inrush restraint detector can be used to block the operation of selected elements during transformer
magnetising inrush conditions.
The 81HBL2 Bias setting allows the user to select between Phase,Sum and Cross methods of measurement:
Phase Each phase is inhibited separately.
Sum With this method the square root of the sum of the squares of the second harmonic in each
phase is compared to each operate current individually.
Cross All phases are inhibited when any phase detects an inrush condition.
An output is given where the measured value of the second harmonic component is above the 81HBL2 setting.
Figure 5.7-1 Logic Diagram: Harmonic Block Feature (81HBL2)
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 83 of 94
5.8 Over Fluxing Detector (81HLB5)
Over fluxing detector elements monitor the line currents.
The inrush restraint detector can be used to block the operation of selected elements during transformer
magnetising inrush conditions.
The 81HBL5 Bias setting allows the user to select between Phase,Sum and Cross methods of measurement:
Phase Each phase is inhibited separately
Sum The inrush current from each phase is summated and compared to each operate current
individually
Cross All phases are inhibited when any phase detects an inrush condition
An output is given where the measured fifth harmonic component content is above the 81HBL5 setting.
Figure 5.8-1 Logic Diagram: Over Fluxing Detector (81HLB5)
7SR210 & 7SR220 Description of Operation
Unrestricted Page 84 of 94 ©2018 Siemens Protection Devices Limited
5.9 Load Blinder (21)
Load Blinders are used with directional overcurrent protection elements to block tripping during sustained heavy
load periods in distribution networks.
A Load Blinder element is provided in the 7SR22 relay with two operating modes, three-phase and single-phase.
5.9.1 Load Blinder (21) Three-Phase
Three-phase mode uses positive sequence impedance Z1. Both the negative sequence overcurrent threshold
(Blinder I2 > Block) and the under-voltage threshold (Blinder V< Block) are used to block the function.
21LB-3P Angle sets the angle for the load blinder region.
21LB-3P Impedance sets the impedance of the load blinder region.
21LB-3P VPPS sets the level of positive phase sequence voltage.
21LB-3P IPPS sets the level of negative phase sequence current.
Operation of the element can be inhibited from: -
Inhibit LB A binary input, virtual input, function key or remote data communications
The design of Load Blinder 3Ph makes consideration that protection blocking should be issued only during
definable allowable system power flow conditions i.e. an overcurrent blocking signal can only be issued when: -
a. Positive Sequence Voltage Vpps is not significantly changed, when the Vpps is above the 21LB-3P
VPPS Setting.
AND
b. Negative Sequence Current Inps is lower than 21LB-3P INPS Setting
AND
c. Distributed generators feed in PPS current into the system. In case of high load in system due to
distributed generation hence resulting in change of Zpps.
Zpps is calculated from Vpps and Ipps. The magnitude and angle of Zpps is compared with 21LB-3P
Impedance and 21LB-3P Angle to determine if the impedance is in operate or block and/or FWD or
REV zone.
Figure 5.9.1-1 Logic Diagram: Load Blinder Three-Phase
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 85 of 94
5.9.2 Load Blinder (21) Single-Phase.
Single-phase mode uses the normal impedance (Z) of each phase. The overcurrent blocking is phase segregated
and is dependent on the individual overcurrent settings per phase. Only the under-voltage threshold (Blinder V <
block) can block the function.
Distributed generation can cause power flow in reverse direction to normal system operation. Load Impedance
Blinders are used to block overcurrent operation for loads above a particular level and angle.
A Blinder is an impedance sensing element with a straight-line characteristic when plotted on the R – X plane
Figure 5.9.2-1 Logic Diagram: Load Blinder Single-Phase
7SR210 & 7SR220 Description of Operation
Unrestricted Page 86 of 94 ©2018 Siemens Protection Devices Limited
T2T1
90MVA
132/33kV
-10% to +20%
(Δ1%)
Z = 8%
1574A
1600/1A
Overcurrent
Fwd setting:
= 90% of 50%
=40.5MVA
= 709A @ 33kV
33000/110V
Load blinders used to block overcurrent
relay so that tripping does not occur for
load current levels with a P.F. 0.94 to
Unity.
+R
+X
Phase
Fault
Block
Zone
Load
Impedance
b
a
Nominal
Impedance
Z = 1p.u. =
VL/ (√3 x I)
c
-R
-X
Vpps value Point 1
Point 2
Point 3
Point 4
0
360
Trip Level
I = Vs / Z
Operate
Zone
a = 21LB-3P Impedance
setting
b = 21LB-3P Angle +ve
setting
c = 21LB-3P Angle -ve
setting
Point 6
Point 5
Fwd
Block
Zone
Load
Impedance
ba
c
Point 7
Point 10
Point 9
Point 8
Figure 5.9.2-2 Load Blinder and Angle
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 87 of 94
Section 6: Other Features
6.1 Data Communications
Two communication ports, COM1 and COM2 are provided. RS485 connections are available on the terminal
blocks at the rear of the relay (COM1). A USB port, COM 2, is provided at the front of the relay for local access
using a PC.
Optionally, additional communication ports are available: -
2x fibre optic with ST connectors and 1x IRIG-B – (COM3 and COM 4),
1x RS485 and 1x IRIG-B – (COM 3),
1x RS232 and IRIG-B – (COM 3),
2x Electrical Ethernet with RJ45 connectors IEC 61850 - (COM 3 and COM 4),
2x Optical Ethernet with Duplex LC 100BaseF connectors IEC 61850 - (COM 3 and COM 4).
Communication is compatible with Modbus-RTU, IEC60870-5-103 FT 1.2, DNP 3.0 and IEC 61850 transmission
and application standards.
For communication with the relay via a PC (personal computer) a user-friendly software package, Reydisp
Evolution, is available to allow transfer of relay settings, waveform records, event records, fault data records,
Instruments/meters and control functions. Reydisp Evolution is compatible with IEC60870-5-103.
Data communications operation is described in detail in the Data Communications Definitions section.
6.2 Maintenance
The following CB maintenance counters are provided:
CB Total Trip Count:
Increments on each trip command issued.
CB Total Trip Manual Open Selects whether the CB Total Trip Counter is incremented for
Manual Open Operations. If disabled, the CB Total Counter
will only increment for protection trip commands.
CB Delta Trip Count: Additional counter which can be reset independently of the
Total Trip Counter. This can be used, for example, for
recording trip operations between visits to a substation.
CB Delta Trip Manual Open Selects whether the CB Delta Trip Counter is incremented for
Manual Open Operations. If disabled, the CB Delta Trip
Counter will only increment for protection trip c
ommands.
CB Count to AR Block: (Only in Auto-reclose
models)
Displays the number of CB trips experienced by the CB
before the AR is blocked. When the target is reached the
relay will only do 1 Delayed Trip to Lockout. An output is
available to reset thi
s value.
CB Count to AR Block Manual Open: (Only in
Auto-reclose models)
Selects whether the CB Count to AR Block is incremented for
Manual Open Operations. If disabled, the CB Count to AR
Block will only increment for protection trip commands.
CB Frequent Ops Count Logs the number of trip operations in a rolling window period
of one hour. An output is available to reset this counter.
7SR210 & 7SR220 Description of Operation
Unrestricted Page 88 of 94 ©2018 Siemens Protection Devices Limited
Binary outputs can be mapped to each of the above counters, these outputs are energised when the user
defined Count Target or Alarm Limit is reached.
The above counters can be triggered and reset from a binary input or command.
6.2.1 I2t CB Wear
An I2t counter is also included; this can provide an estimation of contact wear and maintenance requirements. The
algorithm works on a per phase basis, measuring the arcing current during faults. The I2t value at the time of trip
is added to the previously stored value and an alarm is given when any one of the three phase running counts
exceeds the set Alarm limit. The (t) value is the time between CB contacts separation when an arc is formed,
Separation Time, and the CB Clearance time.
The I2t value can also triggered and reset from a binary input or command.
6.2.2 Output Matrix Test
The feature is only visible from the Relay fascia and allows the user to operate the relays functions. The test of
the function will automatically operate any Binary Inputs or LED’s already assigned to that function. Any protection
function which is enabled in the setting menu will appear in the Output Matrix Test.
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 89 of 94
6.3 Data Storage
6.3.1 General
The relay stores three types of data records: relay event records, analogue/digital waveform records and fault
records. Data records are backed up in non-volatile memory and are permanently stored even in the event of loss
of auxiliary d.c. supply voltage.
6.3.2 Event Records
The event recorder feature allows the time tagging of any change of state (Event) in the relay. As an event
occurs, the actual event condition is logged as a record along with a time and date stamp to a resolution of 1
millisecond. There is capacity for a maximum of 5000 event records that can be stored in the relay and when the
event buffer is full any new record will over-write the oldest. Stored events can be erased using the DATA
STORAGE>Clear Events setting.
The following events are logged: -
Change of state of Binary outputs.
Change of state of Binary inputs.
Change of Settings and Settings Group.
Change of state of any of the control functions of the relay.
Protection element operation.
All events can be blocked or made available and uploaded over the data communications channel(s) and can be
displayed in the ‘Reydisp Evolution’ package in chronological order, allowing the sequence of events to be
viewed. Events are also made available spontaneously to an IEC 60870-5-103, Modbus RTU or DNP3.0
compliant control system. The function number and event number can also be changed. The events are selected
and edited using the Reydisp software tool.
6.3.3 Waveform Records.
Waveform records provide a trace of the instantaneous magnitude of each analogue input channel and the status
of each binary channel i.e. each binary input, binary output, virtual I/O and LED, against time for the duration of
the record. The values are recorded at every digital sampling point used by the relay software.
Each recorded analogue waveform displays an input identifier, minimum value, maximum value and the
instantaneous values at both cursor positions (user variable). Each binary waveform displays the input/output
number and the initiating condition(s) e.g. external input or protection element.
Triggering of waveform storage is configured from the ‘Settings > DATA STORAGE > WAVEFORM STORAGE’
menu. Triggering is automatically initiated from operation of any of the selected protection or control elements.
Waveform storage can also be triggered from the relay fascia, from a suitably programmed binary input or via the
data comms channel(s).
Waveforms are sampled at a rate of 32 samples per cycle.
The latest 10 records are stored; the most recent is waveform 1. Records are archived by the relay during
quiescent periods. The duration of each stored record is 1s, 2s, 5s or 10s. The user can also specify the
percentage of waveform storage prior to waveform triggering. When the waveform archive buffer is full (i.e. 10
records are stored) the triggering of a new waveform record causes the oldest record - waveform 10 to be
overwritten.
Stored waveforms can be deleted from the relay fascia using the DATA STORAGE > Clear Waveforms setting or
via Reydisp.
7SR210 & 7SR220 Description of Operation
Unrestricted Page 90 of 94 ©2018 Siemens Protection Devices Limited
6.3.4 Fault Records
Up to 100 fault records are stored and can be downloaded from the relay through the communication interface,
with time & date of trip, measured quantities and type of fault. The last 10 fault records are displayed on the relay
fascia.
Fault records provide a summary of the relay status at the time of trip, i.e. the element that issued the trip, any
elements that were picked up, the fault type, LED indications, date and time. The Max Fault Rec. Time setting
sets the time period from fault trigger during which the operation of any LEDs is recorded.
The relay can be set to automatically display the fault record on the LCD when a fault occurs by enabling the
SYSTEM CONFIG> Trip Alert setting. When the trip alert is enabled the fault record will be displayed until the
fault is removed.
When examined together the event records and the fault records will detail the full sequence of events leading to
a trip.
Fault records are stored in a rolling buffer, with the oldest faults overwritten. The fault storage can be cleared with
the DATA STORAGE>Clear Faults setting or using Reydisp Evolution via Relay > Data Records > Reset Data
Log Record.
6.3.5 Demand
The Demand feature can be used to build trend and maximum/minimum demand records. Up to 10,080 individual
time stamped records can be stored at a user defined rate e.g. 35 days @ 5 minute intervals and > 1 year @ 1
hour intervals.
Maximum, minimum and mean values of line current, voltage and power (where applicable) are available as
instruments which can be read in the relay INSTRUMENTS MENU or via Reydisp Evolution.
In the menu DATA STORAGE > DEMAND / DATA LOG: -
The Data Log Period setting is used to define the period between stored samples.
The Gn Demand Window setting defines the maximum period of time over which the demand values are
calculated. A new set of demand values is established after expiry of the set time.
The Gn Demand Window Type is the mode used to calculate demand values and can be set to FIXED or
PEAK or ROLLING: -
When set to FIXED the maximum, minimum and mean values demand statistics are calculated over
fixed Window duration. At the end of each window the internal statistics are reset and a new window
is started.
When set to PEAK the maximum and minimum values since the feature was reset are recorded.
When set to ROLLING the maximum, minimum and mean values demand statistics are calculated
over a moving Window duration. The internal statistics are updated when the window advances.
The statistics can be reset from a binary input or communication command, after a reset the update period and
window are immediately restarted.
6.3.6 Data Log
The Data log feature can be used to build trend and maximum/minimum demand records. Up to 10,080 individual
time stamped records of each phase current and voltage (where fitted) analogue signal are recorded and stored
at a user defined rate e.g. 35 days @ 5 minute intervals and > 1 year @ 1 hour intervals.
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 91 of 94
6.3.7 Energy Storage
The measured Power is continuously integrated (over a one-second window) to produce 4 Energy quantities: -
· Active Export Energy (W)
· Active Import Energy (W)
· Reactive Export Energy (VAr)
· Reactive Import Energy (VAr)
The Direction of Energy transfer is set by: SYSTEM CONFIG> Export Power/Lag VAr. With both Export Power
(W) and Lag VAr (VAr) set to be +ve, the Direction of Energy transfer will follow the IEC convention, as shown in
the figure.
ACTIVE ENERGY IMPORT
(watts reverse)
IEC CONVENTION : -ve watts
REACTIVE ENERGY IMPORT
(vars reverse)
IEC CONVENTION : -ve vars
REACTIVE ENERGY EXPORT
(vars forward)
IEC CONVENTION : +ve vars
POWER FACTOR LEADING
ACTIVE (W) EXPORT
REACTIVE (VAr) IMPORT
POWER FACTOR LAGGING
ACTIVE (W) IMPORT
REACTIVE (VAr) IMPORT
POWER FACTOR LEADING
ACTIVE (W) IMPORT
REACTIVE (VAr) EXPORT
+90°
180°
-90°
POWER FACTOR LAGGING
ACTIVE (W) EXPORT
REACTIVE (VAr) EXPORT
ACTIVE ENERGY EXPORT
(watts forward)
IEC CONVENTION : +ve watts
Figure 6.3.7-1 Energy Direction Convention
Setting either the Export Power (W) or Lag VAr (VAr) to be -ve, will reverse the Direction of the Energy transfer
for these quantities. So forward VAr will then be reported as Imported Reactive Energy, and forward Watts will be
reported as Exported Active Energy.
When the accumulated Energy quantities reach a set increment, the Relay issues a pulse to the binary outputs:
OUTPUT CONFIG/OUTPUT MATRIX> Active Exp Pulse,Active Imp Pulse,Reactive Exp Pulse and Reactive
Imp Pulse.
The Energy increments are set by the settings: DATA STORAGE/ENERGY STORAGE> Active Exp Energy
Unit,Active Imp Energy Unit,Reactive Exp Energy Unit and Reactive Imp Energy Unit. These setting also
define the resolution of the stored energy values reported by instruments and communications protocols. The
value is stored in the range 0-999999 which continues from zero automatically when 999999 is reached.
7SR210 & 7SR220 Description of Operation
Unrestricted Page 92 of 94 ©2018 Siemens Protection Devices Limited
6.3.8 Fault Locator
The relay provides a single-end type fault locator which is able to estimate the fault position using
analogue information measured by the relay at one end of the protected circuit during the short
duration of the fault.
Following relay operation due to a system fault, the fault waveform record is automatically evaluated to
establish the fault type in terms of the phase(s) affected and the relevant current and voltage is used
to calculate the fault impedance. The relay compares this information to a line model based on
characteristic impedance parameters which are input to the relay as settings and provides an output
estimate of the fault location. This data is presented as a percentage of line length or a distance in
miles or kilometres.
The Positive Sequence Impedance on the protected line must be provided to the relay as settings for
impedance magnitude and characteristic phase angle to enable the distance to fault to be calculated.
The Earth Fault return impedance is specified in terms of the ratio of zero to positive sequence
impedance magnitudes and the characteristic phase angle of the zero sequence impedance. The
characteristic angle of the zero sequence impedance is often significantly different to that of the
positive sequence impedance.
When power systems are earthed through compensation (Peterson) coils, the earth fault currents are
extremely low and are not proportional to fault location. Impedance based fault location cannot be
used for earth faults. Phase-to-phase fault location can be estimated. On networks of this type it is
possible to have two earth-faults on the network simultaneously on different phases of the same circuit
which will appear as a phase-to-phase fault. This is known as a Cross-Country fault. In these cases
the measured impedance cannot give an accurate estimate of the fault condition. The 7SR22 relay
provides detection of this condition using the measured zero sequence voltage to positive sequence
voltage ratio (U0/U1) to allow the possible cross-country fault to be reported. This threshold is
adjustable by a user setting.
Fault Location is reported for faults calculated in a zone which extends to 200 % of the forward line
impedance and 10 % in the reverse direction. High resistance fault results where fault resistance is
calculated as up to 20 times the line impedance are reported. For faults beyond these limits, the
message ‘No Location’ is reported.
The Fault Location estimation is initiated by operation of the Trip Output. Some protection elements
may be set to provide tripping for system conditions where a fault location is not applicable. The
initiation of the Fault Locator can be inhibited by user settings.
The settings for the Fault Locator are found as a sub-menu in the Data Storage menu.
The Fault Locator result data is available in the Fault Data records and can be viewed at the relay
fascia and downloaded from the relay.
6.4 Metering
The metering feature provides real-time data available from the relay fascia in the ‘Instruments Modeor via the
data communications interface.
The Primary values are calculated using the CT and VT ratios set in the CT/VT Config menu.
The text displayed in the relays ‘Instruments Modeassociated with each value can be changed from the default
text using the Reydisp software tool.
The user can add the meters that are most commonly viewed to a ‘Favourites’ window by pressing the ‘ENTER
key when viewing a meter. The relay will scroll through these meters at an interval set in the System
Config/Favourite Meters Timer menu.
7SR210 & 7SR220 Description of Operation
Unrestricted ©2018 Siemens Protection Devices Limited Page 93 of 94
6.5 Operating Mode
The relay has three operating modes, Local, Remote and Out of Service. The following table identifies the
functions operation in each mode.
The modes can be selected by the following methods: -
SYSTEM CONFIG>RELAY MODE setting, a Binary Input or Command
Table 6.5-1 Operation Mode
OPERATION
REMOTE MODE
LOCAL MODE
SERVICE MODE
Control
Rear Ports Enabled Disabled Disabled
Fascia (Control Mode) Disabled Enabled Disabled
USB Disabled Enabled Disabled
Binary Inputs Setting Option Setting Option Enabled
Binary Outputs Enabled Enabled Disabled
Reporting
Spontaneous
IEC Enabled Enabled Disabled
DNP Enabled Enabled Disabled
General Interrogation
IEC Enabled Enabled Disabled
DNP Enabled Enabled Disabled
MODBUS Enabled Enabled Disabled
Changing of Settings
Rear Ports Enabled Disabled Enabled
Fascia Enabled Enabled Enabled
USB Disabled Enabled Enabled
Historical Information
Waveform Records Enabled Enabled Enabled
Event Records Enabled Enabled Enabled
Fault Information Enabled Enabled Enabled
Setting Information Enabled Enabled Enabled
6.6 Control Mode
This mode provides convenient access to commonly used relay control and test functions. When any of the items
listed in the Control Mode list are selected, control is initiated by pressing the ENTER key. The user is prompted
to confirm the action, again by pressing the ENTER key, before the command is executed.
Control Mode commands are password protected using the Control Password function – see section 6.9.
6.7 Real Time Clock
Time and date can be set either via the relay fascia using appropriate commands in the System Config menu, via
the data comms channel(s) or via the optional IRIG-B input. Time and date are maintained while the relay is de-
energised by a back up storage capacitor.
In order to maintain synchronism within a substation, the relay can be synchronised to the nearest second or
minute using the IEC 60870-5-103 protocol, optional IRIG-B input or binary input.
The default date is set at 01/01/2000 deliberately to indicate the date has not yet been set. When editing the
Time, only the hours and minutes can be edited. When the user presses ENTER after editing the seconds are
zeroed and the clock begins running.
7SR210 & 7SR220 Description of Operation
Unrestricted Page 94 of 94 ©2018 Siemens Protection Devices Limited
6.7.1 Time Synchronisation - Data Communication Interface
Where the data comms channel(s) is connected the relay can be directly time synchronised using the global time
synchronisation. This can be from a dedicated substation automation system or from ‘Reydisp Evolution’
communications support software.
6.7.2 Time Synchronisation – Binary Input
A binary input can be mapped Clock Sync from BI. The seconds or minutes will be rounded up or down to the
nearest value when the BI is energised. This input is leading edge triggered.
6.7.3 Time Synchronisation – IRIG-B (Optional)
A BNC connector on the relay rear provides an isolated IRIG-B time synchronisation port. The IRIG-B input
expects a modulated 3-6 Volt signal and provides time synchronisation to the nearest millisecond.
6.8 Settings Groups
The relay provides eight groups of settings Group number (Gn) 1 to 8. At any one time only one group of
settings can be ‘active’ – SYSTEM CONFIG>Active Group setting.
It is possible to edit one group while the relay operates in accordance with settings from another ‘active’ group
using the View/Edit Group setting.
Some settings are independent of the active group setting i.e. they apply to all settings groups. This is indicated
on the top line of the relay LCD where only the Active Group No. is identified. Where settings are group
dependent this is indicated on the top line of the LCD by both the Active Group No. and the View Group No. being
displayed.
A change of settings group can be achieved either locally at the relay fascia, remotely over the data comms
channel(s) or via a binary input. When using a binary input an alternative settings group is selected only whilst the
input is energised (Select Grp Mode: Level triggered) or latches into the selected group after energisation of the
input (Select Grp Mode: Edge triggered).
6.9 Password Feature
The relay incorporates two levels of password protection – one for settings, the other for control functions.
The programmable password feature enables the user to enter a 4 character alpha numeric code to secure
access to the relay functions. A Password of NONE indicates that a Password has not been set and that the
Password feature is disabled. Where a Relay is delivered with the Password already set, this will be AAAA. The
password must be entered twice as a security measure against accidental changes. Once a password has been
entered then it will be required thereafter to change settings or initiate control commands. Passwords can be de-
activated by using the password to gain access and by entering the password NONE. Again this must be entered
twice to de-activate the security system.
As soon as the user attempts to change a setting or initiate control the password is requested before any changes
are allowed. Once the password has been validated, the user is ‘logged on’ and any further changes can be made
without re-entering the password. If no more changes are made within 1 hour then the user will automatically be
‘logged off’, re-enabling the password feature.
The Settings Password prevents unauthorised changes to settings from the front fascia or over the data comms
channel(s). The Control Password prevents unauthorised operation of controls in the relay Control Menu from the
front fascia.
The password validation screen also displays a numerical code. If the password is lost or forgotten, this code
should be communicated to Siemens Protection Devices Ltd. and the password can be retrieved.
Unrestricted The copyright and other intellectual property rights in this document, and in any model or article
produced from it (and including any registered or unregistered design rights) are the property of Siemens
Protection Devices Limited. No part of this document shall be reproduced or modified or stored in another form, in
any data retrieval system, without the permission of Siemens Protection Devices Limited, nor shall any model or
article be reproduced from this document unless Siemens Protection Devices Limited consent.
While the information and guidance given in this document is believed to be correct, no liability shall be accepted
for any loss or damage caused by any error or omission, whether such error or omission is the result of
negligence or any other cause. Any and all such liability is disclaimed.
© 2018 Siemens Protection Devices Limited
7SR210 Non-Directional Relay
7SR220 Directional Relay
Configuration Guide
7SR210 & 7SR220 Configuration Guide
Unrestricted Page 2 of 14 © 2018 Siemens Protection Devices Limited
Document Release History
This document is issue 2017/12. The list of revisions up to and including this issue is: -
2011/05 First issue
2013/01 Typographical revisions and added data. Updated in line with software release.
2014/06 Typographical revisions and added data. Updated in line with software release.
2015/06 Typographical revisions amended drawings and added data. Updated in line with software
release.
2016/02 Typographical revisions and added data. Updated in line with software release.
2016/11 Typographical revisions and format.
2017/08 Typographical revisions and added data. Updated in line with software release.
2017/12 Typographical revisions.
Software Revision History
2011/05 2435H85008R7a-7a (7SR210)
2435H85009R7a-7a (7SR220)
First Release
2013/01 2435H85008R7c-7b (7SR210)
2435H85009R7c-7b (7SR220)
Introduced journaling file system.
Added 61850 logical nodes for CB Counters, metering, 50BF,
46BC,
81HBL2 and line check.
Added Line Check on non-AR devices.
Added 74CCS Close Circuit Supervision.
2014/06 2435H85008R7f-7d (7SR210)
2435H85009R7f-7d (7SR220)
Added Fault Locator feature and Check Sync feature.
Fault data transmitted over 103.
Additional communications data, control features, meters.
2015/06 2435H85008R8a-7e (7SR210)
2435H85009R8a-7f (7SR220)
Added Power Factor Meters, Load Blinding feature, Arc Flash
Detector. Over current TM Setting Range extended.
2016/02 2435H85008R8b-7f (7SR210)
2435H85009R8b-7f (7SR220)
EN100+ Compatibility.
2017/08 2435H85008R8e-8a (7SR210)
2435H85009R8e-8a (7SR220)
Added 32 Directional Power, 32S Sensitive Power, 55 Power
Factor, 81HLB5 Overfluxing, 67SEF Compensated Network,
67SEF Wattmetric. Increased I/O. Event Data on LCD.
7SR210 & 7SR220 Configuration Guide
Unrestricted © 2018 Siemens Protection Devices Limited Page 3 of
14
Contents
Document Release History ................................................................................................................................. 2
Software Revision History .................................................................................................................................. 2
Contents ............................................................................................................................................................ 3
Section 1: Introduction ....................................................................................................................................... 4
1.1 Relay Menus And Display .................................................................................................................. 4
1.2 Operation Guide ................................................................................................................................ 6
1.2.1 User Interface Operation ...................................................................................................... 6
Section 2: Configuring the Relay Using Reydisp Evolution .................................................................................. 9
2.1 Physical Connection .......................................................................................................................... 9
2.1.1 Front USB connection .......................................................................................................... 9
2.1.2 Standard rear RS485 connection ........................................................................................ 10
2.1.3 Optional rear fibre optic connection ..................................................................................... 10
2.1.4 Optional rear RS485 + IRIG-B connection ........................................................................... 11
2.1.5 Optional rear RS232 + IRIG-B connection ........................................................................... 11
2.1.6 Optional Rear EN100 Ethernet Module ............................................................................... 12
2.1.7 Configuring Relay Data Communication .............................................................................. 12
2.1.8 Connecting to the Relay via Reydisp Evolution .................................................................... 14
List of Figures
Figure 1.1-1 Menu Navigation ............................................................................................................................ 4
Figure 1.1-2 Fascia Contrast symbol .................................................................................................................. 4
Figure 1.1-3 Relay Fascia (Please note fascia may differ from illustration) ........................................................... 5
Figure 1.2.1-1 Relay Identifier Screen ................................................................................................................. 6
Figure 1.2.1-2 Typical Menu Structure for 7SR21 relay ....................................................................................... 7
Figure 1.2.1-3 Typical Menu Structure for 7SR22 relay ....................................................................................... 8
Figure 2.1.1-1 USB connection to a PC .............................................................................................................. 9
Figure 2.1.2-1 Standard rear RS485 connection to a PC ................................................................................... 10
Figure 2.1.3-1 Additional (Optional) rear fibre optic connection to a PC .............................................................. 10
Figure 2.1.4-1 Additional (Optional) rear RS485 + IRIG-B connection to a PC .................................................... 11
Figure 2.1.5-1 Additional (Optional) rear RS232 + IRG-B connection to a PC ..................................................... 11
Figure 2.1.6-1 EN100 Ethernet Module ............................................................................................................. 12
Figure 2.1.8-1 PC Comm Port Selection ........................................................................................................... 14
7SR210 & 7SR220 Configuration Guide
Unrestricted Page 4 of 14 © 2018 Siemens Protection Devices Limited
Section 1: Introduction
1.1 Relay Menus And Display
All relay fascias contain the same access keys although the fascias may differ in appearance from model to
model. The basic menu structure is also the same in all products and consists of four main menus, these being,
Settings Mode - allows the user to view and (if allowed via the settings mode password) change settings in the
relay.
Instruments Mode - allows the user to view the relay meters e.g. current, voltage etc.
Fault Data Mode - allows the user to view the type and data of any fault that the relay has detected.
Control Mode - allows the user to control external plant under the relays control for example the CB (if allowed
via the control mode password)
Event Data Mode - allows the user to view the events which have occured within the relay.
The menus can be viewed via the LCD by pressing the access keys as below,
Figure 1.1-1 Menu Navigation
Pressing CANCEL returns to the Identifier screen
LCD Contrast
To change the contrast on the LCD insert a flat nosed screwdriver into the screwhead below the contrast symbol,
turning the screwhead left or right decreases and increases the contrast of the LCD.
Figure 1.1-2 Fascia Contrast symbol
7SR210 & 7SR220 Configuration Guide
Unrestricted © 2018 Siemens Protection Devices Limited Page 5 of
14
Figure 1.1-3 Relay Fascia (Please note fascia may differ from illustration)
7SR210 & 7SR220 Configuration Guide
Unrestricted Page 6 of 14 © 2018 Siemens Protection Devices Limited
1.2 Operation Guide
1.2.1 USER INTERFACE OPERATION
The basic menu structure flow diagram is shown in Figure 1.2-2. This diagram shows the main modes of display:
Settings Mode, Instrument Mode, Fault Data Mode and Control Mode.
When the relay leaves the factory all data storage areas are cleared and the settings set to default as specified in
settings document.
When the relay is first energised the user is presented with the following message: -
7SR220
_______________________________
ENTER to CONTROL
Figure 1.2.1-1 Relay Identifier Screen
On the factory default setup the relay LCD should display the relay identifier, on each subsequent power-on the
screen that was showing before the last power-off will be displayed.
The push-buttons on the fascia are used to display and edit the relay settings via the LCD, to display and activate
the control segment of the relay, to display the relays instrumentation and Fault data and to reset the output
relays and LED’s.
The five push-buttons have the following functions:
READ DOWN READ UP
Used to navigate the menu structure.
ENTER
The ENTER push-button is used to initiate and accept setting changes.
When a setting is displayed pressing the ENTER key will enter the edit mode, the setting will flash and can now
be changed using the or buttons. When the required value is displayed the ENTER button is pressed again
to accept the change.
When an instrument is displayed pressing ENTER will toggle the instruments favourite screen status.
CANCEL
This push-button is used to return the relay display to its initial status or one level up in the menu structure.
Pressed repeatedly will return to the Relay Identifier screen. It is also used to reject any alterations to a setting
while in the edit mode.
TEST/RESET
This push-button is used to reset the fault indication on the fascia. When on the Relay Identifier screen it also
acts as a lamp test button, when pressed all LEDs will momentarily light up to indicate their correct operation. It is
also moves the cursor right when navigating through menus and settings.
7SR210 & 7SR220 Configuration Guide
Unrestricted © 2018 Siemens Protection Devices Limited Page 7 of
14
SETTINGS MODE INSTRUMENTS MODE FAULT DATA MODE
SYSTEM CONFIG
FUNCTION CONFIG
CT/VT CONFIG
SUPERVISION CB FAIL
BROKEN CONDUCTOR
TRIP CCT SUPERVISION
AUTORECLOSE PROT’N
AUTORECLOSE CONFIG
CURRENT PROT’N PHASE OVERCURRENT
DERIVED E/F
MEASURED E/F
SENSITIVE E/F
RESTRICTED E/F
COLD LOAD
NPS OVERCURRENT
UNDER CURRENT
THERMAL
CONTROL & LOGIC
CIRCUIT BREAKER
QUICK LOGIC
INPUT CONFIG
OUTPUT CONFIG
MAINTENANCE
DATA STORAGE
INPUT MATRIX
FUNCTION KEY MATRIX
BINARY INPUT CONFIG
OUTPUT MATRIX
BINARY OUTPUT CONFIG
LED CONFIG
PICKUP CONFIG
CB COUNTERS
I^2T CB WEAR
CONTROL MODE
CB TRAVELLING CLOSE I OPEN
AR : OUT OF SERVICE
AR : TRIP & RECLOSE
AR : TRIP & LOCKOUT
E/F IN
HOTLINE WORKING : OUT
INST PROT'N : IN
IN I OUT
CONFIRM ACTION
CONFIRM ACTION
IN I OUT
IN I OUT
IN I OUT
FAVOURITE METERS
CURRENT METERS
THERMAL METERS
AUTORECLOSE METERS
MAINTENANCE METERS
GENERAL ALARM METERS
BINARY INPUT METERS
BINARY OUTPUT METERS
VIRTUAL METERS
MISCELLANEOUS METERS
7SR21 ARGUS
ENTER to CONTROL
NUMBER OF FAULTS
COMMUNICATIONS
MANUAL CB CLOSE
46IT
46DT
37-1
37-2
INRUSH DETECTOR
GENERAL ALARMS
50-1
51-1
51-2
50-2
51N-1
51N-2
50N-1
50N-2
50G-1
51G-1
51G-2
50G-2
51SEF-1
51SEF-2
50SEF-1
50SEF-2
COMMUNICATION METERS
CT SUPERVISION
SEF IN IN I OUT
Set Remote : L Or R
CONFIRM ACTIONSet L Or R : L Or R
CONFIRM ACTION
Set Local : L Or R CONFIRM ACTION
Set Service : L Or R CONFIRM ACTION
37G-1
37G-2
DEMAND/DATA LOG
WAVEFORM STORAGE
FAULT STORAGE
DEMAND METERS
QUICKLOGIC METERS
EVENT DATA MODE
Figure 1.2.1-2 Typical Menu Structure for 7SR21 relay
7SR210 & 7SR220 Configuration Guide
Unrestricted Page 8 of 14 © 2018 Siemens Protection Devices Limited
SETTINGS MODE INSTRUMENTS MODE EVENT DATA MODE
SYSTEM CONFIG
FUNCTION CONFIG
CT/VT CONFIG
PHASE U/O VOLTAGE
NPS OVERVOLTAGE
U/O FREQUENCY
VOLTAGE PROT’N
SUPERVISION
27/59-1
27/59-2
27/59-3
27/59-4
47-1
47-2
59NIT
59NDT
81-1
81-2
81-3
81-4
81-5
81-6
CB FAIL
VT SUPERVISION
CT SUPERVISION
BROKEN CONDUCTOR
TRIP CCT SUPERVISION
AUTORECLOSE PROT’N
AUTORECLOSE CONFIG
CURRENT PROT’N PHASE OVERCURRENT
51-3
50-1
51N-4
VOLTAGE CONT O/C
DERIVED E/F
MEASURED E/F
51G-3
50G-1
50G-3
SENSITIVE E/F
RESTRICTED E/F
COLD LOAD
NPS OVERCURRENT
UNDER CURRENT
THERMAL
CONTROL & LOGIC
CIRCUIT BREAKER
QUICK LOGIC
INPUT CONFIG
OUTPUT CONFIG
CB MAINTENANCE
DATA STORAGE
INPUT MATRIX
FUNCTION KEY MATRIX
BINARY INPUT CONFIG
OUTPUT MATRIX
BINARY OUTPUT CONFIG
LED CONFIG
PICKUP CONFIG
CB COUNTERS
I^2T CB WEAR
NEUTRAL OVERVOLTAGE
CONTROL MODE
CB TRAVELLING CLOSE I OPEN
AR : OUT OF SERVICE
AR : TRIP & RECLOSE
AR : TRIP & LOCKOUT
E/F IN
HOTLINE WORKING : OUT
INST PROT'N : IN
IN I OUT
CONFIRM ACTION
CONFIRM ACTION
IN I OUT
IN I OUT
IN I OUT
FAVOURITE METERS
CURRENT METERS
VOLTAGE METERS
FREQUENCY METERS
POWER METERS
ENERGY METERS
THERMAL METERS
AUTORECLOSE METERS
MAINTENANCE METERS
GENERAL ALARM METERS
BINARY INPUT METERS
BINARY OUTPUT METERS
VIRTUAL METERS
COMMUNICATION METERS
7SR22 ARGUS
ENTER to CONTROL
COMMUNICATIONS
MANUAL CLOSE
51-1
51-2
51-4
50-2
50-3
50-4
51N-1
51N-2
51N-3
50N-1
50N-2
50N-3
50N-4
51G-1
51G-2
51G-4
50G-2
50G-4
51SEF-1
51SEF-2
51SEF-3
51SEF-4
50SEF-1
50SEF-2
50SEF-3
50SEF-4
46IT
46DT
37-1
37-2
Vx U/O VOLTAGE
INRUSH DETECTOR
GENERAL ALARMS
DIRECTIONAL METERS
MISCELLANEOUS METERS
FUNCTION KEY CONFIG
DEMAND
SEF IN IN I OUT
FAULT DATA MODE
NUMBER OF FAULTS
Figure 1.2.1-3 Typical Menu Structure for 7SR22 relay
7SR210 & 7SR220 Configuration Guide
Unrestricted © 2018 Siemens Protection Devices Limited Page 9 of
14
Section 2: Configuring the Relay Using Reydisp Evolution
To set the relay using the communication port the user will need the following:-
PC with Reydisp Evolution Installed. (This can be download from our website www.energy.siemens.com and
found under the submenu ‘Software’). This software requires windows 2000-service pack 4 or above, or windows
XP with service pack 2 or above.
2.1 Physical Connection
The relay can be connected to Reydisp Evolution via any of the communication ports on the relay. Suitable
communication Interface cable and converters are required depending which port is being used.
2.1.1 FRONT USB CONNECTION
To connect your pc locally via the front USB port.
Figure 2.1.1-1 USB connection to a PC
7SR210 & 7SR220 Configuration Guide
Unrestricted Page 10 of 14 © 2018 Siemens Protection Devices Limited
2.1.2 STANDARD REAR RS485 CONNECTION
Figure 2.1.2-1 Standard rear RS485 connection to a PC
2.1.3 OPTIONAL REAR FIBRE OPTIC CONNECTION
Figure 2.1.3-1 Additional (Optional) rear fibre optic connection to a PC
Sigma devices have a 25 pin female D connector with the following pin out.
Pin
Function
2 Transmit Data
3 Received Data
4 Request to Send
5 Clear to Send
6 Data set ready
7 Signal Ground
8 Received Line Signal Detector
20 Data Terminal Ready
7SR210 & 7SR220 Configuration Guide
Unrestricted © 2018 Siemens Protection Devices Limited Page 11
of
2.1.4 OPTIONAL REAR RS485 + IRIG-B CONNECTION
Figure 2.1.4-1 Additional (Optional) rear RS485 + IRIG-B connection to a PC
2.1.5 OPTIONAL REAR RS232 + IRIG-B CONNECTION
Figure 2.1.5-1 Additional (Optional) rear RS232 + IRG-B connection to a PC
Pin
Function
1 Carrier Direct (CD)
2 Receive Data (RXD)
3 Transmit Data (TXD)
4 Data Terminal Ready (DTR)
5 Signal Ground (GND)
6 Data set ready (DSR)
7 Request to send (RTS)
8 Clear to Send (CTS)
9 Ring Indicator (RI)
7SR210 & 7SR220 Configuration Guide
Unrestricted Page 12 of 14 © 2018 Siemens Protection Devices Limited
2.1.6 OPTIONAL REAR EN100 ETHERNET MODULE
Connections are made on the rear underside of the relay either RJ45 sockets (electrical) or Duplex LC
(fibre optic) connectors depending on the option ordered.
LED yellow
LED green
LED yellow
LED green
Ch 1 Ch 2
Ethernet – EN100-E
EN100 Module – RJ45 Interface
Ethernet – EN100-O
Ch 1 Ch 2
EN100 Module – Duplex-LC Interface
Green LED (Physical Link)
Off – No link
On – Link present
Yellow LED (Activity)
Off – No traffic
On/flashing - Traffic
Figure 2.1.6-1 EN100 Ethernet Module
2.1.7 CONFIGURING RELAY DATA COMMUNICATION
Using the keys on the relay fascia scroll down the settings menu’s into the ‘communications’ menu and change
the settings for the communication port used on the relay. All of the below settings may not be available in all
relay types. Reydisp Evolution software uses IEC60870-5-103 protocol to communicate.
COM1 – Standard RS485 Rear Port
COM2 - USB Port
COM3 – Optional Fibre Optic, RS485, RS232 or Ethernet Port
COM4 – Additional (Optional) Rear Connection**
LAN – Optional Ethernet Ports
7SR210 & 7SR220 Configuration Guide
Unrestricted © 2018 Siemens Protection Devices Limited Page 13
of
Setting name Range Default Units Notes
Station Address
1 – 254 for IEC60870-5-103
0 – 247 for Modbus RTU
0 – 65520 for DNP3.0
0
Address given to relay to
identify that relay from
others which may be using
the same path for
communication as other
relays for example in a fibre
optic hub
COM1-RS485 Protocol OFF, IEC60870-5-103,
MODBUS-RTU, DNP3.0
IEC60870-5-
103
COM1 is the rear mounted
RS485 port
COM1-RS485 Baud
Rate
75 110 150 300 600 1200
2400 4800 9600 19200
38400
19200
COM1-RS485 Parity NONE, ODD, EVEN EVEN
COM2-USB Protocol
OFF, IEC60870-5-103,
DNP3.0, MODBUS-RTU,
ASCII
IEC60870-5-
103 COM2 is the front USB port
COM2-USB Baud Rate
75 110 150 300 600 1200
2400 4800 9600 19200
38400 57600 115200
230400 460800 921600
Auto detects Auto detects baud rate via
Connection Manager Setting
COM2-USB Parity NONE, ODD, EVEN EVEN
COM3 Protocol OFF, IEC60870-5-103,
MODBUS-RTU, DNP3.0
IEC6-0870-5-
103
COM3 This is an optional
rear mounted connection
COM3 Baud Rate
75 110 150 300 600 1200
2400 4800 9600 19200
38400 57600 115200
57600
COM3 Parity NONE, ODD, EVEN EVEN
COM3 Line Idle* LIGHT ON, LIGHT OFF LIGHT OFF
COM3 Data echo* ON, OFF OFF
COM4 Protocol** OFF, IEC60870-5-103,
MODBUS-RTU, DNP3.0 OFF COM4 This is an optional
rear mounted connection
COM4 Baud Rate**
75 110 150 300 600 1200
2400 4800 9600 19200
38400
19200
COM4 Parity** NONE, OFF, EVEN EVEN
COM4 Line Idle** LIGHT ON, LIGHT OFF LIGHT OFF
COM4 Data echo** ON, OFF OFF
DNP3 Unsolicited
Events ENABLED, DISABLED DISABLED
Setting is only visible when
a port protocol is set to
DNP3.
DNP3 Destination
Address 0 … 65534 0
Setting is only visible when
a port protocol is set to
DNP3.
DNP3 Application
Timeout 5, 6 ... 299, 300 10s Secon
ds
Setting is only visible when
a port Protocol is set to
DNP3
*Not applicable for RS485 or RS232 interface modules.
**Fibre Optic Module only
7SR210 & 7SR220 Configuration Guide
Unrestricted Page 14 of 14 © 2018 Siemens Protection Devices Limited
2.1.8 CONNECTING TO THE RELAY VIA REYDISP EVOLUTION
When Reydisp Evolution software is running all available communication ports of the PC will automatically be
detected.
On the start page tool bar open up the sub-menu File > Connect.
The ‘Communication Manager’ window will display all available communication ports. With the preferred port
highlighted, select the ‘Properties’ option and ensure the baud rate and parity match that selected in the relay
Data Comms settings. Select ‘Connect’ to initiate the relay-PC connection.
Figure 2.1.8-1 PC Comm Port Selection
Via the Relay > Set Address > Address set the relay address (1-254) or alternatively search for connected
devices using the Relay > Set Address > Device Map. The relay can now be configured using the Reydisp
Evolution software. Please refer to the Reydisp Evolution Manual for further guidance.
Unrestricted The copyright and other intellectual property rights in this document, and in any model or article
produced from it (and including any registered or unregistered design rights) are the property of Siemens
Protection Devices Limited. No part of this document shall be reproduced or modified or stored in another form,
in any data retrieval system, without the permission of Siemens Protection Devices Limited, nor shall any model
or article be reproduced from this document unless Siemens Protection Devices Limited consent.
While the information and guidance given in this document is believed to be correct, no liability shall be
accepted for any loss or damage caused by any error or omission, whether such error or omission is the result
of negligence or any other cause. Any and all such liability is disclaimed.
© 2018 Siemens Protection Devices Limited
7SR210 Non-Directional Relay
Instrumentation Guide
7SR210 Instrumentation Guide
Unrestricted Page 2 of 12 © 2018 Siemens Protection Devices Limited
Document Release History
This document is issue 2017/12. The list of revisions up to and including this issue is: -
2011/05 First issue
2013/01 Typographical revisions and added data. Updated in line with software release.
2014/06 Typographical revisions and added data. Updated in line with software release.
2015/06 Typographical revisions and added data. Updated in line with software release.
2016/02 Typographical revisions and added data. Updated in line with software release.
2016/11 Typographical revisions and format
2017/08 Typographical revisions and added data. Updated in line with software release.
2017/12 Typographical revisions and added data.
Software Revision History
2011/05 2435H85008R7a-7a (7SR210) First Release
2013/01 2435H85008R7c-7b (7SR210) Introduced journaling file system.
Added 61850 logical nodes for CB Counters, metering, 50BF,
46BC,
81HBL2 and line check.
Added Line Check on non-AR devices.
Added 74CCS Close Circuit Supervision.
2014/06 2435H85008R7f-7d (7SR210) Fault data transmitted over 103.
Additional communications data control features, meters.
2015/06 2435H85008R8a-7f (7SR210) Added Arc Flash Detector. Over current TM Setting Range
extended.
2016/02 2435H85008R8b-7f (7SR210) EN100+ Compatibility.
2017/08 2435H85008R8e-8a (7SR210) Event Data on LCD.
7SR210 Instrumentation Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 3 of 12
Contents
Document Release History................................................................................. 2
Software Revision History .................................................................................. 2
1. Function Diagram ........................................................................................... 4
2. Menu Structure .............................................................................................. 5
1. Relay Instrumentation .................................................................................... 6
1.1. Favourite Meters.................................................................................... 6
1.2. Current Meters ....................................................................................... 6
1.3. Thermal Meters ..................................................................................... 8
1.4. Auto-Reclose Meters ............................................................................. 8
1.5. Maintenance Meters .............................................................................. 8
1.6. General Alarm Meters ........................................................................... 9
1.7. Demand Meters ..................................................................................... 9
1.8. Binary Input Meters ............................................................................. 10
1.9. Binary Output Meters ........................................................................... 11
1.10. Virtual Meters ...................................................................................... 11
1.11. Communication Meters ........................................................................ 11
1.12. Miscellaneous Meters .......................................................................... 12
1.13. Quick Logic Meters .............................................................................. 12
7SR210 Instrumentation Guide
Unrestricted Page 4 of 12 © 2018 Siemens Protection Devices Limited
1.Function Diagram
7SR210 Instrumentation Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 5 of 12
2.Menu Structure
7SR210 Instrumentation Guide
Unrestricted Page 6 of 12 © 2018 Siemens Protection Devices Limited
1. Relay Instrumentation
1.1. Favourite Meters
Instrument Description
--------------------
FAVOURITE METERS
> to view
This allows the user to view his previously constructed list of ‘favourite meters’
by pressing TEST/RESET button and the READ DOWN button to scroll
though the meters added to this sub-group
To construct a sub-group of favourite meters, first go to the desired meter then
press ENTER this will cause a message to appear on the LCD ‘Add To
Favourites YES pressing ENTER again will add this to the FAVOURITE
METERS Sub-menu. To remove a meter from the FAVOURITE METERS sub-
menu go to that meter each in the FAVOURITE METERS sub-menu or at its
Primary location press ENTER and the message ‘Remove From Favourites’ will
appear press ENTER again and this meter will be removed from the
FAVOURITE METERS sub-group
1.2. Current Meters
Instrument Description
--------------------
CURRENT METERS
> to view
--------------------
This is the sub-group that includes all the meters that are associated with
Current TEST/RESET allows access to this sub-group
Primary Current
Ia 0.00A
Ib 0.00A
Ic 0.00A
Displays the 3 phase currents Primary RMS values
Secondary Current
Ia 0.00A
Ib 0.00A
Ic 0.00A
Displays the 3 phase currents Secondary RMS values
Nom Current
Ia 0.00xIn ----o
Ib 0.00xIn ----o
Ic 0.00xIn ----o
Displays the 3 phase currents Nominal RMS values & phase angles with
respect to PPS current.
Pri Earth Current
In 0.000A
Ig 0.000A
Displays the 3 Earth currents Primary RMS values
Sec Earth Current
In 0.000A
Ig 0.000A
Displays the 3 Earth currents Secondary RMS values
Nom Earth Current
In 0.000xIn ----o
Ig 0.000xIn ----o
Displays the 3 Earth currents Nominal RMS values & phase angles with respect
to PPS current.
I Seq Components
Izps 0.00xIn ----o
Ipps 0.00xIn ----o
Inps 0.00xIn ----o
Displays the Current Sequence components Nominal RMS values & phase
angles with respect to PPS current.
2
nd
Harmonic Current
Ia 0.00xIn
Ib 0.00xIn
Ic 0.00xIn
Displays the 3 phase currents 2nd Harmonic components Nominal RMS values.
7SR210 Instrumentation Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 7 of 12
Instrument Description
5
th
Harmonic Current
Ia 0.00xIn
Ib 0.00xIn
Ic 0.00xIn
Displays the 3 phase currents 5th Harmonic components Nominal RMS values.
Last Trip P/F
Ia 0.00A
Ib 0.00A
Ic 0.00A
Displays the Last Trip Fault Current..
Last Trip E/F
In 0.00A
Ig 0.00A
Displays the Last Trip Fault Current..
7SR210 Instrumentation Guide
Unrestricted Page 8 of 12 © 2018 Siemens Protection Devices Limited
1.3. Thermal Meters
Instrument Description
--------------------
THERMAL METERS
> to view
This is the sub-group that includes all the meters that are associated with
Thermal TEST/RESET allows access to this sub-group
Thermal Status
Phase A 0.0%
Phase B 0.0%
Phase C 0.0%
Displays the thermal capacity
1.4. Auto-Reclose Meters
Instrument Description
--------------------
AUTORECLOSE METERS
> to view
--------------------
This is the sub-group that includes all the meters that are associated with
Autoreclose TEST/RESET allows access to this sub-group. Only seen on
models that have the 79 option
Autoreclose Status
Out Of Service
Close Shot 0
Status of the autoreclose.
1.5. Maintenance Meters
Instrument Description
--------------------
MAINTENANCE METERS
> to view
--------------------
This is the sub-group that includes all the meters that are associated with
Maintenance TEST/RESET allows access to this sub-group
CB Total Trips
Count 0
Target 100
Displays the number of CB trips experienced by the CB
CB Phase A Trips
Count 0
Target 100
Displays the number of CB Phase A Trips experienced by the CB
CB Phase B Trips
Count 0
Target 100
Displays the number of CB Phase B Trips experienced by the CB
CB Phase C Trips
Count 0
Target 100
Displays the number of CB Phase C Trips experienced by the CB
CB Phase E/F Trips
Count 0
Target 100
Displays the number of CB Phase E/F Trips experienced by the CB
CB Delta Trips
Count 0
Target 100
Displays the number of CB trips experienced by the CB
7SR210 Instrumentation Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 9 of 12
Instrument Description
CB Count To AR Block
Count 0
Target 100
Displays the number of CB trips experienced by the CB. When the target is
reached the relay will only do 1 Delayed Trip to Lockout.
CB Freq Ops Count
Count 0
Target 10
Displays the number of CB trips experienced by the CB over the last rolling 1 hr
period. When the target is reached the relay will only do 1 Delayed Trip to
Lockout.
CB Wear
Phase A 0.00MA^2s
Phase B 0.00MA^2s
Phase C 0.00MA^2s
Displays the current measure of circuit breaker wear.
CB Wear Remaining
Phase A 100%
Phase B 100%
Phase C 100%
Displays the current measure of circuit breaker wear remaining
CB Trip Time
0.0ms Displays the trip time for the circuit breaker.
1.6. General Alarm Meters
Instrument Description
--------------------
GENERAL ALARM
METERS
> to view
--------------------
This is the sub-group that includes all the meters that are associated with the
Binary inputs TEST/RESET allows access to this sub-group
General Alarms
--------------------
ALARM 1 Cleared
Displays the state of General Alarm
General Alarms
--------------------
ALARM 20 Cleared
1.7. Demand Meters
Instrument Description
--------------------
DEMAND METERS
> to view
--------------------
This is the sub-group that includes all the meters that are associated with the
demand metering. TEST/RESET allows access to this sub-group
I Phase A Demand
Max 0.00A
Min 0.00A
Mean 0.00A
Shows the Max, Min and Mean for Phase A.
I Phase B Demand
Max 0.00A
Min 0.00A
Mean 0.00A
Shows the Max, Min and Mean for Phase B.
I Phase C Demand Shows the Max, Min and Mean for Phase C.
7SR210 Instrumentation Guide
Unrestricted Page 10 of 12 © 2018 Siemens Protection Devices Limited
Instrument Description
Max 0.00A
Min 0.00A
Mean 0.00A
Power P 3P Demand
Max 0.00W
Min 0.00W
Mean 0.00W
Shows the Max, Min and Mean for Power P 3P Demand.
Power Q 3P Demand
Max 0.00VAr
Min 0.00VAr
Mean 0.00VAr
Shows the Max, Min and Mean for Power Q 3P Demand.
Power S 3P Demand
Max 0.00VA
Min 0.00VA
Mean 0.00VA
Shows the Max, Min and Mean for Power S 3P Demand.
1.8. Binary Input Meters
Instrument Description
--------------------
BINARY INPUT METERS
> to view
--------------------
This is the sub-group that includes all the meters that are associated with the
Binary inputs TEST/RESET allows access to this sub-group
BI 1-8 ---- ----
BI 9-16 ----.----
BI 17-24 ----.----
BI 25-32 ----.----
BI 33-39 ----.---
Displays the state of DC binary inputs 1 to 39 (The number of binary inputs may
vary depending on model)
7SR210 Instrumentation Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 11 of 12
1.9. Binary Output Meters
Instrument Description
--------------------
BINARY OUTPUT
METERS
> to view
--------------------
This is the sub-group that includes all the meters that are associated with the
Binary Outputs TEST/RESET allows access to this sub-group
BO 1-8 ---- ----
BO 9-16 ----.---- Displays the state of DC binary Outputs 1 to 16. (The number of binary outputs
may vary depending on model)
1.10. Virtual Meters
Instrument Description
--------------------
VIRTUAL METERS
> to view
--------------------
This is the sub-group that shows the state of the virtual status inputs in the relay
TEST/RESET allows access to this sub-group
V 1-8 ---- ----
V 9-16 ---- ---- Displays the state of Virtual Outputs 1 to 16 (The number of virtual inputs will
vary depending on model)
1.11. Communication Meters
Instrument Description
--------------------
COMMUNICATION
METERS
> to view
--------------------
This is the sub-group that includes all the meters that are associated with
Communications ports TEST/RESET allows access to this sub-group
COM1
COM2
COM3
COM4
Displays which com ports are currently active
COM1 TRAFFIC
Tx1 0
Rx1 0
Rx1 Errors 0
Displays traffic on Com1
COM2 TRAFFIC
Tx2 0
Rx2 0
Rx2 Errors 0
Displays traffic on Com2
COM3 TRAFFIC
Tx3 0
Rx3 0
Rx3 Errors 0
Displays traffic on Com3
COM4 TRAFFIC
Tx4 0
Rx4 0
Rx4 Errors 0
Displays traffic on Com4
7SR210 Instrumentation Guide
Unrestricted Page 12 of 12 © 2018 Siemens Protection Devices Limited
1.12. Miscellaneous Meters
Instrument Description
--------------------
MISCELLANEOUS
METERS
> to view
--------------------
This is the sub-group that includes indication such as the relays time and date,
the amount of fault and waveform records stored in the relay TEST/RESET
allows access to this sub-group
Start Alarm
Count 0
Target 100
This meter displays the Start Alarm count.
Hrs In Service Time
Time 0Hrs This meter displays the amount of time in service
Date 01/01/2000
Time 22:41:44
Waveform Recs 0
Fault Recs 0
This meter displays the Date, Time, the number of Waveform Records and
Fault Records stored in the relay.
Event Recs 0
Data Log Recs 0
Settings Group 1
This meter displays the number of Event Records, Data Log Records and the
Active Settings Group number stored in the relay.
1.13. Quick Logic Meters
Instrument Description
--------------------
QUICK LOGIC METERS
> to view
--------------------
This is the sub-group that includes all the meters that are associated with
QuickLogic. TEST/RESET allows access to this sub-group
E 1-8 ---- ----
E 9-16 ---- ---- Shows the state of all the equations
E1 Equation
EQN =0
TMR 0-0 =0
CNT 0-1 =0
Shows the state of an individual equation. EQN shows the equation state. TMR
shows the timer progress and state for the equation. CNT shows the count
progress and state for the equation.
E16 Equation
EQN =0
TMR 0-0 =0
CNT 0-1 =0
Shows the state of an individual equation. EQN shows the equation state. TMR
shows the timer progress and state for the equation. CNT shows the count
progress and state for the equation.
Unrestricted The copyright and other intellectual property rights in this document, and in any model or article
produced from it (and including any registered or unregistered design rights) are the property of Siemens
Protection Devices Limited. No part of this document shall be reproduced or modified or stored in another form,
in any data retrieval system, without the permission of Siemens Protection Devices Limited, nor shall any model
or article be reproduced from this document unless Siemens Protection Devices Limited consent.
While the information and guidance given in this document is believed to be correct, no liability shall be
accepted for any loss or damage caused by any error or omission, whether such error or omission is the result
of negligence or any other cause. Any and all such liability is disclaimed.
© 2018 Siemens Protection Devices Limited
7SR210 Non-Directional Relay
Settings Guide
7SR210 Settings Guide
Unrestricted Page 2 of 61 © 2018 Siemens Protection Devices Limited
Document Release History
This document is issue 2017/12. The list of revisions up to and including this issue is: -
2011/05 First issue
2013/01 Typographical revisions and added data. Updated in line with software release.
2014/06 Typographical revisions and added data. Updated in line with software release.
2015/06 Typographical revisions and added data. Updated in line with software release.
2016/02 Typographical revisions and added data. Updated in line with software release.
2016/11 Typographical revisions and formatting
2017/08 Typographical revisions and added data. Updated in line with software release.
2017/12 Typographical revisions and added data.
Software Revision History
2011/05 2435H85008R7a-7a (7SR210) First Release
2013/01 2435H85008R7c-7b (7SR210) Introduced journaling file system.
Added 61850 logical nodes for CB Counters, metering, 50BF,
46BC, 81HBL2 and line check.
Added Line Check on non-AR devices.
Added 74CCS Close Circuit Supervision.
2014/06 2435H85008R7f-7d (7SR210) Fault data transmission over IEC 60870-5-103.
Additional communications data, control features, meters.
2015/06 2435H85008R8a-7f (7SR210) Added Arc Flash Detector. Over current TM Setting Range
extended.
2016/02 2435H85008R8b-7f (7SR210)
2435H85009R8b-7f (7SR220)
EN100+ Compatibility.
2017/08 2435H85008R8e-8a (7SR210)
2435H85009R8e-8a (7SR220)
Added 32 Directional Power, 32S Sensitive Power, 55 Power
Factor, 81HLB5 Overfluxing. Increased I/O.
7SR210 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 3 of 61
Contents
Document Release History................................................................................. 2
Software Revision History .................................................................................. 2
1. Function Diagram ........................................................................................... 5
2. Menu Structure .............................................................................................. 6
3. Relay Settings ................................................................................................ 7
3.1. System Config ....................................................................................... 7
3.2. CT/VT Config ......................................................................................... 8
3.3. Function Config ..................................................................................... 8
3.4. Current Protection ............................................................................... 10
3.4.1. Phase Overcurrent .................................................................... 10
3.4.1.1. 51-1 ................................................................................ 10
3.4.1.2. 51-2 ................................................................................ 10
3.4.1.3. 50-1 ................................................................................ 11
3.4.1.4. 50-2 ................................................................................ 11
3.4.2. Cold Load.................................................................................. 11
3.4.3. Derived E/F ............................................................................... 12
3.4.3.1. 51N-1 .............................................................................. 12
3.4.3.2. 51N-2 .............................................................................. 13
3.4.3.3. 50N-1 .............................................................................. 13
3.4.3.4. 50N-2 .............................................................................. 13
3.4.4. Measured E/F ........................................................................... 14
3.4.4.1. 51G-1 ............................................................................. 14
3.4.4.2. 51G-2 ............................................................................. 14
3.4.4.3. 50G-1 ............................................................................. 15
3.4.4.4. 50G-2 ............................................................................. 15
3.4.5. Sensitive E/F ............................................................................. 15
3.4.5.1. 51SEF-1 ......................................................................... 15
3.4.5.2. 51SEF-2 ......................................................................... 16
3.4.5.3. 50SEF-1 ......................................................................... 16
3.4.5.4. 50SEF-2 ......................................................................... 16
3.4.6. Restricted E/F ........................................................................... 17
3.4.7. NPS Overcurrent ....................................................................... 17
3.4.7.1. 46IT ................................................................................ 17
3.4.7.2. 46DT ............................................................................... 17
3.4.8. Under Current ........................................................................... 18
3.4.8.1. 37-1 ................................................................................ 18
3.4.8.2. 37-2 ................................................................................ 18
3.4.8.3. 37G-1 ............................................................................. 18
3.4.8.4. 37G-2 ............................................................................. 18
3.4.9. Thermal ..................................................................................... 19
3.4.10. ARC Flash Detector ............................................................. 19
3.5. Supervision .......................................................................................... 19
3.5.1. CB Fail ...................................................................................... 19
3.5.2. CT Supervision ......................................................................... 19
7SR210 Settings Guide
Unrestricted Page 4 of 61 © 2018 Siemens Protection Devices Limited
3.5.3. Broken Conductor ..................................................................... 20
3.5.4. Trip CCT Supervision ................................................................ 20
3.5.5. Close CCT Supervision ............................................................. 20
3.5.6. Inrush Detector .......................................................................... 21
3.6. Control & Logic .................................................................................... 21
3.6.1. Autoreclose Prot’n ..................................................................... 21
3.6.2. Autoreclose Config .................................................................... 22
3.6.2.1. P/F Shots ........................................................................ 22
3.6.2.2. E/F Shots ........................................................................ 23
3.6.2.3. SEF Shots ....................................................................... 24
3.6.2.4. Extern Shots ................................................................... 24
3.6.3. Manual Close ............................................................................ 24
3.6.4. Circuit Breaker .......................................................................... 25
3.6.5. QUICK LOGIC ........................................................................... 25
3.7. Input Config ......................................................................................... 33
3.7.1. Input Matrix................................................................................ 33
3.7.2. Binary Input Config .................................................................... 40
3.7.3. General Alarms ......................................................................... 41
3.8. Output Config ....................................................................................... 42
3.8.1. Output Matrix ............................................................................. 42
3.8.2. Binary Output Config ................................................................. 55
3.8.3. LED Config ................................................................................ 56
3.8.4. Pickup Config ............................................................................ 56
3.9. CB Maintenance .................................................................................. 57
3.9.1. CB Counters .............................................................................. 57
3.9.2. I^2T CB Wear ............................................................................ 58
3.9.3. START COUNT ......................................................................... 58
3.10. Data Storage ........................................................................................ 58
3.10.1. Demand Data/Log ................................................................ 58
3.10.2. Waveform Storage ............................................................... 59
3.10.3. Fault Storage ....................................................................... 59
3.10.4. Event Storage ...................................................................... 59
3.10.5. Communications .................................................................. 60
7SR210 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 5 of 61
1.Function Diagram
7SR210 Settings Guide
Unrestricted Page 6 of 61 © 2018 Siemens Protection Devices Limited
2.Menu Structure
7SR210 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 7 of 61
3.Relay Settings
3.1. System Config
Description Range Default
Active Group
Selects which settings group is currently activated
System Frequency
Selects the Power System Frequency from 50 or 60 Hz
50, 60 50 Hz
View/Edit Group
Selects which settings group is currently being displayed
Setting Dependencies
When enabled only active settings are displayed and all others hidden
Disabled, Enabled Enabled
Favourite Meters Timer
Selects the time delay after which, if no key presses have been
detected, the relay will begin to poll through any screens which have
been selected as favourite instruments
Off, 1, 2, 5, 10, 15, 30, 60 60 min
Backlight timer
Controls when the LCD backlight turns off
Off, 1, 2, 5, 10, 15, 30, 60 5 min
Date
Sets the date, this setting can only be changed on the fascia or via
Relay->Control->Set Time and Date
Time
Sets the time, this setting can only be changed on the fascia or via
Relay->Control->Set Time and Date
Curr Set Display
Select whether the Pickup values are shown in terms of x Nominal,
Primary or Secondary values on the Relay Fascia
xNom, Primary, Secondary xNom
E/F Curr Set Display
As Above
xNom, Primary, Secondary xNom
Select Grp Mode
Mode of operation of the group change from status input. Edge
triggered ignores the status input once it has changed to the relevant
group, where as with Level triggered the relay will only stay in the
group it has changed to whilst the status input is being driven, after
which it returns to the previous group.
Edge triggered, Level triggered Edge triggered
Clock Sync. From BI
Real time clock may be synchronised using a binary input (See Clock
Sync. in Binary Input Menu)
Disabled, Seconds, Minutes Minutes
Operating Mode
Selects the current operating mode of the relay. This can also be
changed by a binary input mode selection.
Out Of Service, Local, Remote,
Local Or Remote
Local Or Remote
Setting Password
Allows a 4 character alpha code to be entered as the password. Note
that the display shows a password dependant encrypted code on the
second line of the display
(Password) NONE
Control Password
As Above
(Password) NONE
Trip Alert
When Enabled the occurrence of a Trip will cause the relay to display
the Trip Alert Screen, the only way to leave this screen is by
acknowledging the trip through the TEST/RESET button on the relay
fascia
Disabled, Enabled Enabled
General Alarm Alert Disabled, Enabled Enabled
7SR210 Settings Guide
Unrestricted Page 8 of 61 © 2018 Siemens Protection Devices Limited
Description Range Default
Relay Identifier
An alphanumeric string shown on the LCD normally used to identifier
the circuit the relay is attached to or the relays purpose
(16 Character String) 7SR210
Circuit Identifier (16 Character String)
3.2. CT/VT Config
Description Range Default
Phase Current Input
Selects whether 1 or 5 Amp terminals are being used for phase inputs
1, 5 1 A
Phase CT Ratio Prim
Phase CT ratio to scale primary current instruments
( 6 Character String) 2000 A
Phase CT Ratio Sec
Phase CT ratio to scale secondary current instruments
0.2, 0.21 ... 2, 2.1.....7 1
Earth Current Input
Selects whether 1 or 5 Amp terminals are being used for Measured Earth inputs
1, 5 1 A
Earth CT Ratio Prim
Measured Earth CT ratio to scale primary current instruments
( 6 Character String) 2000 A
Earth CT Ratio Sec
Measured Earth CT ratio to scale secondary current instruments
0.2, 0.21 ... 2, 2.1.....7 1
3.3. Function Config
Description Range Default
Gn Phase Overcurrent
When set to Disabled, no Phase Overcurrent elements will be functional and all
associated settings will be hidden. (The Setting Dependencies setting being set to
Disabled will make all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
Gn Cold Load
When set to Disabled, no Cold Load elements will be functional and all associated
settings will be hidden. (The Setting Dependencies setting being set to Disabled
will make all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
Gn Derived E/F
When set to Disabled, no Derived E/F elements will be functional and all
associated settings will be hidden. (The Setting Dependencies setting being set to
Disabled will make all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
Gn Measured E/F
When set to Disabled, no Measured E/F elements will be functional and all
associated settings will be hidden. (The Setting Dependencies setting being set to
Disabled will make all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
Gn Sensitive E/F
When set to Disabled, no Sensitive E/F elements will be functional and all
associated settings will be hidden. (The Setting Dependencies setting being set to
Disabled will make all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
Gn Restricted E/F
When set to Disabled, no Restricted E/F elements will be functional and all
associated settings will be hidden. (The Setting Dependencies setting being set to
Disabled will make all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
Gn NPS Overcurrent
When set to Disabled, no NPS Overcurrent elements will be functional and all
associated settings will be hidden. (The Setting Dependencies setting being set to
Disabled will make all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
7SR210 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 9 of 61
Description Range Default
Gn Under Current
When set to Disabled, no Under Current elements will be functional and all
associated settings will be hidden. (The Setting Dependencies setting being set to
Disabled will make all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
Gn Thermal
When set to Disabled, no Thermal elements will be functional and all associated
settings will be hidden. (The Setting Dependencies setting being set to Disabled
will make all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
Gn CT Supervision
When set to Disabled, no CT Supervision elements will be functional and all
associated settings will be hidden. (The Setting Dependencies setting being set to
Disabled will make all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
Gn CB Fail
When set to Disabled, no CB Fail elements will be functional and all associated
settings will be hidden. (The Setting Dependencies setting being set to Disabled
will make all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
Gn Broken Conductor
When set to Disabled, no Broken Conductor elements will be functional and all
associated settings will be hidden. (The Setting Dependencies setting being set to
Disabled will make all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
Gn Trip Cct Supervision
When set to Disabled, no Trip Cct Supervision elements will be functional and all
associated settings will be hidden. (The Setting Dependencies setting being set to
Disabled will make all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
Gn Close Cct Supervision
When set to Disabled, no Close Cct Supervision elements will be functional and all
associated settings will be hidden. (The Setting Dependencies setting being set to
Disabled will make all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
Gn Inrush Detector
When set to Disabled, no Inrush Detector elements will be functional and all
associated settings will be hidden. (The Setting Dependencies setting being set to
Disabled will make all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
Gn CB Counters
When set to Disabled, no Gn CB Counter elements will be functional and all
associated settings will be hidden. (The Setting Dependencies setting being set to
Disabled will make all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
Gn I^2t CB Wear
When set to Disabled, no Gn I^2t CB Wear elements will be functional and all
associated settings will be hidden. (The Setting Dependencies setting being set to
Disabled will make all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
Gn Arc Flash Detector
When set to Disabled, no Arc Flash Detector elements will be functional and all
associated settings will be hidden. (The Setting Dependencies setting being set to
Disabled will make all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
7SR210 Settings Guide
Unrestricted Page 10 of 61 © 2018 Siemens Protection Devices Limited
3.4. Current Protection
3.4.1. Phase Overcurrent
Description Range Default
Gn 51/50 Measurement
Selects whether the RMS value used by the 51 & 50 elements is
True RMS or only calculated at fundamental frequency
RMS, Fundamental RMS
3.4.1.1. 51-1
Description Range Default
Gn 51-1 Element
Selects whether the 51-1 IDMTL Overcurrent element is enabled
Disabled, Enabled Disabled
Gn 51-1 Setting
Pickup level
0.05, 0.06 ... 2.49, 2.5 1 xIn
Gn 51-1 Char
Selects characteristic curve to be IEC or ANSI IDMTL or DTL
DTL, IEC-NI, IEC-VI, IEC-EI, IEC-LTI,
ANSI-MI, ANSI-VI, ANSI-EI
IEC-NI
Gn 51-1 Time Mult (IEC/ANSI)
Time multiplier (applicable to IEC and ANSI curves but not DTL
selection)
0.025, 0.03 ... 1.595, 1.6 , 1.7 ... 4.9, 5,
6 ... 100
1
Gn 51-1 Delay (DTL)
Delay (applicable only when DTL is selected for characteristic)
0, 0.01 ... 19.99, 20 5 s
Gn 51-1 Min Operate Time
Minimum operate time of element.
0, 0.01 ... 19.99, 20 0 s
Gn 51-1 Follower DTL
Additional definite time added after characteristic time
0, 0.01 ... 19.99, 20 0 s
Gn 51-1 Reset
Selects between an ANSI decaying reset characteristic or a
definite time reset
(ANSI) Decaying, 0 ... 59, 60 0 s
Gn 51-1 Inrush Action
Selects if the 51-1 element is blocked from operating when 2nd
Harmonic Inrush Detector operates
Off, Inhibit Off
3.4.1.2. 51-2
Description Range Default
Gn 51-2 Element
Selects whether the 51-2 IDMTL Overcurrent element is enabled
Disabled, Enabled Disabled
Gn 51-2 Setting
Pickup level
0.05, 0.06 ... 2.49, 2.5 1 xIn
Gn 51-2 Char
Selects characteristic curve to be IEC or ANSI IDMTL or DTL
DTL, IEC-NI, IEC-VI, IEC-EI, IEC-LTI,
ANSI-MI, ANSI-VI, ANSI-EI
IEC-NI
Gn 51-2 Time Mult (IEC/ANSI)
Time multiplier (applicable to IEC and ANSI curves but not DTL
selection)
0.025, 0.03 ... 1.595, 1.6 , 1.7 ... 4.9, 5,
6 ... 100
1
Gn 51-2 Delay (DTL)
Delay (applicable only when DTL is selected for characteristic)
0, 0.01 ... 19.99, 20 5 s
Gn 51-2 Min Operate Time
Minimum operate time of element.
0, 0.01 ... 19.99, 20 0 s
Gn 51-2 Follower DTL
Additional definite time added after characteristic time
0, 0.01 ... 19.99, 20 0 s
7SR210 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 11 of 61
Description Range Default
Gn 51-2 Reset
Selects between an ANSI decaying reset characteristic or a
definite time reset
(ANSI) Decaying, 0 ... 59, 60 0 s
Gn 51-2 Inrush Action
Selects if the 51-2 element is blocked from operating when 2nd
Harmonic Inrush Detector operates
Off, Inhibit Off
3.4.1.3. 50-1
Description Range Default
Gn 50-1 Element
Selects whether the INST/ DTL Overcurrent element is enabled
Disabled, Enabled Disabled
Gn 50-1 Setting
Pickup level
0.05, 0.06 ... 49.5, 50 1 xIn
Gn 50-1 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0 s
Gn 50-1 Inrush Action
Selects if the 50-1 element is blocked from operating when 2nd
Harmonic Inrush Detector operates
Off, Inhibit Off
3.4.1.4. 50-2
Description Range Default
Gn 50-2 Element
Selects whether the INST/ DTL Overcurrent element is enabled
Disabled, Enabled Disabled
Gn 50-2 Setting
Pickup level
0.05, 0.06 ... 49.5, 50 1 xIn
Gn 50-2 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0 s
Gn 50-2 Inrush Action
Selects if the 50-2 element is blocked from operating when 2nd
Harmonic Inrush Detector operates
Off, Inhibit Off
3.4.2. Cold Load
Description Range Default
Cold Load
Selects whether the Cold Load element is enabled
Disabled, Enabled Disabled
Pick-up Time
Cold Load operate time delay
1, 1.1 ... 14100, 14400 600 s
Drop-off Time
Cold Load reset time delay
1, 1.1 ... 14100, 14400 600 s
Reduced Current
Selects whether reduced current functionality is to be used
Disabled, Enabled Disabled
Reduced Current Level
Selects current level below which Reduced Current Time is used
for Cold Load reset delay
0.05, 0.1 ... 2.45, 2.5 0.25 xIn
Reduced Current Time
Cold Load reset time delay used when reduced current active
1, 1.1 ... 14100, 14400 600 s
Gn 51c-1 Setting
51-1 element parameter used when Cold Load operates
0.05, 0.06 ... 2.49, 2.5 1 xIn
Gn 51c-1 Char
51-1 element parameter used when Cold Load operates
DTL, IEC-NI, IEC-VI, IEC-EI, IEC-LTI,
ANSI-MI, ANSI-VI, ANSI-EI
IEC-NI
7SR210 Settings Guide
Unrestricted Page 12 of 61 © 2018 Siemens Protection Devices Limited
Description Range Default
Gn 51c-1 Time Mult (IEC/ANSI)
51-1 element parameter used when Cold Load operates
0.025, 0.03 ... 1.595, 1.6 , 1.7 ... 4.9, 5,
6 ... 100
1
Gn 51c-1 Delay (DTL)
51-1 element parameter used when Cold Load operates
0, 0.01 ... 19.99, 20 5 s
Gn 51c-1 Min Operate Time
51-1 element parameter used when Cold Load operates
0, 0.01 ... 19.99, 20 0 s
Gn 51c-1 Follower DTL
51-1 element parameter used when Cold Load operates
0, 0.01 ... 19.99, 20 0 s
Gn 51c-1 Reset
51-1 element parameter used when Cold Load operates
(ANSI) Decaying, 0 ... 59, 60 0 s
Gn 51c-2 Setting
51-2 element parameter used when Cold Load operates
0.05, 0.06 ... 2.49, 2.5 1 xIn
Gn 51c-2 Char
51-2 element parameter used when Cold Load operates
DTL, IEC-NI, IEC-VI, IEC-EI, IEC-LTI,
ANSI-MI, ANSI-VI, ANSI-EI
IEC-NI
Gn 51c-2 Time Mult (IEC/ANSI)
51-2 element parameter used when Cold Load operates
0.025, 0.03 ... 1.595, 1.6 , 1.7 ... 4.9, 5,
6 ... 100
1
Gn 51c-2 Delay (DTL)
51-2 element parameter used when Cold Load operates
0, 0.01 ... 19.99, 20 5 s
Gn 51c-2 Min Operate Time
51-2 element parameter used when Cold Load operates
0, 0.01 ... 19.99, 20 0 s
Gn 51c-2 Follower DTL
51-2 element parameter used when Cold Load operates
0, 0.01 ... 19.99, 20 0 s
Gn 51c-2 Reset
51-2 element parameter used when Cold Load operates
(ANSI) Decaying, 0 ... 59, 60 0 s
3.4.3. Derived E/F
3.4.3.1. 51N-1
Description Range Default
Gn 51N-1 Element
Selects whether the 51N-1 IDMTL derived Earth Fault element is
enabled
Disabled, Enabled Disabled
Gn 51N-1 Setting
Pickup level
0.05, 0.06 ... 2.49, 2.5 0.5 xIn
Gn 51N-1 Char
Selects characteristic curve to be IEC or ANSI IDMTL or DTL
DTL, IEC-NI, IEC-VI, IEC-EI, IEC-LTI,
ANSI-MI, ANSI-VI, ANSI-EI
IEC-NI
Gn 51N-1 Time Mult (IEC/ANSI)
Time multiplier (applicable to IEC and ANSI curves but not DTL
selection)
0.025, 0.03 ... 1.595, 1.6 , 1.7 ... 4.9, 5,
6 ... 100
1
Gn 51N-1 Delay (DTL)
Delay (applicable only when DTL is selected for characteristic)
0, 0.01 ... 19.99, 20 5 s
Gn 51N-1 Min Operate Time
Minimum operate time of element.
0, 0.01 ... 19.99, 20 0 s
Gn 51N-1 Follower DTL
Additional definite time added after characteristic time
0, 0.01 ... 19.99, 20 0 s
Gn 51N-1 Reset
Selects between an ANSI decaying reset characteristic or a
definite time reset
(ANSI) Decaying, 0 ... 59, 60 0 s
7SR210 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 13 of 61
Description Range Default
Gn 51N-1 Inrush Action
Selects if the 51N-1 element is blocked from operating when 2nd
Harmonic Inrush Detector operates
Off, Inhibit Off
3.4.3.2. 51N-2
Description Range Default
Gn 51N-2 Element
Selects whether the 51N-2 IDMTL derived Earth Fault element is
enabled
Disabled, Enabled Disabled
Gn 51N-2 Setting
Pickup level
0.05, 0.06 ... 2.49, 2.5 0.5 xIn
Gn 51N-2 Char
Selects characteristic curve to be IEC or ANSI IDMTL or DTL
DTL, IEC-NI, IEC-VI, IEC-EI, IEC-LTI,
ANSI-MI, ANSI-VI, ANSI-EI
IEC-NI
Gn 51N-2 Time Mult (IEC/ANSI)
Time multiplier (applicable to IEC and ANSI curves but not DTL
selection)
0.025, 0.03 ... 1.595, 1.6 , 1.7 ... 4.9, 5,
6 ... 100
1
Gn 51N-2 Delay (DTL)
Delay (applicable only when DTL is selected for characteristic)
0, 0.01 ... 19.99, 20 5 s
Gn 51N-2 Min Operate Time
Minimum operate time of element.
0, 0.01 ... 19.99, 20 0 s
Gn 51N-2 Follower DTL
Additional definite time added after characteristic time
0, 0.01 ... 19.99, 20 0 s
Gn 51N-2 Reset
Selects between an ANSI decaying reset characteristic or a
definite time reset
(ANSI) Decaying, 0 ... 59, 60 0 s
Gn 51N-2 Inrush Action
Selects if the 51N-2 element is blocked from operating when 2nd
Harmonic Inrush Detector operates
Off, Inhibit Off
3.4.3.3. 50N-1
Description Range Default
Gn 50N-1 Element
Selects whether the DTL derived Earth fault element is enabled
Disabled, Enabled Disabled
Gn 50N-1 Setting
Pickup level
0.05, 0.06 ... 49.5, 50 0.5 xIn
Gn 50N-1 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0 s
Gn 50N-1 Inrush Action
Selects if the 50N-1 element is blocked from operating when 2nd
Harmonic Inrush Detector operates
Off, Inhibit Off
3.4.3.4. 50N-2
Description Range Default
Gn 50N-2 Element
Selects whether the DTL derived Earth fault element is enabled
Disabled, Enabled Disabled
Gn 50N-2 Setting
Pickup level
0.05, 0.06 ... 49.5, 50 0.5 xIn
Gn 50N-2 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0 s
Gn 50N-2 Inrush Action
Selects if the 50N-2 element is blocked from operating when 2nd
Harmonic Inrush Detector operates
Off, Inhibit Off
7SR210 Settings Guide
Unrestricted Page 14 of 61 © 2018 Siemens Protection Devices Limited
3.4.4. Measured E/F
Description Range Default
Gn 51G/50G Measurement
Selects whether the RMS value used by the 51G & 50G
elements is True RMS or only calculated at fundamental
frequency
RMS, Fundamental RMS
3.4.4.1. 51G-1
Description Range Default
Gn 51G-1 Element
Selects whether the 51G-1 IDMTL measured Earth Fault
element is enabled
Disabled, Enabled Disabled
Gn 51G-1 Setting
Pickup level
0.005, 0.006 ... 0.995, 1 0.5 xIn
Gn 51G-1 Char
Selects characteristic curve to be IEC or ANSI IDMTL or DTL
DTL, IEC-NI, IEC-VI, IEC-EI, IEC-
LTI, ANSI-MI, ANSI-VI, ANSI-EI
IEC-NI
Gn 51G-1 Time Mult (IEC/ANSI)
Time multiplier (applicable to IEC and ANSI curves but not
DTL selection)
0.025, 0.03 ... 1.595, 1.6 , 1.7 ...
4.9, 5, 6 ... 100
1
Gn 51G-1 Delay (DTL)
Delay (applicable only when DTL is selected for characteristic)
0, 0.01 ... 19.99, 20 5 s
Gn 51G-1 Min Operate Time
Minimum operate time of element.
0, 0.01 ... 19.99, 20 0 s
Gn 51G-1 Follower DTL
Additional definite time added after characteristic time
0, 0.01 ... 19.99, 20 0 s
Gn 51G-1 Reset
Selects between an ANSI decaying reset characteristic or DTL
reset
(ANSI) Decaying, 0 ... 59, 60 0 s
Gn 51G-1 Inrush Action
Selects if the 51G-1 element is blocked from operating when
2nd Harmonic Inrush Detector operates
Off, Inhibit Off
3.4.4.2. 51G-2
Description Range Default
Gn 51G-2 Element
Selects whether the 51G-2 IDMTL measured Earth Fault
element is enabled
Disabled, Enabled Disabled
Gn 51G-2 Setting
Pickup level
0.005, 0.006 ... 0.995, 1 0.5 xIn
Gn 51G-2 Char
Selects characteristic curve to be IEC or ANSI IDMTL or DTL
DTL, IEC-NI, IEC-VI, IEC-EI, IEC-
LTI, ANSI-MI, ANSI-VI, ANSI-EI
IEC-NI
Gn 51G-2 Time Mult (IEC/ANSI)
Time multiplier (applicable to IEC and ANSI curves but not
DTL selection)
0.025, 0.03 ... 1.595, 1.6 , 1.7 ...
4.9, 5, 6 ... 100
1
Gn 51G-2 Delay (DTL)
Delay (applicable only when DTL is selected for characteristic)
0, 0.01 ... 19.99, 20 5 s
Gn 51G-2 Min Operate Time
Minimum operate time of element.
0, 0.01 ... 19.99, 20 0 s
Gn 51G-2 Follower DTL
Additional definite time added after characteristic time
0, 0.01 ... 19.99, 20 0 s
Gn 51G-2 Reset
Selects between an ANSI decaying reset characteristic or DTL
reset
(ANSI) Decaying, 0 ... 59, 60 0 s
7SR210 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 15 of 61
Description Range Default
Gn 51G-2 Inrush Action
Selects if the 51G-2 element is blocked from operating when
2nd Harmonic Inrush Detector operates
Off, Inhibit Off
3.4.4.3. 50G-1
Description Range Default
Gn 50G-1 Element
Selects whether the DTL measured Earth fault element is
enabled
Disabled, Enabled Disabled
Gn 50G-1 Setting
Pickup level
0.005, 0.006 ... 24.95, 25 0.5 xIn
Gn 50G-1 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0 s
Gn 50G-1 Inrush Action
Selects if the 50G-1 element is blocked from operating when
2nd Harmonic Inrush Detector operates
Off, Inhibit Off
3.4.4.4. 50G-2
Description Range Default
Gn 50G-2 Element
Selects whether the DTL measured Earth fault element is
enabled
Disabled, Enabled Disabled
Gn 50G-2 Setting
Pickup level
0.005, 0.006 ... 24.95, 25 0.5 xIn
Gn 50G-2 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0 s
Gn 50G-2 Inrush Action
Selects if the 50G-2 element is blocked from operating when
2nd Harmonic Inrush Detector operates
Off, Inhibit Off
3.4.5. Sensitive E/F
3.4.5.1. 51SEF-1
Description Range Default
Gn 51SEF-1 Element
Selects whether the 51SEF-1 IDMTL Sensitive Earth Fault
element is enabled
Disabled, Enabled Disabled
Gn 51SEF-1 Setting
Pickup level
0.005, 0.006 ... 0.995, 1 0.2 xIn
Gn 51SEF-1 Char
Selects characteristic curve to be IEC or ANSI IDMTL or DTL
DTL, IEC-NI, IEC-VI, IEC-EI, IEC-
LTI, ANSI-MI, ANSI-VI, ANSI-EI
IEC-NI
Gn 51SEF-1 Time Mult (IEC/ANSI)
Time multiplier (applicable to IEC and ANSI curves but not
DTL selection)
0.025, 0.03 ... 1.595, 1.6 , 1.7 ...
4.9, 5, 6 ... 100
1
Gn 51SEF-1 Delay (DTL)
Delay (applicable only when DTL is selected for characteristic)
0, 0.01 ... 19.99, 20 5 s
Gn 51SEF-1 Min Operate Time
Minimum operate time of element.
0, 0.01 ... 19.99, 20 0 s
Gn 51SEF-1 Follower DTL
Additional definite time added after characteristic time
0, 0.01 ... 19.99, 20 0 s
7SR210 Settings Guide
Unrestricted Page 16 of 61 © 2018 Siemens Protection Devices Limited
Description Range Default
Gn 51SEF-1 Reset
Selects between an ANSI decaying reset characteristic or DTL
reset
(ANSI) Decaying, 0 ... 59, 60 0 s
3.4.5.2. 51SEF-2
Description Range Default
Gn 51SEF-2 Element
Selects whether the 51SEF-2 IDMTL derived Earth Fault
element is enabled
Disabled, Enabled Disabled
Gn 51SEF-2 Setting
Pickup level
0.005, 0.006 ... 0.995, 1 0.2 xIn
Gn 51SEF-2 Char
Selects characteristic curve to be IEC or ANSI IDMTL or DTL
DTL, IEC-NI, IEC-VI, IEC-EI, IEC-
LTI, ANSI-MI, ANSI-VI, ANSI-EI
IEC-NI
Gn 51SEF-2 Time Mult (IEC/ANSI)
Time multiplier (applicable to IEC and ANSI curves but not
DTL selection)
0.025, 0.03 ... 1.595, 1.6 , 1.7 ...
4.9, 5, 6 ... 100
1
Gn 51SEF-2 Delay (DTL)
Delay (applicable only when DTL is selected for characteristic)
0, 0.01 ... 19.99, 20 5 s
Gn 51SEF-2 Min Operate Time
Minimum operate time of element.
0, 0.01 ... 19.99, 20 0 s
Gn 51SEF-2 Follower DTL
Additional definite time added after characteristic time
0, 0.01 ... 19.99, 20 0 s
Gn 51SEF-2 Reset
Selects between an ANSI decaying reset characteristic or DTL
reset
(ANSI) Decaying, 0 ... 59, 60 0 s
3.4.5.3. 50SEF-1
Description Range Default
Gn 50SEF-1 Element
Selects whether the DTL measured Earth fault element is
enabled
Disabled, Enabled Disabled
Gn 50SEF-1 Setting
Pickup level
0.005, 0.006 ... 4.995, 5 0.2 xIn
Gn 50SEF-1 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0 s
3.4.5.4. 50SEF-2
Description Range Default
Gn 50SEF-2 Element
Selects whether the DTL measured Earth fault element is
enabled
Disabled, Enabled Disabled
Gn 50SEF-2 Setting
Pickup level
0.005, 0.006 ... 4.995, 5 0.2 xIn
Gn 50SEF-2 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0 s
7SR210 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 17 of 61
3.4.6. Restricted E/F
Description Range Default
Gn 64H Element
High impedance restricted earth fault current element
Disabled, Enabled Disabled
Gn 64H Setting
Pickup level
0.005, 0.006 ... 0.945, 0.95 0.2 xIn
Gn 64H Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0 s
3.4.7. NPS Overcurrent
3.4.7.1. 46IT
Description Range Default
Gn 46IT Element
Selects whether the 46IT IDMTL/DTL negative phase
sequence current element is enabled
Disabled, Enabled Disabled
Gn 46IT Setting
Pickup level
0.05, 0.06 ... 2.49, 2.5 0.25 xIn
Gn 46IT Char
Selects characteristic curve to be IEC or ANSI IDMTL or DTL
DTL, IEC-NI, IEC-VI, IEC-EI, IEC-
LTI, ANSI-MI, ANSI-VI, ANSI-EI
IEC-NI
Gn 46IT Time Mult (IEC/ANSI)
Time multiplier (applicable to IEC and ANSI curves but not
DTL selection)
0.025, 0.03 ... 1.595, 1.6 , 1.7 ...
4.9, 5, 6 ... 100
1
Gn 46IT Delay (DTL)
Delay (applicable only when DTL is selected for characteristic)
0, 0.01 ... 19.99, 20 5 s
Gn 46IT Reset
Selects between an ANSI decaying reset characteristic or a
definite time reset
(ANSI) Decaying, 0 ... 59, 60 0 s
3.4.7.2. 46DT
Description Range Default
Gn 46DT Element
Selects whether the 46DT INST/DTL negative sequence
current element is enabled
Disabled, Enabled Disabled
Gn 46DT Setting
Pickup level
0.05, 0.06 ... 3.99, 4 0.1 xIn
Gn 46DT Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0.02 s
7SR210 Settings Guide
Unrestricted Page 18 of 61 © 2018 Siemens Protection Devices Limited
3.4.8. Under Current
3.4.8.1. 37-1
Description Range Default
Gn 37-1 Element
Phase under current element 37-1
Disabled, Enabled Disabled
Gn 37-1 Setting
Pickup level
0.05, 0.1 ... 4.95, 5 0.25 xIn
Gn 37-1 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0 s
3.4.8.2. 37-2
Description Range Default
Gn 37-2 Element
Phase under current element 37-2
Disabled, Enabled Disabled
Gn 37-2 Setting
Pickup level
0.05, 0.1 ... 4.95, 5 0.25 xIn
Gn 37-2 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0 s
3.4.8.3. 37G-1
Description Range Default
Gn 37G-1 Element Disabled, Enabled Disabled
Gn 37G-1 Setting 0.005, 0.006 ... 4.995, 5 0.2 xIn
Gn 37G-1 Delay 0, 0.01 ... 14300, 14400 0 s
3.4.8.4. 37G-2
Description Range Default
Gn 37G-2 Element Disabled, Enabled Disabled
Gn 37G-2 Setting 0.005, 0.006 ... 4.995, 5 0.2 xIn
Gn 37G-2 Delay 0, 0.01 ... 14300, 14400 0 s
7SR210 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 19 of 61
3.4.9. Thermal
Description Range Default
Gn 49 Thermal Overload
Selects whether the thermal overload protection element is
enabled
Disabled, Enabled Disabled
Gn 49 Overload Setting
Pickup level
0.1, 0.11 ... 2.99, 3 1.05 xIn
Gn 49 Time Constant (Minutes)
Thermal time constant
1, 1.5 ... 999.5, 1000 10 minutes
Gn 49 Capacity Alarm
Selects whether thermal capacity alarm enabled
Disabled, 50 ... 99, 100 Disabled
49 Reset Therm State
Control that allows thermal state to be manually reset
3.4.10. ARC Flash Detector
Description Range Default
Gn 50AFD
Selects whether the ARC Flash Detector element is enabled
Disabled, Enabled Disabled
Gn 50AFD Setting
Pickup level
1, 2,...10 2 xIn
3.5. Supervision
3.5.1. CB Fail
Description Range Default
Gn 50BF Element
Selects whether the Circuit Breaker Fail element is enabled
Disabled, Enabled Disabled
Gn 50BF Setting
Breaker Fail Current Pickup level. If the current falls below this
level then the CB is deemed to have opened and the element
is reset.
0.05, 0.055 ... 1.995, 2 0.2 xIn
Gn 50BF-I4 Setting 0.005, 0.01 ... 1.995, 2 0.05 xIn
Gn 50BF-1 Delay
Delay before Circuit Breaker Fail stage 1 operates
20, 25 ... 59995, 60000 60 ms
Gn 50BF-2 Delay
Delay before Circuit Breaker Fail stage 2 operates
20, 25 ... 59995, 60000 120 ms
3.5.2. CT Supervision
Description Range Default
Gn 60CTS-I Element Disabled, Enabled Disabled
Gn 60CTS-I Setting 0.05, 0.1 ... 1.95, 2 0.05 xIn
Gn 60CTS-I Delay 0.03, 0.04 ... 14300, 14400 10 s
7SR210 Settings Guide
Unrestricted Page 20 of 61 © 2018 Siemens Protection Devices Limited
3.5.3. Broken Conductor
Description Range Default
Gn 46BC U/C Guard Setting 0.05, 0.1 ... 4.95, 5 0.25 xIn
Gn 46BC U/C Guarded No, Yes No
Gn 46BC Element
Selects whether the definite time broken conductor element is
enabled
Disabled, Enabled Disabled
Gn 46BC Setting
NPS Current to PPS Current ratio
20, 21 ... 99, 100 20 %
Gn 46BC Delay
Sets operate delay time
0.03, 0.04 ... 14300, 14400 20 s
3.5.4. Trip CCT Supervision
Description Range Default
Gn 74TCS-1
Selects whether the trip circuit supervision element 74TCS-1
is enabled
Disabled, Enabled Disabled
Gn 74TCS-1 Delay
Time delay before trip circuit supervision operates
0, 0.02 ... 59.98, 60 0.4 s
Gn 74TCS-2
Selects whether the trip circuit supervision element 74TCS-2
is enabled
Disabled, Enabled Disabled
Gn 74TCS-2 Delay
Time delay before trip circuit supervision operates
0, 0.02 ... 59.98, 60 0.4 s
Gn 74TCS-3
Selects whether the trip circuit supervision element 74TCS-3
is enabled
Disabled, Enabled Disabled
Gn 74TCS-3 Delay
Time delay before trip circuit supervision operates
0, 0.02 ... 59.98, 60 0.4 s
3.5.5. Close CCT Supervision
Description Range Default
Gn 74CCS-1
Selects whether the trip circuit supervision element 74CCS-1
is enabled
Disabled, Enabled Disabled
Gn 74CCS-1 Delay
Time delay before trip circuit supervision operates
0, 0.02 ... 59.98, 60 0.4 s
Gn 74CCS-2
Selects whether the trip circuit supervision element 74CCS-2
is enabled
Disabled, Enabled Disabled
Gn 74CCS-2 Delay
Time delay before trip circuit supervision operates
0, 0.02 ... 59.98, 60 0.4 s
Gn 74CCS-3
Selects whether the trip circuit supervision element 74CCS-3
is enabled
Disabled, Enabled Disabled
Gn 74CCS-3 Delay
Time delay before trip circuit supervision operates
0, 0.02 ... 59.98, 60 0.4 s
7SR210 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 21 of 61
3.5.6. Inrush Detector
Description Range Default
Gn 81HBL2 Element
Selects whether the phase inrush detector 81HBL2 is enabled
Disabled, Enabled Disabled
Gn 81HBL2 Bias
Selects the bias method used for magnetising inrush. Phase –
Segregated, each phase blocks itself. Cross – Blocked, each phase can
block the operation of other phases. Sum - Of Squares, each phase
blocks itself using the square root of the sum of squares of the 2nd
harmonic.
Phase, Cross, Sum Cross
Gn 81HBL2 Setting
The magnetising inrush detector operates when the 2nd harmonic current
exceeds a set percentage of the fundamental current
0.1, 0.11 ... 0.49, 0.5 0.2 xI
3.6. Control & Logic
3.6.1. Autoreclose Prot’n
Description Range Default
Gn 79 P/F Inst Trips
Selects which phase fault protection elements are classed as
Instantaneous elements and start an autoreclose sequence. These will be
blocked from operating during Delayed autoreclose sequences. See
autoreclose section of manual for detail of what elements can cause only
Delayed protection to be used.
Combination of ( 51-1, 51-2, 50-1,
50-2 )
----
Gn 79 E/F Inst Trips
Selects which earth fault protection elements are classed as
Instantaneous elements and start an autoreclose sequence. These will be
blocked from operating during Delayed autoreclose sequences. See
autoreclose section of manual for detail of what elements can cause only
Delayed protection to be used.
Combination of ( 51N-1, 51N-2,
50N-1, 50N-2, 51G-1, 51G-2, 50G-
1, 50G-2 )
--------
Gn 79 SEF Inst Trips
Selects which sensitive earth fault protection elements are classed as
Instantaneous elements and start an autoreclose sequence. These will be
blocked from operating during Delayed autoreclose sequences. See
autoreclose section of manual for detail of what elements can cause only
Delayed protection to be used.
Combination of ( 51SEF-1, 51SEF-
2, 50SEF-1, 50SEF-2 )
----
Gn 79 P/F Delayed Trips
Selects which phase fault protection are classed as Delayed elements,
any selected elements operating will start an autoreclose sequence.
Combination of ( 51-1, 51-2, 50-1,
50-2 )
51-1, 51-2, 50-1,
50-2
Gn 79 E/F Delayed Trips
Selects which earth fault protection are classed as Delayed elements,
any selected elements operating will start an autoreclose sequence.
Combination of ( 51N-1, 51N-2,
50N-1, 50N-2, 51G-1, 51G-2, 50G-
1, 50G-2 )
51N-1, 51N-2,
50N-1, 50N-2,
51G-1, 51G-2,
50G-1, 50G-2
Gn 79 SEF Delayed Trips
Selects which sensitive earth fault elements are classed as Delayed
elements, any selected elements operating will start an autoreclose
sequence.
Combination of ( 51SEF-1, 51SEF-
2, 50SEF-1, 50SEF-2 )
51SEF-1, 51SEF-
2, 50SEF-1,
50SEF-2
Gn 79 P/F HS Trips
Selects which phase fault elements are classed as High Set elements,
any selected elements operating will start an autoreclose sequence.
Combination of ( 50-1, 50-2 ) --
Gn 79 E/F HS Trips
Selects which earth fault elements are classed as High Set elements, any
selected elements operating will start an autoreclose sequence.
Combination of ( 50N-1, 50N-2,
50G-1, 50G-2 )
----
7SR210 Settings Guide
Unrestricted Page 22 of 61 © 2018 Siemens Protection Devices Limited
3.6.2. Autoreclose Config
Description Range Default
Gn 79 Autoreclose
If disabled then all attempts to control the AR IN/OUT status
will fail and the AR will be permanently Out Of Service. When
enabled the AR IN/OUT state may be controlled via the
CONTROL MODE menu option, via Binary Input or via local
or remote communications.
Disabled, Enabled Disabled
Gn 79 Num Shots
Selects the number of auto-reclose attempts before the
Autorecloser locks out
1, 2, 3, 4 1
Gn 79 Retry Enable
Selects whether the Retry close functionality is enabled
Disabled, Enabled Disabled
Gn 79 Retry Attempts
Selects the number of retries allowed per shot
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 1
Gn 79 Retry Interval
Time delay between retries
0, 1 ... 599, 600 60 s
Gn 79 Reclose Blocked Delay
Specifies the maximum time that the Autorecloser can be
blocked before proceeding to the lockout state. (NOTE: The
block delay timer only starts after the Deadtime.)
0, 1 ... 599, 600 60 s
Gn 79 Sequence Fail Timer
Time before lockout occurs on an incomplete reclose
sequence. (i.e Trip & starter conditions have not been cleared
after Sequence Fail Time.)
0, 1 ... 599, 600 60 s
Gn 79 Sequence Co-ord
Selects whether Sequence co-ordination functionality is used
or not.
Disabled, Enabled Enabled
Gn 79 Cold Load Action
Selects whether the relay will perform Delayed Trips or not
when Cold Load is active.
Off, Delayed Off
3.6.2.1. P/F Shots
Description Range Default
Gn 79 P/F Prot'n Trip 1
Selects whether the first phase fault trip is Instantaneous
(Fast) or Delayed. When set to Delayed all P/F Inst Trips will
be Inhibited for this shot.
Inst, Delayed Inst
Gn 79 P/F Deadtime 1
Time period between the fault being cleared and the close
pulse being issued
0, 0.1 ... 14300, 14400 5 s
Gn 79 P/F Prot'n Trip 2
Selects whether the second phase fault trip is Instantaneous
(Fast) or Delayed. When set to Delayed all P/F Inst Trips will
be Inhibited for this shot.
Inst, Delayed Inst
Gn 79 P/F Deadtime 2
Time period between the fault being cleared and the close
pulse being issued
0, 0.1 ... 14300, 14400 5 s
Gn 79 P/F Prot'n Trip 3
Selects whether the third phase fault trip is Instantaneous
(Fast) or Delayed. When set to Delayed all P/F Inst Trips will
be Inhibited for this shot.
Inst, Delayed Delayed
Gn 79 P/F Deadtime 3
Time period between the fault being cleared and the close
pulse being issued
0, 0.1 ... 14300, 14400 5 s
7SR210 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 23 of 61
Description Range Default
Gn 79 P/F Prot'n Trip 4
Selects whether the fourth phase fault trip is Instantaneous
(Fast) or Delayed. When set to Delayed all P/F Inst Trips will
be Inhibited for this shot.
Inst, Delayed Delayed
Gn 79 P/F Deadtime 4
Time period between the fault being cleared and the close
pulse being issued
0, 0.1 ... 14300, 14400 5 s
Gn 79 P/F Prot'n Trip 5
Selects whether the fifth phase fault trip is Instantaneous
(Fast) or Delayed. When set to Delayed all P/F Inst Trips will
be Inhibited for this shot.
Inst, Delayed Delayed
Gn 79 P/F HS Trips To Lockout
Selects how many High Set trips are allowed before going to
Lockout
1, 2, 3, 4, 5 5
Gn 79 P/F Delayed Trips To Lockout
Selects how many Delayed trips are allowed before going to
Lockout
1, 2, 3, 4, 5 5
3.6.2.2. E/F Shots
Description Range Default
Gn 79 E/F Prot'n Trip 1
Selects whether the first earth fault trip is Instantaneous (Fast)
or Delayed. When set to Delayed all E/F Inst Trips will be
Inhibited for this shot.
Inst, Delayed Inst
Gn 79 E/F Deadtime 1
Time period between the fault being cleared and the close
pulse being issued
0, 0.1 ... 14300, 14400 5 s
Gn 79 E/F Prot'n Trip 2
Selects whether the second earth fault trip is Instantaneous
(Fast) or Delayed. When set to Delayed all E/F Inst Trips will
be Inhibited for this shot.
Inst, Delayed Inst
Gn 79 E/F Deadtime 2
Time period between the fault being cleared and the close
pulse being issued
0, 0.1 ... 14300, 14400 5 s
Gn 79 E/F Prot'n Trip 3
Selects whether the third earth fault trip is Instantaneous (Fast)
or Delayed. When set to Delayed all E/F Inst Trips will be
Inhibited for this shot.
Inst, Delayed Delayed
Gn 79 E/F Deadtime 3
Time period between the fault being cleared and the close
pulse being issued
0, 0.1 ... 14300, 14400 5 s
Gn 79 E/F Prot'n Trip 4
Selects whether the fourth earth fault trip is Instantaneous
(Fast) or Delayed. When set to Delayed all E/F Inst Trips will
be Inhibited for this shot.
Inst, Delayed Delayed
Gn 79 E/F Deadtime 4
Time period between the fault being cleared and the close
pulse being issued
0, 0.1 ... 14300, 14400 5 s
Gn 79 E/F Prot'n Trip 5
Selects whether the fifth earth fault trip is Instantaneous (Fast)
or Delayed. When set to Delayed all E/F Inst Trips will be
Inhibited for this shot.
Inst, Delayed Delayed
Gn 79 E/F HS Trips To Lockout
Selects how many High Set trips are allowed before going to
Lockout
1, 2, 3, 4, 5 5
Gn 79 E/F Delayed Trips To Lockout
Selects how many Delayed trips are allowed before going to
Lockout
1, 2, 3, 4, 5 5
7SR210 Settings Guide
Unrestricted Page 24 of 61 © 2018 Siemens Protection Devices Limited
3.6.2.3. SEF Shots
Description Range Default
Gn 79 SEF Prot'n Trip 1
Selects whether the first sensitive earth fault trip is
Instantaneous or Delayed. When set to Delayed all SEF Inst
Trips will be Inhibited for this shot.
Inst, Delayed Inst
Gn 79 SEF Deadtime 1
Time period between the fault being cleared and the close
pulse being issued
0, 0.1 ... 14300, 14400 5 s
Gn 79 SEF Prot'n Trip 2
Selects whether the second sensitive earth fault trip is
Instantaneous or Delayed. When set to Delayed all SEF Inst
Trips will be Inhibited for this shot.
Inst, Delayed Inst
Gn 79 SEF Deadtime 2
Time period between the fault being cleared and the close
pulse being issued
0, 0.1 ... 14300, 14400 5 s
Gn 79 SEF Prot'n Trip 3
Selects whether the third sensitive earth fault trip is
Instantaneous or Delayed. When set to Delayed all SEF Inst
Trips will be Inhibited for this shot.
Inst, Delayed Delayed
Gn 79 SEF Deadtime 3
Time period between the fault being cleared and the close
pulse being issued
0, 0.1 ... 14300, 14400 5 s
Gn 79 SEF Prot'n Trip 4
Selects whether the fourth sensitive earth fault trip is
Instantaneous or Delayed. When set to Delayed all SEF Inst
Trips will be Inhibited for this shot.
Inst, Delayed Delayed
Gn 79 SEF Deadtime 4
Time period between the fault being cleared and the close
pulse being issued
0, 0.1 ... 14300, 14400 5 s
Gn 79 SEF Prot'n Trip 5
Selects whether the fifth sensitive earth fault trip is
Instantaneous or Delayed. When set to Delayed all SEF Inst
Trips will be Inhibited for this shot.
Inst, Delayed Delayed
Gn 79 SEF Delayed Trips To Lockout
Selects how many Delayed trips are allowed before going to
Lockout
1, 2, 3, 4, 5 5
3.6.2.4. Extern Shots
3.6.3. Manual Close
Description Range Default
Gn Line Check Trip
Selects whether line check trip is enabled, if enabled no AR
sequence initiated
Disabled, Enabled Enabled
Gn P/F Line Check Trip
Selects whether a phase fault line check trip is Instantaneous
(Fast) or Delayed. When set to Delayed all P/F Inst Trips will
be Inhibited for this shot.
Inst, Delayed Inst
Gn E/F Line Check Trip
Selects whether an earth fault line check trip is Instantaneous
or Delayed. When set to Delayed all E/F Inst Trips will be
Inhibited for this shot.
Inst, Delayed Inst
Gn SEF Line Check Trip
Selects whether a sensitive earth fault line check trip is
Instantaneous or Delayed. When set to Delayed all SEF Inst
Trips will be Inhibited for this shot.
Inst, Delayed Inst
7SR210 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 25 of 61
Description Range Default
Gn Extern Line Check Trip
Selects whether an external line check trip is Instantaneous
(Fast) or Delayed
Not Blocked, Blocked Not Blocked
Gn Close CB Delay
Delay between a Close CB control being received and the
Close CB contacts being operated to allow operator walk
away.
0, 0.1 ... 899, 900 10 s
Gn Blocked Close Delay
Selects the maximum time that the manual Close CB may be
blocked by interlocking before the command or control is
cancelled. The relay will signal “Blocked by Interlocking”.
0, 1 ... 599, 600 5 s
Gn Open CB Delay
Delay between an Open CB control being received and the
Open CB contacts being operated.
0, 0.1 ... 899, 900 10 s
Gn CB Controls Latched
Selects whether Binary Input triggers of Close CB and Open
CB are latched.
Latch, Reset Latch
3.6.4. Circuit Breaker
Description Range Default
Gn Close CB Pulse
Specifies the duration of the circuit breaker close pulse
0, 0.1 ... 19.9, 20 2 s
Gn Reclaim Timer
The period of time after a CB has closed and remained closed
before the reclosure is deemed to be successful and the AR is
re-initialised. If the CB remains open at the end of the reclaim
time then the AR goes to lockout.
0, 1 ... 599, 600 2 s
Gn Minimum LO Delay 0, 1 ... 599, 600 2 s
Gn Reset LO By Timer Disabled, Enabled Enabled
Gn Trip Time Alarm
An alarm is issued when the Trip time is exceeded
0, 0.01 ... 1.99, 2 0.2 s
Gn Trip Time Adjust
Adjustment to take into account any binary input delays for
Trip Time Alarm
0, 0.005 ... 1.995, 2 0.015 s
Gn CB Travel Alarm
Selects the maximum time that the CB should take to either
Open or Close before a failure is recorded.
0.01, 0.02 ... 1.99, 2 1 s
Gn Open CB Pulse
Selects the maximum time of the Open CB pulse. If the CB is
not closed when this timer expires then an alarm will be raised
to signify failure to close.
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6,
1.7, 1.8, 1.9, 2
1 s
Gn CB DBI Delay
Selects the Delay before relay goes to Lockout following a
simultaneous Open and Close condition indication.
0, 0.01, ... 1.1, 1.11 ... 2 0 s
3.6.5. QUICK LOGIC
Description Range Default
Quick Logic
Enable or Disable all logic equations
Disabled, Enabled Disabled
E1 Equation
Enable or Disable logic equation E1
Disabled, Enabled Disabled
7SR210 Settings Guide
Unrestricted Page 26 of 61 © 2018 Siemens Protection Devices Limited
Description Range Default
E1
Specify logic equations of the form En =
<Operand><Operator><Operand>using the
following:0123456789=Digit() = Parenthesis! = NOT operation. =
AND operation^ = EXCLUSIVE OR operationE(followed by a digit) =
Equation numberF (Followed by a digit) = Function Key
numberI(Followed by a digit) = Binary Input numberL(Followed by a
digit) = LED numberO(Followed by a digit) = output relay
numberV(Followed by a digit) =Virtual Input/Output
number.ExamplesMake a function key LED toggle when function key
is pressed (requires E1 to drive L11 in output matrix)E1 =
F3^L11
(20 Character String)
E1 Pickup Delay
Time before equation output operates, after equation satisfied
0, 0.01 ... 14300, 14400 0 s
E1 Dropoff Delay
Time before equation output resets, after equation nolonger satisfied
0, 0.01 ... 14300, 14400 0 s
E1 Counter Target
Select number of times equation must be satisfied before equation
output operates
1, 2 ... 998, 999 1
E1 Counter Reset Mode
Select type of counter reset mode
Off, Multi-shot, Single-shot Off
E1 Counter Reset Time
Select counter reset time
0, 0.01 ... 14300, 14400 0 s
E2 Equation
Enable or Disable logic equation E2
Disabled, Enabled Disabled
E2
Specify logic equations of the form En =
<Operand><Operator><Operand>using the
following:0123456789=Digit() = Parenthesis! = NOT operation. =
AND operation^ = EXCLUSIVE OR operationE(followed by a digit) =
Equation numberF (Followed by a digit) = Function Key
numberI(Followed by a digit) = Binary Input numberL(Followed by a
digit) = LED numberO(Followed by a digit) = output relay
numberV(Followed by a digit) =Virtual Input/Output
number.ExamplesMake a function key LED toggle when function key
is pressed (requires E1 to drive L11 in output matrix)E1 =
F3^L11
(20 Character String)
E2 Pickup Delay
Time before equation output operates, after equation satisfied
0, 0.01 ... 14300, 14400 0 s
E2 Dropoff Delay
Time before equation output resets, after equation nolonger satisfied
0, 0.01 ... 14300, 14400 0 s
E2 Counter Target
Select number of times equation must be satisfied before equation
output operates
1, 2 ... 998, 999 1
E2 Counter Reset Mode
Select type of counter reset mode
Off, Multi-shot, Single-shot Off
E2 Counter Reset Time
Select counter reset time
0, 0.01 ... 14300, 14400 0 s
E3 Equation
Enable or Disable logic equation E3
Disabled, Enabled Disabled
E3
Specify logic equations of the form En =
<Operand><Operator><Operand>using the
following:0123456789=Digit() = Parenthesis! = NOT operation. =
AND operation^ = EXCLUSIVE OR operationE(followed by a digit) =
Equation numberF (Followed by a digit) = Function Key
numberI(Followed by a digit) = Binary Input numberL(Followed by a
digit) = LED numberO(Followed by a digit) = output relay
numberV(Followed by a digit) =Virtual Input/Output
number.ExamplesMake a function key LED toggle when function key
is pressed (requires E1 to drive L11 in output matrix)E1 =
F3^L11
(20 Character String)
7SR210 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 27 of 61
Description Range Default
E3 Pickup Delay
Time before equation output operates, after equation satisfied
0, 0.01 ... 14300, 14400 0 s
E3 Dropoff Delay
Time before equation output resets, after equation nolonger satisfied
0, 0.01 ... 14300, 14400 0 s
E3 Counter Target
Select number of times equation must be satisfied before equation
output operates
1, 2 ... 998, 999 1
E3 Counter Reset Mode
Select type of counter reset mode
Off, Multi-shot, Single-shot Off
E3 Counter Reset Time
Select counter reset time
0, 0.01 ... 14300, 14400 0 s
E4 Equation
Enable or Disable logic equation E4
Disabled, Enabled Disabled
E4
Specify logic equations of the form En =
<Operand><Operator><Operand>using the
following:0123456789=Digit() = Parenthesis! = NOT operation. =
AND operation^ = EXCLUSIVE OR operationE(followed by a digit) =
Equation numberF (Followed by a digit) = Function Key
numberI(Followed by a digit) = Binary Input numberL(Followed by a
digit) = LED numberO(Followed by a digit) = output relay
numberV(Followed by a digit) =Virtual Input/Output
number.ExamplesMake a function key LED toggle when function key
is pressed (requires E1 to drive L11 in output matrix)E1 =
F3^L11
(20 Character String)
E4 Pickup Delay
Time before equation output operates, after equation satisfied
0, 0.01 ... 14300, 14400 0 s
E4 Dropoff Delay
Time before equation output resets, after equation nolonger satisfied
0, 0.01 ... 14300, 14400 0 s
E4 Counter Target
Select number of times equation must be satisfied before equation
output operates
1, 2 ... 998, 999 1
E4 Counter Reset Mode
Select type of counter reset mode
Off, Multi-shot, Single-shot Off
E4 Counter Reset Time
Select counter reset time
0, 0.01 ... 14300, 14400 0 s
E5 Equation
Enable or Disable logic equation E5
Disabled, Enabled Disabled
E5
Specify logic equations of the form En =
<Operand><Operator><Operand>using the
following:0123456789=Digit() = Parenthesis! = NOT operation. =
AND operation^ = EXCLUSIVE OR operationE(followed by a digit) =
Equation numberF (Followed by a digit) = Function Key
numberI(Followed by a digit) = Binary Input numberL(Followed by a
digit) = LED numberO(Followed by a digit) = output relay
numberV(Followed by a digit) =Virtual Input/Output
number.ExamplesMake a function key LED toggle when function key
is pressed (requires E1 to drive L11 in output matrix)E1 =
F3^L11
(20 Character String)
E5 Pickup Delay
Time before equation output operates, after equation satisfied
0, 0.01 ... 14300, 14400 0 s
E5 Dropoff Delay
Time before equation output resets, after equation nolonger satisfied
0, 0.01 ... 14300, 14400 0 s
E5 Counter Target
Select number of times equation must be satisfied before equation
output operates
1, 2 ... 998, 999 1
7SR210 Settings Guide
Unrestricted Page 28 of 61 © 2018 Siemens Protection Devices Limited
Description Range Default
E5 Counter Reset Mode
Select type of counter reset mode
Off, Multi-shot, Single-shot Off
E5 Counter Reset Time
Select counter reset time
0, 0.01 ... 14300, 14400 0 s
E6 Equation
Enable or Disable logic equation E6
Disabled, Enabled Disabled
E6
Specify logic equations of the form En =
<Operand><Operator><Operand>using the
following:0123456789=Digit() = Parenthesis! = NOT operation. =
AND operation^ = EXCLUSIVE OR operationE(followed by a digit) =
Equation numberF (Followed by a digit) = Function Key
numberI(Followed by a digit) = Binary Input numberL(Followed by a
digit) = LED numberO(Followed by a digit) = output relay
numberV(Followed by a digit) =Virtual Input/Output
number.ExamplesMake a function key LED toggle when function key
is pressed (requires E1 to drive L11 in output matrix)E1 =
F3^L11
(20 Character String)
E6 Pickup Delay
Time before equation output operates, after equation satisfied
0, 0.01 ... 14300, 14400 0 s
E6 Dropoff Delay
Time before equation output resets, after equation nolonger satisfied
0, 0.01 ... 14300, 14400 0 s
E6 Counter Target
Select number of times equation must be satisfied before equation
output operates
1, 2 ... 998, 999 1
E6 Counter Reset Mode
Select type of counter reset mode
Off, Multi-shot, Single-shot Off
E6 Counter Reset Time
Select counter reset time
0, 0.01 ... 14300, 14400 0 s
E7 Equation
Enable or Disable logic equation E7
Disabled, Enabled Disabled
E7
Specify logic equations of the form En =
<Operand><Operator><Operand>using the
following:0123456789=Digit() = Parenthesis! = NOT operation. =
AND operation^ = EXCLUSIVE OR operationE(followed by a digit) =
Equation numberF (Followed by a digit) = Function Key
numberI(Followed by a digit) = Binary Input numberL(Followed by a
digit) = LED numberO(Followed by a digit) = output relay
numberV(Followed by a digit) =Virtual Input/Output
number.ExamplesMake a function key LED toggle when function key
is pressed (requires E1 to drive L11 in output matrix)E1 =
F3^L11
(20 Character String)
E7 Pickup Delay
Time before equation output operates, after equation satisfied
0, 0.01 ... 14300, 14400 0 s
E7 Dropoff Delay
Time before equation output resets, after equation nolonger satisfied
0, 0.01 ... 14300, 14400 0 s
E7 Counter Target
Select number of times equation must be satisfied before equation
output operates
1, 2 ... 998, 999 1
E7 Counter Reset Mode
Select type of counter reset mode
Off, Multi-shot, Single-shot Off
E7 Counter Reset Time
Select counter reset time
0, 0.01 ... 14300, 14400 0 s
E8 Equation
Enable or Disable logic equation E8
Disabled, Enabled Disabled
7SR210 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 29 of 61
Description Range Default
E8
Specify logic equations of the form En =
<Operand><Operator><Operand>using the
following:0123456789=Digit() = Parenthesis! = NOT operation. =
AND operation^ = EXCLUSIVE OR operationE(followed by a digit) =
Equation numberF (Followed by a digit) = Function Key
numberI(Followed by a digit) = Binary Input numberL(Followed by a
digit) = LED numberO(Followed by a digit) = output relay
numberV(Followed by a digit) =Virtual Input/Output
number.ExamplesMake a function key LED toggle when function key
is pressed (requires E1 to drive L11 in output matrix)E1 =
F3^L11
(20 Character String)
E8 Pickup Delay
Time before equation output operates, after equation satisfied
0, 0.01 ... 14300, 14400 0 s
E8 Dropoff Delay
Time before equation output resets, after equation nolonger satisfied
0, 0.01 ... 14300, 14400 0 s
E8 Counter Target
Select number of times equation must be satisfied before equation
output operates
1, 2 ... 998, 999 1
E8 Counter Reset Mode
Select type of counter reset mode
Off, Multi-shot, Single-shot Off
E8 Counter Reset Time
Select counter reset time
0, 0.01 ... 14300, 14400 0 s
E9 Equation
Enable or Disable logic equation E9
Disabled, Enabled Disabled
E9
Specify logic equations of the form En =
<Operand><Operator><Operand>using the
following:0123456789=Digit() = Parenthesis! = NOT operation. =
AND operation^ = EXCLUSIVE OR operationE(followed by a digit) =
Equation numberF (Followed by a digit) = Function Key
numberI(Followed by a digit) = Binary Input numberL(Followed by a
digit) = LED numberO(Followed by a digit) = output relay
numberV(Followed by a digit) =Virtual Input/Output
number.ExamplesMake a function key LED toggle when function key
is pressed (requires E1 to drive L11 in output matrix)E1 =
F3^L11
(20 Character String)
E9 Pickup Delay
Time before equation output operates, after equation satisfied
0, 0.01 ... 14300, 14400 0 s
E9 Dropoff Delay
Time before equation output resets, after equation nolonger satisfied
0, 0.01 ... 14300, 14400 0 s
E9 Counter Target
Select number of times equation must be satisfied before equation
output operates
1, 2 ... 998, 999 1
E9 Counter Reset Mode
Select type of counter reset mode
Off, Multi-shot, Single-shot Off
E9 Counter Reset Time
Select counter reset time
0, 0.01 ... 14300, 14400 0 s
E10 Equation
Enable or Disable logic equation E10
Disabled, Enabled Disabled
E10
Specify logic equations of the form En =
<Operand><Operator><Operand>using the
following:0123456789=Digit() = Parenthesis! = NOT operation. =
AND operation^ = EXCLUSIVE OR operationE(followed by a digit) =
Equation numberF (Followed by a digit) = Function Key
numberI(Followed by a digit) = Binary Input numberL(Followed by a
digit) = LED numberO(Followed by a digit) = output relay
numberV(Followed by a digit) =Virtual Input/Output
number.ExamplesMake a function key LED toggle when function key
is pressed (requires E1 to drive L11 in output matrix)E1 =
F3^L11
(20 Character String)
7SR210 Settings Guide
Unrestricted Page 30 of 61 © 2018 Siemens Protection Devices Limited
Description Range Default
E10 Pickup Delay
Time before equation output operates, after equation satisfied
0, 0.01 ... 14300, 14400 0 s
E10 Dropoff Delay
Time before equation output resets, after equation nolonger satisfied
0, 0.01 ... 14300, 14400 0 s
E10 Counter Target
Select number of times equation must be satisfied before equation
output operates
1, 2 ... 998, 999 1
E10 Counter Reset Mode
Select type of counter reset mode
Off, Multi-shot, Single-shot Off
E10 Counter Reset Time
Select counter reset time
0, 0.01 ... 14300, 14400 0 s
E11 Equation
Enable or Disable logic equation E11
Disabled, Enabled Disabled
E11
Specify logic equations of the form En =
<Operand><Operator><Operand>using the
following:0123456789=Digit() = Parenthesis! = NOT operation. =
AND operation^ = EXCLUSIVE OR operationE(followed by a digit) =
Equation numberF (Followed by a digit) = Function Key
numberI(Followed by a digit) = Binary Input numberL(Followed by a
digit) = LED numberO(Followed by a digit) = output relay
numberV(Followed by a digit) =Virtual Input/Output
number.ExamplesMake a function key LED toggle when function key
is pressed (requires E1 to drive L11 in output matrix)E1 =
F3^L11
(20 Character String)
E11 Pickup Delay
Time before equation output operates, after equation satisfied
0, 0.01 ... 14300, 14400 0 s
E11 Dropoff Delay
Time before equation output resets, after equation nolonger satisfied
0, 0.01 ... 14300, 14400 0 s
E11 Counter Target
Select number of times equation must be satisfied before equation
output operates
1, 2 ... 998, 999 1
E11 Counter Reset Mode
Select type of counter reset mode
Off, Multi-shot, Single-shot Off
E11 Counter Reset Time
Select counter reset time
0, 0.01 ... 14300, 14400 0 s
E12 Equation
Enable or Disable logic equation E12
Disabled, Enabled Disabled
E12
Specify logic equations of the form En =
<Operand><Operator><Operand>using the
following:0123456789=Digit() = Parenthesis! = NOT operation. =
AND operation^ = EXCLUSIVE OR operationE(followed by a digit) =
Equation numberF (Followed by a digit) = Function Key
numberI(Followed by a digit) = Binary Input numberL(Followed by a
digit) = LED numberO(Followed by a digit) = output relay
numberV(Followed by a digit) =Virtual Input/Output
number.ExamplesMake a function key LED toggle when function key
is pressed (requires E1 to drive L11 in output matrix)E1 =
F3^L11
(20 Character String)
E12 Pickup Delay
Time before equation output operates, after equation satisfied
0, 0.01 ... 14300, 14400 0 s
E12 Dropoff Delay
Time before equation output resets, after equation nolonger satisfied
0, 0.01 ... 14300, 14400 0 s
E12 Counter Target
Select number of times equation must be satisfied before equation
output operates
1, 2 ... 998, 999 1
7SR210 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 31 of 61
Description Range Default
E12 Counter Reset Mode
Select type of counter reset mode
Off, Multi-shot, Single-shot Off
E12 Counter Reset Time
Select counter reset time
0, 0.01 ... 14300, 14400 0 s
E13 Equation
Enable or Disable logic equation E13
Disabled, Enabled Disabled
E13
Specify logic equations of the form En =
<Operand><Operator><Operand>using the
following:0123456789=Digit() = Parenthesis! = NOT operation. =
AND operation^ = EXCLUSIVE OR operationE(followed by a digit) =
Equation numberF (Followed by a digit) = Function Key
numberI(Followed by a digit) = Binary Input numberL(Followed by a
digit) = LED numberO(Followed by a digit) = output relay
numberV(Followed by a digit) =Virtual Input/Output
number.ExamplesMake a function key LED toggle when function key
is pressed (requires E1 to drive L11 in output matrix)E1 =
F3^L11
(20 Character String)
E13 Pickup Delay
Time before equation output operates, after equation satisfied
0, 0.01 ... 14300, 14400 0 s
E13 Dropoff Delay
Time before equation output resets, after equation nolonger satisfied
0, 0.01 ... 14300, 14400 0 s
E13 Counter Target
Select number of times equation must be satisfied before equation
output operates
1, 2 ... 998, 999 1
E13 Counter Reset Mode
Select type of counter reset mode
Off, Multi-shot, Single-shot Off
E13 Counter Reset Time
Select counter reset time
0, 0.01 ... 14300, 14400 0 s
E14 Equation
Enable or Disable logic equation E14
Disabled, Enabled Disabled
E14
Specify logic equations of the form En =
<Operand><Operator><Operand>using the
following:0123456789=Digit() = Parenthesis! = NOT operation. =
AND operation^ = EXCLUSIVE OR operationE(followed by a digit) =
Equation numberF (Followed by a digit) = Function Key
numberI(Followed by a digit) = Binary Input numberL(Followed by a
digit) = LED numberO(Followed by a digit) = output relay
numberV(Followed by a digit) =Virtual Input/Output
number.ExamplesMake a function key LED toggle when function key
is pressed (requires E1 to drive L11 in output matrix)E1 =
F3^L11
(20 Character String)
E14 Pickup Delay
Time before equation output operates, after equation satisfied
0, 0.01 ... 14300, 14400 0 s
E14 Dropoff Delay
Time before equation output resets, after equation nolonger satisfied
0, 0.01 ... 14300, 14400 0 s
E14 Counter Target
Select number of times equation must be satisfied before equation
output operates
1, 2 ... 998, 999 1
E14 Counter Reset Mode
Select type of counter reset mode
Off, Multi-shot, Single-shot Off
E14 Counter Reset Time
Select counter reset time
0, 0.01 ... 14300, 14400 0 s
E15 Equation
Enable or Disable logic equation E15
Disabled, Enabled Disabled
7SR210 Settings Guide
Unrestricted Page 32 of 61 © 2018 Siemens Protection Devices Limited
Description Range Default
E15
Specify logic equations of the form En =
<Operand><Operator><Operand>using the
following:0123456789=Digit() = Parenthesis! = NOT operation. =
AND operation^ = EXCLUSIVE OR operationE(followed by a digit) =
Equation numberF (Followed by a digit) = Function Key
numberI(Followed by a digit) = Binary Input numberL(Followed by a
digit) = LED numberO(Followed by a digit) = output relay
numberV(Followed by a digit) =Virtual Input/Output
number.ExamplesMake a function key LED toggle when function key
is pressed (requires E1 to drive L11 in output matrix)E1 =
F3^L11
(20 Character String)
E15 Pickup Delay
Time before equation output operates, after equation satisfied
0, 0.01 ... 14300, 14400 0 s
E15 Dropoff Delay
Time before equation output resets, after equation nolonger satisfied
0, 0.01 ... 14300, 14400 0 s
E15 Counter Target
Select number of times equation must be satisfied before equation
output operates
1, 2 ... 998, 999 1
E15 Counter Reset Mode
Select type of counter reset mode
Off, Multi-shot, Single-shot Off
E15 Counter Reset Time
Select counter reset time
0, 0.01 ... 14300, 14400 0 s
E16 Equation
Enable or Disable logic equation E16
Disabled, Enabled Disabled
E16
Specify logic equations of the form En =
<Operand><Operator><Operand>using the
following:0123456789=Digit() = Parenthesis! = NOT operation. =
AND operation^ = EXCLUSIVE OR operationE(followed by a digit) =
Equation numberF (Followed by a digit) = Function Key
numberI(Followed by a digit) = Binary Input numberL(Followed by a
digit) = LED numberO(Followed by a digit) = output relay
numberV(Followed by a digit) =Virtual Input/Output
number.ExamplesMake a function key LED toggle when function key
is pressed (requires E1 to drive L11 in output matrix)E1 =
F3^L11
(20 Character String)
E16 Pickup Delay
Time before equation output operates, after equation satisfied
0, 0.01 ... 14300, 14400 0 s
E16 Dropoff Delay
Time before equation output resets, after equation nolonger satisfied
0, 0.01 ... 14300, 14400 0 s
E16 Counter Target
Select number of times equation must be satisfied before equation
output operates
1, 2 ... 998, 999 1
E16 Counter Reset Mode
Select type of counter reset mode
Off, Multi-shot, Single-shot Off
E16 Counter Reset Time
Select counter reset time
0, 0.01 ... 14300, 14400 0 s
7SR210 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 33 of 61
3.7. Input Config
3.7.1. Input Matrix
Description Range Default
Inhibit Cold Load Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Inhibit 51-1
Selects which inputs inhibit the 51-1 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Inhibit 51-2
Selects which inputs inhibit the 51-2 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Inhibit 50-1
Selects which inputs inhibit the 50-1 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Inhibit 50-2
Selects which inputs inhibit the 50-2 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Inhibit 51N-1
Selects which inputs inhibit the 51N-1 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Inhibit 51N-2
Selects which inputs inhibit the 51N-2 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Inhibit 50N-1
Selects which inputs inhibit the 50N-1 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Inhibit 50N-2
Selects which inputs inhibit the 50N-2 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Inhibit 51G-1
Selects which inputs inhibit the 51G-1 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Inhibit 51G-2
Selects which inputs inhibit the 51G-2 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Inhibit 50G-1
Selects which inputs inhibit the 50G-1 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Inhibit 50G-2
Selects which inputs inhibit the 50G-2 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Inhibit 51SEF-1
Selects which inputs inhibit the 51SEF-1 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
7SR210 Settings Guide
Unrestricted Page 34 of 61 © 2018 Siemens Protection Devices Limited
Description Range Default
Inhibit 51SEF-2
Selects which inputs inhibit the 51SEF-2 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Inhibit 50SEF-1
Selects which inputs inhibit the 50SEF-1 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Inhibit 50SEF-2
Selects which inputs inhibit the 50SEF-2 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Inhibit 64H
Selects which inputs inhibit the 64H element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Inhibit 46IT
Selects which inputs inhibit the 46IT element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Inhibit 46DT
Selects which inputs inhibit the 46DT element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Inhibit 37-1
Selects which inputs inhibit the 37-1 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Inhibit 37-2
Selects which inputs inhibit the 37-2 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Inhibit 37G-1 Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Inhibit 37G-2 Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Inhibit 49
Selects which inputs inhibit the 49 thermal element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Reset 49
Selects which inputs resets the 49 thermal model element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Inhibit 60CTS-I Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Inhibit 46BC
Selects which inputs inhibit the 46 Broken Conductor element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
74TCS-1
Selects which inputs are monitoring trip circuits
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
74TCS-2
As Above
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
7SR210 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 35 of 61
Description Range Default
74TCS-3
As Above
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
74CCS-1
Selects which inputs are monitoring trip circuits
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
74CCS-2
As Above
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
74CCS-3
As Above
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Trig Trip Contacts
Selects which inputs will trigger the Trip contacts
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Inhibit 50BF
Selects which inputs inhibit the 50BF element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
50BF CB Faulty
Selects which input bypasses the 50BF timer due to a fault CB
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
50BF Mech Trip
Selects which input allows a mechanical trip to start the 50BF
element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
50BF Ext Trip
Selects which inputs can also start the 50BF element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Reset CB Total Trip
Selects which inputs Reset the CB Total Trip count
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Reset CB Delta Trip
Selects which inputs Reset the CB Delta Trip count
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Reset ARBlock Count
Selects which inputs Reset the AR Block count
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Reset Freq Ops Count
Selects which inputs Reset the Frequent Ops count
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Reset I^2t CB Wear
Selects which inputs Reset the I^2t CB Wear element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Trigger I^2t CB Wear
Selects which inputs will cause an external trigger of the I^2t
CB Wear element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Reset Trip Time
Selects which inputs will reset the CB trip time alarm
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
7SR210 Settings Guide
Unrestricted Page 36 of 61 © 2018 Siemens Protection Devices Limited
Description Range Default
General Alarm 1
Selects which inputs will activate the General Alarm 1 text
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
General Alarm 2
Selects which inputs will activate the General Alarm 2 text
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
General Alarm 3
Selects which inputs will activate the General Alarm 3 text
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
General Alarm 4
Selects which inputs will activate the General Alarm 4 text
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
General Alarm 5
Selects which inputs will activate the General Alarm 5 text
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
General Alarm 6
Selects which inputs will activate the General Alarm 6 text
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
General Alarm 7
Selects which inputs will activate the General Alarm 7 text
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
General Alarm 8
Selects which inputs will activate the General Alarm 8 text
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
General Alarm 9
Selects which inputs will activate the General Alarm 9 text
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
General Alarm 10
Selects which inputs will activate the General Alarm 10 text
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
General Alarm 11
Selects which inputs will activate the General Alarm 11 text
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
General Alarm 12
Selects which inputs will activate the General Alarm 12 text
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
CB Open
Selects which inputs are connected to the circuit breaker open
contacts
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
CB Closed
Selects which inputs are connected to the circuit breaker
closed contacts
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Reset Demand
Selects which inputs will rest the Demand elements.
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Close CB
Selects which inputs will issue a close to the circuit breaker.
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
7SR210 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 37 of 61
Description Range Default
Block Close CB
Selects which inputs will block the manual closing of the circuit
breaker.
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Open CB
Selects which inputs will issue an open to the circuit breaker.
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
79 Out
Selects which inputs will switch the Auto-recloser out of
service
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
79 In
Selects which inputs will switch the Auto-recloser in service
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
79 Trip & Reclose
Selects which inputs will trigger a trip & reclose
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
79 Trip & Lockout
Selects which inputs will trigger a trip & lockout
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
79 Ext Trip
Selects which input will start the external an Auto-relose
sequence
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
79 Ext Pickup
Selects which input should be connected to the pickup of the
external elements required to start an Auto-reclose sequence
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
79 Block Reclose
Selects which inputs will block the Auto-recloser
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
79 Reset Lockout
Selects which inputs will force the Auto-recloser into the
Lockout state
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
79 Line Check
Selects which inputs will start the Line Check functionality of
the Auto-recloser
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
79 Lockout
Selects which inputs will force the Auto-recloser into the
Lockout state
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Hot Line Out
Selects which inputs will switch out Hot Line Working
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Hot Line In
Selects which inputs will switch in Hot Line Working
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Inst Prot'n Out
Selects which inputs will switch out the instantaneous
protection elements
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Inst Prot'n In
Selects which inputs will switch in the instantaneous
protection elements
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
7SR210 Settings Guide
Unrestricted Page 38 of 61 © 2018 Siemens Protection Devices Limited
Description Range Default
E/F Out
Selects which inputs will switch out the E/F protection
elements.
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
E/F In
Selects which inputs will switch in the E/F protection elements.
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
SEF Out
Selects which inputs will switch out the SEF protection
elements
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
SEF In
Selects which inputs will switch in the SEF protection
elements
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Trigger Wave Rec
Selects which inputs can trigger a waveform record
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Trigger Fault Rec
Selects which inputs can trigger a fault record
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Select Group 1
Switches active setting group to group 1
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Select Group 2
Switches active setting group to group 2
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Select Group 3
Switches active setting group to group 3
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Select Group 4
Switches active setting group to group 4
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Select Group 5
Switches active setting group to group 5
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Select Group 6
Switches active setting group to group 6
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Select Group 7
Switches active setting group to group 7
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Select Group 8
Switches active setting group to group 8
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Out Of Service Mode
Selects which inputs will put the relay into Out Of Service
Mode
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Local Mode
Selects which inputs will put the relay into Local Mode
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
7SR210 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 39 of 61
Description Range Default
Remote Mode
Selects which inputs will put the relay into Remote Mode
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Local Or Remote Mode
Selects which inputs will put the relay into Local Or Remote
Mode
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Clock Sync.
Selects which input is used to synchronise the real time clock
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Reset LEDs & O/Ps
Selects which inputs will reset the latched LEDs and binary
outputs
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10, V11,
V12, V13, V14, V15, V16 )
----------------------
---
Inverted Inputs
Selects which inputs will be inverted
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13)
----------------------
-------
Enable In Local
Selects which inputs will be enabled in local mode
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13)
BI1, BI2, BI3,
BI4, BI5, BI6,
BI7, BI8, BI9,
BI10, BI11, BI12,
BI13
Enable In Remote
Selects which inputs will be enabled in remote mode
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13)
BI1, BI2, BI3,
BI4, BI5, BI6,
BI7, BI8, BI9,
BI10, BI11, BI12,
BI13
7SR210 Settings Guide
Unrestricted Page 40 of 61 © 2018 Siemens Protection Devices Limited
3.7.2. Binary Input Config (Variants may differ)
Description Range Default
Inverted Inputs
Selects which inputs pickup when voltage is removed.
Combination of ( 1, 2, 3, 4, 5, 6, 7,
8, 9 )
---------
BI 1 Pick-up Delay
Delay on pickup of DC Binary Input 1
0, 0.005 ... 14300, 14400 0.02 s
BI 1 Drop-off Delay
Delay on dropoff of DC Binary Input 1
0, 0.005 ... 14300, 14400 0 s
-
BI 39 Pick-up Delay
Delay on pickup of DC Binary Input 9
0, 0.005 ... 14300, 14400 0.02 s
BI 39 Drop-off Delay
Delay on dropoff of DC Binary Input 9
0, 0.005 ... 14300, 14400 0 s
Enabled In Local
Selects which inputs are enabled when the relay is in
Operating Mode 'Local' or 'Local Or Remote'
Combination of ( 1, 2, 3, 4, 5, 6, 7,
8, 9 )
1, 2, 3, 4, 5, 6, 7,
8, 9
Enabled In Remote
Selects which inputs are enabled when the relay is in
Operating Mode 'Remote' or 'Local Or Remote'
Combination of ( 1, 2, 3, 4, 5, 6, 7,
8, 9 )
1, 2, 3, 4, 5, 6, 7,
8, 9
7SR210 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 41 of 61
3.7.3. General Alarms
Description Range Default
General Alarm-1
Defines the text to be displayed for General Alarm 1
(16 Character String) ALARM 1
General Alarm-2
Defines the text to be displayed for General Alarm 2
(16 Character String) ALARM 2
General Alarm-3
Defines the text to be displayed for General Alarm 3
(16 Character String) ALARM 3
General Alarm-4
Defines the text to be displayed for General Alarm 4
(16 Character String) ALARM 4
General Alarm-5
Defines the text to be displayed for General Alarm 5
(16 Character String) ALARM 5
General Alarm-6
Defines the text to be displayed for General Alarm 6
(16 Character String) ALARM 6
General Alarm-7
Defines the text to be displayed for General Alarm 7
(16 Character String) ALARM 7
General Alarm-8
Defines the text to be displayed for General Alarm 8
(16 Character String) ALARM 8
General Alarm-9
Defines the text to be displayed for General Alarm 9
(16 Character String) ALARM 9
General Alarm-10
Defines the text to be displayed for General Alarm 10
(16 Character String) ALARM 10
General Alarm-11
Defines the text to be displayed for General Alarm 11
(16 Character String) ALARM 11
General Alarm-12
Defines the text to be displayed for General Alarm 11
(16 Character String) ALARM 12
General Alarm-13
Defines the text to be displayed for General Alarm 11
(16 Character String) ALARM 13
General Alarm-14
Defines the text to be displayed for General Alarm 11
(16 Character String) ALARM 14
General Alarm-15
Defines the text to be displayed for General Alarm 11
(16 Character String) ALARM 15
General Alarm-16
Defines the text to be displayed for General Alarm 11
(16 Character String) ALARM 16
General Alarm-17
Defines the text to be displayed for General Alarm 11
(16 Character String) ALARM 17
General Alarm-18
Defines the text to be displayed for General Alarm 11
(16 Character String) ALARM 18
General Alarm-19
Defines the text to be displayed for General Alarm 11
(16 Character String) ALARM 19
General Alarm-20
Defines the text to be displayed for General Alarm 12
(16 Character String) ALARM 20
7SR210 Settings Guide
Unrestricted Page 42 of 61 © 2018 Siemens Protection Devices Limited
3.8. Output Config
3.8.1. Output Matrix (Variants may differ)
Description Range Default
Protection Healthy
Relays selected are energised whilst relay self-monitoring
does NOT detect any hardware or software errors and DC
Supply is healthy. A changeover contact or normally closed
contact may be used to generate Protection Defective from this
output
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
BO1
Active Setting Grp 1 Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
Grp 1
Active Setting Grp 2 Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
Active Setting Grp 3 Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
Active Setting Grp 4 Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
Active Setting Grp 5 Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
Active Setting Grp 6 Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
Active Setting Grp 7 Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
Active Setting Grp 8 Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
7SR210 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 43 of 61
Description Range Default
51-1
51-1 IDMTL/DTL Overcurrent operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
51-2
51-2 IDMTL/DTL Overcurrent operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
50-1
50-1 INST/DTL Overcurrent operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
50-2
50-2 INST/DTL Overcurrent operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
51N-1
51N-1 IDMTL/DTL derived Earth Fault operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
L4
51N-2
51N-2 IDMTL/DTL derived Earth Fault operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
L4
50N-1
50N-1 INST/DTL derived Earth Fault operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
L4
50N-2
50N-2 INST/DTL derived Earth Fault operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
L4
51G-1
51G-1 IDMTL/DTL measured Earth Fault operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
L4
51G-2
51G-2 IDMTL/DTL measured Earth Fault operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
L4
50G-1
50G-1 INST/DTL measured Earth Fault operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
L4
50G-2
50G-2 INST/DTL measured Earth Fault operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
L4
51SEF-1
51SEF-1 IDMTL/DTL Sensitive Earth Fault operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
L5
7SR210 Settings Guide
Unrestricted Page 44 of 61 © 2018 Siemens Protection Devices Limited
Description Range Default
51SEF-2
51SEF-2 IDMTL/DTL Sensitive Earth Fault operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
L5
50SEF-1
50SEF-1 INST/DTL Sensitive Earth Fault operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
L5
50SEF-2
50SEF-2 INST/DTL Sensitive Earth Fault operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
L5
64H
64H Restricted Earth Fault element operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
Cold Load Active
Cold Load settings are active
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
46IT
IDMTL/DTL NPS Overcurrent operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
46DT
INST/DTL NPS Overcurrent operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
37-1
37-1 Under Current operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
37-2
37-2 Under Current operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
37G-1 Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
37G-2 Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
49 Trip
Thermal capacity trip operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
49 Alarm
Thermal capacity alarm operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
7SR210 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 45 of 61
Description Range Default
60CTS-I Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
46BC
46 Broken Conductor element operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
74TCS-1
Trip Circuit 1 fail operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
74TCS-2
Trip Circuit 2 fail operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
74TCS-3
Trip Circuit 3 fail operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
74CCS-1
Close Circuit 1 fail operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
74CCS-2
Close Circuit 2 fail operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
74CCS-3
Close Circuit 3 fail operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
81HBL2 Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
General Pickup
General Pickup operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
50BF-1
Circuit Breaker Fail stage 1 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
50BF-2
Circuit Breaker Fail stage 2 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
7SR210 Settings Guide
Unrestricted Page 46 of 61 © 2018 Siemens Protection Devices Limited
Description Range Default
50BF PhA
Circuit Breaker Fail Phase A
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
50BF PhB
Circuit Breaker Fail Phase B
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
50BF PhC
Circuit Breaker Fail Phase C
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
50BF EF
Circuit Breaker Fail Earth Fault
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
CB Total Trip Count
Total CB trip count exceeded
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
CB Ph A Trip Count
Total CB Ph A trip count exceeded
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
CB Ph B Trip Count
Total CB Ph B trip count exceeded
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
CB Ph C Trip Count
Total CB Ph C trip count exceeded
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
CB E/F Trip Count
Total CB E/F trip count exceeded
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
CB Delta Trip Count
Delta CB trip count exceeded
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
7SR210 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 47 of 61
Description Range Default
CB Count To ARBlock
Count To AR Block CB trip count exceeded
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
CB Freq Ops Count
CB Frequent Operations count exceeded
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
I^2t CB Wear
I^2t CB Wear limit exceeded
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
Trip Time Alarm
Trip Time Alarm operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
CB Open
Indicates that the circuit breaker is in the open position.
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
CB Closed
Indicates that the circuit breaker is in the closed position.
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
Close CB Blocked
Indicates that the Close CB control is blocked by its
interlocking logic.
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
CB Alarm
Indicates the CB is either in an illegal state or is stuck neither
open or closed.
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
Open CB
Open pulse due to Manual Open being issued.
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
Phase A
A phase A element operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
L1
Phase B
A phase B element operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
L2
Phase C
A phase C element operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
L3
7SR210 Settings Guide
Unrestricted Page 48 of 61 © 2018 Siemens Protection Devices Limited
Description Range Default
Derived E/F
Derive E/F element operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
Measured E/F
Measured E/F element operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
Sensitive E/F
Sensitive E/F element operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
Start Count Alarm Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
50AFD PhA
Arc Flash Detector Phase A operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
50AFD PhB
Arc Flash Detector Phase B operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
50AFD PhC
Arc Flash Detector Phase C operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
50AFD Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
AFD Zone 1 Flash Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
7SR210 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 49 of 61
Description Range Default
AFD Zone 1 Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
AFD Zone 2 Flash Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
AFD Zone 2 Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
AFD Zone 3 Flash Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
AFD Zone 3 Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
AFD Zone 4 Flash Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
AFD Zone 4 Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
AFD Zone 5 Flash Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
AFD Zone 5 Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
7SR210 Settings Guide
Unrestricted Page 50 of 61 © 2018 Siemens Protection Devices Limited
Description Range Default
AFD Zone 6 Flash Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
AFD Zone 6 Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
User Output 1
User Output 1 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
---
User Output 32
User Output 32 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
En100 Life
Raised when the En100 is communicating correctly with the
Protection CPU
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
En100 Error
Raised when the En100 has detected an Error
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
IEC61850 Configured
Raised when the En100 and Protection CPU are configured for
IEC 61850.
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
En100 Ch1 Link Down
Raised when En100 Ch 1 Link Down
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
En100 Ch2 Link Down
Raised when En100 Ch 2 Link Down
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
7SR210 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 51 of 61
Description Range Default
Manual Close CB
Close pulse due to Manual close being issued
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
79 AR Close CB
Close pulse due to auto-reclose sequence
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
79 Trip & Reclose
Indicates the Trip & Reclose sequence being performed
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
79 Trip & Lockout
Indicates the Trip & Lockout sequence being performed
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
79 Lockout
Indicates the auto-recloser is in the Lockout state
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
79 Out Of Service
Indicates the auto-recloser is out of service
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
79 In Service
Indicates the auto-recloser is in service
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
79 In Progress
Indicates an auto-reclose sequence is in progress
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
79 Block Extern
Indicates that Extern for the current shot has been selected to
be delayed. (This may be used to block external tripping
elements in the same way as the internal protection elements
are blocked to achieve Instantaneous / Delayed operation.)
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
79 CB Fail To Close
Indicates the CB was not closed at the end of the Close Pulse
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
79 Close Onto Fault
Indicates an element starter or trip operated during the Close
Pulse
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
79 Successful AR
Indicates that after a reclose and at the end of the Reclaim
time the CB was closed and there were no auto-reclose trip
elements operated. (This is issued for 2 secs)
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
Successful Man Close
Indicates that after a manual close and at the end of the
Reclaim time the CB was closed and there were no auto-
reclose trip elements operated. (This is issued for 2 secs)
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
7SR210 Settings Guide
Unrestricted Page 52 of 61 © 2018 Siemens Protection Devices Limited
Description Range Default
Hot Line Working
Indicates that Hot LineWorking functionality has been selected
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
Inst Prot'n Out
Indicates that the protection elements selected to be
Instantaneous elements are switched out
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
E/F Out
Indicates that the instantaneous protection elements are
switched out.
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
SEF Out
Indicates that the SEF protection elements are switched out
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
New Wave Stored
The waveform recorder has stored new information Note: this
is a pulsed output
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
New Fault Stored
The fault recorder has stored new information Note: this is a
pulsed output
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
Out Of Service Mode
Indicates the relay is in Out Of Service Mode
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
Local Mode
Indicates the relay is in Local Mode
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
Remote Mode
Indicates the relay is in Remote Mode
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
BI 1 Operated
DC Binary Input 1 has operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
BI 2 Operated
DC Binary Input 2 has operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
BI 3 Operated
DC Binary Input 3 has operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
BI 4 Operated
DC Binary Input 4 has operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
7SR210 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 53 of 61
Description Range Default
BI 5 Operated
DC Binary Input 5 has operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
BI 6 Operated
DC Binary Input 6 has operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
BI 7 Operated
DC Binary Input 7 has operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
BI 8 Operated
DC Binary Input 8 has operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
BI 9 Operated
DC Binary Input 9 has operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
E1
Quick Logic equation 1 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
E2
Quick Logic equation 2 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
E3
Quick Logic equation 3 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
E4
Quick Logic equation 4 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
E5
Quick Logic equation 5 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
E6
Quick Logic equation 6 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
E7
Quick Logic equation 7 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
E8
Quick Logic equation 8 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
7SR210 Settings Guide
Unrestricted Page 54 of 61 © 2018 Siemens Protection Devices Limited
Description Range Default
E9
Quick Logic equation 9 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
E10
Quick Logic equation 10 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
E11
Quick Logic equation 11 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
E12
Quick Logic equation 12 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
E13
Quick Logic equation 13 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
E14
Quick Logic equation 14 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
E15
Quick Logic equation 15 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
E16
Quick Logic equation 16 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, L1,
L2, L3, L4, L5, L6, L7, L8, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------
Trip Contacts
Assigns Output Contact as trip contact for fault trigger
BO1, BO2, BO3, BO4, BO5, BO6,
BO7, BO8, BO9, BO10, BO11,
BO12, BO13, BO14
----------------------
----------------------
Hand Reset Outputs
Assigns Output Contact as hand reset contact
BO1, BO2, BO3, BO4, BO5, BO6,
BO7, BO8, BO9, BO10, BO11,
BO12, BO13, BO14
----------------------
----------------------
Pickup Outputs
Selects which outputs can operate because a pickup condition
exists
BO1, BO2, BO3, BO4, BO5, BO6,
BO7, BO8, BO9, BO10, BO11,
BO12, BO13, BO14
--------------
Pulsed Outputs
Selects which outputs are pulsed. The pulse width is set by
the Min Operate Time setting for each output
BO1, BO2, BO3, BO4, BO5, BO6,
BO7, BO8, BO9, BO10, BO11,
BO12, BO13, BO14
--------------
7SR210 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 55 of 61
3.8.2. Binary Output Config (Variants may differ)
Description Range Default
Trip Contacts
The Binary Outputs selected by this setting are classed as Trip
contacts. (When any of these BOs operate the Trip LED is lit,
CB Fail is started, if enabled, & a Fault Record is stored)
Combination of ( BO1, to B16) --------
Hand Reset Outputs
Relays selected, as Hand Reset will remain latched until
manually reset from front panel or via communications link or
by removing DC Supply. By default relays are Self Resetting
and will reset when the driving signal is removed.
Combination of ( 1, to 16) --------
Min Operate Time 1
Minimum operate time of output relay if set to self reset, if also
set to be pulsed then this is the pulse width
0, 0.01 ... 59, 60 0.1 s
-
Min Operate Time 8
Minimum operate time of output relay 8 if set to self reset, if
also set to be pulsed then this is the pulse width
0, 0.01 ... 59, 60 0.1 s
Pick-up Outputs
Selects which outputs can operate because a pickup condition
exists
Combination of ( 1 to 16) --------
Pulsed Outputs
Selects which outputs are pulsed. The pulse width is set by
the Min Operate Time setting for each output
Combination of ( 1 to 16) --------
7SR210 Settings Guide
Unrestricted Page 56 of 61 © 2018 Siemens Protection Devices Limited
3.8.3. LED Config
Description Range Default
Self Reset LEDs
LEDs selected, as Self Reset will automatically reset when the
driving signal is removed. By default all LEDs are Hand Reset
and must be manually reset either locally via the front fascia or
remotely via communications.
Combination of ( 1 to 32) --------
PU Self Reset LEDs
LEDs selected, as Self Reset will automatically reset when the
driving signal is removed. By default all PU LEDs are Self
Reset.
Combination of ( 1 to 32) 1 to 32
Green LEDs
Selects which LEDs will be green when driven
Combination of ( 1 to 32) --------
Red LEDs
Selects which LEDs will be red when driven
Combination of ( 1 to 32) 1 to 32
PU Green LEDs
Selects which LEDs will be green when driven by a pickup
Combination of ( 1 to 32) 1 to 32
PU Red LEDs
Selects which LEDs will be red when driven by a pickup
Combination of ( 1 to 32) 1 to 32
3.8.4. Pickup Config
Description Range Default
Gn P/F Pickups
When any of the selected pickups operate General Pickup is
driven.
Combination of ( 51-1, 51-2, 50-1,
50-2 )
51-1, 51-2, 50-1,
50-2
Gn E/F Pickups
As Above
Combination of ( 51N-1, 51N-2,
50N-1, 50N-2, 51G-1, 51G-2, 50G-
1, 50G-2 )
51N-1, 51N-2,
50N-1, 50N-2,
51G-1, 51G-2,
50G-1, 50G-2
Gn SEF/REF Pickups
As Above
Combination of ( 51SEF-1, 51SEF-
2, 50SEF-1, 50SEF-2, 64H )
51SEF-1,
51SEF-2,
50SEF-1,
50SEF-2, 64H
Gn Misc Pickups
As Above
Combination of ( 46IT, 46DT, 37-1,
37-2, 37G-1, 37G-2 )
46IT, 46DT, 37-
1, 37-2, 37G-1,
37G-2
7SR210 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 57 of 61
3.9. CB Maintenance
3.9.1. CB Counters
Description Range Default
Gn CB Total Trip Count
Selects whether the CB Total Trip Count counter is enabled
Disabled, Enabled Disabled
Gn CB Total Trip Count Target
Selects the number of CB trips allowed before CB Total Trip
Count counter output operates
0, 1 ... 9999, 10000 100
Gn CB Total Trip Count Reset
Resets CB Total Trip Count counter
Gn CB Total Trip Manual Open
Selects whether the CB Total Trip Manual Open is enabled
Disabled, Enabled Disabled
Gn CB Phase Trip Counters
Selects whether the CB Phase Trip Counters is enabled
Disabled, Enabled Disabled
Gn CB Ph A Trip Count Target
Selects the number of CB trips allowed before CB Ph A Trip
Count counter output operates
0, 1 ... 9999, 10000 100
Gn CB Ph B Trip Count Target
Selects the number of CB trips allowed before CB Ph B Trip
Count counter output operates
0, 1 ... 9999, 10000 100
Gn CB Ph C Trip Count Target
Selects the number of CB trips allowed before CB Ph C Trip
Count counter output operates
0, 1 ... 9999, 10000 100
Gn CB E/F Trip Count Target
Selects the number of CB trips allowed before CB E/F Trip
Count counter output operates
0, 1 ... 9999, 10000 100
Gn CB Delta Trip Count
Selects whether the CB Delta Trip Count counter is enabled
Disabled, Enabled Disabled
Gn CB Delta Trip Count Target
Selects the number of CB trips allowed before CB Delta Trip
Count counter output operates
0, 1 ... 9999, 10000 100
Gn CB Delta Trip Count Reset
Resets CB Delta Trip Count counter
Gn CB Count To AR Block
Selects whether the CB Count To AR Block counter is enabled
Disabled, Enabled Disabled
Gn CB Count To AR Block Target
Selects the number of CB trips allowed before CB Count To
AR Block counter output operates. While count is above target
the Autorecloser will only perform 1 x Delayed Shot and
Lockout
0, 1 ... 9999, 10000 100
Gn CB Count To AR Block Reset
Resets CB Count To AR Block counter
Gn CB Freq Ops Count
Selects whether the CB Frequent Operations Counter is
enabled
Disabled, Enabled Disabled
Gn CB Freq Ops Count Target
Selects the number of CB trips allowed before CB Frequent
Operations Counter output operates. While count is above
target the Autorecloser will only perform 1 x Delayed Shot and
Lockout
0, 1 ... 9999, 10000 10
Gn CB Freq Ops Count Reset
Resets CB Frequent Operations Counter
7SR210 Settings Guide
Unrestricted Page 58 of 61 © 2018 Siemens Protection Devices Limited
3.9.2. I^2T CB Wear
Description Range Default
Gn I^2t Counter
Selects whether the I^2t CB Wear monitor is enabled
Disabled, Enabled Disabled
Gn Alarm Limit
Sets limit before alarm is issued
10, 11 ... 99000, 100000 10 MA^2 s
Gn Separation Time
Sets the time for CB mechanism to start moving, time before
contacts start to separate
0, 0.001 ... 0.199, 0.2 0.02 s
Gn Clearance Time
Time for CB to clear fault
0, 0.001 ... 0.199, 0.2 0.04 s
Reset I^2t Count
Reset the CB wear count
3.9.3. START COUNT
Description Range Default
Start Types(s)
Selects which type of start-up
Power On, Expected, Unexpected All
Start Count Target
Selects number of times star-up has occurred before output
operatest
0, ...10000 100
3.10. Data Storage
3.10.1. Demand Data/Log
Description Range Default
Data Log Period
Selects period between stored samples
5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35,
40, 45, 50, 55, 60
5 min
Clear Data Log
Clear the Data Log
Gn Demand Window
The time window over which the Min, Max and Mean values
are calculated.
1, 2 ... 23, 24 24 hrs
Gn Demand Window Type
Method used to calculate Demand values.
Fixed, Peak, Rolling Fixed
Gn Demand Reset
Reset all Demand values
7SR210 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 59 of 61
3.10.2. Waveform Storage
Description Range Default
Gn P/F Trig Storage
Select which elements trigger a waveform record
Combination of ( 51-1, 51-2, 50-1, 50-2 ) 51-1, 51-2, 50-1,
50-2
Gn E/F Trig Storage
As Above
Combination of ( 51N-1, 51N-2, 50N-1,
50N-2, 51G-1, 51G-2, 50G-1, 50G-2 )
51N-1, 51N-2,
50N-1, 50N-2,
51G-1, 51G-2,
50G-1, 50G-2
Gn SEF/REF Trig Storage
As Above
Combination of ( 51SEF-1, 51SEF-2,
50SEF-1, 50SEF-2, 64H )
51SEF-1,
51SEF-2,
50SEF-1,
50SEF-2, 64H
Gn Misc Current Storage
As Above
Combination of ( 46IT, 46DT, 37-1, 37-2,
49 Trip, 49 Alarm, 37G-1, 37G-2 )
--------
Gn AFD Trig Storage
As Above
Combination of ( AFD-1, AFD-2, AFD-3,
AFD-4, AFD-5, AFD-6)
------
Pre-trigger Storage
Select Percentage of waveform record stored before
the fault is triggered
10, 20, 30, 40, 50, 60, 70, 80, 90 20 %
Record Duration
Select waveform record duration
10 Rec x 1 Sec, 5 Rec x 2 Sec, 2 Rec x 5
Sec, 1 Rec x 10 Sec
10 Rec x 1 Sec
Trigger Waveform
Trigger waveform storage
Clear Waveforms
Clear all stored waveform records
3.10.3. Fault Storage
Description Range Default
Gn Max Fault Rec Time
Maximum time Fault record information will be stored and
classed as same fault
0, 1 ... 59900, 60000 2000 ms
Clear Faults
Clear all stored fault records
3.10.4. Event Storage
Description Range Default
Clear Events
Clear all stored event records
Data Log
Selects whether the Data Logger is enabled
7SR210 Settings Guide
Unrestricted Page 60 of 61 © 2018 Siemens Protection Devices Limited
3.10.5. Communications
Description Range Default
Station Address
IEC 60870-5-103 Station Address
0, 1 ... 65533, 65534 0
COM1-RS485 Protocol
Selects protocol to use for COM1-RS485
OFF, IEC60870-5-103, MODBUS-RTU, DNP3 IEC60870-5-
103
COM1-RS485 Baud Rate
Sets the communications baud rate for COM1-RS485
75, 110, 150, 300, 600, 1200, 2400, 4800, 9600,
19200, 38400
19200
COM1-RS485 Parity
Selects whether parity information is used
NONE, ODD, EVEN EVEN
COM1-RS485 Mode Local, Remote, Local Or Remote Remote
COM2-USB Protocol
Selects protocol to use for COM2-USB
IEC60870-5-103 IEC60870-5-
103
COM2-USB Mode Local Local
COM3 Protocol
Selects protocol to use for COM3
OFF, IEC60870-5-103, MODBUS-RTU, DNP3 IEC60870-5-
103
COM3 Baud Rate
Sets the communications baud rate for COM3
75, 110, 150, 300, 600, 1200, 2400, 4800, 9600,
19200, 38400, 57600, 115200
19200
COM3 Parity
Selects whether parity information is used
NONE, ODD, EVEN EVEN
COM3 Line Idle
Selects the communications line idle sense
LIGHT OFF, LIGHT ON LIGHT OFF
COM3 Data Echo
Enables echoing of data from RX port to TX port when operating
relays in a Fibre Optic ring configuration
OFF, ON OFF
COM3 Mode Local, Remote, Local Or Remote Remote
COM4 Protocol
Selects protocol to use for COM4
OFF, IEC60870-5-103, MODBUS-RTU, DNP3 OFF
COM4 Baud Rate
Sets the communications baud rate for COM4
75, 110, 150, 300, 600, 1200, 2400, 4800, 9600,
19200, 38400
19200
COM4 Parity
Selects whether parity information is used
NONE, ODD, EVEN EVEN
COM4 Line Idle
Selects the communications line idle sense
LIGHT OFF, LIGHT ON LIGHT OFF
COM4 Data Echo
Enables echoing of data from RX port to TX port when operating
relays in a Fibre Optic ring configuration
OFF, ON OFF
COM4 Mode Local, Remote, Local Or Remote Remote
DNP3 Unsolicited Events
Allows unsolicited event support in the relay. When Enabled,
unsolicited event transmission can be controlled by the Master.
When Disabled, Master requests are ignored.
Disabled, Enabled Disabled
DNP3 Destination Address
The address of the master to which unsolicited events will be sent.
0, 1 ... 65533, 65534 0
7SR210 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 61 of 61
The copyright and other intellectual property rights in this document, and in any model or article produced from
it (and including any registered or unregistered design rights) are the property of Siemens Protection Devices
Limited. No part of this document shall be reproduced or modified or stored in another form, in any data
retrieval system, without the permission of Siemens Protection Devices Limited, nor shall any model or article
be reproduced from this document unless Siemens Protection Devices Limited consent.
While the information and guidance given in this document is believed to be correct, no liability shall be
accepted for any loss or damage caused by any error or omission, whether such error or omission is the result
of negligence or any other cause. Any and all such liability is disclaimed.
© 2017 Siemens Protection Devices Limited
7SR220 Directional Relay
Instrumentation Guide
7SR220 Instrumentation Guide
Page 2 of 20 © 2017 Siemens Protection Devices Limited
Document Release History
This document is issue 2017/12. The list of revisions up to and including this issue is: -
2011/05 First issue
2013/01 Typographical revisions and added data. Updated in line with software release.
2014/06 Typographical revisions and added data. Updated in line with software release.
2015/06 Typographical revisions and added data. Updated in line with software release.
2016/02 Typographical revisions and added data. Updated in line with software release.
2016/11 Typographical revisions and format
2017/08 Typographical revisions and added data. Updated in line with software release.
2017/12 Typographical revisions and added data.
Software Revision History
2011/05 2435H85009R7a-7a (7SR220) First Release
2013/01 2435H85009R7c-7b (7SR220) Introduced journaling file system.
Added 61850 logical nodes for CB Counters, metering, 50BF,
46BC, 81HBL2 and line check.
Added Line Check on non-AR devices.
Added 74CCS Close Circuit Supervision.
2014/06 2435H85009R7f-7d (7SR220) Added Fault Locator feature and Check Sync feature.
Fault data transmitted over 103.
Additional communications data, control features, meters.
2015/06 2435H85009R8a-7f (7SR220) Added Power Factor Meters, Load Blinding feature, Arc Flash
Detector. Over current TM Setting Range extended.
2016/02 2435H85009R8b-7f (7SR220) EN100+ Compatibility.
2017/08 2435H85008R8e-8a (7SR210)
2435H85009R8e-8a (7SR220)
Added 32 Directional Power, 32S Sensitive Power, 55 Power
Factor, 81HLB5 Overfluxing, 67SEF Compensated Network,
67SEF Wattmetric. Increased I/O. Event Data on LCD.
7SR220 Instrumentation Guide
© 2017 Siemens Protection Devices Limited Page 3 of 20
Contents
Document Release History................................................................................. 2
Software Revision History .................................................................................. 2
1. Function Diagram ........................................................................................... 4
2. Menu Structure .............................................................................................. 5
1. Relay Instrumentation .................................................................................... 6
1.1. Favourite Meters.................................................................................... 6
1.2. Current Meters ....................................................................................... 6
1.3. Voltage Meters ...................................................................................... 8
1.4. Frequency Meters .................................................................................. 8
1.5. Power Meters....................................................................................... 10
1.6. Energy Meters ..................................................................................... 12
1.7. WATTMETRIC Meters ......................................................................... 12
1.8. Directional Meters ............................................................................... 12
1.9. Thermal Meters ................................................................................... 12
1.10. Auto-Reclose Meters ........................................................................... 14
1.11. Synchronising Meters .......................................................................... 14
1.12. Maintenance Meters ............................................................................ 14
1.13. General Alarm Meters ......................................................................... 16
1.14. Demand Meters ................................................................................... 16
1.15. Binary Input Meters ............................................................................. 17
1.16. Binary Output Meters ........................................................................... 17
1.17. Virtual Meters ...................................................................................... 19
1.18. Communication Meters ........................................................................ 19
Miscellaneous Meters .................................................................................. 20
1.19. Quick Logic Meters .............................................................................. 20
1.20. Fault Locator ....................................................................................... 20
7SR220 Instrumentation Guide
Page 4 of 20 © 2017 Siemens Protection Devices Limited
1.Function Diagram
7SR220 Instrumentation Guide
© 2017 Siemens Protection Devices Limited Page 5 of 20
2.Menu Structure
7SR220 Instrumentation Guide
Page 6 of 20 © 2017 Siemens Protection Devices Limited
1. Relay Instrumentation
1.1. Favourite Meters
Instrument Description
--------------------
FAVOURITE METERS
> to view
This allows the user to view his previously constructed list of ‘favourite meters’
by pressing TEST/RESET button and the READ DOWN button to scroll
though the meters added to this sub-group
To construct a sub-group of favourite meters, first go to the desired meter then
press ENTER this will cause a message to appear on the LCD ‘Add To
Favourites YES pressing ENTER again will add this to the FAVOURITE
METERS Sub-menu. To remove a meter from the FAVOURITE METERS sub-
menu go to that meter each in the FAVOURITE METERS sub-menu or at its
Primary location press ENTER and the message ‘Remove From Favourites’ will
appear press ENTER again and this meter will be removed from the
FAVOURITE METERS sub-group
1.2. Current Meters
Instrument Description
--------------------
CURRENT METERS
> to view
--------------------
This is the sub-group that includes all the meters that are associated with
Current TEST/RESET allows access to this sub-group
Primary Current
Ia 0.00A
Ib 0.00A
Ic 0.00A
Displays the 3 phase currents Primary RMS values
Secondary Current
Ia 0.00A
Ib 0.00A
Ic 0.00A
Displays the 3 phase currents Secondary RMS values
Nom Current
Ia 0.00xIn ----o
Ib 0.00xIn ----o
Ic 0.00xIn ----o
Displays the 3 phase currents Nominal RMS values & phase angles with
respect to PPS current.
Pri Earth Current
In 0.000A
Ig 0.000A
Displays the 3 Earth currents Primary RMS values
Sec Earth Current
In 0.000A
Ig 0.000A
Displays the 3 Earth currents Secondary RMS values
Nom Earth Current
In 0.000xIn ----o
Ig 0.000xIn ----o
Displays the 3 Earth currents Nominal RMS values & phase angles with respect
to PPS current.
I Seq Components
Izps 0.00xIn ----o
Ipps 0.00xIn ----o
Inps 0.00xIn ----o
Displays the Current Sequence components Nominal RMS values & phase
angles with respect to PPS current.
2
nd
Harmonic Current
Ia 0.00xIn
Ib 0.00xIn
Ic 0.00xIn
Displays the 3 phase currents 2nd Harmonic components Nominal RMS values.
7SR220 Instrumentation Guide
© 2017 Siemens Protection Devices Limited Page 7 of 20
Instrument Description
5
th
Harmonic Current
Ia 0.00xIn
Ib 0.00xIn
Ic 0.00xIn
Displays the 3 phase currents 5th Harmonic components Nominal RMS values.
Last Trip P/F
Ia 0.00A
Ib 0.00A
Ic 0.00A
Displays the Last Trip Fault Current..
Last Trip E/F
In 0.00A
Ig 0.00A
Displays the Last Trip Fault Current..
7SR220 Instrumentation Guide
Page 8 of 20 © 2017 Siemens Protection Devices Limited
1.3. Voltage Meters
--------------------
VOLTAGE METERS
> to view
--------------------
This is the sub-group that includes all the meters that are associated with
Voltage TEST/RESET allows access to this sub-group
Prim Ph-Ph Voltage
Vab 0.00V
Vbc 0.00V
Vca 0.00V
Displays the Phase to Phase Voltage Primary RMS values
Sec Ph-Ph Voltage
Vab 0.00V
Vbc 0.00V
Vca 0.00V
Displays the Phase to Phase Voltage Secondary RMS values & Angles with
respect to PPS voltage.
Nominal Ph-Ph Voltage
Vab 0.00xVn ----o
Vbc 0.00xVn ----o
Vca 0.00xVn ----o
Displays the Phase to Phase Voltage Nominal RMS values
Prim Ph-N Voltage
Va 0.00V
Vb 0.00V
Vc 0.00V
Displays the Phase to Neutral Voltage Primary RMS values
Sec Ph-N Voltage
Va 0.00V
Vb 0.00V
Vc 0.00V
Displays the Phase to Neutral Voltage Secondary RMS values & Angles with
respect to PPS voltage.
Nom Ph-N Voltage
Va 0.00xVn ----o
Vb 0.00xVn ----o
Vc 0.00xVn ----o
Displays the Phase to Neutral Voltage Nominal RMS values
V Seq Components
Izps 0.00V ----o
Ipps 0.00V ----o
Inps 0.00V ----o
Displays the Voltage Sequence components Nominal RMS values & phase
angles with respect to PPS voltage.
Calc Earth Voltage
Pri 0.00V
Sec 0.00V ----o
Displays the calculated Earth voltage both primary and secondary which also
shows the secondary angle
CS/NVD Voltage (Vx)
Pri 0.00V
Sec 0.00V ----o
Displays the 4th voltage (Vx) both primary and secondary which also shows
the secondary angle. This voltage can be used for NVD, Vx 27/59 or where
available Checksync.
Last Trip Voltage
Va 0.00V
Vb 0.00V
Vc 0.00V
Displays the Phase to Neutral Voltage Nominal RMS values from Last Trip
1.4. Frequency Meters
Instrument Description
--------------------
FREQUENCY METERS
> to view
--------------------
This is the sub-group that includes all the meters that are associated with
Frequency TEST/RESET allows access to this sub-group
Displays the power system frequency.
7SR220 Instrumentation Guide
© 2017 Siemens Protection Devices Limited Page 9 of 20
Frequency 0.000Hz
7SR220 Instrumentation Guide
Page 10 of 20 © 2017 Siemens Protection Devices Limited
1.5. Power Meters
Instrument Description
--------------------
POWER METERS
> to view
--------------------
This is the sub-group that includes all the meters that are associated with
Power TEST/RESET allows access to this sub-group
Primary Power (P)
Phase A 0.0W
Phase B 0.0W
Phase C 0.0W
Displays Primary Real Power
Secondary Power (P)
Phase A 0.0W
Phase B 0.0W
Phase C 0.0W
Displays Secondary Real Power
Nominal Power (P)
Phase A 0.00xSn
Phase B 0.00xSn
Phase C 0.00xSn
Displays Nominal Real Power
Primary Power (Q)
Phase A 0.0VAr
Phase B 0.0VAr
Phase C 0.0VAr
Displays Primary Reactive Power
Secondary Power (Q)
Phase A 0.0VAr
Phase B 0.0VAr
Phase C 0.0VAr
Displays Secondary Reactive Power
Nominal Power (Q)
Phase A 0.00xSn
Phase B 0.00xSn
Phase C 0.00xSn
Displays Nominal Reactive Power
Primary Power (S)
Phase A 0.0VA
Phase B 0.0VA
Phase C 0.0VA
Displays Primary Apparent Power
Secondary Power (S)
Phase A 0.0VAr
Phase B 0.0VAr
Phase C 0.0VAr
Displays Secondary Apparent Power
Nominal Power (S)
Phase A 0.00xSn
Phase B 0.00xSn
Phase C 0.00xSn
Displays Nominal Apparent Power
Primary Power (3P)
P 0.0W
Q 0.0VAr
S 0.0VA
Displays 3-Phase Primary Power
Secondary Power (3P)
P 0.0W
Q 0.0VAr
S 0.0VA
Displays 3-Phase Secondary Power
Power Factor
PF A 0.00
PF B 0.00
PF C 0.00
Displays Power factor
7SR220 Instrumentation Guide
© 2017 Siemens Protection Devices Limited Page 11 of 20
PF (3P) 0.00
Primary Power (32S)
P (32S) 0.0W
Q (32S) 0.0VAr
S (32S) 0.0VA
Displays 3-Phase Primary Power (32S)
Secondary Power (32S)
P (32S) 0.0W
Q (32S) 0.0VAr
S (32S) 0.0VA
Displays 3-Phase Secondary Power (32S)
Nominal Power (32S)
P (32S) 0.00xSn
Q (32S) 0.00xSn
S (32S) 0.00xSn
Displays 3-Phase Nominal Power (32S)
Power Factor (32S)
PF (32S) 0.00 Displays Power Factor (32S)
7SR220 Instrumentation Guide
Page 12 of 20 © 2017 Siemens Protection Devices Limited
1.6. Energy Meters
Instrument Description
--------------------
ENERGY METERS
> to view
--------------------
This is the sub-group that includes all the meters that are associated with
Energy TEST/RESET allows access to this sub-group
Active Energy
Exp 000000x10kWh
Imp 000000x10kWh
Displays both imported and exported Active Energy
Reactive Energy
Exp 000000x10kVArh
Imp 000000x10kVArh
Displays both imported and exported Reactive Energy
1.7. WATTMETRIC Meters
Instrument Description
--------------------
WATTMETRIC
METERS
> to view
--------------------
This is the sub-group that includes all the meters that are associated with
Wattmetric TEST/RESET allows access to this sub-group sub-group
Ires R 0.0xIn W
Pres 0.0 xIn W
Ires R Angle 0.0º
I0-V0 Angle 0.0º
The Wattmetric component of residual current
Wattmetric residual power
Compensated residual phase angle
Applied residual phase angle
1.8. Directional Meters
Instrument Description
--------------------
DIRECTIONAL METERS
> to view
--------------------
This is the sub-group that includes all the meters that are associated with
Directional elements TEST/RESET allows access to this sub-group. Only
seen on models that have the 67 option
P/F Dir (67)
--------------------
No Dir
The appropriate values from the selection will be displayed.
No Dir, PhA Fwd, PhA Rev, PhB Fwd, PhB Rev, PhC Fwd, PhC Rev
Calc E/F Dir (67N)
--------------------
No Dir
The appropriate values from the selection will be displayed.
No Dir, E/F Fwd, E/F Rev
Meas E/F Dir (67G)
--------------------
No Dir
The appropriate values from the selection will be displayed.
No Dir, E/F Fwd, E/F Rev
SEF Dir (67SEF)
--------------------
No Dir
The appropriate values from the selection will be displayed.
No Dir, SEF Fwd, SEF Rev
1.9. Thermal Meters
Instrument Description
-------------------- This is the sub-group that includes all the meters that are associated with
7SR220 Instrumentation Guide
© 2017 Siemens Protection Devices Limited Page 13 of 20
Instrument Description
THERMAL METERS
> to view
Thermal TEST/RESET allows access to this sub-group
Thermal Status
Phase A 0.0%
Phase B 0.0%
Phase C 0.0%
Displays the thermal capacity
7SR220 Instrumentation Guide
Page 14 of 20 © 2017 Siemens Protection Devices Limited
1.10. Auto-Reclose Meters
Instrument Description
--------------------
AUTORECLOSE METERS
> to view
--------------------
This is the sub-group that includes all the meters that are associated with
Autoreclose TEST/RESET allows access to this sub-group. Only seen on
models that have the 79 option
Autoreclose Status
Out Of Service
Close Shot 0
Status of the autoreclose.
1.11. Synchronising Meters
SYNC METERS
to view
This is the sub-group that includes all the meters that are
associated with Synchronising TEST/RESET allows access to
this sub-group
Line Volts 0.00V
Bus Volts 0.00V
Line Freq 0.000Hz
Bus Freq 0.000Hz
Displays the voltages used for synchronising in models that include
this function
Phase Diff 0.0Deg
Slip Freq 0.000Hz
Voltage Diff 0%
Displays the calculated synchronising parameters in models that
include this function
1.12. Maintenance Meters
Instrument Description
--------------------
MAINTENANCE METERS
> to view
--------------------
This is the sub-group that includes all the meters that are associated with
Maintenance TEST/RESET allows access to this sub-group
CB Total Trips
Count 0
Target 100
Displays the number of CB trips experienced by the CB
CB Phase A Trips
Count 0
Target 100
Displays the number of CB Phase A Trips experienced by the CB
CB Phase B Trips
Count 0
Target 100
Displays the number of CB Phase B Trips experienced by the CB
CB Phase C Trips
Count 0
Target 100
Displays the number of CB Phase C Trips experienced by the CB
CB Phase E/F Trips
Count 0
Target 100
Displays the number of CB Phase E/F Trips experienced by the CB
CB Delta Trips
Count 0
Target 100
Displays the number of CB trips experienced by the CB
CB Count To AR Block
Count 0 Displays the number of CB trips experienced by the CB. When the target is
reached the relay will only do 1 Delayed Trip to Lockout.
7SR220 Instrumentation Guide
© 2017 Siemens Protection Devices Limited Page 15 of 20
Instrument Description
Target 100
CB Freq Ops Count
Count 0
Target 10
Displays the number of CB trips experienced by the CB over the last rolling 1 hr
period. When the target is reached the relay will only do 1 Delayed Trip to
Lockout.
CB Wear
Phase A 0.00MA^2s
Phase B 0.00MA^2s
Phase C 0.00MA^2s
Displays the current measure of circuit breaker wear.
CB Wear Remaining
Phase A 100%
Phase B 100%
Phase C 100%
Displays the current measure of circuit breaker wear remaining
CB Trip Time
0.0ms Displays the trip time for the circuit breaker.
7SR220 Instrumentation Guide
Page 16 of 20 © 2017 Siemens Protection Devices Limited
1.13. General Alarm Meters
Instrument Description
--------------------
GENERAL ALARM
METERS
> to view
--------------------
This is the sub-group that includes all the meters that are associated with the
Binary inputs TEST/RESET allows access to this sub-group
General Alarms
--------------------
ALARM 1 Cleared
Displays the state of General Alarm
General Alarms
--------------------
ALARM 20 Cleared
1.14. Demand Meters
Instrument Description
--------------------
DEMAND METERS
> to view
--------------------
This is the sub-group that includes all the meters that are associated with the
demand metering. TEST/RESET allows access to this sub-group
V Phase A Demand
Max 0.00V
Min 0.00V
Mean 0.00V
Shows the Max, Min and Mean Voltage for Phase A.
V Phase B Demand
Max 0.00V
Min 0.00V
Mean 0.00V
Shows the Max, Min and Mean Voltage for Phase AB.
V Phase C Demand
Max 0.00V
Min 0.00V
Mean 0.00V
Shows the Max, Min and Mean Voltage for Phase AC.
V Phase AB Demand
Max 0.00V
Min 0.00V
Mean 0.00V
Shows the Max, Min and Mean Voltage for Phase AB.
V Phase BC Demand
Max 0.00V
Min 0.00V
Mean 0.00V
Shows the Max, Min and Mean Voltage for Phase BC.
V Phase CA Demand
Max 0.00V
Min 0.00V
Mean 0.00V
Shows the Max, Min and Mean Voltage for Phase CA.
I Phase A Demand
Max 0.00A
Min 0.00A
Mean 0.00A
Shows the Max, Min and Mean for Phase A.
7SR220 Instrumentation Guide
© 2017 Siemens Protection Devices Limited Page 17 of 20
Instrument Description
I Phase B Demand
Max 0.00A
Min 0.00A
Mean 0.00A
Shows the Max, Min and Mean for Phase B.
I Phase C Demand
Max 0.00A
Min 0.00A
Mean 0.00A
Shows the Max, Min and Mean for Phase C.
I Phase Ig Demand
Max 0.00A
Min 0.00A
Mean 0.00A
Shows the Max, Min and Mean for Phase Ig.
Power P 3P Demand
Max 0.00W
Min 0.00W
Mean 0.00W
Shows the Max, Min and Mean for Power P 3P Demand.
Power Q 3P Demand
Max 0.00VAr
Min 0.00VAr
Mean 0.00VAr
Shows the Max, Min and Mean for Power Q 3P Demand.
Power S 3P Demand
Max 0.00VA
Min 0.00VA
Mean 0.00VA
Shows the Max, Min and Mean for Power S 3P Demand.
Frequency Demand
Max 0.000Hz
Min 0.000Hz
Mean 0.000Hz
Shows the Max, Min and Mean for System Frequency Demand.
Power Factor 3P Demand
Max 0.00
Min 0.00
Mean 0.00
Shows the Max, Min and Mean for System Power Factor 3P Demand.
1.15. Binary Input Meters
Instrument Description
--------------------
BINARY INPUT METERS
> to view
--------------------
This is the sub-group that includes all the meters that are associated with the
Binary inputs TEST/RESET allows access to this sub-group
BI 1-8 ---- ----
BI 9-9 - Displays the state of DC binary inputs 1 to 9 (The number of binary inputs may
vary depending on model)
1.16. Binary Output Meters
Instrument Description
--------------------
BINARY OUTPUT METERS
> to view
This is the sub-group that includes all the meters that are associated
with the Binary Outputs TEST/RESET allows access to this sub-
group
7SR220 Instrumentation Guide
Page 18 of 20 © 2017 Siemens Protection Devices Limited
Instrument Description
--------------------
BO 1-8 ---- ---- Displays the state of DC binary Outputs 1 to 8. (The number of binary
outputs may vary depending on model)
7SR220 Instrumentation Guide
© 2017 Siemens Protection Devices Limited Page 19 of 20
1.17. Virtual Meters
Instrument Description
--------------------
VIRTUAL METERS
> to view
--------------------
This is the sub-group that shows the state of the virtual status inputs in the relay
TEST/RESET allows access to this sub-group
V 1-8 ---- ----
V 9-16 ---- ---- Displays the state of Virtual Outputs 1 to 16 (The number of virtual inputs will
vary depending on model)
1.18. Communication Meters
Instrument Description
--------------------
COMMUNICATI
ON METERS
> to view
--------------------
This is the sub-group that includes all the meters that are associated
with Communications ports TEST/RESET allows access to this
sub-group
COM1
COM2
COM3
COM4
Displays which com ports are currently active
COM1 TRAFFIC
Tx1 0
Rx1 0
Rx1 Errors 0
Displays traffic on Com1
COM2 TRAFFIC
Tx2 0
Rx2 0
Rx2 Errors 0
Displays traffic on Com2
COM3 TRAFFIC
Tx3 0
Rx3 0
Rx3 Errors 0
Displays traffic on Com3
COM4 TRAFFIC
Tx4 0
Rx4 0
Rx4 Errors 0
Displays traffic on Com4
EN100 INFORMATION
Version : EN100 Version Info
Part# BF1111111111
Displays EN100 information
Network Config
Mac 00000000
IP 000.000.000.000
NM 255.255.255.000
Displays EN100 network information
Gateway: 000.000.000.000
EN100 NTP info:
EN100 Link ½ status info:
EN100 Rx/Tx Count
Displays further EN100 61850 information
En100 Rx/Tx Error
En100 Rx/Tx 10s
CPU Load %
EN100 Info Meters : 1-n
Displays further EN100 61850 information
7SR220 Instrumentation Guide
Page 20 of 20 © 2017 Siemens Protection Devices Limited
Miscellaneous Meters
Instrument Description
--------------------
MISCELLANEOUS METERS
> to view
--------------------
This is the sub-group that includes indication such as the relays time and
date, the amount of fault and waveform records stored in the relay
TEST/RESET allows access to this sub-group
Start Alarm
Count 0
Target 100
This meter displays the Start Alarm count.
Hrs In Service Time
Time 0Hrs This meter displays the amount of time in service
Date 01/01/2000
Time 22:41:44
Waveform Recs 0
Fault Recs 0
This meter displays the Date, Time, Waveform Records and the number of
Fault Records stored in the relay
Event Recs 0
Data Log Recs 0
Settings Group 1
This meter displays the Event Records, Data Log Records and Active
Settings Group number stored in the relay
1.19. Quick Logic Meters
Instrument Description
--------------------
QUICK LOGIC METERS
> to view
--------------------
This is the sub-group that includes all the meters that are associated with
QuickLogic. TEST/RESET allows access to this sub-group
E 1-8 ---- ----
E 9-16 ---- ---- Shows the state of all the equations
E1 Equation
EQN =0
TMR 0-0 =0
CNT 0-1 =0
Shows the state of an individual equation. EQN shows the equation state.
TMR shows the timer progress and state for the equation. CNT shows the
count progress and state for the equation.
E16 Equation
EQN =0
TMR 0-0 =0
CNT 0-1 =0
Shows the state of an individual equation. EQN shows the equation state.
TMR shows the timer progress and state for the equation. CNT shows the
count progress and state for the equation.
1.20. Fault Locator
Instrument Description
--------------------
FAULT LOCATOR METER
> to view
--------------------
This is the sub-group that includes all the meters that are associated
with the Fault Locator TEST/RESET allows access to this sub-
group
Distance 0.0%
Impedance 0.0ohms
Reactance 0.0ohms
Displays the Fault Location.
Unrestricted The copyright and other intellectual property rights in this document, and in any model or article
produced from it (and including any registered or unregistered design rights) are the property of Siemens
Protection Devices Limited. No part of this document shall be reproduced or modified or stored in another form,
in any data retrieval system, without the permission of Siemens Protection Devices Limited, nor shall any model
or article be reproduced from this document unless Siemens Protection Devices Limited consent.
While the information and guidance given in this document is believed to be correct, no liability shall be
accepted for any loss or damage caused by any error or omission, whether such error or omission is the result
of negligence or any other cause. Any and all such liability is disclaimed.
© 2013 Siemens Protection Devices Limited
7SR220 Directional Relay
Settings Guide
7SR220 Settings Guide
Unrestricted Page 2 of 107 © 2013 Siemens Protection Devices Limited
Document Release History
This document is issue 2017/12. The list of revisions up to and including this issue is: -
2011/05 First issue
2013/01 Typographical revisions and added data. Updated in line with software release.
2014/06 Typographical revisions and added data. Updated in line with software release.
2015/06 Typographical revisions and added data. Updated in line with software release.
2016/02 Typographical revisions and added data. Updated in line with software release.
2016/02 Typographical revisions and added data. Updated in line with software release.
2017/12 Typographical revisions and added data.
Software Revision History
2011/05 2435H85009R7a-7a (7SR220) First Release
2013/01 2435H85009R7c-7b (7SR220) Introduced journaling file system.
Added 61850 logical nodes for CB Counters, metering, 50BF,
46BC, 81HBL2 and line check.
Added Line Check on non-AR devices.
Added 74CCS Close Circuit Supervision.
2014/06 2435H85009R7f-7d (7SR220) Added Fault Locator feature and Check Sync feature.
Fault data transmitted over 103.
Additional communications data, control features, meters.
2015/06 2435H85009R8a-7f (7SR220) Added Power Factor Meters, Load Blinding feature, Arc Flash
Detector. Over current TM setting range extended.
2016/02 2435H85009R8b-7f (7SR220) EN100+ Compatibility.
2017/08 2435H85008R8e-8a (7SR210)
2435H85009R8e-8a (7SR220)
Added 32 Directional Power, 32S Sensitive Power, 55 Power
Factor, 81HLB5 Overfluxing. Increased I/O.
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 3 of 107
Contents
Document Release History .............................................................................................................. 2
Software Revision History ............................................................................................................... 2
1. Function Diagram .................................................................................................................... 6
2. Menu Structure ........................................................................................................................ 7
3. Relay Settings .......................................................................................................................... 8
3.1. System Config ................................................................................................................. 8
3.2. CT/VT Config .................................................................................................................. 9
3.3. Function Config ............................................................................................................ 10
3.4. Current Prot’n................................................................................................................ 12
3.4.1. Phase Overcurrent ............................................................................................ 12
3.4.1.1. 51-1 ......................................................................................................... 12
3.4.1.2. 51-2 ......................................................................................................... 13
3.4.1.3. 51-3 ......................................................................................................... 14
3.4.1.4. 51-4 ......................................................................................................... 15
3.4.1.5. 50-1 ......................................................................................................... 15
3.4.1.6. 50-2 ......................................................................................................... 16
3.4.1.7. 50-3 ......................................................................................................... 16
3.4.1.8. 50-4 ......................................................................................................... 17
3.4.2. Voltage Controlled O/C .................................................................................... 17
3.4.3. Cold Load........................................................................................................... 18
3.4.4. Derived E/F ........................................................................................................ 19
3.4.4.1. 51N-1 ...................................................................................................... 19
3.4.4.2. 51N-2 ...................................................................................................... 20
3.4.4.3. 51N-3 ...................................................................................................... 20
3.4.4.4. 51N-4 ...................................................................................................... 21
3.4.4.5. 50N-1 ...................................................................................................... 22
3.4.4.6. 50N-2 ...................................................................................................... 22
3.4.4.7. 50N-3 ...................................................................................................... 22
3.4.4.8. 50N-4 ...................................................................................................... 23
3.4.5. Measured E/F .................................................................................................... 23
3.4.5.1. 51G-1 ...................................................................................................... 23
3.4.5.2. 51G-2 ...................................................................................................... 24
3.4.5.3. 51G-3 ...................................................................................................... 25
3.4.5.4. 51G-4 ...................................................................................................... 25
3.4.5.5. 50G-1 ...................................................................................................... 26
3.4.5.6. 50G-2 ...................................................................................................... 26
3.4.5.7. 50G-3 ...................................................................................................... 26
3.4.5.8. 50G-4 ...................................................................................................... 27
3.4.6. Sensitive E/F ..................................................................................................... 27
3.4.6.1. 51SEF-1 .................................................................................................. 27
3.4.6.2. 51SEF-2 .................................................................................................. 28
3.4.6.3. 51SEF-3 .................................................................................................. 28
3.4.6.4. 51SEF-4 .................................................................................................. 29
7SR220 Settings Guide
Unrestricted Page 4 of 107 © 2013 Siemens Protection Devices Limited
3.4.6.5. 50SEF-1 .................................................................................................. 30
3.4.6.6. 50SEF-2 .................................................................................................. 30
3.4.6.7. 50SEF-3 .................................................................................................. 30
3.4.6.8. 50SEF-4 .................................................................................................. 30
3.4.7. Restricted E/F .................................................................................................... 31
3.4.8. NPS Overcurrent ............................................................................................... 31
3.4.8.1. 46IT .......................................................................................................... 31
3.4.8.2. 46DT ........................................................................................................ 31
3.4.9. Under Current .................................................................................................... 32
3.4.9.1. 37-1 .......................................................................................................... 32
3.4.9.2. 37-2 .......................................................................................................... 32
3.4.9.3. 37G-1 ....................................................................................................... 32
3.4.9.4. 37G-2 ....................................................................................................... 32
3.4.9.5. 37SEF-1 .................................................................................................. 33
3.4.9.6. 37SEF-2 .................................................................................................. 33
3.4.10. Thermal ......................................................................................................... 33
3.4.11. ARC Flash Detector ..................................................................................... 33
3.5. Voltage Protection......................................................................................................... 33
3.5.1. Phase U/O Voltage ............................................................................................ 33
3.5.2. 27/59-1 ................................................................................................................ 34
3.5.3. 27/59-2 ................................................................................................................ 34
3.5.4. 27/59-3 ................................................................................................................ 35
3.5.5. 27/59-4 ................................................................................................................ 35
3.6. Vx U/O Voltage .............................................................................................................. 36
3.7. NPS Overvoltage .......................................................................................................... 36
3.7.1. 47-1 ..................................................................................................................... 36
3.7.2. 47-2 ..................................................................................................................... 36
3.8. Neutral Overvoltage ...................................................................................................... 37
3.8.1. 59NIT .................................................................................................................. 37
3.8.2. 59NDT ................................................................................................................. 37
3.9. U/O Frequency .............................................................................................................. 37
3.9.1. 81-1 ..................................................................................................................... 38
3.9.2. 81-2 ..................................................................................................................... 38
3.9.3. 81-3 ..................................................................................................................... 38
3.9.4. 81-4 ..................................................................................................................... 39
3.9.5. 81-5 ..................................................................................................................... 39
3.9.6. 81-6 ..................................................................................................................... 40
3.10. Supervision .................................................................................................................... 40
3.10.1. CB Fail .......................................................................................................... 40
3.10.2. VT Supervision ............................................................................................. 40
3.10.3. CT Supervision............................................................................................. 41
3.10.4. Broken Conductor ........................................................................................ 41
3.10.5. Trip CCT Supervision .................................................................................. 42
3.10.6. Close CCT Supervision ............................................................................... 42
3.10.7. Inrush Detector ............................................................................................. 42
3.10.8. Load Blinder ................................................................................................. 43
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 5 of 107
3.10.8.1. 21LB-3P ............................................................................................. 43
3.10.8.2. 21LB-1P ............................................................................................. 43
3.11. Control & Logic ............................................................................................................. 43
3.11.1. Autoreclose Prot’n ....................................................................................... 43
3.11.2. Autoreclose Config ...................................................................................... 44
3.11.2.1. P/F Shots ........................................................................................... 45
3.11.2.2. E/F Shots ........................................................................................... 45
3.11.2.3. SEF Shots.......................................................................................... 46
3.11.2.4. Extern Shots ...................................................................................... 47
3.11.3. Synchronising Check .................................................................................. 47
3.11.4. Manual CB Control ...................................................................................... 48
3.11.5. Circuit Breaker ............................................................................................. 49
3.11.6. QUICK LOGIC ............................................................................................. 49
3.12. Input Config ................................................................................................................... 58
3.12.1. Input Matrix .................................................................................................. 58
3.12.2. Function Key Matrix .................................................................................... 71
3.12.3. Binary Input Config ..................................................................................... 73
3.12.4. Function Key Config.................................................................................... 74
3.12.5. General Alarms ............................................................................................ 75
3.13. Output Config ................................................................................................................ 76
3.13.1. Output Matrix ............................................................................................... 76
3.13.2. Binary Output Config .................................................................................. 99
3.13.3. LED Config ..................................................................................................100
3.13.4. Pickup Config..............................................................................................101
3.14. Maintenance ................................................................................................................101
3.14.1. CB Counters ...............................................................................................102
3.14.2. I^2T CB Wear .............................................................................................102
3.14.3. START COUNT ..........................................................................................103
3.15. Data Storage ................................................................................................................103
3.15.1. Demand Data/Log ......................................................................................103
3.15.2. Waveform Storage .....................................................................................103
3.15.3. Fault Storage ..............................................................................................104
3.15.4. Event Storage .............................................................................................104
3.15.5. Energy Storage ...........................................................................................104
3.15.6. Fault Locator ...............................................................................................105
3.15.7. Communications .........................................................................................106
7SR220 Settings Guide
Unrestricted Page 6 of 107 © 2013 Siemens Protection Devices Limited
1.Function Diagram
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 7 of 107
2.Menu Structure
SETTINGS MODE INSTRUMENTS MODE EVENT DATA MODE
SYSTEM CONFIG
FUNCTION CONFIG
CT/VT CONFIG
PHASE U/O VOLTAGE
NPS OVERVOLTAGE
U/O FREQUENCY
VOLTAGE PROT’N
SUPERVISION
27/59-1
27/59-2
27/59-3
27/59-4
47-1
47-2
59NIT
59NDT
81-1
81-2
81-3
81-4
81-5
81-6
CB FAIL
VT SUPERVISION
CT SUPERVISION
BROKEN CONDUCTOR
TRIP CCT SUPERVISION
AUTORECLOSE PROT’N
AUTORECLOSE CONFIG
CURRENT PROT’N PHASE OVERCURRENT
51-3
50-1
51N-4
VOLTAGE CONT O/C
DERIVED E/F
MEASURED E/F
51G-3
50G-1
50G-3
SENSITIVE E/F
RESTRICTED E/F
COLD LOAD
NPS OVERCURRENT
UNDER CURRENT
THERMAL
CONTROL & LOGIC
CIRCUIT BREAKER
QUICK LOGIC
INPUT CONFIG
OUTPUT CONFIG
CB MAINTENANCE
DATA STORAGE
INPUT MATRIX
FUNCTION KEY MATRIX
BINARY INPUT CONFIG
OUTPUT MATRIX
BINARY OUTPUT CONFIG
LED CONFIG
PICKUP CONFIG
CB COUNTERS
I^2T CB WEAR
NEUTRAL OVERVOLTAGE
CONTROL MODE
CB TRAVELLING CLOSE I OPEN
AR : OUT OF SERVICE
AR : TRIP & RECLOSE
AR : TRIP & LOCKOUT
E/F IN
HOTLINE WORKING : OUT
INST PROT'N : IN
IN I OUT
CONFIRM ACTION
CONFIRM ACTION
IN I OUT
IN I OUT
IN I OUT
FAVOURITE METERS
CURRENT METERS
VOLTAGE METERS
FREQUENCY METERS
POWER METERS
ENERGY METERS
THERMAL METERS
AUTORECLOSE METERS
MAINTENANCE METERS
GENERAL ALARM METERS
BINARY INPUT METERS
BINARY OUTPUT METERS
VIRTUAL METERS
COMMUNICATION METERS
7SR22 ARGUS
ENTER to CONTROL
COMMUNICATIONS
MANUAL CLOSE
51-1
51-2
51-4
50-2
50-3
50-4
51N-1
51N-2
51N-3
50N-1
50N-2
50N-3
50N-4
51G-1
51G-2
51G-4
50G-2
50G-4
51SEF-1
51SEF-2
51SEF-3
51SEF-4
50SEF-1
50SEF-2
50SEF-3
50SEF-4
46IT
46DT
37-1
37-2
Vx U/O VOLTAGE
INRUSH DETECTOR
GENERAL ALARMS
DIRECTIONAL METERS
MISCELLANEOUS METERS
FUNCTION KEY CONFIG
DEMAND
SEF IN IN I OUT
FAULT DATA MODE
NUMBER OF FAULTS
7SR220 Settings Guide
Unrestricted Page 8 of 107 © 2013 Siemens Protection Devices Limited
3.Relay Settings
3.1. System Config
Description Range Default
Active Group
Selects which settings group is currently activated
System Frequency
Selects the Power System Frequency from 50 or 60 Hz
50, 60 50Hz
View/Edit Group
Selects which settings group is currently being displayed
Setting Dependencies
When enabled only active settings are displayed and all others
hidden
Disabled, Enabled Enabled
Favourite Meters Timer
Selects the time delay after which, if no key presses have
been detected, the relay will begin to poll through any screens
which have been selected as favourite instruments
Off, 1, 2, 5, 10, 15, 30, 60 60 min
Backlight timer
Controls when the LCD backlight turns off
Off, 1, 2, 5, 10, 15, 30, 60 5 min
Date
Sets the date, this setting can only be changed on the fascia or
via Relay->Control->Set Time and Date
Time
Sets the time, this setting can only be changed on the fascia or
via Relay->Control->Set Time and Date
Curr Set Display
Select whether the Pickup values are shown in terms of x
Nominal, Primary or Secondary values on the Relay Fascia
xNom, Primary, Secondary xNom
E/F Curr Set Display
As Above
xNom, Primary, Secondary xNom
SEF/REF Curr Set Display
As Above
xNom, Primary, Secondary xNom
Export Power/Lag VAr
Selects the signs required for exporting power and lagging
VArs
+ve/+ve, +ve/-ve, -ve/+ve, -ve/-ve +ve/+ve
Select Grp Mode
Mode of operation of the group change from status input. Edge
triggered ignores the status input once it has changed to the
relevant group, where as with Level triggered the relay will
only stay in the group it has changed to whilst the status input
is being driven, after which it returns to the previous group.
Edge triggered, Level triggered Edge triggered
Clock Sync. From BI
Real time clock may be synchronised using a binary input
(See Clock Sync. in Binary Input Menu)
Disabled, Seconds, Minutes Minutes
Operating Mode
Selects the current operating mode of the relay. This can also
be changed by a binary input mode selection.
Out Of Service, Local, Remote,
Local Or Remote
Local Or Remote
Setting Password
Allows a 4 character alpha code to be entered as the
password. Note that the display shows a password dependant
encrypted code on the second line of the display
(Password) NONE
Control Password
As Above
(Password) NONE
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 9 of 107
Description Range Default
Trip Alert
When Enabled the occurance of a Trip will cause the relay to
display the Trip Alert Screen, the only way to leave this screen
is by acknowledging the trip through the TEST/RESET button
on the relay fascia
Disabled, Enabled Enabled
General Alarm Alert Disabled, Enabled Enabled
Relay Identifier
An alphanumeric string shown on the LCD normally used to
identify the relay or the relays purpose
(16 Character String) ARGUS-M
7SR22
Circuit Identifier
An alphanumeric string shown on the LCD normally used to
identifier the circuit the relay is attached to or the relays
purpose
(16 Character String)
3.2. CT/VT Config
Description Range Default
Phase Nom Voltage
Selects the nominal voltage setting Vn of the voltage input
40, 40.1 ... 159.9, 160 63.5 V
Phase Voltage Trim Magnitude
Allows trimming of voltage magnitude, the setting value should
be the voltage required to be added to get back to Phase Nom
Voltage.
-20, -19.9 ... 19.9, 20 0 V
Phase Voltage Trim Angle
Allows trimming of voltage angle, the setting value is added to
the current voltage angle
-45, -44.9 ... 44.9, 45 0 deg
Phase Voltage Config
Required to allow for different types of physical VT connections.
Van,Vbn,Vcn, Vab,Vbc,3V0,
Va,Vb,Vc
Van,Vbn,Vcn
Phase VT Ratio Prim ( 6 Character String) 132000 V
Phase VT Ratio Sec 40, 40.5 ... 159.5, 160 110 V
Vx Nom Voltage
Selects the nominal voltage setting Vn of the voltage input
40, 40.1 ... 159.9, 160 63.5 V
Vx Voltage Trim Magnitude
Allows trimming of voltage magnitude, the setting value should
be the voltage required to be added to get back to Vx Nom
Voltage.
-20, -19.9 ... 19.9, 20 0 V
Vx Voltage Trim Angle
Allows trimming of voltage angle, the setting value is added to
the current voltage angle
-45, -44.9 ... 44.9, 45 0 deg C
Vx VT Ratio Prim ( 6 Character String) 132000 V
Vx VT Ratio Sec 40, 40.5 ... 159.5, 160 110 V
Phase Current Input
Selects whether 1 or 5 Amp terminals are being used for phase
inputs
1, 5 1 A
Phase CT Ratio Prim
Phase CT ratio to scale primary current instruments
( 6 Character String) 1600 A
Phase CT Ratio Sec
Phase CT ratio to scale secondary current instruments
0.2, 0.21 ... 2, 2.1.....7 1
7SR220 Settings Guide
Unrestricted Page 10 of 107 © 2013 Siemens Protection Devices Limited
Description Range Default
Earth Current Input
Selects whether 1 or 5 Amp terminals are being used for
Measured Earth inputs
1, 5 1 A
Earth CT Ratio Prim
Measured Earth CT ratio to scale primary current instruments
( 6 Character String) 2000 A
Earth CT Ratio Sec
Measured Earth CT ratio to scale secondary current instruments
0.2, 0.21 ... 2, 2.1.....7 1
SEF/REF Current Input
Selects whether 1 or 5 Amp terminals are being used for
SEF/REF inputs
1, 5 1 A
SEF/REF CT Ratio Prim
SEF/REF CT ratio to scale primary current instruments
( 6 Character String) 2000 A
SEF/REF CT Ratio Sec
SEF/REF CT ratio to scale primary current instruments
0.2, 0.21 ... 2, 2.1.....7 1
3.3. Function Config
Description Range Default
Gn Phase Overcurrent
When set to Disabled, no Phase Overcurrent elements will be
functional and all associated settings will be hidden. (The
Setting Dependencies setting being set to Disabled will make
all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
Gn Voltage Cont O/C
When set to Disabled, no Voltage Cont O/C elements will be
functional and all associated settings will be hidden. (The
Setting Dependencies setting being set to Disabled will make
all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
Gn Cold Load
When set to Disabled, no Cold Load elements will be
functional and all associated settings will be hidden. (The
Setting Dependencies setting being set to Disabled will make
all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
Gn Derived E/F
When set to Disabled, no Derived E/F elements will be
functional and all associated settings will be hidden. (The
Setting Dependencies setting being set to Disabled will make
all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
Gn Measured E/F
When set to Disabled, no Measured E/F elements will be
functional and all associated settings will be hidden. (The
Setting Dependencies setting being set to Disabled will make
all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
Gn Sensitive E/F
When set to Disabled, no Sensitive E/F elements will be
functional and all associated settings will be hidden. (The
Setting Dependencies setting being set to Disabled will make
all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
Gn Restricted E/F
When set to Disabled, no Restricted E/F elements will be
functional and all associated settings will be hidden. (The
Setting Dependencies setting being set to Disabled will make
all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
Gn NPS Overcurrent
When set to Disabled, no NPS Overcurrent elements will be
functional and all associated settings will be hidden. (The
Setting Dependencies setting being set to Disabled will make
all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 11 of 107
Description Range Default
Gn Under Current
When set to Disabled, no Under Current elements will be
functional and all associated settings will be hidden. (The
Setting Dependencies setting being set to Disabled will make
all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
Gn Thermal
When set to Disabled, no Thermal elements will be functional
and all associated settings will be hidden. (The Setting
Dependencies setting being set to Disabled will make all
settings visible but will not allow them to operate).
Enabled, Disabled Disabled
Gn Phase U/O Voltage
When set to Disabled, no Phase U/O Voltage elements will be
functional and all associated settings will be hidden. (The
Setting Dependencies setting being set to Disabled will make
all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
Gn Vx U/O Voltage
When set to Disabled, no Vx U/O Voltage elements will be
functional and all associated settings will be hidden. (The
Setting Dependencies setting being set to Disabled will make
all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
Gn NPS Overvoltage
When set to Disabled, no NPS Overvoltage elements will be
functional and all associated settings will be hidden. (The
Setting Dependencies setting being set to Disabled will make
all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
Gn Neutral Overvoltage
When set to Disabled, no Neutral Overvoltage elements will be
functional and all associated settings will be hidden. (The
Setting Dependencies setting being set to Disabled will make
all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
Gn U/O Frequency
When set to Disabled, no U/O Frequency elements will be
functional and all associated settings will be hidden. (The
Setting Dependencies setting being set to Disabled will make
all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
Gn CB Fail
When set to Disabled, no CB Fail elements will be functional
and all associated settings will be hidden. (The Setting
Dependencies setting being set to Disabled will make all
settings visible but will not allow them to operate).
Enabled, Disabled Disabled
Gn VT Supervision
When set to Disabled, no VT Supervision elements will be
functional and all associated settings will be hidden. (The
Setting Dependencies setting being set to Disabled will make
all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
Gn CT Supervision
When set to Disabled, no CT Supervision elements will be
functional and all associated settings will be hidden. (The
Setting Dependencies setting being set to Disabled will make
all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
Gn Broken Conductor
When set to Disabled, no Broken Conductor elements will be
functional and all associated settings will be hidden. (The
Setting Dependencies setting being set to Disabled will make
all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
Gn Trip Cct Supervision
When set to Disabled, no Trip Cct Supervision elements will
be functional and all associated settings will be hidden. (The
Setting Dependencies setting being set to Disabled will make
all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
7SR220 Settings Guide
Unrestricted Page 12 of 107 © 2013 Siemens Protection Devices Limited
Description Range Default
Gn Close Cct Supervision
When set to Disabled, no Close Cct Supervision elements will
be functional and all associated settings will be hidden. (The
Setting Dependencies setting being set to Disabled will make
all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
Gn Inrush Detector
When set to Disabled, no Inrush Detector elements will be
functional and all associated settings will be hidden. (The
Setting Dependencies setting being set to Disabled will make
all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
Gn Load Blinder
When set to Disabled, no Load Blinder elements will be
functional and all associated settings will be hidden. (The
Setting Dependencies setting being set to Disabled will make
all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
Gn CB Counters
When set to Disabled, no Gn CB Counter elements will be
functional and all associated settings will be hidden. (The
Setting Dependencies setting being set to Disabled will make
all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
Gn I^2t CB Wear
When set to Disabled, no Gn I^2t CB Wear elements will be
functional and all associated settings will be hidden. (The
Setting Dependencies setting being set to Disabled will make
all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
Gn Arc Flash Detector
When set to Disabled, no Arc Flash Detector elements will be
functional and all associated settings will be hidden. (The
Setting Dependencies setting being set to Disabled will make
all settings visible but will not allow them to operate).
Enabled, Disabled Disabled
3.4. Current Prot’n
3.4.1. Phase Overcurrent
Description Range Default
Gn 67 Char Angle
Maximum torque angle for phase overcurrent elements
-95, -94 ... 94, 95 45 deg
Gn 67 Minimum Voltage
Selects the directional elements minimum voltage, below
which the element will be inhibited
1, 1.5 ... 19.5, 20 1 V
Gn 67 2-out-of-3 Logic
Selects whether 2 out of 3 voting logic is enabled for phase
overcurrent elements
Enabled, Disabled Disabled
Gn 50 Measurement
Selects whether the RMS value used by the 50 elements is
True RMS or only calculated at fundamental frequency
RMS, Fundamental RMS
Gn 51 Measurement
Selects whether the RMS value used by the 51 elements is
True RMS or only calculated at fundamental frequency
RMS, Fundamental RMS
3.4.1.1. 51-1
Description Range Default
Gn 51-1 Element
Selects whether the 51-1 IDMTL Overcurrent element is
enabled
Disabled, Enabled Disabled
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 13 of 107
Description Range Default
Gn 51-1 Dir. Control
Selects whether 51-1 element is non-directional, forward or
reverse
Non-Dir, Forward, Reverse Non-Dir
Gn 51-1 Setting
Pickup level
0.05, 0.06 ... 2.49, 2.5 1 xIn
Gn 51-1 Char
Selects characteristic curve to be IEC or ANSI IDMTL or DTL
DTL, IEC-NI, IEC-VI, IEC-EI, IEC-
LTI, ANSI-MI, ANSI-VI, ANSI-EI
IEC-NI
Gn 51-1 Time Mult (IEC/ANSI)
Time multiplier (applicable to IEC and ANSI curves but not
DTL selection)
0.025, 0.03 ... 1.595, 1.6 , 1.7 ...
4.9, 5, 6 ... 100
1
Gn 51-1 Delay (DTL)
Delay (applicable only when DTL is selected for characteristic)
0, 0.01 ... 19.99, 20 5 s
Gn 51-1 Min Operate Time
Minimum operate time of element.
0, 0.01 ... 19.99, 20 0 s
Gn 51-1 Follower DTL
Additional definite time added after characteristic time
0, 0.01 ... 19.99, 20 0s
Gn 51-1 Reset
Selects between an ANSI decaying reset characteristic or a
definite time reset
(ANSI) Decaying, 0 ... 59, 60 0 s
Gn 51-1 VTS Action
Selects whether 51-1 element is blocked or made non-
directional when VTS operates
Off, Inhibit, Non-Dir Off
Gn 51-1 Inrush Action
Selects if the 51-1 element is blocked from operating when
2nd Harmonic Inrush Detector operates
Off, Inhibit Off
Gn 51-1 21LB-3P Action
Selects if operation of the 51-1 element is blocked for defined
load conditions
Off, Inhibit Inhibit
Gn 51-1 21LB-1P Action
Selects if operation of the 51-1 element is blocked for defined
load conditions
Off, Inhibit Off
3.4.1.2. 51-2
Description Range Default
Gn 51-2 Element
Selects whether the 51-2 IDMTL Overcurrent element is
enabled
Disabled, Enabled Disabled
Gn 51-2 Dir. Control
Selects whether 51-2 element is non-directional, forward or
reverse
Non-Dir, Forward, Reverse Non-Dir
Gn 51-2 Setting
Pickup level
0.05, 0.06 ... 2.49, 2.5 1 xIn
Gn 51-2 Char
Selects characteristic curve to be IEC or ANSI IDMTL or DTL
DTL, IEC-NI, IEC-VI, IEC-EI, IEC-
LTI, ANSI-MI, ANSI-VI, ANSI-EI
IEC-NI
Gn 51-2 Time Mult (IEC/ANSI)
Time multiplier (applicable to IEC and ANSI curves but not
DTL selection)
0.025, 0.03 ... 1.595, 1.6 , 1.7 ...
4.9, 5, 6 ... 100
1
Gn 51-2 Delay (DTL)
Delay (applicable only when DTL is selected for characteristic)
0, 0.01 ... 19.99, 20 5 s
Gn 51-2 Min Operate Time
Minimum operate time of element.
0, 0.01 ... 19.99, 20 0 s
Gn 51-2 Follower DTL
Additional definite time added after characteristic time
0, 0.01 ... 19.99, 20 0 s
7SR220 Settings Guide
Unrestricted Page 14 of 107 © 2013 Siemens Protection Devices Limited
Description Range Default
Gn 51-2 Reset
Selects between an ANSI decaying reset characteristic or a
definite time reset
(ANSI) Decaying, 0 ... 59, 60 0 s
Gn 51-2 VTS Action
Selects whether 51-2 element is blocked or made non-
directional when VTS operates
Off, Inhibit, Non-Dir Off
Gn 51-2 Inrush Action
Selects if the 51-2 element is blocked from operating when
2nd Harmonic Inrush Detector operates
Off, Inhibit Off
Gn 51-2 21LB-3P Action
Selects if operation of the 51-2 element is blocked for defined
load conditions
Off, Inhibit Inhibit
Gn 51-2 21LB-1P Action
Selects if operation of the 51-2 element is blocked for defined
load conditions
Off, Inhibit Off
3.4.1.3. 51-3
Description Range Default
Gn 51-3 Element
Selects whether the 51-3 IDMTL Overcurrent element is
enabled
Disabled, Enabled Disabled
Gn 51-3 Dir. Control
Selects whether 51-3 element is non-directional, forward or
reverse
Non-Dir, Forward, Reverse Non-Dir
Gn 51-3 Setting
Pickup level
0.05, 0.06 ... 2.49, 2.5 1 xIn
Gn 51-3 Char
Selects characteristic curve to be IEC or ANSI IDMTL or DTL
DTL, IEC-NI, IEC-VI, IEC-EI, IEC-
LTI, ANSI-MI, ANSI-VI, ANSI-EI
IEC-NI
Gn 51-3 Time Mult (IEC/ANSI)
Time multiplier (applicable to IEC and ANSI curves but not
DTL selection)
0.025, 0.03 ... 1.595, 1.6 , 1.7 ...
4.9, 5, 6 ... 100
1
Gn 51-3 Delay (DTL)
Delay (applicable only when DTL is selected for characteristic)
0, 0.01 ... 19.99, 20 5 s
Gn 51-3 Min Operate Time
Minimum operate time of element.
0, 0.01 ... 19.99, 20 0 s
Gn 51-3 Follower DTL
Additional definite time added after characteristic time
0, 0.01 ... 19.99, 20 0 s
Gn 51-3 Reset
Selects between an ANSI decaying reset characteristic or a
definite time reset
(ANSI) Decaying, 0 ... 59, 60 0 s
Gn 51-3 VTS Action
Selects whether 51-3 element is blocked or made non-
directional when VTS operates
Off, Inhibit, Non-Dir Off
Gn 51-3 Inrush Action
Selects if the 51-3 element is blocked from operating when
2nd Harmonic Inrush Detector operates
Off, Inhibit Off
Gn 51-3 21LB-3P Action
Selects if operation of the 51-3 element is blocked for defined
load conditions
Off, Inhibit Inhibit
Gn 51-3 21LB-1P Action
Selects if operation of the 51-3 element is blocked for defined
load conditions
Off, Inhibit Off
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 15 of 107
3.4.1.4. 51-4
Description Range Default
Gn 51-4 Element
Selects whether the 51-4 IDMTL Overcurrent element is
enabled
Disabled, Enabled Disabled
Gn 51-4 Dir. Control
Selects whether 51-4 element is non-directional, forward or
reverse
Non-Dir, Forward, Reverse Non-Dir
Gn 51-4 Setting
Pickup level
0.05, 0.06 ... 2.49, 2.5 1 xIn
Gn 51-4 Char
Selects characteristic curve to be IEC or ANSI IDMTL or DTL
DTL, IEC-NI, IEC-VI, IEC-EI, IEC-
LTI, ANSI-MI, ANSI-VI, ANSI-EI
IEC-NI
Gn 51-4 Time Mult (IEC/ANSI)
Time multiplier (applicable to IEC and ANSI curves but not
DTL selection)
0.025, 0.03 ... 1.595, 1.6 , 1.7 ...
4.9, 5, 6 ... 100
1
Gn 51-4 Delay (DTL)
Delay (applicable only when DTL is selected for characteristic)
0, 0.01 ... 19.99, 20 5 s
Gn 51-4 Min Operate Time
Minimum operate time of element.
0, 0.01 ... 19.99, 20 0 s
Gn 51-4 Follower DTL
Additional definite time added after characteristic time
0, 0.01 ... 19.99, 20 0 s
Gn 51-4 Reset
Selects between an ANSI decaying reset characteristic or a
definite time reset
(ANSI) Decaying, 0 ... 59, 60 0 s
Gn 51-4 VTS Action
Selects whether 51-4 element is blocked or made non-
directional when VTS operates
Off, Inhibit, Non-Dir Off
Gn 51-4 Inrush Action
Selects if the 51-4 element is blocked from operating when
2nd Harmonic Inrush Detector operates
Off, Inhibit Off
Gn 51-4 21LB-3P Action
Selects if operation of the 51-4 element is blocked for defined
load conditions
Off, Inhibit Inhibit
Gn 51-4 21LB-1P Action
Selects if operation of the 51-4 element is blocked for defined
load conditions
Off, Inhibit Off
3.4.1.5. 50-1
Description Range Default
Gn 50-1 Element
Selects whether the INST/ DTL Overcurrent element is
enabled
Disabled, Enabled Disabled
Gn 50-1 Dir. Control
Selects whether 50-1 element is non-directional, forward or
reverse
Non-Dir, Forward, Reverse Non-Dir
Gn 50-1 Setting
Pickup level
0.05, 0.06 ... 49.5, 50 1 xIn
Gn 50-1 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0 s
Gn 50-1 VTS Action
Selects whether 50-1 element is blocked or made non-
directional when VTS operates
Off, Inhibit, Non-Dir Off
7SR220 Settings Guide
Unrestricted Page 16 of 107 © 2013 Siemens Protection Devices Limited
Description Range Default
Gn 50-1 Inrush Action
Selects if the 50-1 element is blocked from operating when
2nd Harmonic Inrush Detector operates
Off, Inhibit Off
Gn 50-1 21LB-3P Action
Selects if operation of the 50-1 element is blocked for defined
load conditions
Off, Inhibit Inhibit
Gn 50-1 21LB-1P Action
Selects if operation of the 50-1 element is blocked for defined
load conditions
Off, Inhibit Off
3.4.1.6. 50-2
Description Range Default
Gn 50-2 Element
Selects whether the INST/ DTL Overcurrent element is
enabled
Disabled, Enabled Disabled
Gn 50-2 Dir. Control
Selects whether 50-2 element is non-directional, forward or
reverse
Non-Dir, Forward, Reverse Non-Dir
Gn 50-2 Setting
Pickup level
0.05, 0.06 ... 49.5, 50 1 xIn
Gn 50-2 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0 s
Gn 50-2 VTS Action
Selects whether 50-2 element is blocked or made non-
directional when VTS operates
Off, Inhibit, Non-Dir Off
Gn 50-2 Inrush Action
Selects if the 50-2 element is blocked from operating when
2nd Harmonic Inrush Detector operates
Off, Inhibit Off
Gn 50-2 21LB-3P Action
Selects if operation of the 50-2 element is blocked for defined
load conditions
Off, Inhibit Inhibit
Gn 50-2 21LB-1P Action
Selects if operation of the 50-2 element is blocked for defined
load conditions
Off, Inhibit Off
3.4.1.7. 50-3
Description Range Default
Gn 50-3 Element
Selects whether the INST/ DTL Overcurrent element is
enabled
Disabled, Enabled Disabled
Gn 50-3 Dir. Control
Selects whether 50-3 element is non-directional, forward or
reverse
Non-Dir, Forward, Reverse Non-Dir
Gn 50-3 Setting
Pickup level
0.05, 0.06 ... 49.5, 50 1 xIn
Gn 50-3 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0 s
Gn 50-3 VTS Action
Selects whether 50-3 element is blocked or made non-
directional when VTS operates
Off, Inhibit, Non-Dir Off
Gn 50-3 Inrush Action
Selects if the 50-3 element is blocked from operating when
2nd Harmonic Inrush Detector operates
Off, Inhibit Off
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 17 of 107
Description Range Default
Gn 50-3 21LB-3P Action
Selects if operation of the 50-3 element is blocked for defined
load conditions
Off, Inhibit Inhibit
Gn 50-3 21LB-1P Action
Selects if operation of the 50-3 element is blocked for defined
load conditions
Off, Inhibit Off
3.4.1.8. 50-4
Description Range Default
Gn 50-4 Element
Selects whether the INST/ DTL Overcurrent element is
enabled
Disabled, Enabled Disabled
Gn 50-4 Dir. Control
Selects whether 50-4 element is non-directional, forward or
reverse
Non-Dir, Forward, Reverse Non-Dir
Gn 50-4 Setting
Pickup level
0.05, 0.06 ... 49.5, 50 1 xIn
Gn 50-4 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0 s
Gn 50-4 VTS Action
Selects whether 50-4 element is blocked or made non-
directional when VTS operates
Off, Inhibit, Non-Dir Off
Gn 50-4 Inrush Action
Selects if the 50-4 element is blocked from operating when
2nd Harmonic Inrush Detector operates
Off, Inhibit Off
Gn 50-4 21LB-3P Action
Selects if operation of the 50-4 element is blocked for defined
load conditions
Off, Inhibit Inhibit
Gn 50-4 21LB-1P Action
Selects if operation of the 50-4 element is blocked for defined
load conditions
Off, Inhibit Off
3.4.2. Voltage Controlled O/C
Description Range Default
Gn 51V Element (Ph-Ph) Disabled, Enabled Disabled
Gn 51V Setting
The voltage below which 51V operates
5, 5.5 ... 199.5, 200 30 V
Gn 51V VTS Action
Selects whether or not the 51V element is blocked when VTS
operates
Off, Inhibit Off
Gn 51-1 Multiplier
Multiplier applied to the 51-1 element when VCO element has
operated
0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55,
0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9,
0.95, 1
0.5
Gn 51-2 Multiplier
Multiplier applied to the 51-2 element when VCO element has
operated
0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55,
0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9,
0.95, 1
0.5
Gn 51-3 Multiplier
Multiplier applied to the 51-3 element when VCO element has
operated
0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55,
0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9,
0.95, 1
0.5
Gn 51-4 Multiplier
Multiplier applied to the 51-4 element when VCO element has
operated
0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55,
0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9,
0.95, 1
0.5
7SR220 Settings Guide
Unrestricted Page 18 of 107 © 2013 Siemens Protection Devices Limited
3.4.3. Cold Load
Description Range Default
Cold Load
Selects whether the Cold Load element is enabled
Disabled, Enabled Disabled
Pick-up Time
Cold Load operate time delay
1, 1.1 ... 14100, 14400 600 s
Drop-off Time
Cold Load reset time delay
1, 1.1 ... 14100, 14400 600 s
Reduced Current
Selects whether reduced current functionality is to be used
Disabled, Enabled Disabled
Reduced Current Level
Selects current level below which Reduced Current Time is
used for Cold Load reset delay
0.05, 0.1 ... 2.45, 2.5 0.25 xIn
Reduced Current Time
Cold Load reset time delay used when reduced current active
1, 1.1 ... 14100, 14400 600 s
Gn 51c-1 Setting
51-1 element parameter used when Cold Load operates
0.05, 0.06 ... 2.49, 2.5 1 xIn
Gn 51c-1 Char
As Above
DTL, IEC-NI, IEC-VI, IEC-EI, IEC-
LTI, ANSI-MI, ANSI-VI, ANSI-EI
IEC-NI
Gn 51c-1 Time Mult (IEC/ANSI)
As Above
0.025, 0.03 ... 1.595, 1.6 , 1.7 ...
4.9, 5, 6 ... 100
1
Gn 51c-1 Delay (DTL)
As Above
0, 0.01 ... 19.99, 20 5 s
Gn 51c-1 Min Operate Time
As Above
0, 0.01 ... 19.99, 20 0 s
Gn 51c-1 Follower DTL
As Above
0, 0.01 ... 19.99, 20 0 s
Gn 51c-1 Reset
As Above
(ANSI) Decaying, 0 ... 59, 60 0 s
Gn 51c-2 Setting
51-2 element parameter used when Cold Load operates
0.05, 0.06 ... 2.49, 2.5 1 xIn
Gn 51c-2 Char
As Above
DTL, IEC-NI, IEC-VI, IEC-EI, IEC-
LTI, ANSI-MI, ANSI-VI, ANSI-EI
IEC-NI
Gn 51c-2 Time Mult (IEC/ANSI)
As Above
0.025, 0.03 ... 1.595, 1.6 , 1.7 ...
4.9, 5, 6 ... 100
1
Gn 51c-2 Delay (DTL)
As Above
0, 0.01 ... 19.99, 20 5 s
Gn 51c-2 Min Operate Time
As Above
0, 0.01 ... 19.99, 20 0 s
Gn 51c-2 Follower DTL
As Above
0, 0.01 ... 19.99, 20 0 s
Gn 51c-2 Reset
As Above
(ANSI) Decaying, 0 ... 59, 60 0 s
Gn 51c-3 Setting
51-3 element parameter used when Cold Load operates
0.05, 0.06 ... 2.49, 2.5 1 xIn
Gn 51c-3 Char
As Above
DTL, IEC-NI, IEC-VI, IEC-EI, IEC-
LTI, ANSI-MI, ANSI-VI, ANSI-EI
IE C-NI
Gn 51c-3 Time Mult (IEC/ANSI)
As Above
0.025, 0.03 ... 1.595, 1.6 , 1.7 ...
4.9, 5, 6 ... 100
1
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 19 of 107
Description Range Default
Gn 51c-3 Delay (DTL)
As Above
0, 0.01 ... 19.99, 20 5 s
Gn 51c-3 Min Operate Time
As Above
0, 0.01 ... 19.99, 20 0 s
Gn 51c-3 Follower DTL
As Above
0, 0.01 ... 19.99, 20 0 s
Gn 51c-3 Reset
As Above
(ANSI) Decaying, 0 ... 59, 60 0 s
Gn 51c-4 Setting
51-4 element parameter used when Cold Load operates
0.05, 0.06 ... 2.49, 2.5 1 xIn
Gn 51c-4 Char
As Above
DTL, IEC-NI, IEC-VI, IEC-EI, IEC-
LTI, ANSI-MI, ANSI-VI, ANSI-EI
IEC-NI
Gn 51c-4 Time Mult (IEC/ANSI)
As Above
0.025, 0.03 ... 1.595, 1.6 , 1.7 ...
4.9, 5, 6 ... 100
1
Gn 51c-4 Delay (DTL)
As Above
0, 0.01 ... 19.99, 20 5 s
Gn 51c-4 Min Operate Time
As Above
0, 0.01 ... 19.99, 20 0 s
Gn 51c-4 Follower DTL
As Above
0, 0.01 ... 19.99, 20 0 s
Gn 51c-4 Reset
As Above
(ANSI) Decaying, 0 ... 59, 60 0 s
3.4.4. Derived E/F
Description Range Default
Gn 67N Polarizing Quantity
Allows the directional element to select which quantities to
use.
ZPS, NPS ZPS
Gn 67N Char Angle
Maximum torque angle for derived earth fault elements
-95, -94 ... 94, 95 -15 deg
Gn 67N Minimum Voltage
Selects the directional elements minimum voltage, below
which the element will be inhibited
0.33, 0.5, 1, 1.5, 2, 2.5, 3 0.33 V
3.4.4.1. 51N-1
Description Range Default
Gn 51N-1 Element
Selects whether the 51N-1 IDMTL derived Earth Fault element
is enabled
Disabled, Enabled Disabled
Gn 51N-1 Dir. Control
Selects whether 51N-1 element is non-directional, forward or
reverse
Non-Dir, Forward, Reverse Non-Dir
Gn 51N-1 Setting
Pickup level
0.05, 0.06 ... 2.49, 2.5 0.5 xIn
Gn 51N-1 Char
Selects characteristic curve to be IEC or ANSI IDMTL or DTL
DTL, IEC-NI, IEC-VI, IEC-EI, IEC-
LTI, ANSI-MI, ANSI-VI, ANSI-EI
IEC-NI
Gn 51N-1 Time Mult (IEC/ANSI)
Time multiplier (applicable to IEC and ANSI curves but not
DTL selection)
0.025, 0.03 ... 1.595, 1.6 , 1.7 ...
4.9, 5, 6 ... 100
1
7SR220 Settings Guide
Unrestricted Page 20 of 107 © 2013 Siemens Protection Devices Limited
Description Range Default
Gn 51N-1 Delay (DTL)
Delay (applicable only when DTL is selected for characteristic)
0, 0.01 ... 19.99, 20 5 s
Gn 51N-1 Min Operate Time
Minimum operate time of element.
0, 0.01 ... 19.99, 20 0 s
Gn 51N-1 Follower DTL
Additional definite time added after characteristic time
0, 0.01 ... 19.99, 20 0 s
Gn 51N-1 Reset
Selects between an ANSI decaying reset characteristic or a
definite time reset
(ANSI) Decaying, 0 ... 59, 60 0 s
Gn 51N-1 VTS Action
Selects whether 51N-1 element is blocked or made non-
directional when VTS operates
Off, Inhibit, Non-Dir Off
Gn 51N-1 Inrush Action
Selects if the 51N-1 element is blocked from operating when
2nd Harmonic Inrush Detector operates
Off, Inhibit Off
3.4.4.2. 51N-2
Description Range Default
Gn 51N-2 Element
Selects whether the 51N-2 IDMTL derived Earth Fault element
is enabled
Disabled, Enabled Disabled
Gn 51N-2 Dir. Control
Selects whether 51N-2 element is non-directional, forward or
reverse
Non-Dir, Forward, Reverse Non-Dir
Gn 51N-2 Setting
Pickup level
0.05, 0.06 ... 2.49, 2.5 0.5xIn
Gn 51N-2 Char
Selects characteristic curve to be IEC or ANSI IDMTL or DTL
DTL, IEC-NI, IEC-VI, IEC-EI, IEC-
LTI, ANSI-MI, ANSI-VI, ANSI-EI
IEC-NI
Gn 51N-2 Time Mult (IEC/ANSI)
Time multiplier (applicable to IEC and ANSI curves but not
DTL selection)
0.025, 0.03 ... 1.595, 1.6 , 1.7 ...
4.9, 5, 6 ... 100
1
Gn 51N-2 Delay (DTL)
Delay (applicable only when DTL is selected for characteristic)
0, 0.01 ... 19.99, 20 5 s
Gn 51N-2 Min Operate Time
Minimum operate time of element.
0, 0.01 ... 19.99, 20 0 s
Gn 51N-2 Follower DTL
Additional definite time added after characteristic time
0, 0.01 ... 19.99, 20 0s
Gn 51N-2 Reset
Selects between an ANSI decaying reset characteristic or a
definite time reset
(ANSI) Decaying, 0 ... 59, 60 0 s
Gn 51N-2 VTS Action
Selects whether 51N-2 element is blocked or made non-
directional when VTS operates
Off, Inhibit, Non-Dir Off
Gn 51N-2 Inrush Action
Selects if the 51N-2 element is blocked from operating when
2nd Harmonic Inrush Detector operates
Off, Inhibit Off
3.4.4.3. 51N-3
Description Range Default
Gn 51N-3 Element
Selects whether the 51N-3 IDMTL derived Earth Fault element
is enabled
Disabled, Enabled Disabled
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 21 of 107
Description Range Default
Gn 51N-3 Dir. Control
Selects whether 51N-3 element is non-directional, forward or
reverse
Non-Dir, Forward, Reverse Non-Dir
Gn 51N-3 Setting
Pickup level
0.05, 0.06 ... 2.49, 2.5 0.5 xIn
Gn 51N-3 Char
Selects characteristic curve to be IEC or ANSI IDMTL or DTL
DTL, IEC-NI, IEC-VI, IEC-EI, IEC-
LTI, ANSI-MI, ANSI-VI, ANSI-EI
IEC-NI
Gn 51N-3 Time Mult (IEC/ANSI)
Time multiplier (applicable to IEC and ANSI curves but not
DTL selection)
0.025, 0.03 ... 1.595, 1.6 , 1.7 ...
4.9, 5, 6 ... 100
1
Gn 51N-3 Delay (DTL)
Delay (applicable only when DTL is selected for characteristic)
0, 0.01 ... 19.99, 20 5 s
Gn 51N-3 Min Operate Time
Minimum operate time of element.
0, 0.01 ... 19.99, 20 0 s
Gn 51N-3 Follower DTL
Additional definite time added after characteristic time
0, 0.01 ... 19.99, 20 0 s
Gn 51N-3 Reset
Selects between an ANSI decaying reset characteristic or a
definite time reset
(ANSI) Decaying, 0 ... 59, 60 0 s
Gn 51N-3 VTS Action
Selects whether 51N-3 element is blocked or made non-
directional when VTS operates
Off, Inhibit, Non-Dir Off
Gn 51N-3 Inrush Action
Selects if the 51N-3 element is blocked from operating when
2nd Harmonic Inrush Detector operates
Off, Inhibit Off
3.4.4.4. 51N-4
Description Range Default
Gn 51N-4 Element
Selects whether the 51N-4 IDMTL derived Earth Fault element
is enabled
Disabled, Enabled Disabled
Gn 51N-4 Dir. Control
Selects whether 51N-4 element is non-directional, forward or
reverse
Non-Dir, Forward, Reverse Non-Dir
Gn 51N-4 Setting
Pickup level
0.05, 0.06 ... 2.49, 2.5 0.5 xIn
Gn 51N-4 Char
Selects characteristic curve to be IEC or ANSI IDMTL or DTL
DTL, IEC-NI, IEC-VI, IEC-EI, IEC-
LTI, ANSI-MI, ANSI-VI, ANSI-EI
IEC-NI
Gn 51N-4 Time Mult (IEC/ANSI)
Time multiplier (applicable to IEC and ANSI curves but not
DTL selection)
0.025, 0.03 ... 1.595, 1.6 , 1.7 ...
4.9, 5, 6 ... 100
1
Gn 51N-4 Delay (DTL)
Delay (applicable only when DTL is selected for characteristic)
0, 0.01 ... 19.99, 20 5 s
Gn 51N-4 Min Operate Time
Minimum operate time of element.
0, 0.01 ... 19.99, 20 0 s
Gn 51N-4 Follower DTL
Additional definite time added after characteristic time
0, 0.01 ... 19.99, 20 0 s
Gn 51N-4 Reset
Selects between an ANSI decaying reset characteristic or a
definite time reset
(ANSI) Decaying, 0 ... 59, 60 0 s
Gn 51N-4 VTS Action
Selects whether 51N-4 element is blocked or made non-
directional when VTS operates
Off, Inhibit, Non-Dir Off
7SR220 Settings Guide
Unrestricted Page 22 of 107 © 2013 Siemens Protection Devices Limited
Description Range Default
Gn 51N-4 Inrush Action
Selects if the 51N-4 element is blocked from operating when
2nd Harmonic Inrush Detector operates
Off, Inhibit Off
3.4.4.5. 50N-1
Description Range Default
Gn 50N-1 Element
Selects whether the DTL derived Earth fault element is
enabled
Disabled, Enabled Disabled
Gn 50N-1 Dir. Control
Selects whether 50N-1 element is non-directional, forward or
reverse
Non-Dir, Forward, Reverse Non-Dir
Gn 50N-1 Setting
Pickup level
0.05, 0.06 ... 49.5, 50 0.5 xIn
Gn 50N-1 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0s
Gn 50N-1 VTS Action
Selects whether 50N-1 element is blocked or made non-
directional when VTS operates
Off, Inhibit, Non-Dir Off
Gn 50N-1 Inrush Action
Selects if the 50N-1 element is blocked from operating when
2nd Harmonic Inrush Detector operates
Off, Inhibit Off
3.4.4.6. 50N-2
Description Range Default
Gn 50N-2 Element
Selects whether the DTL derived Earth fault element is
enabled
Disabled, Enabled Disabled
Gn 50N-2 Dir. Control
Selects whether 50N-2 element is non-directional, forward or
reverse
Non-Dir, Forward, Reverse Non-Dir
Gn 50N-2 Setting
Pickup level
0.05, 0.06 ... 49.5, 50 0.5 xIn
Gn 50N-2 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0 s
Gn 50N-2 VTS Action
Selects whether 50N-2 element is blocked or made non-
directional when VTS operates
Off, Inhibit, Non-Dir Off
Gn 50N-2 Inrush Action
Selects if the 50N-2 element is blocked from operating when
2nd Harmonic Inrush Detector operates
Off, Inhibit Off
3.4.4.7. 50N-3
Description Range Default
Gn 50N-3 Element
Selects whether the DTL derived Earth fault element is
enabled
Disabled, Enabled Disabled
Gn 50N-3 Dir. Control
Selects whether 50N-3 element is non-directional, forward or
reverse
Non-Dir, Forward, Reverse Non-Dir
Gn 50N-3 Setting
Pickup level
0.05, 0.06 ... 49.5, 50 0.5 xIn
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 23 of 107
Description Range Default
Gn 50N-3 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0 s
Gn 50N-3 VTS Action
Selects whether 50N-3 element is blocked or made non-
directional when VTS operates
Off, Inhibit, Non-Dir Off
Gn 50N-3 Inrush Action
Selects if the 50N-3 element is blocked from operating when
2nd Harmonic Inrush Detector operates
Off, Inhibit Off
3.4.4.8. 50N-4
Description Range Default
Gn 50N-4 Element
Selects whether the DTL derived Earth fault element is
enabled
Disabled, Enabled Disabled
Gn 50N-4 Dir. Control
Selects whether 50N-4 element is non-directional, forward or
reverse
Non-Dir, Forward, Reverse Non-Dir
Gn 50N-4 Setting
Pickup level
0.05, 0.06 ... 49.5, 50 0.5 xIn
Gn 50N-4 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0 s
Gn 50N-4 VTS Action
Selects whether 50N-4 element is blocked or made non-
directional when VTS operates
Off, Inhibit, Non-Dir Off
Gn 50N-4 Inrush Action
Selects if the 50N-4 element is blocked from operating when
2nd Harmonic Inrush Detector operates
Off, Inhibit Off
3.4.5. Measured E/F
Description Range Default
Gn 67G Char Angle
Maximum torque angle for measured earth fault elements
-95, -94 ... 94, 95 -15 deg
Gn 67G Minimum Voltage
Selects the directional elements minimum voltage, below
which the element will be inhibited
0.33, 0.5, 1, 1.5, 2, 2.5, 3 0.33 V
Gn 50G Measurement
Selects whether the RMS value used by the 50G elements is
True RMS or only calculated at fundamental frequency
RMS, Fundamental RMS
Gn 51G Measurement
Selects whether the RMS value used by the 51G elements is
True RMS or only calculated at fundamental frequency
RMS, Fundamental RMS
3.4.5.1. 51G-1
Description Range Default
Gn 51G-1 Element
Selects whether the 51G-1 IDMTL measured Earth Fault
element is enabled
Disabled, Enabled Disabled
Gn 51G-1 Dir. Control
Selects whether 51G-1 element is non-directional, forward or
reverse
Non-Dir, Forward, Reverse Non-Dir
Gn 51G-1 Setting
Pickup level
0.005, 0.006 ... 0.995, 1 0.5 xIn
7SR220 Settings Guide
Unrestricted Page 24 of 107 © 2013 Siemens Protection Devices Limited
Description Range Default
Gn 51G-1 Char
Selects characteristic curve to be IEC or ANSI IDMTL or DTL
DTL, IEC-NI, IEC-VI, IEC-EI, IEC-
LTI, ANSI-MI, ANSI-VI, ANSI-EI
IEC-NI
Gn 51G-1 Time Mult (IEC/ANSI)
Time multiplier (applicable to IEC and ANSI curves but not
DTL selection)
0.025, 0.03 ... 1.595, 1.6 , 1.7 ...
4.9, 5, 6 ... 100
1
Gn 51G-1 Delay (DTL)
Delay (applicable only when DTL is selected for characteristic)
0, 0.01 ... 19.99, 20 5 s
Gn 51G-1 Min Operate Time
Minimum operate time of element.
0, 0.01 ... 19.99, 20 0 s
Gn 51G-1 Follower DTL
Additional definite time added after characteristic time
0, 0.01 ... 19.99, 20 0 s
Gn 51G-1 Reset
Selects between an ANSI decaying reset characteristic or DTL
reset
(ANSI) Decaying, 0 ... 59, 60 0 s
Gn 51G-1 VTS Action
Selects whether 51G-1 element is blocked or made non-
directional when VTS operates
Off, Inhibit, Non-Dir Off
Gn 51G-1 Inrush Action
Selects if the 51G-1 element is blocked from operating when
2nd Harmonic Inrush Detector operates
Off, Inhibit Off
3.4.5.2. 51G-2
Description Range Default
Gn 51G-2 Element
Selects whether the 51G-2 IDMTL measured Earth Fault
element is enabled
Disabled, Enabled Disabled
Gn 51G-2 Dir. Control
Selects whether 51G-2 element is non-directional, forward or
reverse
Non-Dir, Forward, Reverse Non-Dir
Gn 51G-2 Setting
Pickup level
0.005, 0.006 ... 0.995, 1 0.5 xIn
Gn 51G-2 Char
Selects characteristic curve to be IEC or ANSI IDMTL or DTL
DTL, IEC-NI, IEC-VI, IEC-EI, IEC-
LTI, ANSI-MI, ANSI-VI, ANSI-EI
IEC-NI
Gn 51G-2 Time Mult (IEC/ANSI)
Time multiplier (applicable to IEC and ANSI curves but not
DTL selection)
0.025, 0.03 ... 1.595, 1.6 , 1.7 ...
4.9, 5, 6 ... 100
1
Gn 51G-2 Delay (DTL)
Delay (applicable only when DTL is selected for characteristic)
0, 0.01 ... 19.99, 20 5 s
Gn 51G-2 Min Operate Time
Minimum operate time of element.
0, 0.01 ... 19.99, 20 0 s
Gn 51G-2 Follower DTL
Additional definite time added after characteristic time
0, 0.01 ... 19.99, 20 0 s
Gn 51G-2 Reset
Selects between an ANSI decaying reset characteristic or DTL
reset
(ANSI) Decaying, 0 ... 59, 60 0 s
Gn 51G-2 VTS Action
Selects whether 51G-2 element is blocked or made non-
directional when VTS operates
Off, Inhibit, Non-Dir Off
Gn 51G-2 Inrush Action
Selects if the 51G-2 element is blocked from operating when
2nd Harmonic Inrush Detector operates
Off, Inhibit Off
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 25 of 107
3.4.5.3. 51G-3
Description Range Default
Gn 51G-3 Element
Selects whether the 51G-3 IDMTL measured Earth Fault
element is enabled
Disabled, Enabled Disabled
Gn 51G-3 Dir. Control
Selects whether 51G-3 element is non-directional, forward or
reverse
Non-Dir, Forward, Reverse Non-Dir
Gn 51G-3 Setting
Pickup level
0.005, 0.006 ... 0.995, 1 0.5 xIn
Gn 51G-3 Char
Selects characteristic curve to be IEC or ANSI IDMTL or DTL
DTL, IEC-NI, IEC-VI, IEC-EI, IEC-
LTI, ANSI-MI, ANSI-VI, ANSI-EI
IEC-NI
Gn 51G-3 Time Mult (IEC/ANSI)
Time multiplier (applicable to IEC and ANSI curves but not
DTL selection)
0.025, 0.03 ... 1.595, 1.6 , 1.7 ...
4.9, 5, 6 ... 100
1
Gn 51G-3 Delay (DTL)
Delay (applicable only when DTL is selected for characteristic)
0, 0.01 ... 19.99, 20 5 s
Gn 51G-3 Min Operate Time
Minimum operate time of element.
0, 0.01 ... 19.99, 20 0 s
Gn 51G-3 Follower DTL
Additional definite time added after characteristic time
0, 0.01 ... 19.99, 20 0 s
Gn 51G-3 Reset
Selects between an ANSI decaying reset characteristic or DTL
reset
(ANSI) Decaying, 0 ... 59, 60 0 s
Gn 51G-3 VTS Action
Selects whether 51G-3 element is blocked or made non-
directional when VTS operates
Off, Inhibit, Non-Dir Off
Gn 51G-3 Inrush Action
Selects if the 51G-3 element is blocked from operating when
2nd Harmonic Inrush Detector operates
Off, Inhibit Off
3.4.5.4. 51G-4
Description Range Default
Gn 51G-4 Element
Selects whether the 51G-4 IDMTL measured Earth Fault
element is enabled
Disabled, Enabled Disabled
Gn 51G-4 Dir. Control
Selects whether 51G-4 element is non-directional, forward or
reverse
Non-Dir, Forward, Reverse Non-Dir
Gn 51G-4 Setting
Pickup level
0.005, 0.006 ... 0.995, 1 0.5 xIn
Gn 51G-4 Char
Selects characteristic curve to be IEC or ANSI IDMTL or DTL
DTL, IEC-NI, IEC-VI, IEC-EI, IEC-
LTI, ANSI-MI, ANSI-VI, ANSI-EI
IEC-NI
Gn 51G-4 Time Mult (IEC/ANSI)
Time multiplier (applicable to IEC and ANSI curves but not
DTL selection)
0.025, 0.03 ... 1.595, 1.6 , 1.7 ...
4.9, 5, 6 ... 100
1
Gn 51G-4 Delay (DTL)
Delay (applicable only when DTL is selected for characteristic)
0, 0.01 ... 19.99, 20 5 s
Gn 51G-4 Min Operate Time
Minimum operate time of element.
0, 0.01 ... 19.99, 20 0 s
Gn 51G-4 Follower DTL
Additional definite time added after characteristic time
0, 0.01 ... 19.99, 20 0 s
7SR220 Settings Guide
Unrestricted Page 26 of 107 © 2013 Siemens Protection Devices Limited
Description Range Default
Gn 51G-4 Reset
Selects between an ANSI decaying reset characteristic or DTL
reset
(ANSI) Decaying, 0 ... 59, 60 0 s
Gn 51G-4 VTS Action
Selects whether 51G-4 element is blocked or made non-
directional when VTS operates
Off, Inhibit, Non-Dir Off
Gn 51G-4 Inrush Action
Selects if the 51G-4 element is blocked from operating when
2nd Harmonic Inrush Detector operates
Off, Inhibit Off
3.4.5.5. 50G-1
Description Range Default
Gn 50G-1 Element
Selects whether the DTL measured Earth fault element is
enabled
Disabled, Enabled Disabled
Gn 50G-1 Dir. Control
Selects whether 50G-1 element is non-directional, forward or
reverse
Non-Dir, Forward, Reverse Non-Dir
Gn 50G-1 Setting
Pickup level
0.005, 0.006 ... 24.95, 25 0.5 xIn
Gn 50G-1 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0 s
Gn 50G-1 VTS Action
Selects whether 50G-1 element is blocked or made non-
directional when VTS operates
Off, Inhibit, Non-Dir Off
Gn 50G-1 Inrush Action
Selects if the 50G-1 element is blocked from operating when
2nd Harmonic Inrush Detector operates
Off, Inhibit Off
3.4.5.6. 50G-2
Description Range Default
Gn 50G-2 Element
Selects whether the DTL measured Earth fault element is
enabled
Disabled, Enabled Disabled
Gn 50G-2 Dir. Control
Selects whether 50G-2 element is non-directional, forward or
reverse
Non-Dir, Forward, Reverse Non-Dir
Gn 50G-2 Setting
Pickup level
0.005, 0.006 ... 24.95, 25 0.5 xIn
Gn 50G-2 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0 s
Gn 50G-2 VTS Action
Selects whether 50G-2 element is blocked or made non-
directional when VTS operates
Off, Inhibit, Non-Dir Off
Gn 50G-2 Inrush Action
Selects if the 50G-2 element is blocked from operating when
2nd Harmonic Inrush Detector operates
Off, Inhibit Off
3.4.5.7. 50G-3
Description Range Default
Gn 50G-3 Element
Selects whether the DTL measured Earth fault element is
enabled
Disabled, Enabled Disabled
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 27 of 107
Description Range Default
Gn 50G-3 Dir. Control
Selects whether 50G-3 element is non-directional, forward or
reverse
Non-Dir, Forward, Reverse Non-Dir
Gn 50G-3 Setting
Pickup level
0.005, 0.006 ... 24.95, 25 0.5 xIn
Gn 50G-3 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0 s
Gn 50G-3 VTS Action
Selects whether 50G-3 element is blocked or made non-
directional when VTS operates
Off, Inhibit, Non-Dir Off
Gn 50G-3 Inrush Action
Selects if the 50G-3 element is blocked from operating when
2nd Harmonic Inrush Detector operates
Off, Inhibit Off
3.4.5.8. 50G-4
Description Range Default
Gn 50G-4 Element
Selects whether the DTL measured Earth fault element is
enabled
Disabled, Enabled Disabled
Gn 50G-4 Dir. Control
Selects whether 50G-4 element is non-directional, forward or
reverse
Non-Dir, Forward, Reverse Non-Dir
Gn 50G-4 Setting
Pickup level
0.005, 0.006 ... 24.95, 25 0.5 xIn
Gn 50G-4 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0 s
Gn 50G-4 VTS Action
Selects whether 50G-4 element is blocked or made non-
directional when VTS operates
Off, Inhibit, Non-Dir Off
Gn 50G-4 Inrush Action
Selects if the 50G-4 element is blocked from operating when
2nd Harmonic Inrush Detector operates
Off, Inhibit Off
3.4.6. Sensitive E/F
Description Range Default
Gn 67SEF Char Angle
Maximum torque angle for sensitive earth fault elements
-95, -94 ... 94, 95 -15 deg
Gn 67SEF Minimum Voltage
Selects the directional elements minimum voltage, below
which the element will be inhibited
0.33, 0.5, 1, 1.5, 2, 2.5, 3 0.33 V
3.4.6.1. 51SEF-1
Description Range Default
Gn 51SEF-1 Element
Selects whether the 51SEF-1 IDMTL Sensitive Earth Fault
element is enabled
Disabled, Enabled Disabled
Gn 51SEF-1 Dir. Control
Selects whether 51SEF-1 element is non-directional, forward
or reverse
Non-Dir, Forward, Reverse Non-Dir
Gn 51SEF-1 Setting
Pickup level
0.005, 0.006 ... 0.995, 1 0.2 xIn
7SR220 Settings Guide
Unrestricted Page 28 of 107 © 2013 Siemens Protection Devices Limited
Description Range Default
Gn 51SEF-1 Char
Selects characteristic curve to be IEC or ANSI IDMTL or DTL
DTL, IEC-NI, IEC-VI, IEC-EI, IEC-
LTI, ANSI-MI, ANSI-VI, ANSI-EI
IEC-NI
Gn 51SEF-1 Time Mult (IEC/ANSI)
Time multiplier (applicable to IEC and ANSI curves but not
DTL selection)
0.025, 0.03 ... 1.595, 1.6 , 1.7 ...
4.9, 5, 6 ... 100
1
Gn 51SEF-1 Delay (DTL)
Delay (applicable only when DTL is selected for characteristic)
0, 0.01 ... 19.99, 20 5 s
Gn 51SEF-1 Min Operate Time
Minimum operate time of element.
0, 0.01 ... 19.99, 20 0 s
Gn 51SEF-1 Follower DTL
Additional definite time added after characteristic time
0, 0.01 ... 19.99, 20 0 s
Gn 51SEF-1 Reset
Selects between an ANSI decaying reset characteristic or DTL
reset
(ANSI) Decaying, 0 ... 59, 60 0 s
Gn 51SEF-1 VTS Action
Selects whether 51SEF-1 element is blocked or made non-
directional when VTS operates
Off, Inhibit, Non-Dir Off
3.4.6.2. 51SEF-2
Description Range Default
Gn 51SEF-2 Element
Selects whether the 51SEF-2 IDMTL derived Earth Fault
element is enabled
Disabled, Enabled Disabled
Gn 51SEF-2 Dir. Control
Selects whether 51SEF-2 element is non-directional, forward
or reverse
Non-Dir, Forward, Reverse Non-Dir
Gn 51SEF-2 Setting
Pickup level
0.005, 0.006 ... 0.995, 1 0.2 xIn
Gn 51SEF-2 Char
Selects characteristic curve to be IEC or ANSI IDMTL or DTL
DTL, IEC-NI, IEC-VI, IEC-EI, IEC-
LTI, ANSI-MI, ANSI-VI, ANSI-EI
IEC-NI
Gn 51SEF-2 Time Mult (IEC/ANSI)
Time multiplier (applicable to IEC and ANSI curves but not
DTL selection)
0.025, 0.03 ... 1.595, 1.6 , 1.7 ...
4.9, 5, 6 ... 100
1
Gn 51SEF-2 Delay (DTL)
Delay (applicable only when DTL is selected for characteristic)
0, 0.01 ... 19.99, 20 5 s
Gn 51SEF-2 Min Operate Time
Minimum operate time of element.
0, 0.01 ... 19.99, 20 0 s
Gn 51SEF-2 Follower DTL
Additional definite time added after characteristic time
0, 0.01 ... 19.99, 20 0 s
Gn 51SEF-2 Reset
Selects between an ANSI decaying reset characteristic or DTL
reset
(ANSI) Decaying, 0 ... 59, 60 0 s
Gn 51SEF-2 VTS Action
Selects whether 51SEF-2 element is blocked or made non-
directional when VTS operates
Off, Inhibit, Non-Dir Off
3.4.6.3. 51SEF-3
Description Range Default
Gn 51SEF-3 Element
Selects whether the 51SEF-3 IDMTL derived Earth Fault
element is enabled
Disabled, Enabled Disabled
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 29 of 107
Description Range Default
Gn 51SEF-3 Dir. Control
Selects whether 51SEF-3 element is non-directional, forward
or reverse
Non-Dir, Forward, Reverse Non-Dir
Gn 51SEF-3 Setting
Pickup level
0.005, 0.006 ... 0.995, 1 0.2 xIn
Gn 51SEF-3 Char
Selects characteristic curve to be IEC or ANSI IDMTL or DTL
DTL, IEC-NI, IEC-VI, IEC-EI, IEC-
LTI, ANSI-MI, ANSI-VI, ANSI-EI
IEC-NI
Gn 51SEF-3 Time Mult (IEC/ANSI)
Time multiplier (applicable to IEC and ANSI curves but not
DTL selection)
0.025, 0.03 ... 1.595, 1.6 , 1.7 ...
4.9, 5, 6 ... 100
1
Gn 51SEF-3 Delay (DTL)
Delay (applicable only when DTL is selected for characteristic)
0, 0.01 ... 19.99, 20 5 s
Gn 51SEF-3 Min Operate Time
Minimum operate time of element.
0, 0.01 ... 19.99, 20 0 s
Gn 51SEF-3 Follower DTL
Additional definite time added after characteristic time
0, 0.01 ... 19.99, 20 0 s
Gn 51SEF-3 Reset
Selects between an ANSI decaying reset characteristic or a
definite time reset
(ANSI) Decaying, 0 ... 59, 60 0 s
Gn 51SEF-3 VTS Action
Selects whether 51SEF-3 element is blocked or made non-
directional when VTS operates
Off, Inhibit, Non-Dir Off
3.4.6.4. 51SEF-4
Description Range Default
Gn 51SEF-4 Element
Selects whether the 51SEF-4 IDMTL derived Earth Fault
element is enabled
Disabled, Enabled Disabled
Gn 51SEF-4 Dir. Control
Selects whether 51SEF-4 element is non-directional, forward
or reverse
Non-Dir, Forward, Reverse Non-Dir
Gn 51SEF-4 Setting
Pickup level
0.005, 0.006 ... 0.995, 1 0.2 xIn
Gn 51SEF-4 Char
Selects characteristic curve to be IEC or ANSI IDMTL or DTL
DTL, IEC-NI, IEC-VI, IEC-EI, IEC-
LTI, ANSI-MI, ANSI-VI, ANSI-EI
IEC-NI
Gn 51SEF-4 Time Mult (IEC/ANSI)
Time multiplier (applicable to IEC and ANSI curves but not
DTL selection)
0.025, 0.03 ... 1.595, 1.6 , 1.7 ...
4.9, 5, 6 ... 100
1
Gn 51SEF-4 Delay (DTL)
Delay (applicable only when DTL is selected for characteristic)
0, 0.01 ... 19.99, 20 5 s
Gn 51SEF-4 Min Operate Time
Minimum operate time of element.
0, 0.01 ... 19.99, 20 0 s
Gn 51SEF-4 Follower DTL
Additional definite time added after characteristic time
0, 0.01 ... 19.99, 20 0 s
Gn 51SEF-4 Reset
Selects between an ANSI decaying reset characteristic or a
definite time reset
(ANSI) Decaying, 0 ... 59, 60 0 s
Gn 51SEF-4 VTS Action
Selects whether 51SEF-4 element is blocked or made non-
directional when VTS operates
Off, Inhibit, Non-Dir Off
7SR220 Settings Guide
Unrestricted Page 30 of 107 © 2013 Siemens Protection Devices Limited
3.4.6.5. 50SEF-1
Description Range Default
Gn 50SEF-1 Element
Selects whether the DTL measured Earth fault element is
enabled
Disabled, Enabled Disabled
Gn 50SEF-1 Dir. Control
Selects whether 50SEF-1 element is non-directional, forward
or reverse
Non-Dir, Forward, Reverse Non-Dir
Gn 50SEF-1 Setting
Pickup level
0.005, 0.006 ... 4.995, 5 0.2 xIn
Gn 50SEF-1 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0 s
Gn 50SEF-1 VTS Action
Selects whether 50SEF-1 element is blocked or made non-
directional when VTS operates
Off, Inhibit, Non-Dir Off
3.4.6.6. 50SEF-2
Description Range Default
Gn 50SEF-2 Element
Selects whether the DTL measured Earth fault element is
enabled
Disabled, Enabled Disabled
Gn 50SEF-2 Dir. Control
Selects whether 50SEF-2 element is non-directional, forward
or reverse
Non-Dir, Forward, Reverse Non-Dir
Gn 50SEF-2 Setting
Pickup level
0.005, 0.006 ... 4.995, 5 0.2 xIn
Gn 50SEF-2 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0 s
Gn 50SEF-2 VTS Action
Selects whether 50SEF-2 element is blocked or made non-
directional when VTS operates
Off, Inhibit, Non-Dir Off
3.4.6.7. 50SEF-3
Description Range Default
Gn 50SEF-3 Element
Selects whether the DTL measured Earth fault element is
enabled
Disabled, Enabled Disabled
Gn 50SEF-3 Dir. Control
Selects whether 50SEF-3 element is non-directional, forward
or reverse
Non-Dir, Forward, Reverse Non-Dir
Gn 50SEF-3 Setting
Pickup level
0.005, 0.006 ... 4.995, 5 0.2 xIn
Gn 50SEF-3 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0 s
Gn 50SEF-3 VTS Action
Selects whether 50SEF-3 element is blocked or made non-
directional when VTS operates
Off, Inhibit, Non-Dir Off
3.4.6.8. 50SEF-4
Description Range Default
Gn 50SEF-4 Element
Selects whether the DTL measured Earth fault element is
enabled
Disabled, Enabled Disabled
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 31 of 107
Description Range Default
Gn 50SEF-4 Dir. Control
Selects whether 50SEF-4 element is non-directional, forward
or reverse
Non-Dir, Forward, Reverse Non-Dir
Gn 50SEF-4 Setting
Pickup level
0.005, 0.006 ... 4.995, 5 0.2 xIn
Gn 50SEF-4 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0 s
Gn 50SEF-4 VTS Action
Selects whether 50SEF-4 element is blocked or made non-
directional when VTS operates
Off, Inhibit, Non-Dir Off
3.4.7. Restricted E/F
Description Range Default
Gn 64H Element
High impedance restricted earth fault current element
Disabled, Enabled Disabled
Gn 64H Setting
Pickup level
0.005, 0.006 ... 0.945, 0.95 0.2 xIn
Gn 64H Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0 s
3.4.8. NPS Overcurrent
3.4.8.1. 46IT
Description Range Default
Gn 46IT Element
Selects whether the 46IT IDMTL/DTL negative phase
sequence current element is enabled
Disabled, Enabled Disabled
Gn 46IT Setting
Pickup level
0.05, 0.06 ... 2.49, 2.5 0.25 xIn
Gn 46IT Char
Selects characteristic curve to be IEC or ANSI IDMTL or DTL
DTL, IEC-NI, IEC-VI, IEC-EI, IEC-
LTI, ANSI-MI, ANSI-VI, ANSI-EI
IEC-NI
Gn 46IT Time Mult (IEC/ANSI)
Time multiplier (applicable to IEC and ANSI curves but not
DTL selection)
0.025, 0.03 ... 1.595, 1.6 , 1.7 ...
4.9, 5, 6 ... 100
1
Gn 46IT Delay (DTL)
Delay (applicable only when DTL is selected for characteristic)
0, 0.01 ... 19.99, 20 5 s
Gn 46IT Reset
Selects between an ANSI decaying reset characteristic or a
definite time reset
(ANSI) Decaying, 0 ... 59, 60 0 s
3.4.8.2. 46DT
Description Range Default
Gn 46DT Element
Selects whether the definite time NPS overvoltage element is
enabled
Disabled, Enabled Disabled
Gn 46DT Setting
Pickup level
0.05, 0.06 ... 4 0.1 xIn
Gn 46DT Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0.02 s
7SR220 Settings Guide
Unrestricted Page 32 of 107 © 2013 Siemens Protection Devices Limited
3.4.9. Under Current
Description Range Default
Gn 37 U/I Guard Setting 0.05, 0.1 ... 4.95, 5 0.1 xIn
3.4.9.1. 37-1
Description Range Default
Gn 37-1 Element
Phase under current element 37-1
Disabled, Enabled Disabled
Gn 37-1 Setting
Pickup level
0.05, 0.1 ... 4.95, 5 0.25 xIn
Gn 37-1 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0 s
Gn 37-1 U/I Guarded
Selects whether to use the 37-1 guard element
No, Yes Yes
Gn 37-1 Start Option
Selects whether 31-1 element operates for any phase picked
up or only when all phases are picked up
All, Any All
3.4.9.2. 37-2
Description Range Default
Gn 37-2 Element
Phase under current element 37-2
Disabled, Enabled Disabled
Gn 37-2 Setting
Pickup level
0.05, 0.1 ... 4.95, 5 0.25 xIn
Gn 37-2 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0 s
Gn 37-2 U/I Guarded
Selects whether to use the 37-2 guard element
No, Yes Yes
Gn 37-2 Start Option
Selects whether 31-2 element operates for any phase picked
up or only when all phases are picked up
All, Any All
3.4.9.3. 37G-1
Description Range Default
Gn 37G-1 Element
E/F under current element 37G-1
Disabled, Enabled Disabled
Gn 37G-1 Setting
Pickup level
0.005, 0.006 ... 4.995, 5 0.2 xIn
Gn 37G-1 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0 s
3.4.9.4. 37G-2
Description Range Default
Gn 37G-2 Element
E/F under current element 37G-2
Disabled, Enabled Disabled
Gn 37G-2 Setting
Pickup level
0.005, 0.006 ... 4.995, 5 0.2 xIn
Gn 37G-2 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0 s
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 33 of 107
3.4.9.5. 37SEF-1
Description Range Default
Gn 37SEF-1 Element
SEF under current element 37SEF-1
Disabled, Enabled Disabled
Gn 37SEF-1 Setting
Pickup level
0.005, 0.006 ... 4.995, 5 0.2 xIn
Gn 37SEF-1 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0 s
3.4.9.6. 37SEF-2
Description Range Default
Gn 37SEF-2 Element
SEF under current element 37SEF-2
Disabled, Enabled Disabled
Gn 37SEF-2 Setting
Pickup level
0.005, 0.006 ... 4.995, 5 0.2 xIn
Gn 37SEF-2 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0 s
3.4.10. Thermal
Description Range Default
Gn 49 Thermal Overload
Selects whether the thermal overload protection element is
enabled
Disabled, Enabled Disabled
Gn 49 Overload Setting
Pickup level
0.1, 0.11 ... 2.99, 3 1.05 xIn
Gn 49 Time Constant (Minutes)
Thermal time constant
1, 1.5 ... 999.5, 1000 10 minutes
Gn 49 Capacity Alarm
Selects whether thermal capacity alarm enabled
Disabled, 50 ... 99, 100 Disabled
49 Reset Therm State
Control that allows thermal state to be manually reset
3.4.11. ARC Flash Detector
Description Range Default
Gn 50AFD
Selects whether the ARC Flash Detector element is enabled
Disabled, Enabled Disabled
Gn 50AFD Setting
Pickup level
1, 2,...10 2 xIn
3.5. Voltage Protection
3.5.1. Phase U/O Voltage
Description Range Default
Gn Voltage Input Mode
Selects Ph-Ph or Ph-N voltages for U/V guard element & 27/59
elements operation.
Ph-N, Ph-Ph Ph-N
7SR220 Settings Guide
Unrestricted Page 34 of 107 © 2013 Siemens Protection Devices Limited
Description Range Default
Gn 27/59 U/V Guard Setting
Selects voltage level below which the guard element is
applied.
1, 1.5 ... 199.5, 200 5 V
3.5.2. 27/59-1
Description Range Default
Gn 27/59-1 Element
Selects whether the Under/Over voltage element stage 1 is
enabled
Disabled, Enabled Disabled
Gn 27/59-1 Operation
Selects between Undervoltage and Overvoltage pickup for this
element
Under, Over Over
Gn 27/59-1 Setting
Under or over voltage pickup level
5, 5.5 ... 199.5, 200 80 V
Gn 27/59-1 Hysteresis
Sets the pickup to dropoff thresholds e.g. 3% on Overlevel
picks up above pickup setting and drops off below 97% of
setting, 3% on Underlevel picks up below setting and drops off
above 103% of setting
0, 0.1 ... 79.9, 80 3 %
Gn 27/59-1 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0.1 s
Gn 27/59-1 U/V Guarded
Selects whether U/V Guard element can block the operation of
this element
No, Yes No
Gn 27/59-1 VTS Inhibit
Selects whether element is blocked or not when VTS operates
No, Yes No
Gn 27/59-1 O/P Phases
Selects whether element operates for any phase picked up or
only when all phases are picked up
Any, All Any
3.5.3. 27/59-2
Description Range Default
Gn 27/59-2 Element
Selects whether the Under/Over voltage element stage 2 is
enabled
Disabled, Enabled Disabled
Gn 27/59-2 Operation
Selects between Undervoltage and Overvoltage pickup for this
element
Under, Over Over
Gn 27/59-2 Setting
Under or over voltage pickup level
5, 5.5 ... 199.5, 200 80 V
Gn 27/59-2 Hysteresis
Sets the pickup to dropoff thresholds e.g. 3% on Overlevel
picks up above pickup setting and drops off below 97% of
setting, 3% on Underlevel picks up below setting and drops off
above 103% of setting
0, 0.1 ... 79.9, 80 3 %
Gn 27/59-2 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0.1 s
Gn 27/59-2 U/V Guarded
Selects whether U/V Guard element can block the operation of
this element
No, Yes No
Gn 27/59-2 VTS Inhibit
Selects whether element is blocked or not when VTS operates
No, Yes No
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 35 of 107
Description Range Default
Gn 27/59-2 O/P Phases
Selects whether element operates for any phase picked up or
only when all phases are picked up
Any, All Any
3.5.4. 27/59-3
Description Range Default
Gn 27/59-3 Element
Selects whether the Under/Over voltage element stage 3 is
enabled
Disabled, Enabled Disabled
Gn 27/59-3 Operation
Selects between Undervoltage and Overvoltage pickup for this
element
Under, Over Under
Gn 27/59-3 Setting
Under or over voltage pickup level
5, 5.5 ... 199.5, 200 50 V
Gn 27/59-3 Hysteresis
Sets the pickup to dropoff thresholds e.g. 3% on Overlevel
picks up above pickup setting and drops off below 97% of
setting, 3% on Underlevel picks up below setting and drops off
above 103% of setting
0, 0.1 ... 79.9, 80 3 %
Gn 27/59-3 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0.1 s
Gn 27/59-3 U/V Guarded
Selects whether U/V Guard element can block the operation of
this element
No, Yes Yes
Gn 27/59-3 VTS Inhibit
Selects whether element is blocked or not when VTS operates
No, Yes No
Gn 27/59-3 O/P Phases
Selects whether element operates for any phase picked up or
only when all phases are picked up
Any, All Any
3.5.5. 27/59-4
Description Range Default
Gn 27/59-4 Element
Selects whether the Under/Over voltage element stage 4 is
enabled
Disabled, Enabled Disabled
Gn 27/59-4 Operation
Selects between Undervoltage and Overvoltage pickup for this
element
Under, Over Under
Gn 27/59-4 Setting
Under or over voltage pickup level
5, 5.5 ... 199.5, 200 50 V
Gn 27/59-4 Hysteresis
Sets the pickup to dropoff thresholds e.g. 3% on Overlevel
picks up above pickup setting and drops off below 97% of
setting, 3% on Underlevel picks up below setting and drops off
above 103% of setting
0, 0.1 ... 79.9, 80 3 %
Gn 27/59-4 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0.1 s
Gn 27/59-4 U/V Guarded
Selects whether U/V Guard element can block the operation of
this element
No, Yes Yes
Gn 27/59-4 VTS Inhibit
Selects whether element is blocked or not when VTS operates
No, Yes No
7SR220 Settings Guide
Unrestricted Page 36 of 107 © 2013 Siemens Protection Devices Limited
Description Range Default
Gn 27/59-4 O/P Phases
Selects whether element operates for any phase picked up or
only when all phases are picked up
Any, All Any
3.6. Vx U/O Voltage
Description Range Default
Gn Vx 27/59 U/V Guard Setting 1, 1.5 ... 199.5, 200 5 V
Gn Vx 27/59 Element
Selects whether the Under/Over voltage element for Vx is
enabled
Disabled, Enabled Disabled
Gn Vx 27/59 Operation
Selects between Undervoltage and Overvoltage pickup for this
element
Under, Over Over
Gn Vx 27/59 Setting
Under or over voltage pickup level
5, 5.5 ... 199.5, 200 80 V
Gn Vx 27/59 Hysteresis
Sets the pickup to dropoff thresholds e.g. 3% on Overlevel
picks up above pickup setting and drops off below 97% of
setting, 3% on Underlevel picks up below setting and drops off
above 103% of setting
0, 0.1 ... 79.9, 80 3 %
Gn Vx 27/59 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0.1 s
Gn Vx 27/59 U/V Guarded No, Yes No
3.7. NPS Overvoltage
3.7.1. 47-1
Description Range Default
Gn 47-1 Element
Selects whether the definite time NPS overvoltage element is
enabled
Disabled, Enabled Disabled
Gn 47-1 Setting
Pickup level
1, 1.5 ... 89.5, 90 20 V
Gn 47-1 Hysteresis
Sets the pickup to drop-off thresholds e.g. 3% picks up at
setting and drops off below 97% of setting
0, 0.1 ... 79.9, 80 3 %
Gn 47-1 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 1 s
3.7.2. 47-2
Description Range Default
Gn 47-2 Element
Selects whether the definite time NPS overvoltage element is
enabled
Disabled, Enabled Disabled
Gn 47-2 Setting
Pickup level
1, 1.5 ... 89.5, 90 20 V
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 37 of 107
Description Range Default
Gn 47-2 Hysteresis
Sets the pickup to drop-off thresholds e.g. 3% picks up at
setting and drops off below 97% of setting
0, 0.1 ... 79.9, 80 3 %
Gn 47-2 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0.5 s
3.8. Neutral Overvoltage
Description Range Default
Gn 59N Voltage Source
Selects voltage source between calculated 3V0 (Vn) or
measured 3V0 through Vx input
Vn, Vx Vn
3.8.1. 59NIT
Description Range Default
Gn 59NIT Element
Selects whether the inverse time neutral over voltage element
is enabled
Disabled, Enabled Disabled
Gn 59NIT Setting
Pickup level
1, 1.5 ... 99.5, 100 5 V
Gn 59NIT Char
Selects characteristic curve to be IDMTL or DTL
DTL, IDMTL IDMTL
Gn 59NIT Time Mult (IDMTL)
Time multiplier (applicable to IDMTL curve but not DTL
selection)
0.1, 0.2 ... 139.5, 140 1
Gn 59NIT Delay (DTL)
Delay (applicable only when DTL is selected for characteristic)
0, 0.01 ... 19.99, 20 5 s
Gn 59NIT Reset
Selects between an instantaneous reset characteristic or a
definite time reset
(ANSI) Decaying, 0 ... 59, 60 0 s
3.8.2. 59NDT
Description Range Default
Gn 59NDT Element
Selects whether the definite time neutral over voltage element
is enabled
Disabled, Enabled Disabled
Gn 59NDT Setting
Pickup level
1, 1.5 ... 99.5, 100 5 V
Gn 59NDT Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0.01 s
3.9. U/O Frequency
Description Range Default
Gn 81 U/V Guard Setting
Selects voltage level below which the guard element is
applied.
5, 5.5 ... 199.5, 200 5 V
7SR220 Settings Guide
Unrestricted Page 38 of 107 © 2013 Siemens Protection Devices Limited
3.9.1. 81-1
Description Range Default
Gn 81-1 Element
Selects whether the Under/Over frequency element stage 1 is
enabled
Disabled, Enabled Disabled
Gn 81-1 Operation
Selects between Underfrequency and Overfrequency pickup
for this element
Under, Over Under
Gn 81-1 Setting
Under or over frequency pickup level
40, 40.01 ... 69.98, 69.99 49.5 Hz
Gn 81-1 Hysteresis
Sets the pickup to dropoff thresholds e.g. 3% on Overlevel
picks up above pickup setting and drops off below 97% of
setting, 3% on Underlevel picks up below setting and drops off
above 103% of setting
0, 0.1 ... 79.9, 80 0.1 %
Gn 81-1 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 1 s
Gn 81-1 U/V Guarded
Selects whether U/V Guard element can block the operation of
this element
No, Yes Yes
3.9.2. 81-2
Description Range Default
Gn 81-2 Element
Selects whether the Under/Over frequency element stage 2 is
enabled
Disabled, Enabled Disabled
Gn 81-2 Operation
Selects between Underfrequency and Overfrequency pickup
for this element
Under, Over Under
Gn 81-2 Setting
Under or over frequency pickup level
40, 40.01 ... 69.98, 69.99 49 Hz
Gn 81-2 Hysteresis
Sets the pickup to dropoff thresholds e.g. 3% on Overlevel
picks up above pickup setting and drops off below 97% of
setting, 3% on Underlevel picks up below setting and drops off
above 103% of setting
0, 0.1 ... 79.9, 80 0.1 %
Gn 81-2 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0.8 s
Gn 81-2 U/V Guarded
Selects whether U/V Guard element can block the operation of
this element
No, Yes Yes
3.9.3. 81-3
Description Range Default
Gn 81-3 Element
Selects whether the Under/Over frequency element stage 3 is
enabled
Disabled, Enabled Disabled
Gn 81-3 Operation
Selects between Underfrequency and Overfrequency pickup
for this element
Under, Over Under
Gn 81-3 Setting
Under or over frequency pickup level
40, 40.01 ... 69.98, 69.99 48 Hz
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 39 of 107
Description Range Default
Gn 81-3 Hysteresis
Sets the pickup to dropoff thresholds e.g. 3% on Overlevel
picks up above pickup setting and drops off below 97% of
setting, 3% on Underlevel picks up below setting and drops off
above 103% of setting
0, 0.1 ... 79.9, 80 0.1 %
Gn 81-3 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0.6 s
Gn 81-3 U/V Guarded
Selects whether U/V Guard element can block the operation of
this element
No, Yes Yes
3.9.4. 81-4
Description Range Default
Gn 81-4 Element
Selects whether the Under/Over frequency element stage 4 is
enabled
Disabled, Enabled Disabled
Gn 81-4 Operation
Selects between Underfrequency and Overfrequency pickup
for this element
Under, Over Under
Gn 81-4 Setting
Under or over frequency pickup level
40, 40.01 ... 69.98, 69.99 47.5 Hz
Gn 81-4 Hysteresis
Sets the pickup to dropoff thresholds e.g. 3% on Overlevel
picks up above pickup setting and drops off below 97% of
setting, 3% on Underlevel picks up below setting and drops off
above 103% of setting
0, 0.1 ... 79.9, 80 0.1 %
Gn 81-4 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0.4 s
Gn 81-4 U/V Guarded
Selects whether U/V Guard element can block the operation of
this element
No, Yes Yes
3.9.5. 81-5
Description Range Default
Gn 81-5 Element
Selects whether the Under/Over frequency element stage 5 is
enabled
Disabled, Enabled Disabled
Gn 81-5 Operation
Selects between Underfrequency and Overfrequency pickup
for this element
Under, Over Under
Gn 81-5 Setting
Under or over frequency pickup level
40, 40.01 ... 69.98, 69.99 47.5 Hz
Gn 81-5 Hysteresis
Sets the pickup to dropoff thresholds e.g. 3% on Overlevel
picks up above pickup setting and drops off below 97% of
setting, 3% on Underlevel picks up below setting and drops off
above 103% of setting
0, 0.1 ... 79.9, 80 0.1 %
Gn 81-5 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0.4 s
Gn 81-5 U/V Guarded
Selects whether U/V Guard element can block the operation of
this element
No, Yes Yes
7SR220 Settings Guide
Unrestricted Page 40 of 107 © 2013 Siemens Protection Devices Limited
3.9.6. 81-6
Description Range Default
Gn 81-6 Element
Selects whether the Under/Over frequency element stage 6 is
enabled
Disabled, Enabled Disabled
Gn 81-6 Operation
Selects between Underfrequency and Overfrequency pickup
for this element
Under, Over Under
Gn 81-6 Setting
Under or over frequency pickup level
40, 40.01 ... 69.98, 69.99 47.5 Hz
Gn 81-6 Hysteresis
Sets the pickup to dropoff thresholds e.g. 3% on Overlevel
picks up above pickup setting and drops off below 97% of
setting, 3% on Underlevel picks up below setting and drops off
above 103% of setting
0, 0.1 ... 79.9, 80 0.1 %
Gn 81-6 Delay
Sets operate delay time
0, 0.01 ... 14300, 14400 0.4 s
Gn 81-6 U/V Guarded
Selects whether U/V Guard element can block the operation of
this element
No, Yes Yes
3.10. Supervision
3.10.1. CB Fail
Description Range Default
Gn 50BF Element
Selects whether the Circuit Breaker Fail element is enabled
Disabled, Enabled Disabled
Gn 50BF Setting
Breaker Fail Current Pickup level. If the current falls below this
level then the CB is deemed to have opened and the element
is reset.
0.05, 0.055 ... 1.995, 2 0.2 xIn
Gn 50BF-I4 Setting 0.005, 0.01 ... 1.995, 2 0.05 xIn
Gn 50BF-1 Delay
Delay before Circuit Breaker Fail stage 1 operates
20, 25 ... 59995, 60000 60 ms
Gn 50BF-2 Delay
Delay before Circuit Breaker Fail stage 2 operates
20, 25 ... 59995, 60000 120 ms
3.10.2. VT Supervision
Description Range Default
Gn 60VTS Element
Selects whether the VT supervision element is enabled
Disabled, Enabled Disabled
Gn 60VTS Component
Selects whether NPS or ZPS quantities are used by the VT
supervision element
NPS, ZPS NPS
Gn 60VTS V
Level above which there is a possible 1 or 2 phase VT fuse
failure
7, 8 ... 109, 110 7 V
Gn 60VTS I
Level above which a 1 or 2 phase fault condition is assumed
so VTS inhibited
0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35,
0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7,
0.75, 0.8, 0.85, 0.9, 0.95, 1
0.1 xIn
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 41 of 107
Description Range Default
Gn 60VTS Vpps
Level below which there is a possible 3 phase VT fuse failure
1, 2 ... 109, 110 15 V
Gn 60VTS Ipps Load
Level current must be above before 3 phase VTS will be
issued
0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35,
0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7,
0.75, 0.8, 0.85, 0.9, 0.95, 1
0.1 xIn
Gn 60VTS Ipps Fault
Level above which 3 phase fault is assumed so VTS inhibited
0.05, 0.1 ... 19.95, 20 10 xIn
Gn 60VTS Delay
Sets operate delay time
0.03, 0.04 ... 14300, 14400 10 s
Gn 60VTF-Bus Element
Selects whether the Bus VT Fail element is enabled. Element
based on voltages and circuit breaker position
Enabled, Disabled Disabled
Gn 60VTF-Bus Delay
Sets operate delay time
0, 0.1 ... 99.9, 100 2s
3.10.3. CT Supervision
Description Range Default
Gn 60CTS Element
Selects whether the CT supervision element is enabled (NPS
current in the absence of NPS voltage)
Disabled, Enabled Disabled
Gn 60CTS Inps
Arm if NPS Current (Inps) is above this level
0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35,
0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7,
0.75, 0.8, 0.85, 0.9, 0.95, 1
0.1 xIn
Gn 60CTS Vnps
Inhibit if NPS Voltage (Vnps) is above this level
7, 8 ... 109, 110 10 V
Gn 60CTS Delay
CTS Operate delay
0.03, 0.04 ... 14300, 14400 10 s
Gn 60CTS-I Element Disabled, Enabled Disabled
Gn 60CTS-I Setting 0.05, 0.1 ... 1.95, 2 0.05 xIn
Gn 60CTS-I Delay 0.03, 0.04 ... 14300, 14400 10 s
3.10.4. Broken Conductor
Description Range Default
Gn 46BC U/C Guard Setting 0.05, 0.1 ... 4.95, 5 0.25 xIn
Gn 46BC Element
Selects whether the definite time broken conductor element is
enabled
Disabled, Enabled Disabled
Gn 46BC Setting
NPS Current to PPS Current ratio
20, 21 ... 99, 100 20 %
Gn 46BC Delay
Sets operate delay time
0.03, 0.04 ... 14300, 14400 20 s
Gn 46BC U/C Guarded No, Yes No
7SR220 Settings Guide
Unrestricted Page 42 of 107 © 2013 Siemens Protection Devices Limited
3.10.5. Trip CCT Supervision
Description Range Default
Gn 74TCS-1
Selects whether the trip circuit supervision element 74TCS-1
is enabled
Disabled, Enabled Disabled
Gn 74TCS-1 Delay
Time delay before trip circuit supervision operates
0, 0.02 ... 59.98, 60 0.4 s
Gn 74TCS-2
Selects whether the trip circuit supervision element 74TCS-2
is enabled
Disabled, Enabled Disabled
Gn 74TCS-2 Delay
Time delay before trip circuit supervision operates
0, 0.02 ... 59.98, 60 0.4 s
Gn 74TCS-3
Selects whether the trip circuit supervision element 74TCS-3
is enabled
Disabled, Enabled Disabled
Gn 74TCS-3 Delay
Time delay before trip circuit supervision operates
0, 0.02 ... 59.98, 60 0.4 s
3.10.6. Close CCT Supervision
Description Range Default
Gn 74CCS-1
Selects whether the trip circuit supervision element 74CCS-1
is enabled
Disabled, Enabled Disabled
Gn 74CCS-1 Delay
Time delay before trip circuit supervision operates
0, 0.02 ... 59.98, 60 0.4 s
Gn 74CCS-2
Selects whether the trip circuit supervision element 74CCS-2
is enabled
Disabled, Enabled Disabled
Gn 74CCS-2 Delay
Time delay before trip circuit supervision operates
0, 0.02 ... 59.98, 60 0.4 s
Gn 74CCS-3
Selects whether the trip circuit supervision element 74CCS-3
is enabled
Disabled, Enabled Disabled
Gn 74CCS-3 Delay
Time delay before trip circuit supervision operates
0, 0.02 ... 59.98, 60 0.4 s
3.10.7. Inrush Detector
Description Range Default
Gn 81HBL2 Element
Selects whether the phase inrush detector 81HBL2 is enabled
Disabled, Enabled Disabled
Gn 81HBL2 Bias
Selects the bias method used for magnetising inrush. Phase –
Segregated, each phase blocks itself. Cross – Blocked, each
phase can block the operation of other phases. Sum - Of
Squares, each phase blocks itself using the square root of the
sum of squares of the 2nd harmonic.
Phase, Cross, Sum Cross
Gn 81HBL2 Setting
The magnetising inrush detector operates when the 2nd
harmonic current exceeds a set percentage of the fundamental
current
0.1, 0.11 ... 0.49, 0.5 0.2 xI
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 43 of 107
3.10.8. Load Blinder
3.10.8.1. 21LB-3P
Description Range Default
Gn 21LB-3P Angle +ve
Selects the boundary region.
5 degrees to 85 degrees 20 Degrees
Gn 21LB-3P Angle -ve
Selects the boundary region.
5 degrees to 85 degrees 20 Degrees
Gn 21LB-3P Impedance
Selects the impedance of the region.
1, 1.1,...50, 50.5, 51...100 Ohms 10 Ohms
Gn 21LB-3P VPPS
Sets the level of 21LB-3P VPPS setting
1, 1.5 ...110 V 50 V
Gn 21LB-3P INPS
Sets the level of 21LB-3P INPS setting.
0.05, 0.1 ... 0.45, 5 0.5 xI
3.10.8.2. 21LB-1P
Description Range Default
Gn 21LB-1P Angle +ve
Selects the boundary region.
5 degrees to 85 degrees 20 Degrees
Gn 21LB-1P Angle -ve
Selects the boundary region.
5 degrees to 85 degrees 20 Degrees
Gn 21LB-1P Impedance
Selects the impedance of the region.
1, 1.1,...50, 50.5, 51...100 Ohms 10 Ohms
Gn 21LB-1P VPPS
Sets the level of 21LB-1P VPPS setting
1, 1.5 ...110 V 50 V
Gn 21LB-1P IZPS
Sets the level of 21LB-1P ZNPS setting.
0.05, 0.1 ... 0.45, 5 0.5 xI
3.11. Control & Logic
3.11.1. Autoreclose Prot’n
Description Range Default
Gn 79 P/F Inst Trips
Selects which phase fault protection elements are classed as
Instantaneous elements and start an autoreclose sequence.
These will be blocked from operating during Delayed
autoreclose sequences. See autoreclose section of manual for
detail of what elements can cause only Delayed protection to
be used.
Combination of ( 51-1, 51-2, 51-3,
51-4, 50-1, 50-2, 50-3, 50-4 )
--------
Gn 79 E/F Inst Trips
Selects which earth fault protection elements are classed as
Instantaneous elements and start an autoreclose sequence.
These will be blocked from operating during Delayed
autoreclose sequences. See autoreclose section of manual for
detail of what elements can cause only Delayed protection to
be used.
Combination of ( 51N-1, 51N-2,
51N-3, 51N-4, 50N-1, 50N-2, 50N-
3, 50N-4, 51G-1, 51G-2, 51G-3,
51G-4, 50G-1, 50G-2, 50G-3, 50G-
4 )
----------------
Gn 79 SEF Inst Trips
Selects which sensitive earth fault protection elements are
classed as Instantaneous elements and start an autoreclose
sequence. These will be blocked from operating during
Delayed autoreclose sequences. See autoreclose section of
manual for detail of what elements can cause only Delayed
protection to be used.
Combination of ( 51SEF-1, 51SEF-
2, 51SEF-3, 51SEF-4, 50SEF-1,
50SEF-2, 50SEF-3, 50SEF-4 )
--------
7SR220 Settings Guide
Unrestricted Page 44 of 107 © 2013 Siemens Protection Devices Limited
Description Range Default
Gn 79 P/F Delayed Trips
Selects which phase fault protection are classed as Delayed
elements, any selected elements operating will start an
autoreclose sequence.
Combination of ( 51-1, 51-2, 51-3,
51-4, 50-1, 50-2, 50-3, 50-4 )
51-1, 51-2, 51-3,
51-4, 50-1, 50-2,
50-3, 50-4
Gn 79 E/F Delayed Trips
Selects which earth fault protection are classed as Delayed
elements, any selected elements operating will start an
autoreclose sequence.
Combination of ( 51N-1, 51N-2,
51N-3, 51N-4, 50N-1, 50N-2, 50N-
3, 50N-4, 51G-1, 51G-2, 51G-3,
51G-4, 50G-1, 50G-2, 50G-3, 50G-
4 )
51N-1, 51N-2,
51N-3, 51N-4,
50N-1, 50N-2,
50N-3, 50N-4,
51G-1, 51G-2,
51G-3, 51G-4,
50G-1, 50G-2,
50G-3, 50G-4
Gn 79 SEF Delayed Trips
Selects which sensitive earth fault elements are classed as
Delayed elements, any selected elements operating will start
an autoreclose sequence.
Combination of ( 51SEF-1, 51SEF-
2, 51SEF-3, 51SEF-4, 50SEF-1,
50SEF-2, 50SEF-3, 50SEF-4 )
51SEF-1,
51SEF-2,
51SEF-3,
51SEF-4,
50SEF-1,
50SEF-2,
50SEF-3,
50SEF-4
Gn 79 P/F HS Trips
Selects which phase fault elements are classed as High Set
elements, any selected elements operating will start an
autoreclose sequence.
Combination of ( 50-1, 50-2, 50-3,
50-4 )
----
Gn 79 E/F HS Trips
Selects which earth fault elements are classed as High Set
elements, any selected elements operating will start an
autoreclose sequence.
Combination of ( 50N-1, 50N-2,
50N-3, 50N-4, 50G-1, 50G-2, 50G-
3, 50G-4 )
--------
3.11.2. Autoreclose Config
Description Range Default
Gn 79 Autoreclose
If disabled then all attempts to control the AR IN/OUT status
will fail and the AR will be permanently Out Of Service. When
enabled the AR IN/OUT state may be controlled via the
CONTROL MODE menu option, via Binary Input or via local
or remote communications.
Disabled, Enabled Enabled
Gn 79 Num Shots
Selects the number of auto-reclose attempts before the
Autorecloser locks out
1, 2, 3, 4 1
Gn 79 Retry Enable
Selects whether the Retry close functionality is enabled
Disabled, Enabled Disabled
Gn 79 Retry Attempts
Selects the number of retries allowed per shot
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 1
Gn 79 Retry Interval
Time delay between retries
0, 1 ... 599, 600 60 s
Gn 79 Reclose Blocked Delay
Specifies the maximum time that the Autorecloser can be
blocked before proceeding to the lockout state. (NOTE: The
block delay timer only starts after the Deadtime.)
0, 1 ... 599, 600 60 s
Gn 79 Sequence Fail Timer
Time before lockout occurs on an incomplete reclose
sequence. (i.e Trip & starter conditions have not been cleared
after Sequence Fail Time.)
0, 1 ... 599, 600 60 s
Gn 79 Sequence Co-ord
Selects whether Sequence co-ordination functionality is used
or not.
Disabled, Enabled Enabled
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 45 of 107
Description Range Default
Gn 79 Cold Load Action
Selects whether whist Cold Load is active the relay will
perform only Delayed Trips or not.
Off, Delayed Off
3.11.2.1. P/F Shots
Description Range Default
Gn 79 P/F Prot'n Trip 1
Selects whether the first phase fault trip is Instantaneous
(Fast) or Delayed. When set to Delayed all P/F Inst Trips will
be Inhibited for this shot.
Inst, Delayed Inst
Gn 79 P/F Deadtime 1
Time period between the fault being cleared and the close
pulse being issued
0, 0.1 ... 14300, 14400 5 s
Gn 79 P/F Prot'n Trip 2
Selects whether the second phase fault trip is Instantaneous
(Fast) or Delayed. When set to Delayed all P/F Inst Trips will
be Inhibited for this shot.
Inst, Delayed Inst
Gn 79 P/F Deadtime 2
Time period between the fault being cleared and the close
pulse being issued
0, 0.1 ... 14300, 14400 5 s
Gn 79 P/F Prot'n Trip 3
Selects whether the third phase fault trip is Instantaneous
(Fast) or Delayed. When set to Delayed all P/F Inst Trips will
be Inhibited for this shot.
Inst, Delayed Delayed
Gn 79 P/F Deadtime 3
Time period between the fault being cleared and the close
pulse being issued
0, 0.1 ... 14300, 14400 5 s
Gn 79 P/F Prot'n Trip 4
Selects whether the fourth phase fault trip is Instantaneous
(Fast) or Delayed. When set to Delayed all P/F Inst Trips will
be Inhibited for this shot.
Inst, Delayed Delayed
Gn 79 P/F Deadtime 4
Time period between the fault being cleared and the close
pulse being issued
0, 0.1 ... 14300, 14400 5 s
Gn 79 P/F Prot'n Trip 5
Selects whether the fifth phase fault trip is Instantaneous
(Fast) or Delayed. When set to Delayed all P/F Inst Trips will
be Inhibited for this shot.
Inst, Delayed Delayed
Gn 79 P/F HS Trips To Lockout
Selects how many High Set trips are allowed before going to
Lockout
1, 2, 3, 4, 5 5
Gn 79 P/F Delayed Trips To Lockout
Selects how many Delayed trips are allowed before going to
Lockout
1, 2, 3, 4, 5 5
3.11.2.2. E/F Shots
Description Range Default
Gn 79 E/F Prot'n Trip 1
Selects whether the first earth fault trip is Instantaneous (Fast)
or Delayed. When set to Delayed all E/F Inst Trips will be
Inhibited for this shot.
Inst, Delayed Inst
Gn 79 E/F Deadtime 1
Time period between the fault being cleared and the close
pulse being issued
0, 0.1 ... 14300, 14400 5 s
Gn 79 E/F Prot'n Trip 2
Selects whether the second earth fault trip is Instantaneous
(Fast) or Delayed. When set to Delayed all E/F Inst Trips will
be Inhibited for this shot.
Inst, Delayed Inst
7SR220 Settings Guide
Unrestricted Page 46 of 107 © 2013 Siemens Protection Devices Limited
Description Range Default
Gn 79 E/F Deadtime 2
Time period between the fault being cleared and the close
pulse being issued
0, 0.1 ... 14300, 14400 5 s
Gn 79 E/F Prot'n Trip 3
Selects whether the third earth fault trip is Instantaneous (Fast)
or Delayed. When set to Delayed all E/F Inst Trips will be
Inhibited for this shot.
Inst, Delayed Delayed
Gn 79 E/F Deadtime 3
Time period between the fault being cleared and the close
pulse being issued
0, 0.1 ... 14300, 14400 5 s
Gn 79 E/F Prot'n Trip 4
Selects whether the fourth earth fault trip is Instantaneous
(Fast) or Delayed. When set to Delayed all E/F Inst Trips will
be Inhibited for this shot.
Inst, Delayed Delayed
Gn 79 E/F Deadtime 4
Time period between the fault being cleared and the close
pulse being issued
0, 0.1 ... 14300, 14400 5 s
Gn 79 E/F Prot'n Trip 5
Selects whether the fifth earth fault trip is Instantaneous (Fast)
or Delayed. When set to Delayed all E/F Inst Trips will be
Inhibited for this shot.
Inst, Delayed Delayed
Gn 79 E/F HS Trips To Lockout
Selects how many High Set trips are allowed before going to
Lockout
1, 2, 3, 4, 5 5
Gn 79 E/F Delayed Trips To Lockout
Selects how many Delayed trips are allowed before going to
Lockout
1, 2, 3, 4, 5 5
3.11.2.3. SEF Shots
Description Range Default
Gn 79 SEF Prot'n Trip 1
Selects whether the first sensitive earth fault trip is
Instantaneous or Delayed. When set to Delayed all SEF Inst
Trips will be Inhibited for this shot.
Inst, Delayed Inst
Gn 79 SEF Deadtime 1
Time period between the fault being cleared and the close
pulse being issued
0, 0.1 ... 14300, 14400 5 s
Gn 79 SEF Prot'n Trip 2
Selects whether the second sensitive earth fault trip is
Instantaneous or Delayed. When set to Delayed all SEF Inst
Trips will be Inhibited for this shot.
Inst, Delayed Inst
Gn 79 SEF Deadtime 2
Time period between the fault being cleared and the close
pulse being issued
0, 0.1 ... 14300, 14400 5 s
Gn 79 SEF Prot'n Trip 3
Selects whether the third sensitive earth fault trip is
Instantaneous or Delayed. When set to Delayed all SEF Inst
Trips will be Inhibited for this shot.
Inst, Delayed Delayed
Gn 79 SEF Deadtime 3
Time period between the fault being cleared and the close
pulse being issued
0, 0.1 ... 14300, 14400 5 s
Gn 79 SEF Prot'n Trip 4
Selects whether the fourth sensitive earth fault trip is
Instantaneous or Delayed. When set to Delayed all SEF Inst
Trips will be Inhibited for this shot.
Inst, Delayed Delayed
Gn 79 SEF Deadtime 4
Time period between the fault being cleared and the close
pulse being issued
0, 0.1 ... 14300, 14400 5 s
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 47 of 107
Description Range Default
Gn 79 SEF Prot'n Trip 5
Selects whether the fifth sensitive earth fault trip is
Instantaneous or Delayed. When set to Delayed all SEF Inst
Trips will be Inhibited for this shot.
Inst, Delayed Delayed
Gn 79 SEF Delayed Trips To Lockout
Selects how many Delayed trips are allowed before going to
Lockout
1, 2, 3, 4, 5 5
3.11.2.4. Extern Shots
Description Range Default
Gn 79 Extern Prot'n Trip 1
Selects whether the first external trip is Instantaneous or
Delayed
Not Blocked, Blocked Not Blocked
Gn 79 Extern Deadtime 1
Time period between the fault being cleared and the close
pulse being issued
0, 0.1 ... 14300, 14400 5 s
Gn 79 Extern Prot'n Trip 2
Selects whether the second external trip is Instantaneous or
Delayed
Not Blocked, Blocked Not Blocked
Gn 79 Extern Deadtime 2
Time period between the fault being cleared and the close
pulse being issued
0, 0.1 ... 14300, 14400 5 s
Gn 79 Extern Prot'n Trip 3
Selects whether the third external trip is Instantaneous or
Delayed
Not Blocked, Blocked Not Blocked
Gn 79 Extern Deadtime 3
Time period between the fault being cleared and the close
pulse being issued
0, 0.1 ... 14300, 14400 5 s
Gn 79 Extern Prot'n Trip 4
Selects whether the fourth external trip is Instantaneous or
Delayed
Not Blocked, Blocked Not Blocked
Gn 79 Extern Deadtime 4
Time period between the fault being cleared and the close
pulse being issued
0, 0.1 ... 14300, 14400 5 s
Gn 79 Extern Prot'n Trip 5
Selects whether the fifth external trip is Instantaneous or
Delayed
Not Blocked, Blocked Not Blocked
Gn 79 Extern Trips To Lockout
Selects how many external trips are allowed before going to
Lockout
1, 2, 3, 4, 5 5
3.11.3. Synchronising Check
Description Range Default
Gn 25 Sync Voltages Van, Vbn, Vcn, Vab, Vbc, Vca Vbn
Gn 25 Dead Line 0 % to 150 % 20 %
Gn 25 Live Line 0 % to 150 % 90 %
Gn 25 Dead Bus 0 % to 150 % 20 %
Gn 25 Live Bus 0 % to 150 % 90 %
Gn 25 Line U/V Disabled, Enabled Enabled
Gn 25 Line Undervolts 0 % to 150 % 90%
Gn 25 Bus U/V Disabled, Enabled Enabled
Gn 25 Bus Undervolts 0 % to 150 % 90%
Gn 25 Voltage Diff Disabled, Enabled Enabled
7SR220 Settings Guide
Unrestricted Page 48 of 107 © 2013 Siemens Protection Devices Limited
Description Range Default
Gn 25 Volt Differential 0 % to 100 % 10%
Gn 25 Check Sync Disabled, Enabled Enabled
Gn 25 Check Sync Angle 0 Deg to 90 Deg 20 Deg
Gn 25 Check Sync Slip Freq Disabled, Enabled Enabled
Gn 25 Check Sync Slip 0 Hz to 2 Hz 0.05 Hz
Gn 25 Check Sync Timer 0 s to 100 s 2 s
Gn 25 System Split Mode Phase, Slip Phase
Gn 25 Split Angle 0 Deg to 180 Deg 175 Deg
Gn 25 Split Slip 0 Hz to 2 Hz 0.02 Hz
Gn 25 System Sync Disabled, Enabled Enabled
Gn 25 System Sync Angle 0 Deg to 90 Deg 10 Deg
Gn 25 System Sync Slip 0 Hz to 2 Hz 0.125 Hz
Gn 25 System Sync Timer 0 s to 100 s 0.2 s
Gn 25 Close On Zero Disabled, Enabled Enabled
Gn 25 COZ Slip Freq 0 Hz to 2 Hz 0.125 Hz
Gn 25 CB Close Time 0 ms to 900 ms 60 ms
Gn 25 DAR Split Mode CS, SS, COZ, LO CS
Gn 25 MC Split Mode CS, SS, COZ CS
3.11.4. Manual CB Control
Description Range Default
Gn Line Check Trip
Selects whether line check trip is enabled, if enabled no AR
sequence initiated
Disabled, Enabled Enabled
Gn P/F Line Check Trip
Selects whether a phase fault line check trip is Instantaneous
(Fast) or Delayed. When set to Delayed all P/F Inst Trips will
be Inhibited for this shot.
Inst, Delayed Inst
Gn E/F Line Check Trip
Selects whether an earth fault line check trip is Instantaneous
or Delayed. When set to Delayed all E/F Inst Trips will be
Inhibited for this shot.
Inst, Delayed Inst
Gn SEF Line Check Trip
Selects whether a sensitive earth fault line check trip is
Instantaneous or Delayed. When set to Delayed all SEF Inst
Trips will be Inhibited for this shot.
Inst, Delayed Inst
Gn Extern Line Check Trip
Selects whether an external line check trip is Instantaneous
(Fast) or Delayed
Not Blocked, Blocked Not Blocked
Gn Close CB Delay
Delay between a Close CB control being received and the
Close CB contacts being operated to allow operator walk
away.
0, 0.1 ... 899, 900 10 s
Gn Blocked Close Delay
Selects the maximum time that the manual Close CB may be
blocked by interlocking before the command or control is
cancelled. The relay will signal “Blocked by Interlocking”.
0, 1 ... 599, 600 5 s
Gn Open CB Delay
Delay between an Open CB control being received and the
Open CB contacts being operated.
0, 0.1 ... 899, 900 10 s
Gn CB Controls Latched
Selects whether Binary Input triggers of Close CB and Open
CB are latched.
Latch, Reset Latch
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 49 of 107
3.11.5. Circuit Breaker
Description Range Default
Gn Close CB Pulse
Specifies the duration of the circuit breaker close pulse
0, 0.1 ... 19.9, 20 2 s
Gn Reclaim Timer
The period of time after a CB has closed and remained closed
before the reclosure is deemed to be successful and the AR is
re-initialised. If the CB remains open at the end of the reclaim
time then the AR goes to lockout.
0, 1 ... 599, 600 2 s
Gn Minimum LO Delay 0, 1 ... 599, 600 2 s
Gn Reset LO By Timer Disabled, Enabled Enabled
Gn CB Control Trip Time Disabled, Enabled Enabled
Gn Trip Time Alarm
An alarm is issued when the Trip time is exceeded
0, 0.01 ... 1.99, 2 0.2 s
Gn Trip Time Adjust
Adjustment to take into account any binary input delays for
Trip Time Alarm
0, 0.005 ... 1.995, 2 0.015 s
Gn CB Travel Alarm
Selects the maximum time that the CB should take to either
Open or Close before a failure is recorded.
0.01, 0.02 ... 1.99, 2 1 s
Gn Open CB Pulse
Selects the maximum time of the Open CB pulse. If the CB is
not closed when this timer expires then an alarm will be raised
to signify failure to close.
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6,
1.7, 1.8, 1.9, 2
1 s
Gn CB DBI Delay
Selects the Delay before relay goes to Lockout following a
simultaneous Open and Close condition indication.
0, 0.01, ... 1.1, 1.11 ... 2 0 s
3.11.6. QUICK LOGIC
Description Range Default
Quick Logic
Enable or Disable all logic equations
Disabled, Enabled Disabled
E1 Equation
Enable or Disable logic equation E1
Disabled, Enabled Disabled
E1
Specify logic equations of the form En =
<Operand><Operator><Operand>using the
following:0123456789=Digit() = Parenthesis! = NOT operation.
= AND operation^ = EXCLUSIVE OR operationE(followed by a
digit) = Equation numberF (Followed by a digit) = Function Key
numberI(Followed by a digit) = Binary Input numberL(Followed
by a digit) = LED numberO(Followed by a digit) = output relay
numberV(Followed by a digit) =Virtual Input/Output
number.ExamplesMake a function key LED toggle when
function key is pressed (requires E1 to drive L11 in output
matrix)E1 = F3^L11
(20 Character String)
E1 Pick-up Delay
Time before equation output operates, after equation satisfied
0, 0.01 ... 14300, 14400 0 s
E1 Drop-off Delay
Time before equation output resets, after equation nolonger
satisfied
0, 0.01 ... 14300, 14400 0 s
7SR220 Settings Guide
Unrestricted Page 50 of 107 © 2013 Siemens Protection Devices Limited
Description Range Default
E1 Counter Target
Select number of times equation must be satisfied before
equation output operates
1, 2 ... 998, 999 1
E1 Counter Reset Mode
Select type of counter reset mode
Off, Multi-shot, Single-shot Off
E1 Counter Reset Time
Select counter reset time
0, 0.01 ... 14300, 14400 0 s
E2 Equation
Enable or Disable logic equation E2
Disabled, Enabled Disabled
E2
Specify logic equations of the form En =
<Operand><Operator><Operand>using the
following:0123456789=Digit() = Parenthesis! = NOT operation.
= AND operation^ = EXCLUSIVE OR operationE(followed by a
digit) = Equation numberF (Followed by a digit) = Function Key
numberI(Followed by a digit) = Binary Input numberL(Followed
by a digit) = LED numberO(Followed by a digit) = output relay
numberV(Followed by a digit) =Virtual Input/Output
number.ExamplesMake a function key LED toggle when
function key is pressed (requires E1 to drive L11 in output
matrix)E1 = F3^L11
(20 Character String)
E2 Pick-up Delay
Time before equation output operates, after equation satisfied
0, 0.01 ... 14300, 14400 0 s
E2 Drop-off Delay
Time before equation output resets, after equation nolonger
satisfied
0, 0.01 ... 14300, 14400 0 s
E2 Counter Target
Select number of times equation must be satisfied before
equation output operates
1, 2 ... 998, 999 1
E2 Counter Reset Mode
Select type of counter reset mode
Off, Multi-shot, Single-shot Off
E2 Counter Reset Time
Select counter reset time
0, 0.01 ... 14300, 14400 0 s
E3 Equation
Enable or Disable logic equation E3
Disabled, Enabled Disabled
E3
Specify logic equations of the form En =
<Operand><Operator><Operand>using the
following:0123456789=Digit() = Parenthesis! = NOT operation.
= AND operation^ = EXCLUSIVE OR operationE(followed by a
digit) = Equation numberF (Followed by a digit) = Function Key
numberI(Followed by a digit) = Binary Input numberL(Followed
by a digit) = LED numberO(Followed by a digit) = output relay
numberV(Followed by a digit) =Virtual Input/Output
number.ExamplesMake a function key LED toggle when
function key is pressed (requires E1 to drive L11 in output
matrix)E1 = F3^L11
(20 Character String)
E3 Pick-up Delay
Time before equation output operates, after equation satisfied
0, 0.01 ... 14300, 14400 0 s
E3 Drop-off Delay
Time before equation output resets, after equation nolonger
satisfied
0, 0.01 ... 14300, 14400 0 s
E3 Counter Target
Select number of times equation must be satisfied before
equation output operates
1, 2 ... 998, 999 1
E3 Counter Reset Mode
Select type of counter reset mode
Off, Multi-shot, Single-shot Off
E3 Counter Reset Time
Select counter reset time
0, 0.01 ... 14300, 14400 0 s
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 51 of 107
Description Range Default
E4 Equation
Enable or Disable logic equation E4
Disabled, Enabled Disabled
E4
Specify logic equations of the form En =
<Operand><Operator><Operand>using the
following:0123456789=Digit() = Parenthesis! = NOT operation.
= AND operation^ = EXCLUSIVE OR operationE(followed by a
digit) = Equation numberF (Followed by a digit) = Function Key
numberI(Followed by a digit) = Binary Input numberL(Followed
by a digit) = LED numberO(Followed by a digit) = output relay
numberV(Followed by a digit) =Virtual Input/Output
number.ExamplesMake a function key LED toggle when
function key is pressed (requires E1 to drive L11 in output
matrix)E1 = F3^L11
(20 Character String)
E4 Pick-up Delay
Time before equation output operates, after equation satisfied
0, 0.01 ... 14300, 14400 0 s
E4 Drop-off Delay
Time before equation output resets, after equation nolonger
satisfied
0, 0.01 ... 14300, 14400 0 s
E4 Counter Target
Select number of times equation must be satisfied before
equation output operates
1, 2 ... 998, 999 1
E4 Counter Reset Mode
Select type of counter reset mode
Off, Multi-shot, Single-shot Off
E4 Counter Reset Time
Select counter reset time
0, 0.01 ... 14300, 14400 0 s
E5 Equation
Enable or Disable logic equation E5
Disabled, Enabled Disabled
E5
Specify logic equations of the form En =
<Operand><Operator><Operand>using the
following:0123456789=Digit() = Parenthesis! = NOT operation.
= AND operation^ = EXCLUSIVE OR operationE(followed by a
digit) = Equation numberF (Followed by a digit) = Function Key
numberI(Followed by a digit) = Binary Input numberL(Followed
by a digit) = LED numberO(Followed by a digit) = output relay
numberV(Followed by a digit) =Virtual Input/Output
number.ExamplesMake a function key LED toggle when
function key is pressed (requires E1 to drive L11 in output
matrix)E1 = F3^L11
(20 Character String)
E5 Pick-up Delay
Time before equation output operates, after equation satisfied
0, 0.01 ... 14300, 14400 0 s
E5 Drop-off Delay
Time before equation output resets, after equation nolonger
satisfied
0, 0.01 ... 14300, 14400 0 s
E5 Counter Target
Select number of times equation must be satisfied before
equation output operates
1, 2 ... 998, 999 1
E5 Counter Reset Mode
Select type of counter reset mode
Off, Multi-shot, Single-shot Off
E5 Counter Reset Time
Select counter reset time
0, 0.01 ... 14300, 14400 0 s
E6 Equation
Enable or Disable logic equation E6
Disabled, Enabled Disabled
7SR220 Settings Guide
Unrestricted Page 52 of 107 © 2013 Siemens Protection Devices Limited
Description Range Default
E6
Specify logic equations of the form En =
<Operand><Operator><Operand>using the
following:0123456789=Digit() = Parenthesis! = NOT operation.
= AND operation^ = EXCLUSIVE OR operationE(followed by a
digit) = Equation numberF (Followed by a digit) = Function Key
numberI(Followed by a digit) = Binary Input numberL(Followed
by a digit) = LED numberO(Followed by a digit) = output relay
numberV(Followed by a digit) =Virtual Input/Output
number.ExamplesMake a function key LED toggle when
function key is pressed (requires E1 to drive L11 in output
matrix)E1 = F3^L11
(20 Character String)
E6 Pick-up Delay
Time before equation output operates, after equation satisfied
0, 0.01 ... 14300, 14400 0 s
E6 Drop-off Delay
Time before equation output resets, after equation nolonger
satisfied
0, 0.01 ... 14300, 14400 0 s
E6 Counter Target
Select number of times equation must be satisfied before
equation output operates
1, 2 ... 998, 999 1
E6 Counter Reset Mode
Select type of counter reset mode
Off, Multi-shot, Single-shot Off
E6 Counter Reset Time
Select counter reset time
0, 0.01 ... 14300, 14400 0 s
E7 Equation
Enable or Disable logic equation E7
Disabled, Enabled Disabled
E7
Specify logic equations of the form En =
<Operand><Operator><Operand>using the
following:0123456789=Digit() = Parenthesis! = NOT operation.
= AND operation^ = EXCLUSIVE OR operationE(followed by a
digit) = Equation numberF (Followed by a digit) = Function Key
numberI(Followed by a digit) = Binary Input numberL(Followed
by a digit) = LED numberO(Followed by a digit) = output relay
numberV(Followed by a digit) =Virtual Input/Output
number.ExamplesMake a function key LED toggle when
function key is pressed (requires E1 to drive L11 in output
matrix)E1 = F3^L11
(20 Character String)
E7 Pick-up Delay
Time before equation output operates, after equation satisfied
0, 0.01 ... 14300, 14400 0 s
E7 Drop-off Delay
Time before equation output resets, after equation nolonger
satisfied
0, 0.01 ... 14300, 14400 0 s
E7 Counter Target
Select number of times equation must be satisfied before
equation output operates
1, 2 ... 998, 999 1
E7 Counter Reset Mode
Select type of counter reset mode
Off, Multi-shot, Single-shot Off
E7 Counter Reset Time
Select counter reset time
0, 0.01 ... 14300, 14400 0 s
E8 Equation
Enable or Disable logic equation E8
Disabled, Enabled Disabled
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 53 of 107
Description Range Default
E8
Specify logic equations of the form En =
<Operand><Operator><Operand>using the
following:0123456789=Digit() = Parenthesis! = NOT operation.
= AND operation^ = EXCLUSIVE OR operationE(followed by a
digit) = Equation numberF (Followed by a digit) = Function Key
numberI(Followed by a digit) = Binary Input numberL(Followed
by a digit) = LED numberO(Followed by a digit) = output relay
numberV(Followed by a digit) =Virtual Input/Output
number.ExamplesMake a function key LED toggle when
function key is pressed (requires E1 to drive L11 in output
matrix)E1 = F3^L11
(20 Character String)
E8 Pick-up Delay
Time before equation output operates, after equation satisfied
0, 0.01 ... 14300, 14400 0 s
E8 Drop-off Delay
Time before equation output resets, after equation nolonger
satisfied
0, 0.01 ... 14300, 14400 0 s
E8 Counter Target
Select number of times equation must be satisfied before
equation output operates
1, 2 ... 998, 999 1
E8 Counter Reset Mode
Select type of counter reset mode
Off, Multi-shot, Single-shot Off
E8 Counter Reset Time
Select counter reset time
0, 0.01 ... 14300, 14400 0 s
E9 Equation
Enable or Disable logic equation E9
Disabled, Enabled Disabled
E9
Specify logic equations of the form En =
<Operand><Operator><Operand>using the
following:0123456789=Digit() = Parenthesis! = NOT operation.
= AND operation^ = EXCLUSIVE OR operationE(followed by a
digit) = Equation numberF (Followed by a digit) = Function Key
numberI(Followed by a digit) = Binary Input numberL(Followed
by a digit) = LED numberO(Followed by a digit) = output relay
numberV(Followed by a digit) =Virtual Input/Output
number.ExamplesMake a function key LED toggle when
function key is pressed (requires E1 to drive L11 in output
matrix)E1 = F3^L11
(20 Character String)
E9 Pick-up Delay
Time before equation output operates, after equation satisfied
0, 0.01 ... 14300, 14400 0 s
E9 Drop-off Delay
Time before equation output resets, after equation nolonger
satisfied
0, 0.01 ... 14300, 14400 0 s
E9 Counter Target
Select number of times equation must be satisfied before
equation output operates
1, 2 ... 998, 999 1
E9 Counter Reset Mode
Select type of counter reset mode
Off, Multi-shot, Single-shot Off
E9 Counter Reset Time
Select counter reset time
0, 0.01 ... 14300, 14400 0 s
E10 Equation
Enable or Disable logic equation E10
Disabled, Enabled Disabled
7SR220 Settings Guide
Unrestricted Page 54 of 107 © 2013 Siemens Protection Devices Limited
Description Range Default
E10
Specify logic equations of the form En =
<Operand><Operator><Operand>using the
following:0123456789=Digit() = Parenthesis! = NOT operation.
= AND operation^ = EXCLUSIVE OR operationE(followed by a
digit) = Equation numberF (Followed by a digit) = Function Key
numberI(Followed by a digit) = Binary Input numberL(Followed
by a digit) = LED numberO(Followed by a digit) = output relay
numberV(Followed by a digit) =Virtual Input/Output
number.ExamplesMake a function key LED toggle when
function key is pressed (requires E1 to drive L11 in output
matrix)E1 = F3^L11
(20 Character String)
E10 Pick-up Delay
Time before equation output operates, after equation satisfied
0, 0.01 ... 14300, 14400 0 s
E10 Drop-off Delay
Time before equation output resets, after equation nolonger
satisfied
0, 0.01 ... 14300, 14400 0 s
E10 Counter Target
Select number of times equation must be satisfied before
equation output operates
1, 2 ... 998, 999 1
E10 Counter Reset Mode
Select type of counter reset mode
Off, Multi-shot, Single-shot Off
E10 Counter Reset Time
Select counter reset time
0, 0.01 ... 14300, 14400 0 s
E11 Equation
Enable or Disable logic equation E11
Disabled, Enabled Disabled
E11
Specify logic equations of the form En =
<Operand><Operator><Operand>using the
following:0123456789=Digit() = Parenthesis! = NOT operation.
= AND operation^ = EXCLUSIVE OR operationE(followed by a
digit) = Equation numberF (Followed by a digit) = Function Key
numberI(Followed by a digit) = Binary Input numberL(Followed
by a digit) = LED numberO(Followed by a digit) = output relay
numberV(Followed by a digit) =Virtual Input/Output
number.ExamplesMake a function key LED toggle when
function key is pressed (requires E1 to drive L11 in output
matrix)E1 = F3^L11
(20 Character String)
E11 Pick-up Delay
Time before equation output operates, after equation satisfied
0, 0.01 ... 14300, 14400 0 s
E11 Drop-off Delay
Time before equation output resets, after equation nolonger
satisfied
0, 0.01 ... 14300, 14400 0 s
E11 Counter Target
Select number of times equation must be satisfied before
equation output operates
1, 2 ... 998, 999 1
E11 Counter Reset Mode
Select type of counter reset mode
Off, Multi-shot, Single-shot Off
E11 Counter Reset Time
Select counter reset time
0, 0.01 ... 14300, 14400 0 s
E12 Equation
Enable or Disable logic equation E12
Disabled, Enabled Disabled
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 55 of 107
Description Range Default
E12
Specify logic equations of the form En =
<Operand><Operator><Operand>using the
following:0123456789=Digit() = Parenthesis! = NOT operation.
= AND operation^ = EXCLUSIVE OR operationE(followed by a
digit) = Equation numberF (Followed by a digit) = Function Key
numberI(Followed by a digit) = Binary Input numberL(Followed
by a digit) = LED numberO(Followed by a digit) = output relay
numberV(Followed by a digit) =Virtual Input/Output
number.ExamplesMake a function key LED toggle when
function key is pressed (requires E1 to drive L11 in output
matrix)E1 = F3^L11
(20 Character String)
E12 Pick-up Delay
Time before equation output operates, after equation satisfied
0, 0.01 ... 14300, 14400 0 s
E12 Drop-off Delay
Time before equation output resets, after equation nolonger
satisfied
0, 0.01 ... 14300, 14400 0 s
E12 Counter Target
Select number of times equation must be satisfied before
equation output operates
1, 2 ... 998, 999 1
E12 Counter Reset Mode
Select type of counter reset mode
Off, Multi-shot, Single-shot Off
E12 Counter Reset Time
Select counter reset time
0, 0.01 ... 14300, 14400 0 s
E13 Equation
Enable or Disable logic equation E13
Disabled, Enabled Disabled
E13
Specify logic equations of the form En =
<Operand><Operator><Operand>using the
following:0123456789=Digit() = Parenthesis! = NOT operation.
= AND operation^ = EXCLUSIVE OR operationE(followed by a
digit) = Equation numberF (Followed by a digit) = Function Key
numberI(Followed by a digit) = Binary Input numberL(Followed
by a digit) = LED numberO(Followed by a digit) = output relay
numberV(Followed by a digit) =Virtual Input/Output
number.ExamplesMake a function key LED toggle when
function key is pressed (requires E1 to drive L11 in output
matrix)E1 = F3^L11
(20 Character String)
E13 Pick-up Delay
Time before equation output operates, after equation satisfied
0, 0.01 ... 14300, 14400 0 s
E13 Drop-off Delay
Time before equation output resets, after equation nolonger
satisfied
0, 0.01 ... 14300, 14400 0 s
E13 Counter Target
Select number of times equation must be satisfied before
equation output operates
1, 2 ... 998, 999 1
E13 Counter Reset Mode
Select type of counter reset mode
Off, Multi-shot, Single-shot Off
E13 Counter Reset Time
Select counter reset time
0, 0.01 ... 14300, 14400 0 s
E14 Equation
Enable or Disable logic equation E14
Disabled, Enabled Disabled
7SR220 Settings Guide
Unrestricted Page 56 of 107 © 2013 Siemens Protection Devices Limited
Description Range Default
E14
Specify logic equations of the form En =
<Operand><Operator><Operand>using the
following:0123456789=Digit() = Parenthesis! = NOT operation.
= AND operation^ = EXCLUSIVE OR operationE(followed by a
digit) = Equation numberF (Followed by a digit) = Function Key
numberI(Followed by a digit) = Binary Input numberL(Followed
by a digit) = LED numberO(Followed by a digit) = output relay
numberV(Followed by a digit) =Virtual Input/Output
number.ExamplesMake a function key LED toggle when
function key is pressed (requires E1 to drive L11 in output
matrix)E1 = F3^L11
(20 Character String)
E14 Pick-up Delay
Time before equation output operates, after equation satisfied
0, 0.01 ... 14300, 14400 0 s
E14 Drop-off Delay
Time before equation output resets, after equation nolonger
satisfied
0, 0.01 ... 14300, 14400 0 s
E14 Counter Target
Select number of times equation must be satisfied before
equation output operates
1, 2 ... 998, 999 1
E14 Counter Reset Mode
Select type of counter reset mode
Off, Multi-shot, Single-shot Off
E14 Counter Reset Time
Select counter reset time
0, 0.01 ... 14300, 14400 0 s
E15 Equation
Enable or Disable logic equation E15
Disabled, Enabled Disabled
E15
Specify logic equations of the form En =
<Operand><Operator><Operand>using the
following:0123456789=Digit() = Parenthesis! = NOT operation.
= AND operation^ = EXCLUSIVE OR operationE(followed by a
digit) = Equation numberF (Followed by a digit) = Function Key
numberI(Followed by a digit) = Binary Input numberL(Followed
by a digit) = LED numberO(Followed by a digit) = output relay
numberV(Followed by a digit) =Virtual Input/Output
number.ExamplesMake a function key LED toggle when
function key is pressed (requires E1 to drive L11 in output
matrix)E1 = F3^L11
(20 Character String)
E15 Pick-up Delay
Time before equation output operates, after equation satisfied
0, 0.01 ... 14300, 14400 0 s
E15 Drop-off Delay
Time before equation output resets, after equation nolonger
satisfied
0, 0.01 ... 14300, 14400 0 s
E15 Counter Target
Select number of times equation must be satisfied before
equation output operates
1, 2 ... 998, 999 1
E15 Counter Reset Mode
Select type of counter reset mode
Off, Multi-shot, Single-shot Off
E15 Counter Reset Time
Select counter reset time
0, 0.01 ... 14300, 14400 0 s
E16 Equation
Enable or Disable logic equation E16
Disabled, Enabled Disabled
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 57 of 107
Description Range Default
E16
Specify logic equations of the form En =
<Operand><Operator><Operand>using the
following:0123456789=Digit() = Parenthesis! = NOT operation.
= AND operation^ = EXCLUSIVE OR operationE(followed by a
digit) = Equation numberF (Followed by a digit) = Function Key
numberI(Followed by a digit) = Binary Input numberL(Followed
by a digit) = LED numberO(Followed by a digit) = output relay
numberV(Followed by a digit) =Virtual Input/Output
number.ExamplesMake a function key LED toggle when
function key is pressed (requires E1 to drive L11 in output
matrix)E1 = F3^L11
(20 Character String)
E16 Pick-up Delay
Time before equation output operates, after equation satisfied
0, 0.01 ... 14300, 14400 0 s
E16 Drop-off Delay
Time before equation output resets, after equation nolonger
satisfied
0, 0.01 ... 14300, 14400 0 s
E16 Counter Target
Select number of times equation must be satisfied before
equation output operates
1, 2 ... 998, 999 1
E16 Counter Reset Mode
Select type of counter reset mode
Off, Multi-shot, Single-shot Off
E16 Counter Reset Time
Select counter reset time
0, 0.01 ... 14300, 14400 0 s
E16 Equation
Enable or Disable logic equation E16
Disabled, Enabled Disabled
7SR220 Settings Guide
Unrestricted Page 58 of 107 © 2013 Siemens Protection Devices Limited
3.12. Input Config
3.12.1. Input Matrix
Description Range Default
Inhibit 81HBL2
Selects which inputs inhibit the 81HLB2
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit Cold Load
Selects which inputs inhibit the Cold Load element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 51-1
Selects which inputs inhibit the 51-1 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 51-2
Selects which inputs inhibit the 51-2 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 51-3
Selects which inputs inhibit the 51-3 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 51-4
Selects which inputs inhibit the 51-4 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 50-1
Selects which inputs inhibit the 50-1 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 50-2
Selects which inputs inhibit the 50-2 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 50-3
Selects which inputs inhibit the 50-3 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 50-4
Selects which inputs inhibit the 50-4 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 51N-1
Selects which inputs inhibit the 51N-1 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 59 of 107
Description Range Default
Inhibit 51N-2
Selects which inputs inhibit the 51N-2 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 51N-3
Selects which inputs inhibit the 51N-3 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 51N-4
Selects which inputs inhibit the 51N-4 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 50N-1
Selects which inputs inhibit the 50N-1 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 50N-2
Selects which inputs inhibit the 50N-2 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 50N-3
Selects which inputs inhibit the 50N-3 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 50N-4
Selects which inputs inhibit the 50N-4 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 51G-1
Selects which inputs inhibit the 51G-1 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 51G-2
Selects which inputs inhibit the 51G-2 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 51G-3
Selects which inputs inhibit the 51G-3 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 51G-4
Selects which inputs inhibit the 51G-4 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 50G-1
Selects which inputs inhibit the 50G-1 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 50G-2
Selects which inputs inhibit the 50G-2 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
7SR220 Settings Guide
Unrestricted Page 60 of 107 © 2013 Siemens Protection Devices Limited
Description Range Default
Inhibit 50G-3
Selects which inputs inhibit the 50G-3 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 50G-4
Selects which inputs inhibit the 50G-4 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 51SEF-1
Selects which inputs inhibit the 51SEF-1 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 51SEF-2
Selects which inputs inhibit the 51SEF-2 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 51SEF-3
Selects which inputs inhibit the 51SEF-3 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 51SEF-4
Selects which inputs inhibit the 51SEF-4 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 50SEF-1
Selects which inputs inhibit the 50SEF-1 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 50SEF-2
Selects which inputs inhibit the 50SEF-2 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 50SEF-3
Selects which inputs inhibit the 50SEF-3 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 50SEF-4
Selects which inputs inhibit the 50SEF-4 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 64H
Selects which inputs inhibit the 64H element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 46IT
Selects which inputs inhibit the 46IT element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 46DT
Selects which inputs inhibit the 46DT element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 61 of 107
Description Range Default
Inhibit 37-1
Selects which inputs inhibit the 37-1 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 37-2
Selects which inputs inhibit the 37-2 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 37G-1
Selects which inputs inhibit the 37G-1 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 37G-2
Selects which inputs inhibit the 37G-2 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 37SEF-1
Selects which inputs inhibit the 37SEF-1 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 37SEF-2
Selects which inputs inhibit the 37SEF-2 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 49
Selects which inputs inhibit the 49 thermal element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Reset 49
Selects which inputs resets the 49 thermal model element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 27/59-1
Selects which inputs inhibit the 27/59-1 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 27/59-2
Selects which inputs inhibit the 27/59-2 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 27/59-3
Selects which inputs inhibit the 27/59-3 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 27/59-4
Selects which inputs inhibit the 27/59-4 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit Vx 27/59
Selects which inputs inhibit the Vx 27/59 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
7SR220 Settings Guide
Unrestricted Page 62 of 107 © 2013 Siemens Protection Devices Limited
Description Range Default
Inhibit 47-1
Selects which inputs inhibit the 47-1 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 47-2
Selects which inputs inhibit the 47-2 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 59NIT
Selects which inputs inhibit the 59N IDMTL/DTL element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 59NDT
Selects which inputs inhibit the 59N INST/DTL element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 81-1
Selects which inputs inhibit the 81-1 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 81-2
Selects which inputs inhibit the 81-2 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 81-3
Selects which inputs inhibit the 81-3 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 81-4
Selects which inputs inhibit the 81-4 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 81-5
Selects which inputs inhibit the 81-5 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 81-6
Selects which inputs inhibit the 81-6 element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 60CTS
Selects which inputs inhibit the CT Supervision element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 60CTS-I Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 46BC
Selects which inputs inhibit the 46 Broken Conductor element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 63 of 107
Description Range Default
74TCS-1
Selects which inputs are monitoring trip circuits
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
74TCS-2
As Above
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
74TCS-3
As Above
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
74CCS-1
Selects which inputs are monitoring close circuits
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
74CCS-2
As Above
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
74CCS-3
As Above
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Trig Trip Contacts
Selects which inputs will trigger the Trip contacts
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 50BF
Selects which inputs inhibit the 50BF element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
50BF CB Faulty
Selects which input bypasses the 50BF timer due to a fault CB
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
50BF Mech Trip
Selects which input allows a mechanical trip to start the 50BF
element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
50BF Ext Trip
Selects which inputs can also start the 50BF element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 60VTS
Selects which inputs inhibit the VT Supervision element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Ext Trig 60VTS
Selects MCB inputs to VT Supervision element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
7SR220 Settings Guide
Unrestricted Page 64 of 107 © 2013 Siemens Protection Devices Limited
Description Range Default
Ext Reset 60VTS
Selects which inputs reset the VT Supervision element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit 60VTF-Bus
Selects which inputs inhibit the 60VTF-Bus Supervision
element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Reset CB Total Trip
Selects which inputs Reset the CB Total Trip count
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Reset CB Ph A Count
Selects which inputs Reset the CB Ph A Count
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Reset CB Ph B Count
Selects which inputs Reset the CB Ph B Count
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Reset CB Ph C Count
Selects which inputs Reset the CB Ph C Count
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Reset CB E/F Count
Selects which inputs Reset the CB E/F Count
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Reset CB Delta Trip
Selects which inputs Reset the CB Delta Trip count
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Reset ARBlock Count
Selects which inputs Reset the AR Block count
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Reset Freq Ops Count
Selects which inputs Reset the Frequent Ops count
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Reset I^2t CB Wear
Selects which inputs Reset the I^2t CB Wear element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Trigger I^2t CB Wear
Selects which inputs will cause an external trigger of the I^2t
CB Wear element
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Reset Trip Time
Selects which inputs will reset the CB trip time alarm
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 65 of 107
Description Range Default
General Alarm 1
Selects which inputs will activate the General Alarm 1 text
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
General Alarm 2
Selects which inputs will activate the General Alarm 2 text
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
General Alarm 3
Selects which inputs will activate the General Alarm 3 text
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
General Alarm 4
Selects which inputs will activate the General Alarm 4 text
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
General Alarm 5
Selects which inputs will activate the General Alarm 5 text
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
General Alarm 6
Selects which inputs will activate the General Alarm 6 text
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
General Alarm 7
Selects which inputs will activate the General Alarm 7 text
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
General Alarm 8
Selects which inputs will activate the General Alarm 8 text
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
General Alarm 9
Selects which inputs will activate the General Alarm 9 text
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
General Alarm 10
Selects which inputs will activate the General Alarm 10 text
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
General Alarm 11
Selects which inputs will activate the General Alarm 11 text
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
General Alarm 12
Selects which inputs will activate the General Alarm 12 text
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
General Alarm 13
Selects which inputs will activate the General Alarm 13 text
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
7SR220 Settings Guide
Unrestricted Page 66 of 107 © 2013 Siemens Protection Devices Limited
Description Range Default
General Alarm 14
Selects which inputs will activate the General Alarm 14 text
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
General Alarm 15
Selects which inputs will activate the General Alarm 15 text
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
General Alarm 16
Selects which inputs will activate the General Alarm 16 text
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
General Alarm 17
Selects which inputs will activate the General Alarm 17 text
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
General Alarm 18
Selects which inputs will activate the General Alarm 18 text
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
General Alarm 19
Selects which inputs will activate the General Alarm 19 text
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
General Alarm 20
Selects which inputs will activate the General Alarm 20 text
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
CB Open
Selects which inputs are connected to the circuit breaker open
contacts
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
CB Closed
Selects which inputs are connected to the circuit breaker
closed contacts
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Reset Demand
Selects which inputs will reset the Demand elements.
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Reset Start Count
Selects which inputs will reset the Start Count elements.
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
AFD Zone 1 Flash
Selects which inputs will are connected to ARC Flash Detector
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
AFD Zone 2 Flash
Selects which inputs will are connected to ARC Flash Detector
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 67 of 107
Description Range Default
AFD Zone 3 Flash
Selects which inputs will are connected to ARC Flash Detector
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
AFD Zone 4 Flash
Selects which inputs will are connected to ARC Flash Detector
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
AFD Zone 5 Flash
Selects which inputs will are connected to ARC Flash Detector
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
AFD Zone 6 Flash
Selects which inputs will are connected to ARC Flash Detector
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Reset AFDZone 1 Count
Selects which inputs will reset ARC Flash Detector Count
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Reset AFDZone 2 Count
Selects which inputs will reset ARC Flash Detector Count
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Reset AFDZone 3 Count
Selects which inputs will reset ARC Flash Detector Count
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Reset AFDZone 4 Count
Selects which inputs will reset ARC Flash Detector Count
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Reset AFDZone 5 Count
Selects which inputs will reset ARC Flash Detector Count
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Reset AFDZone 6 Count
Selects which inputs will reset ARC Flash Detector Count
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inhibit Fault Loc
Selects which inputs will Inhibit fault Locator.
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Close CB
Selects which inputs will issue a close to the circuit breaker.
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Block Close CB
Selects which inputs will block the manual closing of the circuit
breaker.
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
7SR220 Settings Guide
Unrestricted Page 68 of 107 © 2013 Siemens Protection Devices Limited
Description Range Default
Open CB
Selects which inputs will issue an open to the circuit breaker.
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
79 Out
Selects which inputs will switch the Auto-recloser out of
service
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
79 In
Selects which inputs will switch the Auto-recloser in service
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
79 Trip & Reclose
Selects which inputs will trigger a trip & reclose
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
79 Trip & Lockout
Selects which inputs will trigger a trip & lockout
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
79 Ext Trip
Selects which input will start the external an Auto-relose
sequence
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
79 Ext Pickup
Selects which input should be connected to the pickup of the
external elements required to start an Auto-reclose sequence
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
79 Block Reclose
Selects which inputs will block the Auto-recloser
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
79 Reset Lockout
Selects which inputs will force the Auto-recloser into the
Lockout state
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
79 Line Check
Selects which inputs will start the Line Check functionality of
the Auto-recloser
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
79 Lockout
Selects which inputs will force the Auto-recloser into the
Lockout state
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
79 Override Sync
Selects which inputs will start 79 Override Sync
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Man Override Sync
Selects which inputs will start Man Override Sync
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 69 of 107
Description Range Default
Ext Start 25 Sync
Selects which inputs will Ext Start 25 Sync
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Reset 25 Sync
Selects which inputs will Reset 25 Sync
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Start 25 System Sync
Selects which inputs will Start 25 System Sync
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Hot Line Out
Selects which inputs will switch out Hot Line Working
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Hot Line In
Selects which inputs will switch in Hot Line Working
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inst Prot'n Out
Selects which inputs will switch out the instantaneous
protection elements
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inst Prot'n In
Selects which inputs will switch in the instantaneous
protection elements
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
E/F Out
Selects which inputs will switch out the E/F protection
elements.
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
E/F In
Selects which inputs will switch in the E/F protection elements.
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
SEF Out
Selects which inputs will switch out the SEF protection
elements
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
SEF In
Selects which inputs will switch in the SEF protection
elements
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Trigger Wave Rec
Selects which inputs can trigger a waveform record
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Trigger Fault Rec
Selects which inputs can trigger a fault record
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
7SR220 Settings Guide
Unrestricted Page 70 of 107 © 2013 Siemens Protection Devices Limited
Description Range Default
Select Group 1
Switches active setting group to group 1
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Reset Energy Meters Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Select Group 2
Switches active setting group to group 2
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Select Group 3
Switches active setting group to group 3
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Select Group 4
Switches active setting group to group 4
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Select Group 5
Switches active setting group to group 5
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Select Group 6
Switches active setting group to group 6
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Select Group 7
Switches active setting group to group 7
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Select Group 8
Switches active setting group to group 8
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Out Of Service Mode
Selects which inputs will put the relay into Out Of Service
Mode
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Local Mode
Selects which inputs will put the relay into Local Mode
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Remote Mode
Selects which inputs will put the relay into Remote Mode
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Local Or Remote Mode
Selects which inputs will put the relay into Local Or Remote
Mode
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 71 of 107
Description Range Default
Clock Sync.
Selects which input is used to synchronise the real time clock
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Reset LEDs & O/Ps
Selects which inputs will reset the latched LEDs and binary
outputs
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13, V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16 )
----------------------
-------
Inverted Inputs
Selects which inputs will be inverted
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13)
----------------------
-------
Enable In Local
Selects which inputs will be enabled in local mode
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13)
BI1, BI2, BI3,
BI4, BI5, BI6,
BI7, BI8, BI9,
BI10, BI11, BI12,
BI13
Enable In Remote
Selects which inputs will be enabled in remote mode
Combination of ( BI1, BI2, BI3, BI4,
BI5, BI6, BI7, BI8, BI9, BI10, BI11,
BI12, BI13)
BI1, BI2, BI3,
BI4, BI5, BI6,
BI7, BI8, BI9,
BI10, BI11, BI12,
BI13
3.12.2. Function Key Matrix
Description Range Default
Open CB
Selects which function key will Open the circuit breaker
Combination of ( 1, 2, 3, 4, 5, 6 ) ------
Close CB
Selects which function key will Close the circuit breaker
Combination of ( 1, 2, 3, 4, 5, 6 ) ------
79 In/Out
Selects which function key will toggle Autoreclose In & Out
Combination of ( 1, 2, 3, 4, 5, 6 ) ------
79 Trip & Reclose
Selects which function key will cause the CB to trip & reclose
Combination of ( 1, 2, 3, 4, 5, 6 ) ------
79 Trip & Lockout
Selects which function key will cause the CB to trip & lockout
Combination of ( 1, 2, 3, 4, 5, 6 ) ------
Hot Line Work In/Out
Selects which function key will toggle Hot Line Working In &
Out
Combination of ( 1, 2, 3, 4, 5, 6 ) ------
E/F In/Out
Selects which function key will toggle E/F protection In & Out
Combination of ( 1, 2, 3, 4, 5, 6 ) ------
SEF In/Out
Selects which function key will toggle SEF protection In & Out
Combination of ( 1, 2, 3, 4, 5, 6 ) ------
Inst Prot'n In/Out
Selects which function key will toggle Instantaneous protection
elements In & Out
Combination of ( 1, 2, 3, 4, 5, 6 ) ------
Out Of Service Mode Combination of ( 1, 2, 3, 4, 5, 6 ) ------
Local Mode Combination of ( 1, 2, 3, 4, 5, 6 ) ------
Remote Mode Combination of ( 1, 2, 3, 4, 5, 6 ) ------
Local Or Remote Mode
Selects which inputs will put the relay into Local Or Remote
Mode
Combination of ( 1, 2, 3, 4, 5, 6 ) ------
7SR220 Settings Guide
Unrestricted Page 72 of 107 © 2013 Siemens Protection Devices Limited
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 73 of 107
3.12.3. Binary Input Config (Variants may differ)
Description Range Default
Inverted Inputs
Selects which inputs pickup when voltage is removed.
Combination of ( 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13 )
-------------
BI 1 Pick-up Delay
Delay on pickup of DC Binary Input 1
0, 0.005 ... 14300, 14400 0.02 s
BI 1 Drop-off Delay
Delay on dropoff of DC Binary Input 1
0, 0.005 ... 14300, 14400 0 s
BI 2 Pick-up Delay
Delay on pickup of DC Binary Input 2
0, 0.005 ... 14300, 14400 0.02 s
BI 2 Drop-off Delay
Delay on dropoff of DC Binary Input 2
0, 0.005 ... 14300, 14400 0 s
BI 3 Pick-up Delay
Delay on pickup of DC Binary Input 3
0, 0.005 ... 14300, 14400 0.02 s
BI 3 Drop-off Delay
Delay on dropoff of DC Binary Input 3
0, 0.005 ... 14300, 14400 0 s
BI 4 Pick-up Delay
Delay on pickup of DC Binary Input 4
0, 0.005 ... 14300, 14400 0.02 s
BI 4 Drop-off Delay
Delay on dropoff of DC Binary Input 4
0, 0.005 ... 14300, 14400 0 s
BI 5 Pick-up Delay
Delay on pickup of DC Binary Input 5
0, 0.005 ... 14300, 14400 0.02 s
BI 5 Drop-off Delay
Delay on dropoff of DC Binary Input 5
0, 0.005 ... 14300, 14400 0 s
BI 6 Pick-up Delay
Delay on pickup of DC Binary Input 6
0, 0.005 ... 14300, 14400 0.02 s
BI 6 Drop-off Delay
Delay on dropoff of DC Binary Input 6
0, 0.005 ... 14300, 14400 0 s
BI 7 Pick-up Delay
Delay on pickup of DC Binary Input 7
0, 0.005 ... 14300, 14400 0.02 s
BI 7 Drop-off Delay
Delay on dropoff of DC Binary Input 7
0, 0.005 ... 14300, 14400 0 s
BI 8 Pick-up Delay
Delay on pickup of DC Binary Input 8
0, 0.005 ... 14300, 14400 0.02 s
BI 8 Drop-off Delay
Delay on dropoff of DC Binary Input 8
0, 0.005 ... 14300, 14400 0 s
BI 9 Pick-up Delay
Delay on pickup of DC Binary Input 9
0, 0.005 ... 14300, 14400 0.02 s
BI 9 Drop-off Delay
Delay on dropoff of DC Binary Input 9
0, 0.005 ... 14300, 14400 0 s
BI 10 Pick-up Delay
Delay on pickup of DC Binary Input 10
0, 0.005 ... 14300, 14400 0.02 s
BI 10 Drop-off Delay
Delay on dropoff of DC Binary Input 10
0, 0.005 ... 14300, 14400 0 s
BI 11 Pick-up Delay
Delay on pickup of DC Binary Input 11
0, 0.005 ... 14300, 14400 0.02 s
BI 11 Drop-off Delay
Delay on dropoff of DC Binary Input 11
0, 0.005 ... 14300, 14400 0 s
7SR220 Settings Guide
Unrestricted Page 74 of 107 © 2013 Siemens Protection Devices Limited
Description Range Default
BI 12 Pick-up Delay
Delay on pickup of DC Binary Input 12
0, 0.005 ... 14300, 14400 0.02 s
BI 12 Drop-off Delay
Delay on dropoff of DC Binary Input 12
0, 0.005 ... 14300, 14400 0 s
BI 13 Pick-up Delay
Delay on pickup of DC Binary Input 13
0, 0.005 ... 14300, 14400 0.02 s
BI 13 Drop-off Delay
Delay on dropoff of DC Binary Input 13
0, 0.005 ... 14300, 14400 0 s
Enabled In Local
Selects which inputs are enabled when the relay is in
Operating Mode 'Local' or 'Local Or Remote'
Combination of ( 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13 )
1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12,
13
Enabled In Remote
Selects which inputs are enabled when the relay is in
Operating Mode 'Remote' or 'Local Or Remote'
Combination of ( 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13 )
1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12,
13
3.12.4. Function Key Config
Description Range Default
Function Key 1 Text
User definable text that will be used in the HMI function key
confirmation screen when Function key 1 is pressed.
(20 Character String) Function Key 1
Function Key 2 Text
User definable text that will be used in the HMI function key
confirmation screen when Function key 2 is pressed.
(20 Character String) Function Key 2
Function Key 3 Text
User definable text that will be used in the HMI function key
confirmation screen when Function key 3 is pressed.
(20 Character String) Function Key 3
Function Key 4 Text
User definable text that will be used in the HMI function key
confirmation screen when Function key 4 is pressed.
(20 Character String) Function Key 4
Function Key 5 Text
User definable text that will be used in the HMI function key
confirmation screen when Function key 5 is pressed.
(20 Character String) Function Key 5
Function Key 6 Text
User definable text that will be used in the HMI function key
confirmation screen when Function key 6 is pressed.
(20 Character String) Function Key 6
Enabled In Remote
Selects which inputs are enabled when the relay is in
Operating Mode 'Remote' or 'Local Or Remote'
Combination of ( 1, 2, 3, 4, 5, 6 ) ------
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 75 of 107
3.12.5. General Alarms
Description Range Default
General Alarm-1
Defines the text to be displayed for General Alarm 1
(16 Character String) ALARM 1
General Alarm-2
Defines the text to be displayed for General Alarm 2
(16 Character String) ALARM 2
General Alarm-3
Defines the text to be displayed for General Alarm 3
(16 Character String) ALARM 3
General Alarm-4
Defines the text to be displayed for General Alarm 4
(16 Character String) ALARM 4
General Alarm-5
Defines the text to be displayed for General Alarm 5
(16 Character String) ALARM 5
General Alarm-6
Defines the text to be displayed for General Alarm 6
(16 Character String) ALARM 6
General Alarm-7
Defines the text to be displayed for General Alarm 7
(16 Character String) ALARM 7
General Alarm-8
Defines the text to be displayed for General Alarm 8
(16 Character String) ALARM 8
General Alarm-9
Defines the text to be displayed for General Alarm 9
(16 Character String) ALARM 9
General Alarm-10
Defines the text to be displayed for General Alarm 10
(16 Character String) ALARM 10
General Alarm-11
Defines the text to be displayed for General Alarm 11
(16 Character String) ALARM 11
General Alarm-12
Defines the text to be displayed for General Alarm 12
(16 Character String) ALARM 12
General Alarm-13
Defines the text to be displayed for General Alarm 13
(16 Character String) ALARM 13
General Alarm-14
Defines the text to be displayed for General Alarm 14
(16 Character String) ALARM 14
General Alarm-15
Defines the text to be displayed for General Alarm 15
(16 Character String) ALARM 15
General Alarm-16
Defines the text to be displayed for General Alarm 16
(16 Character String) ALARM 16
General Alarm-17
Defines the text to be displayed for General Alarm 17
(16 Character String) ALARM 17
General Alarm-18
Defines the text to be displayed for General Alarm 18
(16 Character String) ALARM 18
General Alarm-19
Defines the text to be displayed for General Alarm 19
(16 Character String) ALARM 19
General Alarm-20
Defines the text to be displayed for General Alarm 20
(16 Character String) ALARM 20
7SR220 Settings Guide
Unrestricted Page 76 of 107 © 2013 Siemens Protection Devices Limited
3.13. Output Config
3.13.1. Output Matrix
Description Range Default
Protection Healthy
Relays selected are energised whilst relay self-monitoring
does NOT detect any hardware or software errors and DC
Supply is healthy. A changeover contact or normally closed
contact may be used to generate Protection Defective from this
output
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
BO1
Active Setting Grp 1 Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
Grp 1
Active Setting Grp 2 Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
Active Setting Grp 3 Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
Active Setting Grp 4 Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
Active Setting Grp 5 Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
Active Setting Grp 6 Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
Active Setting Grp 7 Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
Active Setting Grp 8 Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 77 of 107
Description Range Default
+ve P 3 Ph Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
-ve P 3 Ph Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
+ve Q 3 Ph Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
-ve Q 3 Ph Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
51-1
51-1 IDMTL/DTL Overcurrent operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
51-2
51-2 IDMTL/DTL Overcurrent operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
51-3
51-3 IDMTL/DTL Overcurrent operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
51-4
51-4 IDMTL/DTL Overcurrent operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
50-1
50-1 INST/DTL Overcurrent operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
7SR220 Settings Guide
Unrestricted Page 78 of 107 © 2013 Siemens Protection Devices Limited
Description Range Default
50-2
50-2 INST/DTL Overcurrent operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
50-3
50-3 INST/DTL Overcurrent operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
50-4
50-4 INST/DTL Overcurrent operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
51N-1
51N-1 IDMTL/DTL derived Earth Fault operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
L4
51N-2
51N-2 IDMTL/DTL derived Earth Fault operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
L4
51N-3
51N-3 IDMTL/DTL derived Earth Fault operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
L4
51N-4
51N-4 IDMTL/DTL derived Earth Fault operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
L4
50N-1
50N-1 INST/DTL derived Earth Fault operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
L4
50N-2
50N-2 INST/DTL derived Earth Fault operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
L4
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 79 of 107
Description Range Default
50N-3
50N-3 INST/DTL derived Earth Fault operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
L4
50N-4
50N-4 INST/DTL derived Earth Fault operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
L4
51G-1
51G-1 IDMTL/DTL measured Earth Fault operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
L4
51G-2
51G-2 IDMTL/DTL measured Earth Fault operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
L4
51G-3
51G-3 IDMTL/DTL measured Earth Fault operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
L4
51G-4
51G-4 IDMTL/DTL measured Earth Fault operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
L4
50G-1
50G-1 INST/DTL measured Earth Fault operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
L4
50G-2
50G-2 INST/DTL measured Earth Fault operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
L4
50G-3
50G-3 INST/DTL measured Earth Fault operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
L4
7SR220 Settings Guide
Unrestricted Page 80 of 107 © 2013 Siemens Protection Devices Limited
Description Range Default
50G-4
50G-4 INST/DTL measured Earth Fault operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
L4
51SEF-1
51SEF-1 IDMTL/DTL Sensitive Earth Fault operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
L5
51SEF-2
51SEF-2 IDMTL/DTL Sensitive Earth Fault operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
L5
51SEF-3
51SEF-3 IDMTL/DTL Sensitive Earth Fault operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
L5
51SEF-4
51SEF-4 IDMTL/DTL Sensitive Earth Fault operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
L5
50SEF-1
50SEF-1 INST/DTL Sensitive Earth Fault operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
L5
50SEF-2
50SEF-2 INST/DTL Sensitive Earth Fault operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
L5
50SEF-3
50SEF-3 INST/DTL Sensitive Earth Fault operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
L5
50SEF-4
50SEF-4 INST/DTL Sensitive Earth Fault operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
L5
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 81 of 107
Description Range Default
64H
64H Restricted Earth Fault element operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
Cold Load Active
Cold Load settings are active
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
46IT
IDMTL/DTL NPS Overcurrent operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
46DT
INST/DTL NPS Overcurrent operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
37 PhA
PhA Under Current operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
37 PhB
PhB Under Current operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
37 PhC
PhC Under Current operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
37-1
37-1 Under Current operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
37-2
37-2 Under Current operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
7SR220 Settings Guide
Unrestricted Page 82 of 107 © 2013 Siemens Protection Devices Limited
Description Range Default
37G-1
37G-1 Under Current operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
37G-2
37G-2 Under Current operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
37SEF-1
37SEF-1 Under Current operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
37SEF-2
37SEF-2 Under Current operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
49 Trip
Thermal capacity trip operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
49 Alarm
Thermal capacity alarm operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
27/59-1
Under/Overvoltage stage 1 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
27/59-2
Under/Overvoltage stage 2 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
27/59-3
Under/Overvoltage stage 3 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 83 of 107
Description Range Default
27/59-4
Under/Overvoltage stage 4 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
Vx 27/59
Under/Overvoltage Vx stage operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
47-1
INST/DTL NPS Overvoltage stage 1 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
47-2
INST/DTL NPS Overvoltage stage 2 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
59NIT
Neutral Overvoltage IDMTL/DTL operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
59NDT
Neutral Overvoltage INST/DTL operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
81-1
Under/Over frequency stage 1 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
81-2
Under/Over frequency stage 2 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
81-3
Under/Over frequency stage 3 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
7SR220 Settings Guide
Unrestricted Page 84 of 107 © 2013 Siemens Protection Devices Limited
Description Range Default
81-4
Under/Over frequency stage 4 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
81-5
Under/Over frequency stage 5 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
81-6
Under/Over frequency stage 6 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
60CTS
CT Supervision element operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
60CTS-I Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
46BC
46 Broken Conductor element operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
74TCS-1
Trip Circuit 1 fail operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
74TCS-2
Trip Circuit 2 fail operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
74TCS-3
Trip Circuit 3 fail operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 85 of 107
Description Range Default
74CCS-1
Close Circuit 1 fail operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
74CCS-2
Close Circuit 2 fail operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
74CCS-3
Close Circuit 3 fail operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
81HBL2 Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
General Pickup
General Pickup operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
50BF-1
Circuit Breaker Fail stage 1 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
50BF-2
Circuit Breaker Fail stage 2 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
60VTS
VT Supervision element operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
60VTF-Bus
60 VTF-Bus Supervision element operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
7SR220 Settings Guide
Unrestricted Page 86 of 107 © 2013 Siemens Protection Devices Limited
Description Range Default
50BF PhA
Circuit Breaker Fail Phase A
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
50BF PhB
Circuit Breaker Fail Phase B
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
50BF PhC
Circuit Breaker Fail Phase C
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
50BF EF
Circuit Breaker Fail Earth Fault
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
CB Total Trip Count
Total CB trip count exceeded
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
CB Ph A Trip Count
Total CB Ph A trip count exceeded
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
CB Ph B Trip Count
Total CB Ph B trip count exceeded
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
CB Ph C Trip Count
Total CB Ph C trip count exceeded
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
CB E/F Trip Count
Total CB E/F trip count exceeded
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 87 of 107
Description Range Default
CB Delta Trip Count
Delta CB trip count exceeded
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
CB Count To ARBlock
Count To AR Block CB trip count exceeded
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
CB Freq Ops Count
CB Frequent Operations count exceeded
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
I^2t CB Wear
I^2t CB Wear limit exceeded
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
Trip Time Alarm
Trip Time Alarm operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
CB Open
Indicates that the circuit breaker is in the open position.
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
CB Closed
Indicates that the circuit breaker is in the closed position.
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
Close CB Blocked
Indicates that the Close CB control is blocked by its
interlocking logic.
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
CB Alarm
Indicates the CB is either in an illegal state or is stuck neither
open or closed.
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
7SR220 Settings Guide
Unrestricted Page 88 of 107 © 2013 Siemens Protection Devices Limited
Description Range Default
Open CB
Open pulse due to Manual Open being issued.
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
Phase A
Phase A element operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
Phase B
Phase B element operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
Phase C
Phase C element operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
Derived E/F
Derive E/F element operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
Measured E/F
Measured E/F element operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
Sensitive E/F
Sensitive E/F element operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
Start Count Alarm Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
50AFD PhA
Arc Flash Detector Phase A operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 89 of 107
Description Range Default
50AFD PhB
Arc Flash Detector Phase B operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
50AFD PhC
Arc Flash Detector Phase C operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
50AFD Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
AFD Zone 1 Flash Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
AFD Zone 1 Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
AFD Zone 2 Flash Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
AFD Zone 2 Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
AFD Zone 3 Flash Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
AFD Zone 3 Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
7SR220 Settings Guide
Unrestricted Page 90 of 107 © 2013 Siemens Protection Devices Limited
Description Range Default
AFD Zone 4 Flash Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
AFD Zone 4 Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
AFD Zone 5 Flash Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
AFD Zone 5 Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
AFD Zone 6 Flash Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
AFD Zone 6 Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
User Output 1
User Output 1 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
---
User Output 32
User Output 32 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
En100 Life
Raised when the En100 is communicating correctly with the
Protection CPU
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 91 of 107
Description Range Default
En100 Error
Raised when the En100 has detected an Error
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
IEC61850 Configured
Raised when the En100 and Protection CPU are configured for
IEC 61850.
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
En100 Ch1 Link Down
Raised when En100 Ch 1 Link Down
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
En100 Ch2 Link Down
Raised when En100 Ch 2 Link Down
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
Forward P/F
The Phase fault is in the forward direction. Note this output is
presented EVEN when relay elements are set to be non-
directional.
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
Reverse P/F
The Phase fault is in the reverse direction. Note this output is
presented EVEN when relay elements are set to be non-
directional.
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
Forward E/F
The fault is in the forward direction. Note this output is
presented EVEN when relay elements are set to be non-
directional.
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
Reverse E/F
The fault is in the reverse direction. Note this output is
presented EVEN when relay elements are set to be non-
directional.
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
Forward SEF
The fault is in the forward direction. Note this output is
presented EVEN when relay elements are set to be non-
directional.
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
7SR220 Settings Guide
Unrestricted Page 92 of 107 © 2013 Siemens Protection Devices Limited
Description Range Default
Reverse SEF
The fault is in the reverse direction. Note this output is
presented EVEN when relay elements are set to be non-
directional.
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
Manual Close CB
Close pulse due to Manual close being issued
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
BO8
79 AR Close CB
Close pulse due to auto-reclose sequence
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
79 Trip & Reclose
Indicates the Trip & Reclose sequence being performed
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
79 Trip & Lockout
Indicates the Trip & Lockout sequence being performed
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
79 Lockout
Indicates the auto-recloser is in the Lockout state
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
79 Out Of Service
Indicates the auto-recloser is out of service
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
79 In Service
Indicates the auto-recloser is in service
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
79 In Progress
Indicates an auto-reclose sequence is in progress
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 93 of 107
Description Range Default
79 Block Extern
Indicates that Extern for the current shot has been selected to
be delayed. (This may be used to block external tripping
elements in the same way as the internal protection elements
are blocked to achieve Instantaneous / Delayed operation.)
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
79 CB Fail To Close
Indicates the CB was not closed at the end of the Close Pulse
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
79 Close Onto Fault
Indicates an element starter or trip operated during the Close
Pulse
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
79 Successful AR
Indicates that after a reclose and at the end of the Reclaim
time the CB was closed and there were no auto-reclose trip
elements operated. (This is issued for 2 secs)
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
Successful Man Close
Indicates that after a manual close and at the end of the
Reclaim time the CB was closed and there were no auto-
reclose trip elements operated. (This is issued for 2 secs)
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
Man Override Sync Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
79 Override Sync Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
25 Live Line Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
25 Live bus Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
7SR220 Settings Guide
Unrestricted Page 94 of 107 © 2013 Siemens Protection Devices Limited
Description Range Default
25 Line U/V Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
25 Bus U/V Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
25 Diff Voltage Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
25 Voltage Check Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
25 In Sync Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
25 CS In Progress Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
25 SS In Progress Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
25 COZ In Progress Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
25 System Split LO Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 95 of 107
Description Range Default
Hot Line Working
Indicates that Hot LineWorking functionality has been selected
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
Inst Prot'n Out
Indicates that the protection elements selected to be
Instantaneous elements are switched out
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
E/F Out
Indicates that the instantaneous protection elements are
switched out.
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
SEF Out
Indicates that the SEF protection elements are switched out
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
New Wave Stored
The waveform recorder has stored new information Note: this
is a pulsed output
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
New Fault Stored
The fault recorder has stored new information Note: this is a
pulsed output
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
Active Exp Pulse Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
Active Imp Pulse Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
Reactive Exp Pulse Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
7SR220 Settings Guide
Unrestricted Page 96 of 107 © 2013 Siemens Protection Devices Limited
Description Range Default
Reactive Imp Pulse Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
Out Of Service Mode
Indicates the relay is in Out Of Service Mode
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
Local Mode
Indicates the relay is in Local Mode
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
Remote Mode
Indicates the relay is in Remote Mode
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
BI 1 Operated
DC Binary Input 1 has operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
BI 2 Operated
DC Binary Input 2 has operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
BI 3 Operated
DC Binary Input 3 has operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
BI 4 Operated
DC Binary Input 4 has operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
BI 5 Operated
DC Binary Input 5 has operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 97 of 107
Description Range Default
BI 6 Operated
DC Binary Input 6 has operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
BI 7 Operated
DC Binary Input 7 has operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
BI 8 Operated
DC Binary Input 8 has operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
BI 9 Operated
DC Binary Input 9 has operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
BI 10 Operated
DC Binary Input 10 has operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
BI 11 Operated
DC Binary Input 11 has operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
BI 12 Operated
DC Binary Input 12 has operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
BI 13 Operated
DC Binary Input 13 has operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
E1
Quick Logic equation 1 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
7SR220 Settings Guide
Unrestricted Page 98 of 107 © 2013 Siemens Protection Devices Limited
Description Range Default
E2
Quick Logic equation 2 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
E3
Quick Logic equation 3 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
E4
Quick Logic equation 4 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
E5
Quick Logic equation 5 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
E6
Quick Logic equation 6 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
E7
Quick Logic equation 7 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
E8
Quick Logic equation 8 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
E9
Quick Logic equation 9 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
E10
Quick Logic equation 10 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 99 of 107
Description Range Default
E11
Quick Logic equation 11 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
E12
Quick Logic equation 12 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
E13
Quick Logic equation 13 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
E14
Quick Logic equation 14 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
E15
Quick Logic equation 15 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
E16
Quick Logic equation 16 operated
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14,
L1, L2, L3, L4, L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14, V1, V2,
V3, V4, V5, V6, V7, V8, V9, V10,
V11, V12, V13, V14, V15, V16 )
----------------------
----------------------
Trip Contacts
Assigns Output Contact as trip contact for fault trigger
BO1, BO2, BO3, BO4, BO5, BO6,
BO7, BO8, BO9, BO10, BO11,
BO12, BO13, BO14
----------------------
----------------------
Hand Reset Outputs
Assigns Output Contact as hand reset contact
BO1, BO2, BO3, BO4, BO5, BO6,
BO7, BO8, BO9, BO10, BO11,
BO12, BO13, BO14
----------------------
----------------------
Pickup Outputs
Selects which outputs can operate because a pickup condition
exists
BO1, BO2, BO3, BO4, BO5, BO6,
BO7, BO8, BO9, BO10, BO11,
BO12, BO13, BO14
--------------
Pulsed Outputs
Selects which outputs are pulsed. The pulse width is set by
the Min Operate Time setting for each output
BO1, BO2, BO3, BO4, BO5, BO6,
BO7, BO8, BO9, BO10, BO11,
BO12, BO13, BO14
--------------
3.13.2. Binary Output Config (Variants may differ)
Description Range Default
Trip Contacts
The Binary Outputs selected by this setting are classed as Trip
contacts. (When any of these BOs operate the Trip LED is lit,
CB Fail is started, if enabled, & a Fault Record is stored)
Combination of ( BO1, BO2, BO3,
BO4, BO5, BO6, BO7, BO8, BO9,
BO10, BO11, BO12, BO13, BO14 )
--------------
7SR220 Settings Guide
Unrestricted Page 100 of 107 © 2013 Siemens Protection Devices Limited
Description Range Default
Hand Reset Outputs
Relays selected, as Hand Reset will remain latched until
manually reset from front panel or via communications link or
by removing DC Supply. By default relays are Self Resetting
and will reset when the driving signal is removed.
Combination of ( 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14 )
--------------
Min Operate Time 1
Minimum operate time of output relay if set to self reset, if also
set to be pulsed then this is the pulse width
0, 0.01 ... 59, 60 0.1 s
Min Operate Time 2
Minimum operate time of output relay 2 if set to self reset, if
also set to be pulsed then this is the pulse width
0, 0.01 ... 59, 60 0.1 s
Min Operate Time 3
Minimum operate time of output relay 3 if set to self reset, if
also set to be pulsed then this is the pulse width
0, 0.01 ... 59, 60 0.1 s
Min Operate Time 4
Minimum operate time of output relay 4 if set to self reset, if
also set to be pulsed then this is the pulse width
0, 0.01 ... 59, 60 0.1 s
Min Operate Time 5
Minimum operate time of output relay 5 if set to self reset, if
also set to be pulsed then this is the pulse width
0, 0.01 ... 59, 60 0.1 s
Min Operate Time 6
Minimum operate time of output relay 6 if set to self reset, if
also set to be pulsed then this is the pulse width
0, 0.01 ... 59, 60 0 s
Min Operate Time 7
Minimum operate time of output relay 7 if set to self reset, if
also set to be pulsed then this is the pulse width
0, 0.01 ... 59, 60 0 s
Min Operate Time 8
Minimum operate time of output relay 8 if set to self reset, if
also set to be pulsed then this is the pulse width
0, 0.01 ... 59, 60 0 s
Min Operate Time 9
Minimum operate time of output relay 9 if set to self reset, if
also set to be pulsed then this is the pulse width
0, 0.01 ... 59, 60 0 s
Min Operate Time 10
Minimum operate time of output relay 10 if set to self reset, if
also set to be pulsed then this is the pulse width
0, 0.01 ... 59, 60 0.1 s
Min Operate Time 11
Minimum operate time of output relay 11 if set to self reset, if
also set to be pulsed then this is the pulse width
0, 0.01 ... 59, 60 0.1 s
Min Operate Time 12
Minimum operate time of output relay 12 if set to self reset, if
also set to be pulsed then this is the pulse width
0, 0.01 ... 59, 60 0.1 s
Min Operate Time 13
Minimum operate time of output relay 13 if set to self reset, if
also set to be pulsed then this is the pulse width
0, 0.01 ... 59, 60 0.1 s
Min Operate Time 14
Minimum operate time of output relay 14 if set to self reset, if
also set to be pulsed then this is the pulse width
0, 0.01 ... 59, 60 0.1 s
Pickup Outputs
Selects which outputs can operate because a pickup condition
exists
Combination of ( 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14 )
--------------
Pulsed Outputs
Selects which outputs are pulsed. The pulse width is set by
the Min Operate Time setting for each output
Combination of ( 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14 )
--------------
3.13.3. LED Config
Description Range Default
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 101 of 107
Description Range Default
Self Reset LEDs
LEDs selected, as Self Reset will automatically reset when the
driving signal is removed. By default all LEDs are Hand Reset
and must be manually reset either locally via the front fascia or
remotely via communications.
Combination of ( 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14 )
1, 9, 10, 11, 12,
13, 14
PU Self Reset LEDs
LEDs selected, as Self Reset will automatically reset when the
driving signal is removed. By default all PU LEDs are Self
Reset.
Combination of ( 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14 )
1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12,
13, 14
Green LEDs
Selects which LEDs will be green when driven
Combination of ( 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14 )
--------------
Red LEDs
Selects which LEDs will be red when driven
Combination of ( 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14 )
1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12,
13, 14
PU Green LEDs
Selects which LEDs will be green when driven by a pickup
Combination of ( 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14 )
1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12,
13, 14
PU Red LEDs
Selects which LEDs will be red when driven by a pickup
Combination of ( 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14 )
1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12,
13, 14
3.13.4. Pickup Config
Description Range Default
Gn P/F Pickups
When any of the selected pickups operate General Pickup is
driven.
Combination of ( 51-1, 51-2, 51-3,
51-4, 50-1, 50-2, 50-3, 50-4 )
51-1, 51-2, 51-3,
51-4, 50-1, 50-2,
50-3, 50-4
Gn E/F Pickups
As Above
Combination of ( 51N-1, 51N-2,
51N-3, 51N-4, 50N-1, 50N-2, 50N-
3, 50N-4, 51G-1, 51G-2, 51G-3,
51G-4, 50G-1, 50G-2, 50G-3, 50G-
4 )
51N-1, 51N-2,
51N-3, 51N-4,
50N-1, 50N-2,
50N-3, 50N-4,
51G-1, 51G-2,
51G-3, 51G-4,
50G-1, 50G-2,
50G-3, 50G-4
Gn SEF/REF Pickups
As Above
Combination of ( 51SEF-1, 51SEF-
2, 51SEF-3, 51SEF-4, 50SEF-1,
50SEF-2, 50SEF-3, 50SEF-4, 64H
)
51SEF-1,
51SEF-2,
51SEF-3,
51SEF-4,
50SEF-1,
50SEF-2,
50SEF-3,
50SEF-4, 64H
Gn Voltage Pickups
As Above
Combination of ( 27/59-1, 27/59-2,
27/59-3, 27/59-4, Vx 27/59, 47-1,
47-2, 59NIT, 59NDT )
27/59-1, 27/59-2,
27/59-3, 27/59-4,
Vx 27/59, 47-1,
47-2, 59NIT,
59NDT
Gn Freq Pickups
As Above
Combination of ( 81-1, 81-2, 81-3,
81-4, 81-5, 81-6 )
81-1, 81-2, 81-3,
81-4, 81-5, 81-6
Gn Misc Pickups
As Above
Combination of ( 46IT, 46DT, 37-1,
37-2, 37G-1, 37G-2, 37SEF-1,
37SEF-2 )
46IT, 46DT, 37-
1, 37-2, 37G-1,
37G-2, 37SEF-1,
37SEF-2
3.14. Maintenance
7SR220 Settings Guide
Unrestricted Page 102 of 107 © 2013 Siemens Protection Devices Limited
3.14.1. CB Counters
Description Range Default
Gn CB Total Trip Count
Selects whether the CB Total Trip Count counter is enabled
Disabled, Enabled Disabled
Gn CB Total Trip Count Target
Selects the number of CB trips allowed before CB Total Trip
Count counter output operates
0, 1 ... 9999, 10000 100
Gn CB Total Trip Count Reset
Resets CB Total Trip Count counter
Gn CB Total Trip Manual Open
Selects whether the CB Total Trip Manual Open is enabled
Disabled, Enabled Disabled
Gn CB Phase Trip Counters
Selects whether the CB Phase Trip Counters is enabled
Disabled, Enabled Disabled
Gn CB Ph A Trip Count Target
Selects the number of CB trips allowed before CB Ph A Trip
Count counter output operates
0, 1 ... 9999, 10000 100
Gn CB Ph B Trip Count Target
Selects the number of CB trips allowed before CB Ph B Trip
Count counter output operates
0, 1 ... 9999, 10000 100
Gn CB Ph C Trip Count Target
Selects the number of CB trips allowed before CB Ph C Trip
Count counter output operates
0, 1 ... 9999, 10000 100
Gn CB E/F Trip Count Target
Selects the number of CB trips allowed before CB E/F Trip
Count counter output operates
0, 1 ... 9999, 10000 100
Gn CB Delta Trip Count
Selects whether the CB Delta Trip Count counter is enabled
Disabled, Enabled Disabled
Gn CB Delta Trip Count Target
Selects the number of CB trips allowed before CB Delta Trip
Count counter output operates
0, 1 ... 9999, 10000 100
Gn CB Delta Trip Count Reset
Resets CB Delta Trip Count counter
Gn CB Count To AR Block
Selects whether the CB Count To AR Block counter is enabled
Disabled, Enabled Disabled
Gn CB Count To AR Block Target
Selects the number of CB trips allowed before CB Count To
AR Block counter output operates. While count is above target
the Autorecloser will only perform 1 x Delayed Shot and
Lockout
0, 1 ... 9999, 10000 100
Gn CB Count To AR Block Reset
Resets CB Count To AR Block counter
Gn CB Freq Ops Count
Selects whether the CB Frequent Operations Counter is
enabled
Disabled, Enabled Disabled
Gn CB Freq Ops Count Target
Selects the number of CB trips allowed before CB Frequent
Operations Counter output operates. While count is above
target the Autorecloser will only perform 1 x Delayed Shot and
Lockout
0, 1 ... 9999, 10000 10
Gn CB Freq Ops Count Reset
Resets CB Frequent Operations Counter
3.14.2. I^2T CB Wear
Description Range Default
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 103 of 107
Description Range Default
Gn I^2t Counter
Selects whether the I^2t CB Wear monitor is enabled
Disabled, Enabled Disabled
Gn Alarm Limit
Sets limit before alarm is issued
10, 11 ... 99000, 100000 10 MA^2 s
Gn Separation Time
Sets the time for CB mechanism to start moving, time before
contacts start to separate
0, 0.001 ... 0.199, 0.2 0.02 s
Gn Clearance Time
Time for CB to clear fault
0, 0.001 ... 0.199, 0.2 0.04 s
Reset I^2t Count
Reset the CB wear count
3.14.3. START COUNT
Description Range Default
Start Types(s)
Selects which type of start-up
Power On, Expected, Unexpected All
Start Count Target
Selects number of times star-up has occurred before output
operatest
0, ...10000 100
3.15. Data Storage
3.15.1. Demand Data/Log
Description Range Default
Data Log Period
Selects period between stored samples
5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35,
40, 45, 50, 55, 60
5 min
Clear Data Log
Clear the Data Log
Gn Demand Window
The time window over which the Min, Max and Mean values
are calculated.
1, 2 ... 23, 24 24 hrs
Gn Demand Window Type
Method used to calculate Demand values.
Fixed, Peak, Rolling Fixed
Gn Demand Reset
Reset all Demand values
3.15.2. Waveform Storage
Description Range Default
Gn P/F Trig Storage
Select which elements trigger a waveform record
Combination of ( 51-1, 51-2, 51-3,
51-4, 50-1, 50-2, 50-3, 50-4 )
51-1, 51-2, 51-3,
51-4, 50-1, 50-2,
50-3, 50-4
Gn E/F Trig Storage
As Above
Combination of ( 51N-1, 51N-2,
51N-3, 51N-4, 50N-1, 50N-2, 50N-
3, 50N-4, 51G-1, 51G-2, 51G-3,
51G-4, 50G-1, 50G-2, 50G-3, 50G-
4 )
51N-1, 51N-2,
51N-3, 51N-4,
50N-1, 50N-2,
50N-3, 50N-4,
51G-1, 51G-2,
51G-3, 51G-4,
50G-1, 50G-2,
50G-3, 50G-4
7SR220 Settings Guide
Unrestricted Page 104 of 107 © 2013 Siemens Protection Devices Limited
Description Range Default
Gn SEF/REF Trig Storage
As Above
Combination of ( 51SEF-1, 51SEF-
2, 51SEF-3, 51SEF-4, 50SEF-1,
50SEF-2, 50SEF-3, 50SEF-4, 64H
)
51SEF-1,
51SEF-2,
51SEF-3,
51SEF-4,
50SEF-1,
50SEF-2,
50SEF-3,
50SEF-4, 64H
Gn Misc Current Storage
As Above
Combination of ( 46IT, 46DT, 37-1,
37-2, 49 Trip, 49 Alarm, 37G-1,
37G-2, 37SEF-1, 37SEF-2 )
----------
Gn Voltage Trig Storage
As Above
Combination of ( 27/59-1, 27/59-2,
27/59-3, 27/59-4, Vx 27/59, 47-1,
47-2, 59NIT, 59NDT )
---------
Gn Freq Trig Storage
As Above
Combination of ( 81-1, 81-2, 81-3,
81-4, 81-5, 81-6 )
------
Gn AFD Trig Storage
As Above
Combination of ( AFD-1, AFD-2,
AFD-3, AFD-4, AFD-5, AFD-6)
------
Pre-trigger Storage
Select Percentage of waveform record stored before the fault
is triggered
10, 20, 30, 40, 50, 60, 70, 80, 90 20 %
Record Duration
Select waveform record duration
10 Rec x 1 Sec, 5 Rec x 2 Sec, 2
Rec x 5 Sec, 1 Rec x 10 Sec
10 Rec x 1 Sec
Trigger Waveform
Trigger waveform storage
Clear Waveforms
Clear all stored waveform records
3.15.3. Fault Storage
Description Range Default
Gn Max Fault Rec Time
Maximum time Fault record information will be stored and
classed as same fault
0, 1 ... 59900, 60000 2000 ms
Clear Faults
Clear all stored fault records
3.15.4. Event Storage
Description Range Default
Clear Events
Clear all stored event records
3.15.5. Energy Storage
Description Range Default
Gn Active Exp Energy Unit 1kWh, 10kWh, 100kWh, 1MWh,
10MWh, 100MWh
10 kWh
Gn Active Imp Energy Unit 1kWh, 10kWh, 100kWh, 1MWh,
10MWh, 100MWh
10 kWh
Gn Reactive Exp Energy Unit 1kVArh, 10kVArh, 100kVArh,
1MVArh, 10MVArh, 100MVArh
10 kVArh
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 105 of 107
Description Range Default
Gn Reactive Imp Energy Unit 1kVArh, 10kVArh, 100kVArh,
1MVArh, 10MVArh, 100MVArh
10 kVArh
Data Log
Selects whether the Data Logger is enabled
3.15.6. Fault Locator
Description Range Default
Fault Locator Disabled, Enabled Disabled
Line Angle 0 Deg to 90 Deg 75 Deg
EF Comp Z0/Z1 Ratio 0 to 10 2.5
EF Comp Z0 Angle 0 Deg to 359 Deg 75 Deg
Z+ Impedance 0.1 Ohms to 250 Ohms 10 Ohms
Sec’y Z+ Per Unit Distance 0.005 Ohms to 5 Ohms 0.5 Ohm
Display Units Percent, kilometres, miles Percent
System Earthing Normal, Compensated Normal
Gn U0/U1 Ratio 0 to 1 0.1
Gn Freq FL Inhibits 6 Bit Binary 81-1, 81-2, 81-3,
81-4, 81-5, 81-6
Gn Freq FL Inhibits 13 Bit Binary 49, 46IT, 46DT,
27/59-1, 27/59-2,
27/59-3, 27/59-4,
47-1, 47-2,
59NIT, 59NDT,
46BC, Vx 27/59
7SR220 Settings Guide
Unrestricted Page 106 of 107 © 2013 Siemens Protection Devices Limited
3.15.7. Communications
Description Range Default
Station Address
IEC 60870-5-103 Station Address
0, 1 ... 65533, 65534 1
COM1-RS485 Protocol
Selects protocol to use for COM1-RS485
OFF, IEC60870-5-103, MODBUS-
RTU, DNP3
IEC60870-5-103
COM1-RS485 Baud Rate
Sets the communications baud rate for COM1-RS485
75, 110, 150, 300, 600, 1200, 2400,
4800, 9600, 19200, 38400
19200
COM1-RS485 Parity
Selects whether parity information is used
NONE, ODD, EVEN EVEN
COM1-RS485 Mode Local, Remote, Local Or Remote Remote
COM2-USB Protocol
Selects protocol to use for COM2-USB
IEC60870-5-103 IEC60870-5-103
COM2-USB Mode Local Local
COM3 Protocol
Selects protocol to use for COM3
OFF, IEC60870-5-103, MODBUS-
RTU, DNP3
IEC60870-5-103
COM3 Baud Rate
Sets the communications baud rate for COM3
75, 110, 150, 300, 600, 1200, 2400,
4800, 9600, 19200, 38400, 57600,
115200
19200
COM3 Parity
Selects whether parity information is used
NONE, ODD, EVEN EVEN
COM3 Line Idle
Selects the communications line idle sense
LIGHT OFF, LIGHT ON LIGHT OFF
COM3 Data Echo
Enables echoing of data from RX port to TX port when
operating relays in a Fibre Optic ring configuration
OFF, ON OFF
COM3 Mode Local, Remote, Local Or Remote Remote
COM4 Protocol
Selects protocol to use for COM4
OFF, IEC60870-5-103, MODBUS-
RTU, DNP3
OFF
COM4 Baud Rate
Sets the communications baud rate for COM4
75, 110, 150, 300, 600, 1200, 2400,
4800, 9600, 19200, 38400
19200
COM4 Parity
Selects whether parity information is used
NONE, ODD, EVEN EVEN
COM4 Line Idle
Selects the communications line idle sense
LIGHT OFF, LIGHT ON LIGHT OFF
COM4 Data Echo
Enables echoing of data from RX port to TX port when
operating relays in a Fibre Optic ring configuration
OFF, ON OFF
COM4 Mode Local, Remote, Local Or Remote Remote
LAN Protocol
Selects protocol to use for LAN port
OFF, IEC60870-5-103 IEC60870-5-103
DNP3 Unsolicited Events
Allows unsolicited event support in the relay. When Enabled,
unsolicited event transmission can be controlled by the
Master. When Disabled, Master requests are ignored.
Disabled, Enabled Disabled
DNP3 Destination Address
The address of the master to which unsolicited events will be
sent.
0, 1 ... 65533, 65534 0
7SR220 Settings Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 107 of 107
Description Range Default
DNP3 Application Timeout
The address of the master to which unsolicited events will be
sent.
5, 6 ... 299, 300 10 s
Unrestricted The copyright and other intellectual property rights in this document, and in any model or article
produced from it (and including any registered or unregistered design rights) are the property of Siemens
Protection Devices Limited. No part of this document shall be reproduced or modified or stored in another form, in
any data retrieval system, without the permission of Siemens Protection Devices Limited, nor shall any model or
article be reproduced from this document unless Siemens Protection Devices Limited consent.
While the information and guidance given in this document is believed to be correct, no liability shall be accepted
for any loss or damage caused by any error or omission, whether such error or omission is the result of
negligence or any other cause. Any and all such liability is disclaimed.
© 2013 Siemens Protection Devices Limited
7SR210 Non-Directional Relay
7SR220 Directional Relay
Performance Specification
7SR210 & 7SR220 Performance Specification
Unrestricted Page 2 of 68 © 2013 Siemens Protection Devices Limited
Document Release History
This document is issue 2017/12 The list of revisions up to and including this issue is: -
2011/05 First issue.
2011/08 Typographical revisions and added data.
2013/01 Typographical revisions and added data. Updated in line with software release.
2014/06 Typographical revisions and added data. Updated in line with software release.
2015/06 Typographical revisions and added data. Updated in line with software release.
2016/02 Typographical revisions and added data. Updated in line with software release.
2016/05 Amended data and reference to EATS 48-4, classes ESI 1 and ESI 2 removed.
2017/08 Typographical revisions and added data. Updated in line with software release.
2017/12 Typographical revisions and added data.
Software Revision History
2011/05 2435H85008R7a-7a (7SR210)
2435H85009R7a-7a (7SR220)
First Release
2013/01 2435H85008R7c-7b (7SR210)
2435H85009R7c-7b (7SR220)
Introduced journaling file system.
Added 61850 logical nodes for CB Counters, metering, 50BF,
46BC, 81HBL2 and line check.
Added Line Check on non-AR devices.
Added 74CCS Close Circuit Supervision.
2014/06 2435H85008R7f-7d (7SR210)
2435H85009R7f-7d (7SR220)
Added Fault Locator feature and Check Sync feature.
Fault data transmitted over 103.
Additional communications data, control features, meters.
2015/06 2435H85008R8a-7f (7SR210)
2435H85009R8a-7f (7SR220)
Added Power Factor Meters, Load Blinding feature, Arc Flash
Detector. Over current TM Setting Range extended.
2016/02 2435H85008R8b-7f (7SR210)
2435H85009R8b-7f (7SR220)
EN100+ Compatibility.
2017/08 2435H85008R8e-8a (7SR210)
2435H85009R8e-8a (7SR220)
Added 32 Directional Power, 32S Sensitive Power, 55 Power
Factor, 81HLB5 Overfluxing, 67SEF Compensated Network,
67SEF Wattmetric. Increased I/O. Event Data on LCD.
7SR21 & 7SR22 Performance Specification
Unrestricted © 2013 Siemens Protection Devices Limited Page 3 of 68
Contents
Software Revision History ................................................................................................................ 2
Section 1: Common Functions ......................................................................................................... 8
1.1 General ................................................................................................................................ 8
1.1.1 CE Conformity ......................................................................................................... 8
1.1.2 Reference ................................................................................................................ 8
1.1.3 Dimensions .............................................................................................................. 8
1.1.4 Weights ................................................................................................................... 9
1.2 Energising Quantities ......................................................................................................... 10
1.2.1 Auxiliary Power Supply .......................................................................................... 10
1.2.2 AC Current............................................................................................................. 11
1.2.3 AC Voltage ............................................................................................................ 12
1.2.4 Binary (Digital) Outputs .......................................................................................... 13
1.2.5 Binary (Digital) Inputs ............................................................................................. 14
1.3 Functional Performance ..................................................................................................... 15
1.3.1 Instrumentation ...................................................................................................... 15
1.3.2 USB Data Communication Interface ....................................................................... 15
1.3.3 Fibre Optic Serial Data Communication Interface (Optional Rear Mounted Port) ..... 15
1.3.4 RS485 Data Communication Interface (Standard Rear Port) .................................. 15
1.3.5 RS485 Data Communication Interface (Optional Rear Mounted Port) ..................... 15
1.3.6 RS232 Data Communication Interface (Optional Rear Mounted Port) ..................... 15
1.3.7 Fibre Optic Ethernet Data Communication Interface (IEC 61850 Option) ................ 16
1.3.8 Electrical Ethernet Data Communication Interface (IEC 61850 Option) ................... 16
1.3.9 Real Time Clock .................................................................................................... 16
1.4 Environmental Performance ............................................................................................... 17
1.4.1 General.................................................................................................................. 17
1.4.2 Emissions .............................................................................................................. 18
1.4.3 Immunity ................................................................................................................ 18
1.4.4 Mechanical ............................................................................................................ 20
Section 2: Protection Functions ..................................................................................................... 21
2.1 27/59 Phase Under/Over Voltage ....................................................................................... 21
2.1.2 Reference .............................................................................................................. 21
2.1.3 Operate and Reset Level ....................................................................................... 21
2.1.4 Operate and Reset Time ........................................................................................ 21
2.2 27/59 Vx Under/Over Voltage ............................................................................................. 22
2.2.1 Reference .............................................................................................................. 22
2.2.2 Operate and Reset Level ....................................................................................... 22
2.2.3 Operate and Reset Time ........................................................................................ 22
2.3 32 Power............................................................................................................................ 23
2.3.1 Reference .............................................................................................................. 23
2.3.2 Operate and Reset Level ....................................................................................... 23
2.3.3 Operate and Reset Time ........................................................................................ 23
2.3.4 Operate Threshold ................................................................................................. 23
2.4 32S Sensitive Power .......................................................................................................... 24
2.4.1 Reference .............................................................................................................. 24
2.4.2 Operate and Reset Level ....................................................................................... 24
2.4.3 Operate and Reset Time ........................................................................................ 24
2.4.4 Operate Threshold ................................................................................................. 24
2.5 37 Undercurrent ................................................................................................................. 25
2.5.1 Reference .............................................................................................................. 25
2.5.2 Operate and Reset Level ....................................................................................... 25
2.5.3 Operate and Reset Time ........................................................................................ 25
2.6 37G & 37SEF Undercurrent................................................................................................ 26
2.6.1 Reference .............................................................................................................. 26
2.6.2 Operate and Reset Level ....................................................................................... 26
7SR21 & 7SR22 Performance Specification
Unrestricted Page 4 of 68 © 2013 Siemens Protection Devices Limited
2.6.3 Operate and Reset Time ........................................................................................ 26
2.7 46NPS Negative Phase Sequence Overcurrent .................................................................. 27
2.7.1 Reference (46DT) .................................................................................................. 27
2.7.2 Operate and Reset Level (46DT)............................................................................ 27
2.7.3 Operate and Reset Time (46DT) ............................................................................ 27
2.7.4 Reference (46IT) .................................................................................................... 27
2.7.5 Operate and Reset Time (46IT) .............................................................................. 28
2.8 47 Negative Phase Sequence Voltage................................................................................ 29
2.8.1 Reference (47) ....................................................................................................... 29
2.8.2 Operate and Reset Level (47) ................................................................................ 29
2.8.3 Operate and Reset Time (47) ................................................................................. 29
2.9 49 Thermal Overload .......................................................................................................... 30
2.9.1 Reference .............................................................................................................. 30
2.9.2 Operate and Reset Level ....................................................................................... 30
2.9.3 Operate and Reset Time ........................................................................................ 30
2.10 50 Instantaneous Overcurrent ............................................................................................ 32
2.10.1 Reference .............................................................................................................. 32
2.10.2 Operate and Reset Level ....................................................................................... 32
2.10.3 Operate and Reset Time ........................................................................................ 32
2.11 50G Instantaneous Measured Earth Fault........................................................................... 33
2.11.1 Reference .............................................................................................................. 33
2.11.2 Operate and Reset Level ....................................................................................... 33
2.11.3 Operate and Reset Time ........................................................................................ 33
2.12 50N Instantaneous Derived Earth Fault .............................................................................. 34
2.12.1 Reference .............................................................................................................. 34
2.12.2 Operate and Reset Level ....................................................................................... 34
2.12.3 Operate and Reset Time ........................................................................................ 34
2.13 50SEF Instantaneous Sensitive Earth Fault ........................................................................ 35
2.13.1 Reference .............................................................................................................. 35
2.13.2 Operate and Reset Level ....................................................................................... 35
2.13.3 Operate and Reset Time ........................................................................................ 35
2.14 51 Time Delayed Overcurrent ............................................................................................. 36
2.14.1 Reference .............................................................................................................. 36
2.14.2 Operate and Reset Level ....................................................................................... 36
2.14.3 Operate and Reset Time ........................................................................................ 37
2.15 51G Time Delayed Measured Earth Fault ........................................................................... 41
2.15.1 Reference .............................................................................................................. 41
2.15.2 Operate and Reset Level ....................................................................................... 41
2.15.3 Operate and Reset Time ........................................................................................ 42
2.16 51N Time Delayed Derived Earth Fault ............................................................................... 43
2.16.1 Reference .............................................................................................................. 43
2.16.2 Operate and Reset Level ....................................................................................... 43
2.16.3 Operate and Reset Time ........................................................................................ 44
2.17 51SEF Time Delayed Sensitive Earth Fault ........................................................................ 45
2.17.1 Reference .............................................................................................................. 45
2.17.2 Operate and Reset Level ....................................................................................... 45
2.17.3 Operate and Reset Time ........................................................................................ 46
2.18 51V Voltage Controlled Overcurrent (Ph-Ph) ...................................................................... 47
2.18.1 Reference .............................................................................................................. 47
2.18.2 Operate and Reset Level ....................................................................................... 47
2.19 55 Power Factor ................................................................................................................. 48
2.19.1 Reference .............................................................................................................. 48
2.19.2 Operate and Reset Level ....................................................................................... 48
2.19.3 Operate and Reset Time ........................................................................................ 48
2.19.4 Operate Threshold ................................................................................................. 48
2.20 59N Neutral Voltage Displacement ..................................................................................... 49
2.20.1 Reference (59NDT) ................................................................................................ 49
7SR21 & 7SR22 Performance Specification
Unrestricted © 2013 Siemens Protection Devices Limited Page 5 of 68
2.20.2 Operate and Reset Level (59NDT) ......................................................................... 49
2.20.3 Operate and Reset Time (59NDT) .......................................................................... 49
2.20.4 Reference (59NIT) ................................................................................................. 49
2.20.5 Operate and Reset Level (59NIT)........................................................................... 50
2.20.6 Operate and Reset Time (59NIT) ........................................................................... 50
2.21 64H Restricted Earth Fault Protection ................................................................................. 51
2.21.1 Reference .............................................................................................................. 51
2.21.2 Operate and Reset Level ....................................................................................... 51
2.21.3 Operate and Reset Time ........................................................................................ 51
2.22 67/67N Directional Overcurrent & Earth Fault ..................................................................... 52
2.22.1 Reference .............................................................................................................. 52
2.22.2 Operate Angle ....................................................................................................... 52
2.22.3 Operate Threshold ................................................................................................. 52
2.22.4 Operate and Reset Time ........................................................................................ 52
2.23 Directional SEF Wattmetric................................................................................................. 53
2.23.1 Reference .............................................................................................................. 53
2.23.2 Operate and Reset Level ....................................................................................... 53
2.23.3 Operate and Reset Time ........................................................................................ 53
2.24 81 Under/Over Frequency .................................................................................................. 54
2.24.1 Reference .............................................................................................................. 54
2.24.2 Operate and Reset Level ....................................................................................... 54
2.24.3 Operate and Reset Time ........................................................................................ 54
2.25 50 AFD ARC Flash Detector ............................................................................................... 55
(Refer to 7XG31 Technical Manual for performance characteristics) .......................................... 55
2.25.1 Reference .............................................................................................................. 55
2.25.2 Operate and Reset Level ....................................................................................... 55
2.25.3 Operate and Reset Time ........................................................................................ 55
Section 3: Supervision Functions .................................................................................................. 56
3.1 46BC & 46BC U/C Broken Conductor ................................................................................. 56
3.1.1 Reference .............................................................................................................. 56
3.1.2 Operate and Reset Level ....................................................................................... 56
3.1.3 Operate and Reset Time ........................................................................................ 56
3.2 50BF & 50BF-I4 Circuit Breaker Fail ................................................................................... 57
3.2.1 Reference .............................................................................................................. 57
3.2.2 Operate and Reset Level ....................................................................................... 57
3.2.3 Operate and Reset Time ........................................................................................ 57
3.3 60CTS & CTS-I Current Transformer Supervision............................................................... 58
3.3.1 Reference .............................................................................................................. 58
3.3.2 Current & Voltage Threshold .................................................................................. 58
3.3.3 Operate and Reset Time ........................................................................................ 58
3.4 60VTS Voltage Transformer Supervision ............................................................................ 59
3.4.1 Reference .............................................................................................................. 59
3.4.2 Operate and Reset Level ....................................................................................... 59
3.4.3 Operate and Reset Time ........................................................................................ 60
3.5 74TCS Trip Circuit Supervision........................................................................................... 61
3.5.1 Reference .............................................................................................................. 61
3.5.2 Operate and Reset Time ........................................................................................ 61
3.6 81HBL2 Inrush Detector ..................................................................................................... 62
3.6.1 Reference .............................................................................................................. 62
3.6.2 Operate and Reset Level ....................................................................................... 62
3.6.3 Operate and Reset Time ........................................................................................ 62
3.7 81HBL5 Over Fluxing Detector ........................................................................................... 63
3.7.1 Reference .............................................................................................................. 63
3.7.2 Operate and Reset Level ....................................................................................... 63
3.7.3 Operate and Reset Time ........................................................................................ 63
3.8 Load Blinder (21LB – 3P) ................................................................................................... 64
3.8.1 Reference .............................................................................................................. 64
7SR21 & 7SR22 Performance Specification
Unrestricted Page 6 of 68 © 2013 Siemens Protection Devices Limited
3.8.2 Operate Level ........................................................................................................ 64
3.8.3 Operate Angle ....................................................................................................... 64
3.9 Load Blinder (21LB – 1P) ................................................................................................... 65
3.9.1 Reference .............................................................................................................. 65
3.9.2 Operate Level ........................................................................................................ 65
3.9.3 Operate Angle ....................................................................................................... 65
Section 4: Control Functions.......................................................................................................... 66
4.1 Check Synchronising .......................................................................................................... 66
4.1.1 Reference .............................................................................................................. 66
4.1.2 Live/Dead Line/Bus Detector Elements .................................................................. 66
4.1.3 Line and Bus Undervoltage Elements..................................................................... 67
4.1.4 Voltage Difference ................................................................................................. 67
4.1.5 General Autoreclose Timers ................................................................................... 67
4.1.6 CS/SS/COZ Line and Bus Phase Angle Difference ................................................ 67
4.1.7 CS/SS/COZ Slip Frequency ................................................................................... 67
4.1.8 CS/SS Timer .......................................................................................................... 67
4.1.9 Split Angle Detector ............................................................................................... 68
4.1.10 Split Slip Frequency Detector ................................................................................. 68
4.2 Live/Dead........................................................................................................................... 68
4.2.1 Reference .............................................................................................................. 68
4.2.2 Live/Dead Detector Elements ................................................................................. 68
7SR21 & 7SR22 Performance Specification
Unrestricted © 2013 Siemens Protection Devices Limited Page 7 of 68
List of Figures
Figure 2-1 Thermal Overload Protection Curves ............................................................................. 31
Figure 2-2 IEC IDMTL Curves (Time Multiplier = 1) ........................................................................ 38
Figure 2-3 ANSI IDMTL Operate Curves (Time Multiplier = 1) ......................................................... 39
Figure 2-4 ANSI IDMTL Reset Curves (Time Multiplier = 1) ............................................................ 40
7SR21 & 7SR22 Performance Specification
Unrestricted Page 8 of 68 © 2013 Siemens Protection Devices Limited
Section 1: Common Functions
1.1 General
1.1.1 CE Conformity
This product is CE compliant to relevant EU directives.
1.1.2 Reference
This product complies with IEC 60255-3, IEC 60255-6 and IEC 60255-12.
1.1.2.1 Accuracy Reference Conditions
This product has been tested under the following conditions, unless specifically stated otherwise.
Parameter Value
Auxiliary supply Nominal
AC Current Nominal
Frequency Nominal
Ambient temperature 20 °C
1.1.3 Dimensions
Parameter Value
Width
E6 case 155.5 mm
E8 case 207.5 mm
E12 case 311.5 mm
Height 177 mm
Depth behind panel, including clearance for: -
Wiring
Fibre Optic
Ethernet enclosure
Depth below Ethernet variant for cables
241.5 mm
286.5 mm
259.5 mm
75 mm
Projection (from front of panel) 31 mm
See appropriate case outline and panel drilling drawing, as specified in Diagrams and Parameters document, for
complete dimensional specifications.
7SR21 & 7SR22 Performance Specification
Unrestricted © 2013 Siemens Protection Devices Limited Page 9 of 68
1.1.4 Weights
Hardware Model
Typical Net Weight (kg)
7SR2102
4.2
7SR2103
4.6
7SR2104
4.8
7SR2105
8.4
7SR2106
8.4
7SR2202
4.8
7SR22
03
4.9
7SR2204
5.3
7SR2205
8.4
7SR2206
8.4
NB:
For relays supplied with additional (optional) communication interface devices, please add an additional
0.165 kg to the figures in the above table.
For relays supplied with Ethernet interface (optional) please add 0.1 kg to the figures in the above table.
7SR21 & 7SR22 Performance Specification
Unrestricted Page 10 of 68 © 2013 Siemens Protection Devices Limited
1.2 Energising Quantities
1.2.1 Auxiliary Power Supply
Nominal Operating Range MLFB Code (column 9)
VAUX
30 V DC, 48 V DC, 110 V DC, 220 V DC 24 V DC to 290 V DC A, B
24 V DC to 250 V DC
100 V AC to 230 V AC
24 V DC to 290 V DC
88 V AC to 242 V AC M, N
1.2.1.1 Burden (24 V DC to 250 V DC, 100 V AC to 230 V AC) PSU
Attribute
Watts (DC)
Voltage (V)
24
48
60
110
125
220
250
Quiescent Relay (inc. PROT HEALTHY LED)
6.0
5.8
5.8
5.5
5.5
5.4
5.5
LCD backlight on
1.
4
1.3
1.2
1.2
1.2
1.2
1.2
Per LED (Red) 0.04 0.03 0.03 0.03 0.03 0.03 0.03
Per LED (Yellow)
0.08
0.06
0.06
0.06
0.06
0.06
0.06
Per Binary Output
0.35
0.3
0.3
0.3
0.3
0.28
0.28
Optional IEC61850
2.6
2.5
2.4
2.4
2.4
2.4
2.4
Attribute VA (AC)
Voltage (
V)
100
110
115
120
200
230
Quiescent Relay (inc. PROT HEALTHY LED)
10.0
10.0
10.0
10.5
12.0
14.0
LCD backlight on
2.5
2.5
2.5
2.6
3.0
3.2
Per LED (Red)
0.06
0.06
0.06
0.06
0.06
0.07
Per LED (Yellow) 0.10 0.12 0.10 0.10 0.10 0.12
Per Binary Output
0.6
0.6
0.6
0.6
0.6
0.6
Optional IEC61850
5.0
5.0
5.0
5.0
4.5
4.5
1.2.1.2 Burden (30 V DC, 48 V DC, 110 V DC, 220 V DC) PSU
Attribute Value
30 V DC
Quiescent (typical)
6.0 W
Quiescent (back light)
7.0 W
48 V DC
Quiescent (typical)
5.5 W
Quiescent (back light)
6.5 W
110 V DC
Quiescent (typical) 6.5 W
Quiescent (back light)
7.5 W
220 V DC
Quiescent (typical)
7.5 W
Quiescent (back light)
8.5 W
7SR21 & 7SR22 Performance Specification
Unrestricted © 2013 Siemens Protection Devices Limited Page 11 of 68
1.2.1.3 Operational Features
Attribute Value
Comments
0% Dip Withstand Period
100 ms
Dip Immunity Acquisition Period 5 minutes
Typical time after switch on to
attain claimed immunity to dips
NOTE: -
Dips in supply that fall below the minimum voltage for a period greater than the 0% Dip Withstand Period, will
invoke a relay reset.
During conditions of auxiliary input voltage variations which are not described
(1)
in section 1.4.3.1, the relay
may enter a safety protection mode where a power supply shutdown occurs. This condition is designed to
protect the power supply from damage as well as prevent internal relay faults from developing into dangerous
situations.
Once the relay has entered this safety mode, it may be necessary to reduce the auxiliary input voltage to zero
volts for up to 30 seconds before re-application of the auxiliary supply will cause the relay to power up and
operate normally.
(1) Using fuses as on/off switches or allowing batteries to run at very low cell voltages for extended periods and
then attempting to re-charge them are examples of such auxiliary supply conditions.
1.2.2 AC Current
Nominal Measuring Range
In 1 A, 5 A Phase and earth 80 x In
fn 50 Hz, 60 Hz 47 Hz to 62 Hz
Sample Rate 32 cycles / sec @ 50 Hz
Note. 1 A and 5 A nominal inputs are user selectable on each model.
7SR21 & 7SR22 Performance Specification
Unrestricted Page 12 of 68 © 2013 Siemens Protection Devices Limited
1.2.2.1 Burden
1.2.2.2 Thermal Withstand
Overload Period
Overload Current
Phase and Earth
1 A 5 A
Continuous 3.0 xIn
10 minutes 3.5 xIn
5 minutes 4.0 xIn
3 minutes 5.0 xIn
2 minutes 6.0 xIn
3 seconds 57.7 A 202 A
2 seconds 70.7 A 247 A
1 second 100 A 350 A
1 cycle 700 A 2500 A
1.2.3 AC Voltage
Nominal Operating Range
Vn 63.5 V, 110 V 40 V rms to 160 V rms
fn 50 Hz, 60 Hz 47 Hz to 62 Hz
1.2.3.1 Burden
Attribute Value
AC Burden 0.1 VA at 110 V
Attribute Value - Phase and Earth
1 A 5 A
AC Burden 0.1 VA 0.3 VA
7SR21 & 7SR22 Performance Specification
Unrestricted © 2013 Siemens Protection Devices Limited Page 13 of 68
1.2.4 Binary (Digital) Outputs
Contact rating to IEC 60255-0-2
Attribute Value
Carry continuously 5 A AC or DC
Make and carry
(L/R £ 40 ms and V £ 300 V)
for 0.5 s 20 A AC or DC
for 0.2 s 30 A AC or DC
Break
(£ 5 A and £ 300 V)
AC resistive 1250 VA
AC inductive 250 VA at p.f. £ 0.4
DC resistive 75 W
DC inductive 30 W at L/R £ 40ms
50 W at L/R £ 10 ms
Contact Operate / Release Time 7 ms / 3 ms
Minimum number of operations 1000 at maximum load
Minimum recommended load 0.5 W at minimum of 10 mA or 5 V
7SR21 & 7SR22 Performance Specification
Unrestricted Page 14 of 68 © 2013 Siemens Protection Devices Limited
1.2.5 Binary (Digital) Inputs
Nominal Operating Range
VBI
19 V DC 17 V DC (minimum) to 290 V DC
88 V DC 74 V DC (minimum) to 290 V DC
1.2.5.1 Performance
Attribute Value
Maximum DC current for
operation
VBI = 19 V 1.5 mA
VBI = 88 V 1.5 mA
Reset/Operate voltage ratio ³ 90 %
Response time < 7 ms
Response time when programmed to energise
an output relay contact (i.e. includes output
relay operation)
< 20 ms
Sample Rate Every 5 ms
The binary inputs are isolated from earth potential. They have a low minimum operate current and may be set for
high speed operation. Where a binary input is both used to influence a control function (e.g. provide a tripping
function) and it is considered to be susceptible to mal-operation due to capacitive currents, the external circuitry
can be modified to provide immunity to such disturbances.
To achieve immunity from AC interference, a BI pick-up delay of typically one-cycle can be applied.
7SR21 & 7SR22 Performance Specification
Unrestricted © 2013 Siemens Protection Devices Limited Page 15 of 68
1.3 Functional Performance
1.3.1 Instrumentation
Instrument Value Reference Typical accuracy
I Current 0.1In to 2.0In ± 1 % or ± 1 % In
V Voltage 0.1Vn to 1.2Vn ± 1 % or ± 1 % Vn
Power, real and apparent V = Vn, I ³ 0.1 xIn, pf ³ 0.8 ± 3 % Pn, where Pn = Vn x In
pf Power factor V = Vn, I ³ 0.1 xIn, pf ³ 0.8 ± 0.05
1.3.2 USB Data Communication Interface
Attribute Value
Physical layer Electrical
Connectors USB-Type B
1.3.3 Fibre Optic Serial Data Communication Interface (Optional Rear Mounted
Port)
Attribute Value
Physical layer Fibre-optic
Connectors STTM (BFOC/2.5)
Recommended fibre 62.5/125 mm glass fibre with ST connector
Optical Wavelength 820 nm
Launch power (into recommended fibre) -16 dBm
Receiver sensitivity -24 dBm
1.3.4 RS485 Data Communication Interface (Standard Rear Port)
Attribute Value
Physical layer Electrical
Connectors 4 mm Ring Crimp
1.3.5 RS485 Data Communication Interface (Optional Rear Mounted Port)
Attribute Value
Physical layer Electrical
Connectors 4-way Plug
1.3.6 RS232 Data Communication Interface (Optional Rear Mounted Port)
Attribute Value
Physical layer Electrical
Connectors 9-way D-plug
7SR21 & 7SR22 Performance Specification
Unrestricted Page 16 of 68 © 2013 Siemens Protection Devices Limited
1.3.7 Fibre Optic Ethernet Data Communication Interface (IEC 61850 Option)
Attribute Value
Physical layer Fibre-optic
Connectors Duplex LC 100BaseF in acc. With IEEE802.3
Recommended fibre 62.5/125 mm glass fibre with Duplex-LC connector
Transmission Speed 100 MBits/s
Optical Wavelength 1300 nm
Bridgeable distance 2 km
1.3.8 Electrical Ethernet Data Communication Interface (IEC 61850 Option)
Attribute Value
Physical layer Electrical
Connectors RJ45 100BaseF in acc. With IEEE802.3
Transmission Speed 100 MBits/s
Test Voltage (with regard to socket) 500 VAC 50 Hz
Bridgeable distance 20 m
1.3.9 Real Time Clock
1.3.9.1 Internal Clock
The specification below applies only while no external synchronisation signal (e.g. IRIG-B, IEC 60870-5-103) is
being received.
Attribute Value
Accuracy (- 10 oC to + 55 oC) ± 100 ppm
1.3.9.2 IRIG-B (Inter Range Instrumentation Group)-B
Attribute Value
Connector BNC
Signal Type IRIG-B 120, 122 or 123
Applied signal level minimum 3 V, maximum 6 V, peak-to-peak
Signal : carrier ratio 3:1
Impedance 4 kOhm
*Cable impedance is irrelevant. The cable does not need to have a termination resistor fitted.
7SR21 & 7SR22 Performance Specification
Unrestricted © 2013 Siemens Protection Devices Limited Page 17 of 68
1.4 Environmental Performance
1.4.1 General
1.4.1.1 Temperature
IEC 60068-2-1, IEC 60068-2-2
Type Level
Operating range - 10 °C to + 55 °C
Storage range - 25 °C to + 70 °C
1.4.1.2 Humidity
IEC 60068-2-30, IEC 60068-2-78
Type Level
Operational test (Indoor) 56 days at +40 °C and 95 % relative humidity (r.h.)
Operational test (Outdoor) 6 cycles at 24 h between +25 °C (97% r.h.) and +55 °C (93% r.h.)
1.4.1.3 Transient Overvoltage
IEC 60255-5
Type Level
Between all terminals and earth, or
between any two independent circuits 5.0 kV, 1.2/50 ms 0.5j
1.4.1.4 Insulation
IEC 60255-5
Type Level
Between any terminal and earth 2.5 kV AC RMS for 1 min
Between independent circuits
Across normally open contacts 1.0 kV AC RMS for 1 min
1.4.1.5 IP Ratings
Type Level
Installed with cover on IP 51 from front of relay
IP 10 from rear of relay
Installed with cover removed IP 20 from front of relay
IP 10 from rear of relay
7SR21 & 7SR22 Performance Specification
Unrestricted Page 18 of 68 © 2013 Siemens Protection Devices Limited
1.4.2 Emissions
IEC 60255-25
1.4.2.1 Radiated Radio Frequency
Type Limits at 10 m, Quasi-peak
30 MHz to 230 MHz 40 dB(mV/m)
230 MHz to 10000 MHz 47 dB(mV/m)
1.4.2.2 Conducted Radio Frequency
Type Limits
Quasi-peak Average
0.15 MHz to 0.5 MHz 79 dB(mV) 66 dB(mV)
0.5 MHz to 30 MHz 73 dB(mV) 60 dB(mV)
1.4.3 Immunity
1.4.3.1 Auxiliary DC Supply Variation
Quantity Value
Allowable superimposed ac component £ 12 % of DC voltage
Allowable breaks/dips in supply
(collapse to zero from nominal voltage) £ 20 ms
1.4.3.2 High Frequency Disturbance
IEC 60255-22-1 Class III
Type Level Variation
Common (longitudinal) mode 2.5 kV £ 5 %
Series (transverse) mode 1.0 kV
1.4.3.3 Electrostatic Discharge
IEC 60255-22-2 Class IV
Type Level Variation
Contact discharge 8.0 kV £ 5 %
1.4.3.4 Radiated Immunity
IEC 60255-22-3 Class III
Type Level Variation
80 MHz to 1000 MHz 10 V/m £ 5 %
7SR21 & 7SR22 Performance Specification
Unrestricted © 2013 Siemens Protection Devices Limited Page 19 of 68
1.4.3.5 Fast Transients
IEC 60255-22-4 Class A (2002)
Type Level Variation
5/50 ns 2.5 kHz repetitive 4 kV £ 5 %
1.4.3.6 Surge Immunity
IEC 60255-22-5; IEC 61000-4-5
Type Level Variation
Analogue Inputs.
Line to Earth. 4.0 kV 10 % or 1 mA
Case, Aux Power & I/O.
Line to Earth. 2.0 kV 10 % or 1 mA
RS485 Comms Port.
Line to Earth. 1.0 kV No Data Loss
Analogue Inputs.
Line to Line. 1.0 kV 10 % or 1 mA
Case, Aux Power & I/O.
Line to Line. 1.0 kV* 10 % or 1 mA
* Note: 45 ms pick-up delay for DTL applied to binary inputs
1.4.3.7 Conducted Radio Frequency Interference
IEC 60255-22-6
Type Level Variation
0.15 MHz to 80 MHz 10 V £ 5 %
1.4.3.8 Magnetic Field with Power Frequency
IEC 61000-4-8 level 5
100 A/m, (0.126 mT) continuous 50 Hz
1000 A/m, (1.26 mT) for 3 s
7SR21 & 7SR22 Performance Specification
Unrestricted Page 20 of 68 © 2013 Siemens Protection Devices Limited
1.4.4 Mechanical
1.4.4.1 Vibration (Sinusoidal)
IEC 60255-21-1 Class I
Type Level Variation
Vibration response 0.5 gn £ 5 %
Vibration endurance 1.0 gn
1.4.4.2 Shock and Bump
IEC 60255-21-2 Class I
Type Level Variation
Shock response 5 gn, 11 ms
£ 5 %
Shock withstand 15 gn, 11 ms
Bump test 10 gn, 16 ms
1.4.4.3 Seismic
IEC 60255-21-3 Class I
Type Level Variation
Seismic response 1 gn £ 5 %
1.4.4.4 Mechanical Classification
Type Level
D
urability
> 10
6
operations
7SR21 & 7SR22 Performance Specification
Unrestricted © 2013 Siemens Protection Devices Limited Page 21 of 68
Section 2: Protection Functions
2.1 27/59 Phase Under/Over Voltage
2.1.2 Reference
Parameter Value
VsSetting 5, 5.5…199.5, 200 V
hyst Hysteresis setting 0, 0.1… 80.0 %
tdDelay setting 0.00, 0.01…20.00, 20.50… 100, 101… 1000, 1010…
10000, 10100… 14400 s
2.1.3 Operate and Reset Level
Attribute Value
Vop Operate level 100 % Vs,± 1 % or ±0.25 V
Reset level Overvoltage = (100 % - hyst) x Vop, ± 1 % or ±0.25 V
Undervoltage = (100 % + hyst) x Vop, ± 1 % or ±0.25 V
Repeatability ± 1 %
Variation -10 °C to +55 °C £ 5 %
fnom - 3 Hz to fnom + 2 Hz £ 5 %
2.1.4 Operate and Reset Time
Attribute Value
tbasicE Element basic
operate time
Overvoltage Switched from 0 to 1.1 x Vs: 73 ms ± 10 ms
Switched from 0 to 2.0 xVs: 63 ms ± 10 ms
Undervoltage 1.1 to 0.5 xVs: 58 ms ± 10 ms
top Operate time following delay tbasic + td,± 1 % or ± 10 ms
Repeatability ± 1 % or ± 10 ms
Disengaging time < 80 ms
7SR21 & 7SR22 Performance Specification
Unrestricted Page 22 of 68 © 2013 Siemens Protection Devices Limited
2.2 27/59 Vx Under/Over Voltage
2.2.1 Reference
Parameter Value
VsSetting 5, 5.5…199.5, 200 V
Vs
Guard Guard Setting 1, 1.5, …199.5, 200 V
hyst Hysteresis setting 0, 0.1… 80.0 %
tdDelay setting 0.00, 0.01…20.00, 20.50… 100, 101… 1000, 1010…
10000, 10100… 14400 s
2.2.2 Operate and Reset Level
Attribute Value
Vop Operate level 100 % Vs,± 1 % or ±0.25 V
Reset level Overvoltage = (100 % - hyst) x Vop, ± 1 % or ± 0.25 V
Undervoltage = (100 % + hyst) x Vop, ± 1 % or ± 0.25 V
Repeatability ± 1 %
Variation -10 °C to +55 °C £ 5 %
fnom - 3 Hz to fnom + 2 Hz £ 5 %
2.2.3 Operate and Reset Time
Attribute Value
tbasicE Element basic
operate time
Overvoltage Switched from 0 to 1.1 xVs: 73 ms ± 10 ms
Switched from 0 to 2.0 xVs: 63 ms ± 10 ms
Undervoltage 1.1 to 0.5 xVs: 58 ms ± 10 ms
top Operate time following delay tbasic + td,± 1 % or ± 10 ms
Repeatability ± 1 % or ± 10 ms
Disengaging time < 80 ms
7SR21 & 7SR22 Performance Specification
Unrestricted © 2013 Siemens Protection Devices Limited Page 23 of 68
2.3 32 Power
2.3.1 Reference
Parameter Value
Ss 32-n Setting 0.05…2 x Sn
td32-n Delay setting 0.00 … 14400 s
2.3.2 Operate and Reset Level
Attribute Value
Sop Operate level 100 % Ss,± 5% or ± 2% Sn
Reset level Over-power ³ 95 % Sop
Under-power £ 105 % Sop
Variation -10 °C to +55 °C £ 5 %
fnom – 3 Hz to fnom + 2 Hz £ 5 %
2.3.3 Operate and Reset Time
Attribute Value
tbasic Element basic
operate time
Over-power 1.1 x Ss: 60 ms ± 10 ms
2.0 x Ss: 45 ms ± 10ms
Under-power 0.5 x Ss: 30 ms ± 10ms
top Operate time following delay tbasic + td,± 1 % or ± 10ms
Disengaging time < 40 ms
2.3.4 Operate Threshold
Attribute Value
Minimum levels for
operation
I 2.5 % In
V 2.5% Vn
7SR21 & 7SR22 Performance Specification
Unrestricted Page 24 of 68 © 2013 Siemens Protection Devices Limited
2.4 32S Sensitive Power
2.4.1 Reference
Parameter Value
Ss32S-n Setting 0.005…2 x Sn
td32S-n Delay setting 0.00 … 14400 s
2.4.2 Operate and Reset Level
Attribute Value
Sop Operate level 100 % Ss,± 5% or ± 2% Sn
Reset level Over-power ³ 95 % Sop
Under-power £ 105 % Sop
Variation -10 °C to +55 °C £ 5 %
fnom – 3 Hz to fnom + 2 Hz £ 5 %
2.4.3 Operate and Reset Time
Attribute Value
tbasicE Element basic
operate time
Over-power 1.1 x Ss: 60 ms ± 10 ms
2.0 x Ss: 45 ms ± 10ms
Under-power 0.5 x Ss: 30 ms ± 10ms
top Operate time following delay tbasic + td,± 1 % or ± 10ms
Disengaging time < 40 ms
2.4.4 Operate Threshold
Attribute Value
Minimum levels for
operation
I 2.5 % In
V 2.5% Vn
7SR21 & 7SR22 Performance Specification
Unrestricted © 2013 Siemens Protection Devices Limited Page 25 of 68
2.5 37 Undercurrent
2.5.1 Reference
Parameter Value
Is Setting 0.05, 0.10…5.0 xIn
tdDelay setting 0.00, 0.01…20.00, 20.50… 100, 101… 1000, 1010…
10000, 10100… 14400 s
Is 37-n U/I Guard Setting 0.05, 0.10…5.0 xIn
2.5.2 Operate and Reset Level
Attribute Value
Iop Operate level 100 % Is,± 5 % or ± 1% In
Reset level £ 105 % Iop
Repeatability ± 1 %
Variation -10 °C to +55 °C £ 5 %
fnom - 3 Hz to fnom + 2 Hz £ 5 %
2.5.3 Operate and Reset Time
Attribute Value
tbasic Element basic operate time 1.1 to 0.5 xIs: 35 ms, ± 10ms
top Operate time following delay tbasic + td,± 1 % or ± 10ms
Repeatability ± 1 % or ± 10ms
Overshoot time < 40 ms
Disengaging time < 60 ms
7SR21 & 7SR22 Performance Specification
Unrestricted Page 26 of 68 © 2013 Siemens Protection Devices Limited
2.6 37G & 37SEF Undercurrent
2.6.1 Reference
Parameter Value
Is Setting 0.005, 0.10…5.0 xIn
tdDelay setting 0.00, 0.01…20.00, 20.50… 100, 101… 1000, 1010…
10000, 10100… 14400 s
2.6.2 Operate and Reset Level
Attribute Value
Iop Operate level 100 % Is,± 5 % or ± 1% In
Reset level £ 105 % Iop or Iop ± 0.1 % In
Repeatability ± 1 %
Variation -10 °C to +55 °C £ 5 %
fnom - 3 Hz to fnom + 2 Hz £ 5 %
2.6.3 Operate and Reset Time
Attribute Value
tbasic Element basic operate time 1.1 to 0.5 xIs: 35 ms, ± 10 ms
top Operate time following delay tbasic + td,± 1 % or ± 10 ms
Repeatability ± 1 % or ± 10 ms
Overshoot time < 40 ms
Disengaging time < 60 ms
7SR21 & 7SR22 Performance Specification
Unrestricted © 2013 Siemens Protection Devices Limited Page 27 of 68
2.7 46NPS Negative Phase Sequence Overcurrent
2.7.1 Reference (46DT)
Parameter Value
IsSetting 0.05, 0.06... 4.0xIn
tdDelay setting 0.00, 0.01…20.00, 20.50… 100, 101… 1000, 1010…
10000, 10100… 14400 s
2.7.2 Operate and Reset Level (46DT)
Attribute Value
Iop Operate level 100 % Is,± 5 % or ± 1% In
Reset level ³ 95 % Iop
Repeatability ± 1 %
Transient overreach
(X/R £ 100) £ -5 %
Variation -10 °C to +55 °C £ 5 %
fnom - 3 Hz to fnom + 2 Hz £ 5 %
2.7.3 Operate and Reset Time (46DT)
Attribute Value
tbasic Element basic operate time Switched from 0 to 2 xIs: 40 ms, ± 10 ms
Switched from 0 to 5 xIs: 30 ms, ± 10 ms
top Operate time following delay tbasic + td,± 1 % or ± 10 ms
Repeatability ± 1 % or ± 10 ms
Overshoot time <40 ms
Disengaging time < 60 ms
2.7.4 Reference (46IT)
Parameter Value
char Characteristic setting IEC-NI, -VI, -EI, -LTI; ANSI-MI, -VI, -EI; DTL
Tm Time Multiplier setting 0.025, 0.050 … 1.6
IsSetting 0.05, 0.06… 2.5xIn
IApplied Current (for operate time) IDMTL 2 to 20 x Is
tdDelay setting 0, 0.01… 20 s
tres Reset setting ANSI DECAYING, 0, 1… 60 s
7SR21 & 7SR22 Performance Specification
Unrestricted Page 28 of 68 © 2013 Siemens Protection Devices Limited
Operate and Reset Level (46IT)
Attribute Value
Iop Operate level 105 % Is,± 4 % or ± 1% In
Reset level ³ 95 % Iop
Repeatability ± 1 %
Variation -10 °C to +55 °C £ 5 %
fnom - 3 Hz to fnom + 2 Hz £ 5 %
2.7.5 Operate and Reset Time (46IT)
Attribute Value
Starter operate time (³ 2xIs) 35 ms, ± 10 ms
top Operate time
char = IEC-NI,
IEC-VI,
IEC-EI,
IEC-LTI
[ ]
Tm
K
t
Is
I
op ´
-
=
1
a
,± 5 % or ± 50 ms,
for char = IEC-NI : K = 0.14, a = 0.02
IEC-VI : K = 13.5, a = 1.0
IEC-EI : K = 80.0, a = 2.0
IEC-LTI : K = 120.0, a = 1.0
char = ANSI-MI,
ANSI-VI,
ANSI-EI
[ ]
TmB
A
tP
Is
I
op ´
ú
ú
û
ù
ê
ê
ë
é
+
-
=
1
,± 5 % or ± 50 ms,
for char = ANSI-MI : A = 0.0515, B = 0.114, P = 0.02
ANSI-VI : A = 19.61, B = 0.491, P = 2.0
ANSI-EI : A = 28.2, B = 0.1217, P = 2.0
char = DTL td,± 1 % or ± 20 ms
Reset time ANSI DECAYING
[ ]
Tm
R
t
Is
I
res ´
-
=1
2,± 5 % or ± 50 ms,
for char = ANSI-MI : R = 4.85
ANSI-VI : R = 21.6
ANSI-EI : R = 29.1
tres tres,± 1 % or ± 20 ms
Repeatability ± 1 % or ± 20 ms
Overshoot time < 40 ms
Disengaging time < 60 ms
7SR21 & 7SR22 Performance Specification
Unrestricted © 2013 Siemens Protection Devices Limited Page 29 of 68
2.8 47 Negative Phase Sequence Voltage
2.8.1 Reference (47)
Parameter Value
Vs Setting 1, 1.5… 90 V
Hyst. Hysteresis 0, 0.1… 80 %
tdDelay setting 0.00, 0.01…20.00, 20.50… 100, 101… 1000, 1010… 10000,
10100… 14400 s
2.8.2 Operate and Reset Level (47)
Attribute Value
Vop Operate level 100 % Vs,± 2 % or ± 0.5 V
Reset level (100 % - Hyst.) x Vop ± 1% or ± 0.25 V
Repeatability ± 1 %
Variation -10 °C to +55 °C £ 5 %
fnom - 3 Hz to fnom + 2 Hz £ 5 %
2.8.3 Operate and Reset Time (47)
Attribute Value
tbasic Element basic operate time 0 to 2 xVs, 80 ms, ± 20 ms
0 to 10 xVs, 55 ms, ± 20 ms
top Operate time following delay tbasic + td,± 2 % or ± 20 ms
Repeatability ± 1 % or ± 20 ms
Overshoot time < 40 ms
Disengaging time < 60 ms
7SR21 & 7SR22 Performance Specification
Unrestricted Page 30 of 68 © 2013 Siemens Protection Devices Limited
2.9 49 Thermal Overload
2.9.1 Reference
Parameter Value
Is Overload setting 0.10, 0.11… 3 xIn
t
Time constant setting 1, 1.5… 1000 min
2.9.2 Operate and Reset Level
Attribute Value
Iol Overload level 100 % Is,± 5 % or ± 1% In
Reset level ³ 95 % Iol
Repeatability ± 1 %
Variation -10 °C to +55 °C £ 5 %
fnom - 3 Hz to fnom + 2 Hz £ 5 %
2.9.3 Operate and Reset Time
Attribute Value
top Overload trip operate time
( )
þ
ý
ü
î
í
ì
´-
-
´t= 2
2
2
P
2
I
II
ln
B
Ik
t
where IP = prior current
± 5 % o r ± 1 0 0 m s ,
(For Is range 0.3 xIn to 3 xIn)
Repeatability ± 100 ms
7SR21 & 7SR22 Performance Specification
Unrestricted © 2013 Siemens Protection Devices Limited Page 31 of 68
0.1
1
10
100
1000
10000
100000
0 1 2 3 4 5 6 7 8 9 10
Current (multiple of setting)
Time
(sec)
t= 1000 mins
t = 100 mins
t = 10 mins
t = 1 min
Figure 2-1 Thermal Overload Protection Curves
7SR21 & 7SR22 Performance Specification
Unrestricted Page 32 of 68 © 2013 Siemens Protection Devices Limited
2.10 50 Instantaneous Overcurrent
2.10.1 Reference
Parameter Value
Is Setting 0.05, 0.06… 25, 25.5… 50 xIn
iApplied Current (for operate time) Current switched from below Is to 2x Is
Current switched from below Is to 5x Is
tdDelay setting 0.00, 0.01…20.00, 20.50… 100, 101… 1000, 1010…
10000, 10100… 14400 s
2.10.2 Operate and Reset Level
Attribute Value
Iop Operate level 100 % Is,± 5 % or ± 1% In
Reset level ³ 95 % Iop
Repeatability ± 1 %
Transient overreach
(X/R £ 100) £ -5 %
Variation -10 °C to +55 °C £ 5 %
fnom - 3 Hz to fnom + 2 Hz £ 5 %
2.10.3 Operate and Reset Time
Attribute Value
tbasic Element basic operate time Switched from 0 to 2x Is: 40 ms, ± 10 ms
Switched from 0 to 5x Is: 30 ms, ± 10 ms
top Operate time following delay tbasic + td,± 1 % or ± 10 ms
Repeatability ± 1 % or ± 10 ms
Overshoot time < 40 ms
Disengaging time < 50 ms
7SR21 & 7SR22 Performance Specification
Unrestricted © 2013 Siemens Protection Devices Limited Page 33 of 68
2.11 50G Instantaneous Measured Earth Fault
2.11.1 Reference
Parameter Value
Is Setting 0.005, 0.006… 25 xIn
iApplied Current (for operate time) From below Is to 2x Is & from below Is to 5x Is
tdDelay setting 0.00, 0.01…20.00, 20.50… 100, 101… 1000, 1010…
10000, 10100… 14400 s
2.11.2 Operate and Reset Level
Attribute Value
Iop Operate level 100 % Is,± 5 % or ± 1% In
Reset level ³ 95 % Iop
Repeatability ± 1 %
Transient overreach
(X/R £ 100) £ -5 %
Variation -10 °C to +55 °C £ 5 %
fnom - 3 Hz to fnom + 2 Hz £ 5 %
2.11.3 Operate and Reset Time
Attribute Value
tbasic Element basic operate time Switched from 0 to 2x Is: 35 ms, ± 10 ms
Switched from 0 to 5x Is: 25 ms, ± 10 ms
top Operate time following delay tbasic + td,± 1 % or ± 10 ms
Repeatability ± 1 % or ± 10 ms
Overshoot time < 40 ms
Disengaging time < 50 ms
7SR21 & 7SR22 Performance Specification
Unrestricted Page 34 of 68 © 2013 Siemens Protection Devices Limited
2.12 50N Instantaneous Derived Earth Fault
2.12.1 Reference
Parameter Value
Is Setting 0.05, 0.06… 25, 25.5… 50 xIn
tdDelay setting 0.00, 0.01…20.00, 20.50… 100, 101… 1000, 1010…
10000, 10100… 14400 s
2.12.2 Operate and Reset Level
Attribute Value
Iop Operate level 100 % Is,± 5 % or ± 1% In
Reset level ³ 95 % Iop
Repeatability ± 1 %
Transient overreach
(X/R £ 100) £ -5 %
Variation -10 °C to +55 °C £ 5 %
fnom - 3 Hz to fnom + 2 Hz £ 5 %
2.12.3 Operate and Reset Time
Attribute Value
tbasic Element basic operate time Switched from 0 to 2x Is: 40 ms, ± 10 ms
Switched from 0 to 5x Is: 30 ms, ± 10 ms
top Operate time following delay tbasic + td,± 1 % or ± 10 ms
Repeatability ± 1 % or ± 10 ms
Overshoot time < 40 ms
Disengaging time < 50 ms
7SR21 & 7SR22 Performance Specification
Unrestricted © 2013 Siemens Protection Devices Limited Page 35 of 68
2.13 50SEF Instantaneous Sensitive Earth Fault
2.13.1 Reference
Parameter Value
Is Setting 0.005, 0.006… 5.0 xIn
tdDelay setting 0.00, 0.01… 20.0, 20.1 .. 100.0, 101.…1000, 1010
10000 , 10100 … 14400
IApplied current (for operate time) 5 xIs
2.13.2 Operate and Reset Level
Attribute Value
Iop Operate level 100 % Is,± 5 % or ± 1% In
Reset level 95 % Iop ± 5 % or ± 0.1% In
Repeatability ± 1 %
Transient overreach
(X/R £ 100) £ -5 %
Variation
-10 °C to +55 °C £ 5 %
fnom - 3 Hz to fnom + 2 Hz
harmonics to fcutoff
£ 5 %
2.13.3 Operate and Reset Time
Attribute Value
tbasic Element basic operate time
Switched from 0 to 0 to 2x Is: 35 ms, ± 10 ms
Switched from 0 to 0 to 5x Is: 25 ms, ± 10 ms
top Operate time following delay tbasic + td,± 1 % or ± 10 ms
Repeatability ± 1 % or ± 10 ms
Overshoot time < 40 ms
Disengaging time < 50 ms
Variation fnom - 3 Hz to fnom + 2 Hz £ 5 %
7SR21 & 7SR22 Performance Specification
Unrestricted Page 36 of 68 © 2013 Siemens Protection Devices Limited
2.14 51 Time Delayed Overcurrent
2.14.1 Reference
Parameter Value
Is Setting 0.05, 0.06… 2.5 xIn
char Characteristic setting IEC-NI, -VI, -EI, -LTI;
ANSI-MI, -VI, -EI; DTL
Tm Time Multiplier setting 0.025, 0.05… 1.6
tdDelay setting 0, 0.01… 20 s
tres Reset setting ANSI DECAYING, 0, 1… 60 s
I Applied Current
(for operate time)
IDMTL 2 to 20 x ls
DTL 5 x Is
2.14.2 Operate and Reset Level
Attribute Value
Iop Operate level 105 % Is,± 4 % or ± 1 % In
Reset level ³ 95 % Iop
Repeatability ± 1 %
Variation - 10 °C to + 55 °C £ 5 %
fnom - 3 Hz to fnom + 2 Hz £ 5 %
7SR21 & 7SR22 Performance Specification
Unrestricted © 2013 Siemens Protection Devices Limited Page 37 of 68
2.14.3 Operate and Reset Time
Attribute Value
Starter operate time (³ 2xIs) 20 ms, ± 20 ms
top Operate time
char = IEC-NI,
IEC-VI,
IEC-EI,
IEC-LTI
[ ]
Tm
K
t
Is
I
op ´
-
=
1
a
,± 5 % or ± 30 ms,
for char = IEC-NI : K = 0.14, a = 0.02
IEC-VI : K = 13.5, a = 1.0
IEC-EI : K = 80.0, a = 2.0
IEC-LTI : K = 120.0, a = 1.0
char = ANSI-MI,
ANSI-VI,
ANSI-EI
[ ]
TmB
A
tP
Is
I
op ´
ú
ú
û
ù
ê
ê
ë
é
+
-
=
1
,± 5 % or ± 30 ms,
for char = ANSI-MI : A = 0.0515, B = 0.114, P = 0.02
ANSI-VI : A = 19.61, B = 0.491, P = 2.0
ANSI-EI : A = 28.2, B = 0.1217, P = 2.0
char = DTL td,± 1 % or ± 20ms
Reset time ANSI DECAYING
[ ]
Tm
R
t
Is
I
res ´
-
=1
2,± 5 % or ± 30 ms,
for char = ANSI-MI : R = 4.85
ANSI-VI : R = 21.6
ANSI-EI : R = 29.1
tres tres,± 1 % or ± 20 ms
Repeatability ± 1 % or ± 20 ms
Overshoot time < 40 ms
Disengaging time < 50 ms
Figure 2.2 shows the operate times for the four IEC IDMTL curves with a time multiplier of 1. Figure 2.3 and
Figure 2.4 show the ANSI operate and reset curves. These operate times apply to non-directional characteristics.
Where directional control is applied then the directional element operate time should be added to give total
maximum operating time.
7SR21 & 7SR22 Performance Specification
Unrestricted Page 38 of 68 © 2013 Siemens Protection Devices Limited
0.1
1
10
100
1000
1 10 100
Current (multiples of setting)
Time
(sec)
2
3
4 5
6
8
20
30
40
50
60
80
Long Time Inverse
Normal Inverse
Very Inverse
Extremely Inverse
Figure 2-2 IEC IDMTL Curves (Time Multiplier = 1)
7SR21 & 7SR22 Performance Specification
Unrestricted © 2013 Siemens Protection Devices Limited Page 39 of 68
0.1
1
10
100
1000
1 10 100
Current (multiples of setting)
Time
(sec)
2
3
4 5
6
8
20
30
40
50
60
80
Moderately Inverse
Extremely Inverse
Very Inverse
Figure 2-3 ANSI IDMTL Operate Curves (Time Multiplier = 1)
7SR21 & 7SR22 Performance Specification
Unrestricted Page 40 of 68 © 2013 Siemens Protection Devices Limited
1
10
100
1000
0.1 1
Current (multiples of setting)
Time
(sec)
Moderately Inverse
Extremely Inverse
Very Inverse
0.2
0.3
0.4
0.5
0.6 0.8 0.90.7
5
50
500
Figure 2-4 ANSI IDMTL Reset Curves (Time Multiplier = 1)
7SR21 & 7SR22 Performance Specification
Unrestricted © 2013 Siemens Protection Devices Limited Page 41 of 68
2.15 51G Time Delayed Measured Earth Fault
2.15.1 Reference
Parameter Value
Is Setting 0.005, 0.006… 1.0 xIn
Char Characteristic setting IEC-NI, -VI, -EI, -LTI;
ANSI-MI, -VI, -EI; DTL
Tm Time Multiplier setting 0.025, 0.05… 1.6
tdDelay setting (DTL) 0, 0.01… 20 s
tres Reset setting ANSI DECAYING, 0, 1… 60 s
IApplied current (for
operate time)
IDMTL 2 to 20 xIs
DTL 5 xIs
2.15.2 Operate and Reset Level
Attribute Value
Iop Operate level 105 % Is,± 4 % or ± 1% In
Reset level ³ 95 % Iop
Repeatability ± 1 %
Variation -10 °C to +55 °C £ 5 %
fnom - 3 Hz to fnom + 2 Hz £ 5 %
7SR21 & 7SR22 Performance Specification
Unrestricted Page 42 of 68 © 2013 Siemens Protection Devices Limited
2.15.3 Operate and Reset Time
Attribute Value
Starter operate time (³ 2 xIs) 20 ms, ± 20 ms
top Operate time
char = IEC-NI,
IEC-VI,
IEC-EI,
IEC-LTI
[ ]
Tm
K
t
Is
I
op ´
-
=
1
a
,± 5 % or ± 30 ms,
for char = IEC-NI : K = 0.14, a = 0.02
IEC-VI : K = 13.5, a = 1.0
IEC-EI : K = 80.0, a = 2.0
IEC-LTI : K = 120.0, a = 1.0
char = ANSI-MI,
ANSI-VI,
ANSI-EI
[ ]
TmB
A
tP
Is
I
op ´
ú
ú
û
ù
ê
ê
ë
é
+
-
=
1
,± 5 % or ± 30 ms,
for char = ANSI-MI : A = 0.0515, B = 0.114, P = 0.02
ANSI-VI : A = 19.61, B = 0.491, P = 2.0
ANSI-EI : A = 28.2, B = 0.1217, P = 2.0
char = DTL td,± 1 % or ± 20 ms
Reset time ANSI DECAYING
[ ]
Tm
R
t
Is
I
res ´
-
=1
2,± 5 % or ± 30 ms,
for char = ANSI-MI : R = 4.85
ANSI-VI : R = 21.6
ANSI-EI : R = 29.1
tres tres,± 1 % or ± 20 ms
Repeatability ± 1 % or ± 20 ms
Overshoot time < 40 ms
Disengaging time < 50 ms
Figure 2-2 shows the operate times for the four IEC IDMTL curves with a time multiplier of 1. Figure 2-3 and
Figure 2-4 show the ANSI operate and reset curves respectively. These operate times apply to non-directional
characteristics. Where directional control is applied then the directional element operate time should be added to
give total maximum operating time.
7SR21 & 7SR22 Performance Specification
Unrestricted © 2013 Siemens Protection Devices Limited Page 43 of 68
2.16 51N Time Delayed Derived Earth Fault
2.16.1 Reference
Parameter Value
Is Setting 0.05, 0.06… 2.5 xIn
char Characteristic setting IEC-NI, -VI, -EI, -LTI;
ANSI-MI, -VI, -EI; DTL
Tm Time Multiplier setting 0.025, 0.05… 1.6
tdDelay setting 0, 0.01… 20 s
tres Reset setting ANSI DECAYING, 0, 1… 60 s
2.16.2 Operate and Reset Level
Attribute Value
Iop Operate level 105 % Is,± 4 % or ± 1% In
Reset level ³ 95 % Iop
Repeatability ± 1 %
Variation - 10 °C to + 55 °C £ 5 %
fnom - 3 Hz to fnom + 2 Hz £ 5 %
7SR21 & 7SR22 Performance Specification
Unrestricted Page 44 of 68 © 2013 Siemens Protection Devices Limited
2.16.3 Operate and Reset Time
Attribute Value
Starter operate time (³ 2 xIs) 20 ms, ± 20 ms
top Operate time
char = IEC-NI,
IEC-VI,
IEC-EI,
IEC-LTI
[ ]
Tm
K
t
Is
I
op ´
-
=
1
a
,± 5 % or ± 30 ms,
for char = IEC-NI : K = 0.14, a = 0.02
IEC-VI : K = 13.5, a = 1.0
IEC-EI : K = 80.0, a = 2.0
IEC-LTI : K = 120.0, a = 1.0
char = ANSI-MI,
ANSI-VI,
ANSI-EI
[ ]
TmB
A
tP
Is
I
op ´
ú
ú
û
ù
ê
ê
ë
é
+
-
=
1
,± 5 % or ± 30 ms,
for char = ANSI-MI : A = 0.0515, B = 0.114, P = 0.02
ANSI-VI : A = 19.61, B = 0.491, P = 2.0
ANSI-EI : A = 28.2, B = 0.1217, P = 2.0
char = DTL td,± 1 % or ± 20 ms
Reset time ANSI DECAYING
[ ]
Tm
R
t
Is
I
res ´
-
=1
2,± 5 % or ± 30 ms,
for char = ANSI-MI : R = 4.85
ANSI-VI : R = 21.6
ANSI-EI : R = 29.1
tres tres,± 1 % or ± 20 ms
Repeatability ± 1 % or ± 20 ms
Overshoot time < 40 ms
Disengaging time < 50 ms
Figure 2-2 shows the operate times for the four IEC IDMTL curves with a time multiplier of 1. Figure 2-3 and
Figure 2-4 show the ANSI operate and reset curves respectively. These operate times apply to non-directional
characteristics. Where directional control is applied then the directional element operate time should be added to
give total maximum operating time.
7SR21 & 7SR22 Performance Specification
Unrestricted © 2013 Siemens Protection Devices Limited Page 45 of 68
2.17 51SEF Time Delayed Sensitive Earth Fault
2.17.1 Reference
Parameter Value
Is Setting 0.005, 0.006…1 xIn
char Characteristic setting
IEC-NI, -VI, -EI, -LTI;
ANSI-MI, -VI, -EI; DTL
Tm Time multiplier 1.0
tdDelay setting 0.00…20.00 s
tres Reset setting DECAYING, 0, 1…60 s
IApplied current (for
operate time)
IDMTL 2 to 20xIs
DTL 5 xIs
2.17.2 Operate and Reset Level
Attribute Value
Iop Operate level 105 % Is,± 4 % or ± 1% In
Reset level ³ 95 % Iop ± 4 % or ± 1% In
Repeatability ± 1 %
Variation
-10 °C to +55 °C £ 5 %
fnom - 3 Hz
to fnom + 2 Hz
harmonics to fcutoff
£ 5 %
7SR21 & 7SR22 Performance Specification
Unrestricted Page 46 of 68 © 2013 Siemens Protection Devices Limited
2.17.3 Operate and Reset Time
Attribute Value
Starter operate time 20 ms, ±20 ms
top Operate time
char = IEC-NI,
IEC-VI,
IEC-EI,
IEC-LTI
[ ]
Tm
K
t
Is
I
op ´
-
=
1
a
,± 5 % or ± 30 ms,
for char = IEC-NI : K = 0.14, a = 0.02
IEC-VI : K = 13.5, a = 1.0
IEC-EI : K = 80.0, a = 2.0
IEC-LTI : K = 120.0, a = 1.0
char = ANSI-MI,
ANSI-VI,
ANSI-EI,
[ ]
TmB
A
tP
Is
I
op ´
ú
ú
û
ù
ê
ê
ë
é
+
-
=
1
,± 5 % or ± 30 ms,
for char = ANSI-MI : A = 0.0515, B = 0.114, P = 0.02
ANSI-VI : A = 19.61, B = 0.491, P = 2.0
ANSI-EI : A = 28.2, B = 0.1217, P = 2.0
char = DTL td,± 1 % or ±tcycle
Reset time
char = ANSI and
tres = DECAYING
[ ]
Tm
R
t
Is
I
res ´
-
=1
2,± 5 % or ± 30 ms,
for char = ANSI-MI : R = 4.85
ANSI-VI : R = 21.6
ANSI-EI : R = 29.1
tres ¹ DECAYING tres,± 1 % or ± 20 ms
Repeatability ± 1 % or ± 20 ms
Overshoot time < 40 ms
Disengaging time < 50 ms
Variation
fnom - 3 Hz
to fnom + 2 Hz
harmonics to fcutoff
£ 5 %
Figure 2-2 shows the operate times for the four IEC IDMTL curves with a time multiplier of 1. Figure 2-3 and
Figure 2-4 show the ANSI operate and reset curves. These operate times apply to non-directional characteristics.
Where directional control is applied then the directional element operate time should be added to give total
maximum operating time.
7SR21 & 7SR22 Performance Specification
Unrestricted © 2013 Siemens Protection Devices Limited Page 47 of 68
2.18 51V Voltage Controlled Overcurrent (Ph-Ph)
2.18.1 Reference
Parameter Value
Vs Setting 5, 5.5…199.5, 200 V
mMultiplier 0.25, 0.3…0.95, 1
Is Setting 1 xIn
2.18.2 Operate and Reset Level
Attribute Value
Vop Operate level 100 % Vs,± 1 % or ± 0.25 V
Reset level £ 105 % Vop
Repeatability ± 1 %
Variation
-10 °C to +55 °C £ 5 %
fnom - 3 Hz
to fnom + 2 Hz
harmonics to fcutoff
£ 5 %
Operate and Reset Time
As per Phase Fault Shaped Characteristic Element (ANSI 51).
Where Pickup Level = Is for Voltage > Vs
Pickup Level = (Is x m) for Voltage < Vs
7SR21 & 7SR22 Performance Specification
Unrestricted Page 48 of 68 © 2013 Siemens Protection Devices Limited
2.19 55 Power Factor
2.19.1 Reference
Parameter Value
PFs55-n Setting 0.05…0.99
td55-n Delay setting 0.00 … 14400 s
2.19.2 Operate and Reset Level
Attribute Value
PFop Operate Level PFs± 0.05
Reset Level Under PF £PFop + 0.02
Over PF ³PFop - 0.02
Repeatability ± 0.05
Variation -10 °C to +55 °C ± 0.05
fnom – 3 Hz to fnom + 2 Hz ± 0.05
2.19.3 Operate and Reset Time
Attribute Value
tbasic Element basic operate time £ 70 ms
top Operate time following delay tbasic + td,± 1 % or ± 10ms
Disengaging time < 80 ms
2.19.4 Operate Threshold
Attribute Value
Minimum levels for
operation
I 2.5 % In
V 2.5% Vn
7SR21 & 7SR22 Performance Specification
Unrestricted © 2013 Siemens Protection Devices Limited Page 49 of 68
2.20 59N Neutral Voltage Displacement
2.20.1 Reference (59NDT)
Parameter Value
Vs Setting 1, 1.5… 100 V
tdDelay setting 0.00, 0.01…20.00, 20.50… 100, 101… 1000, 1010… 10000,
10100… 14400 s
2.20.2 Operate and Reset Level (59NDT)
Attribute Value
Vop Operate level 100 % Vs,± 2 % or ± 0.5 V
Reset level ³ 95 % Vop or ± 0.25 V
Repeatability ± 1 %
Variation -10 °C to +55 °C £ 5 %
fnom - 3 Hz to fnom + 2 Hz £ 5 %
2.20.3 Operate and Reset Time (59NDT)
Attribute Value
tbasic Element basic operate time Switched from 0 to 1.5 xVs, 76 ms, ± 20 ms
Switched from 0 to 10 xVs, 63 ms, ± 20 ms
top Operate time following delay tbasic + td,± 1 % or ± 20 ms
Repeatability ± 1 % or ± 20 ms
Overshoot time < 40 ms
Disengaging time < 50 ms
2.20.4 Reference (59NIT)
Parameter Value
MMultiplier setting 0.1, 0.2… 10, 10.5… 140
Vs Setting 1, 1.5… 100 V
tdDelay setting 0, 0.01… 20 s
tres Reset setting 0, 1…60 s
7SR21 & 7SR22 Performance Specification
Unrestricted Page 50 of 68 © 2013 Siemens Protection Devices Limited
2.20.5 Operate and Reset Level (59NIT)
Attribute Value
Vop Operate level 105 % Vs,± 2 % or ± 0.5 V
Reset level ³ 95 % Vop or ± 0.25 V
Repeatability ± 1 %
Variation -10 °C to +55 °C £ 5 %
fnom - 3 Hz to fnom + 2 Hz £ 5 %
2.20.6 Operate and Reset Time (59NIT)
Attribute Value
tbasic Starter operate time (³ 2xVs) 65 ms, ± 20 ms
top Operate
time
char = IDMTL
[ ]
1
M
t
Vs
0V3
op -
=,± 5 % or ± 65 ms
char = DTL td,± 1 % or ± 40 ms
Reset Time char = IDMTL tres,± 5 % or ± 65 ms
char = DTL tres,± 1 % or ± 40 ms
Repeatability ± 1 % or ± 20 ms
Overshoot time < 40 ms
Disengaging time < 50 ms
7SR21 & 7SR22 Performance Specification
Unrestricted © 2013 Siemens Protection Devices Limited Page 51 of 68
2.21 64H Restricted Earth Fault Protection
2.21.1 Reference
Parameter Value
Is Setting 0.005, 0.006… 0.95 xIn
tdDelay setting 0.00, 0.01… 20.0, 20.1… 100.0, 101.…1000, 1010
10000 , 10100 … 14400 s
2.21.2 Operate and Reset Level
Attribute Value
Iop Operate level 100 % Is,± 5 % or ±1 % xIn
Reset level 95 % Iop,± 5 % or ±0.1 % xIn
Repeatability ± 1 %
Transient overreach
(X/R £ 100) £ -5 %
Variation -10 °C to +55 °C £ 5 %
fnom - 3 Hz to fnom + 2 Hz £ 5 %
2.21.3 Operate and Reset Time
Attribute Value
tbasic Element basic operate time
top Operate time following delay tbasic + td,± 1% or ± 10 ms
Repeatability ± 1% or ± 10 ms
Overshoot time < 40 ms
Disengaging time < 50 ms
7SR21 & 7SR22 Performance Specification
Unrestricted Page 52 of 68 © 2013 Siemens Protection Devices Limited
2.22 67/67N Directional Overcurrent & Earth Fault
2.22.1 Reference
Parameter Value
u
sAngle setting -95…+95 °
IApplied current In
VApplied voltage 110 V phase-phase (63.5 V phase-earth)
2.22.2 Operate Angle
Attribute Value
CA Characteristic angle (I with respect
to V)
u
s,± 5 °
Operating angle
forward CA - 85 ° ± 5 ° to CA + 85° ± 5 °
reverse (CA - 180°) - 85° ± 5 ° to (CA - 180°) + 85° ± 5 °
Variation in
characteristic
angle
10°C to +55°C ± 5 °
fnom - 3 Hz to fnom + 2 Hz ± 5 °
2.22.3 Operate Threshold
Attribute
Value
Minimum levels for
operation
I (p/f)
> 5 % In
I (e/f) > 10 % In
V (p/f)
> 1 V
V (e/f)
> 1 V
2.22.4 Operate and Reset Time
Attribute Value
Operate time typically 25 < 40 ms at characteristic angle
Reset time typically < 65 ms at characteristic angle
7SR21 & 7SR22 Performance Specification
Unrestricted © 2013 Siemens Protection Devices Limited Page 53 of 68
2.23 Directional SEF Wattmetric
2.23.1 Reference
Parameter Value
PoSetting 0.05, 0.10,… 20.0 xInxW (Where In = 1A or 5A )
IApplied current @ In = 1A 10mA…5A
VApplied voltage 10V…200V
q
Angle <87.5deg
CA 67SEF Char Angle (
q
c)0
fNominal 50/60Hz
2.23.2 Operate and Reset Level
Attribute Value
Pop Operate level 100 % Po,± 25 % or ± 25mW
Reset level ³ 95 % Pop
Variation -10 °C to +55 °C £ 5 %
2.23.3 Operate and Reset Time
Attribute Value
tbasic Element basic
operate time <50ms
Repeatability ± 1 % or ±10ms
7SR21 & 7SR22 Performance Specification
Unrestricted Page 54 of 68 © 2013 Siemens Protection Devices Limited
2.24 81 Under/Over Frequency
2.24.1 Reference
Parameter Value
Fs Setting 40, 40.01… 69.99 Hz
Hyst Hysteresis setting 0, 0.1… 80 %
td Delay setting 0.00, 0.01… 20.0, 20.1… 100.0, 101.…1000, 1010 … 10000 ,
10100 … 14400 s
2.24.2 Operate and Reset Level
Attribute Value
Fop Operate level 100 % Fs,± 10 mHz
Reset level overfrequency (100 % - hyst) xFop, ± 10 mHz
underfrequency (100 % + hyst) xFop, ± 10 mHz
Repeatability ± 1 %
Variation - 10 °C to + 55 °C £ 5 %
2.24.3 Operate and Reset Time
Attribute Value
tbasic
Element basic
operate time
(for ROCOF
between 0.1
and 5.0 Hz/sec)
overfrequency Typically < 110 ms
Maximum < 150 ms
underfrequency Typically < 110 ms
Maximum < 150 ms
top Operate time following delay tbasic + td,± 1 % or ± 10 ms
Repeatability ± 1 % or ± 10 ms
Disengaging time < 100 ms
7SR21 & 7SR22 Performance Specification
Unrestricted © 2013 Siemens Protection Devices Limited Page 55 of 68
2.25 50 AFD ARC Flash Detector
(Refer to 7XG31 Technical Manual for performance characteristics)
2.25.1 Reference
Parameter Value
50 AFD Setting 1, 2,...10 xIn
2.25.2 Operate and Reset Level
Attribute Value
Iop Operate level 100 % Is,± 10 %
Transient overreach (X/R £ 100) £ -30 %
Reset level ³ 95 % Iop
Repeatability ± 5 %
2.25.3 Operate and Reset Time
Attribute Value
tbasic 50AFD Overcurrent operate time 10 ms – 16 ms
top AFD Zone operate time (Flash & 50AFD) 15 ms – 25 ms
Repeatability ± 10 ms
Disengaging time < 50 ms
7SR21 & 7SR22 Performance Specification
Unrestricted Page 56 of 68 © 2013 Siemens Protection Devices Limited
Section 3: Supervision Functions
3.1 46BC & 46BC U/C Broken Conductor
3.1.1 Reference
Parameter Value
Setting (NPS to PPS ratio) 20…100 %
U/C Guard setting 0.05, 0.1 ... 4.95, 5
tfDelay setting 0.02…1000 s
3.1.2 Operate and Reset Level
Attribute Value
Icurr Operate level 100 % Iset ± 5 %
Reset level 90 % Icurr , ± 5 %
Repeatability ± 1 %
Variation
- 10 °C to + 55 °C £ 5 %
fnom - 3 Hz to fnom + 2 Hz
harmonics to fcutoff
£ 5 %
3.1.3 Operate and Reset Time
Attribute Value
tbasic Basic operate time 1x In to 0 A 40 ms
Operate time tf + tbasic,± 1 % or ±20 ms
Repeatability ± 1 % or ±20 ms
Variation
fnom - 3 Hz to fnom + 2 Hz
harmonics to fcutoff
£ 5 %
7SR21 & 7SR22 Performance Specification
Unrestricted © 2013 Siemens Protection Devices Limited Page 57 of 68
3.2 50BF & 50BF-I4 Circuit Breaker Fail
3.2.1 Reference
Parameter Value
Is 50BF Setting 0.050, 0.055… 2.0 xIn
Is 50BF-I4 Setting 0.005, 0.01… 2.0 xIn
tCBF1 Stage 1 Delay setting 20, 25… 60000ms
tCBF2 Stage 2 Delay setting 20, 25… 60000ms
3.2.2 Operate and Reset Level
Attribute Value
Iop Operate level 100 % Is,± 5 % or ± 1% In
Ireset Reset level <100 % Iop,± 5 % or ± 1% In
Repeatability ± 1 %
Variation -10 °C to +55 °C £ 5 %
fnom - 3 Hz to fnom + 2 Hz £ 5 %
3.2.3 Operate and Reset Time
Attribute Value
tbasic Element basic operate time < 20 ms
top
Stage 1 tCBF1,± 1 % or ± 20 ms
Stage 2 tCBF2,± 1 % or ± 20 ms
Repeatability ± 1 % or ± 20 ms
Overshoot < 2 x 20 ms
Disengaging time < 30 ms
7SR21 & 7SR22 Performance Specification
Unrestricted Page 58 of 68 © 2013 Siemens Protection Devices Limited
3.3 60CTS & CTS-I Current Transformer Supervision
3.3.1 Reference
Parameter Value
Ithresh Current Threshold 0.05, 0.1… 1 xIn
Vthresh Voltage Threshold 7, 8… 110V
tdDelay setting 0.03, 0.04…20.00, 20.50… 100, 101… 1000, 1010…
10000, 10100… 14400 s
CTS-I
Ithresh Current Threshold 0.05, 0.1… 2 xIn
3.3.2 Current & Voltage Threshold
Attribute Value
Iop CT failed current level 100 % Ithresh,± 5% or ± 1% In
Reset level 90 % Iop, ± 5% or ± 1% In
Vop CT failed voltage level 100 % Vthresh,± 2% or ± 0.5 V
Reset level 110 % Vop,± 2 % or ± 0.5 V
Repeatability ± 1 %
Variation
-10 °C to +55 °C £ 5 %
fnom - 3 Hz to fnom + 2 Hz
harmonics to fcutoff
£ 5 %
3.3.3 Operate and Reset Time
Attribute Value
tbasic Basic operate time 30 ms ± 20ms
Operate time tbasic,± 1 % or ± 20ms
Repeatability ± 1 % or ± 20ms
7SR21 & 7SR22 Performance Specification
Unrestricted © 2013 Siemens Protection Devices Limited Page 59 of 68
3.4 60VTS Voltage Transformer Supervision
3.4.1 Reference
Parameter Value
Vnps Vnps Level 7, 8 … 110 V
Inps Inps Level 0.05, 0.1 … 1 x In
Ipps Ipps Load Level 0.05, 0.1 … 1 x In
IFpps Ipps Fault Level 0.05, 0.1 … 20 x In
Vpps Vpps Level 1, 2 … 110 V
td60VTS Delay 0.00, 0.01…20.00, 20.50… 100, 101… 1000, 1010… 10000,
10100… 14400 s
3.4.2 Operate and Reset Level
Attribute Value
VNPSop Voltage NPS operate level 100 % Vnps,± 5 % Vn
Voltage NPS reset level 90 % VNPSop,± 5 % Vn
VPPSop Voltage PPS operate level 100 % Vpps,± 5 % Vn
Voltage PPS reset level 110 % VPPSop,± 5 % Vn
INPSblk Current NPS operate level 100 % Inps,± 5 % xIn
Current NPS reset level 90 % INPSblk,± 5 % xIn
IPPSblk Current PPS operate level 100 % IFpps,± 5 % xIn
Current PPS reset level 90 % IPPSblk,± 5 % xIn
IPPSload Current PPS operate level 100 % Ipps,± 5 % xIn
Current PPS reset level 90 % IPPSload,± 5 % xIn
Repeatability ± 1 %
Variation
-10 °C to +55 °C £ 5 %
fnom - 3 Hz to fnom + 2 Hz £ 5 %
7SR21 & 7SR22 Performance Specification
Unrestricted Page 60 of 68 © 2013 Siemens Protection Devices Limited
3.4.3 Operate and Reset Time
Attribute Value
tbasic Basic operate time 0V to 2 x Vs 32 ms ± 10 ms
Operate time tbasic,± 1 % or ± 10 ms
Repeatability ± 1 % or ± 10 ms
7SR21 & 7SR22 Performance Specification
Unrestricted © 2013 Siemens Protection Devices Limited Page 61 of 68
3.5 74TCS Trip Circuit Supervision
3.5.1 Reference
Parameter Value
tdDelay setting 0, 0.02…60 s
3.5.2 Operate and Reset Time
Attribute Value
tbasic Element basic operate time 25 ms ± 20 ms
top Operate time following delay tbasic + td,± 1 % or ± 10 ms
Repeatability ± 1 % or ± 10 ms
Variation - 10 °C to + 55 °C £ 5 %
fnom - 3 Hz to fnom + 2 Hz £ 5 %
7SR21 & 7SR22 Performance Specification
Unrestricted Page 62 of 68 © 2013 Siemens Protection Devices Limited
3.6 81HBL2 Inrush Detector
3.6.1 Reference
Parameter Value
I
Setting
(Ratio of 2nd Harmonic current to
Fundamental component current)
0.10, 0.11... 0.5
3.6.2 Operate and Reset Level
Attribute Value
Iop Operate level 100 % I,± 4 % or ± 1 % In
Reset level 100 % Iop,± 4 % or ± 1 % In
Repeatability ± 1 %
Variation - 10 °C to + 55 °C £ 5 %
fnom - 3 Hz to fnom + 2 Hz £ 5 %
3.6.3 Operate and Reset Time
Attribute Value
tbasic Element basic operate time Will pick-up before operation of any protection element due
to magnetic inrush
Reset Time Will operation until drop-off of any protection element due
to magnetic inrush
7SR21 & 7SR22 Performance Specification
Unrestricted © 2013 Siemens Protection Devices Limited Page 63 of 68
3.7 81HBL5 Over Fluxing Detector
3.7.1 Reference
Parameter Value
I
Setting
(Ratio of 5th Harmonic current to
Fundamental component current)
0.10, 0.11... 0.5
3.7.2 Operate and Reset Level
Attribute Value
Iop Operate level 100 % I,± 4 % or ± 1% In
Reset level 100 % Iop,± 4 % or ± 1% In
Repeatability ± 1 %
Variation -10 °C to +55 °C £ 5 %
fnom - 3 Hz to fnom + 2 Hz £ 5 %
3.7.3 Operate and Reset Time
Attribute Value
tbasic Element basic operate time Will pick-up before operation of any protection element due
to overfluxing
Reset Time Will operation until drop-off of any protection element due
to overfluxing
7SR21 & 7SR22 Performance Specification
Unrestricted Page 64 of 68 © 2013 Siemens Protection Devices Limited
3.8 Load Blinder (21LB – 3P)
3.8.1 Reference
Parameter Value
ΦAngle + ve setting 5 Deg to 85 Deg
ΦAngle – ve setting 5 Deg to 85 Deg
ZImpedance 1 Ohm to 100 Ohms
Vpps Vpps Level 1 V to 110 V
Inps Inps Level 0.05 xIn to 5 xIn
3.8.2 Operate Level
Attribute Value
VPPS Voltage PPS operate level 100 % Vs,± 2 % or ± 0.5 V
INPS Current NPS operate level 100 % Is,± 5 % or ± 1% In
Impedance 100 % Zs,± 5 % or ± 0.1
Repeatability ± 1 %
3.8.3 Operate Angle
Attribute Value
Operating angle
forward (21LB-3P Angle +ve°)± 5° to (21LB-3P Angle –ve°)± 5°
reverse (180° - 21LB-3P Angle +ve°)± 5° to (180° + 21LB-3P Angle –ve°)± 5°
7SR21 & 7SR22 Performance Specification
Unrestricted © 2013 Siemens Protection Devices Limited Page 65 of 68
3.9 Load Blinder (21LB – 1P)
3.9.1 Reference
Parameter Value
ΦAngle + ve setting 5 Deg to 85 Deg
ΦAngle – ve setting 5 Deg to 85 Deg
ZImpedance 1 Ohm to 100 Ohms
Vpps Vpps Level 1 V to 110 V
Izps Izps Level 0.05 xIn to 5 xIn
3.9.2 Operate Level
Attribute Value
VPPS Voltage PPS operate level 100 % Vs,± 2 % or ± 0.5 V
Voltage PPS reset level 110 % VPPSop,± 5 % Vn
IZPS Current ZPS operate level 100 % Is,± 5 % or ± 1% In
Impedance 100 % Zs,± 5 % or ± 0.1
Repeatability ± 1 %
3.9.3 Operate Angle
Attribute Value
Operating angle
forward (21LB-1P Angle +ve°)± 5° to (21LB-1P Angle –ve°)± 5°
reverse (180° - 21LB-1P Angle +ve°)± 5° to (180° + 21LB-1P Angle –ve°)± 5°
7SR21 & 7SR22 Performance Specification
Unrestricted Page 66 of 68 © 2013 Siemens Protection Devices Limited
Section 4: Control Functions
4.1 Check Synchronising
4.1.1 Reference
Parameter Value
Vnom Nominal Voltage 40-160 V
fnNominal Frequency 50/60 Hz
Vlive Live Setting 10 % - 150 %
Vdead Dead Setting 10 % - 150 %
Vsl Line Voltage Setting 10 % - 150 %
Vsb Bus Voltage Setting 10 % - 150 %
Vdiff Voltage Differential Setting 5 % - 95 %
Θcs CS Angle 1 – 90 º
Θss SS Angle 1 – 90 º
fcoz COZ Slip 30 mHz – 250 mHz
fcs CS Slip Freq 20 mHz – 250 mHz
fss SS Slip Freq 10 mHz250 mHz
tcs CS Timer 0-100 s
tss SS Timer 0-1 s
fsps Split Slip 20 mHz250 mHz
tdlc/tdbc DLC/DBC Delays 0-60 s
tcw Sync Close Window 1 s – 1200 s
4.1.2 Live/Dead Line/Bus Detector Elements
Attribute Value
Vlive,act Live operate level 100 % Vlive,± 1 % Vn
Live reset level Vdead,act,± 1 % Vn
Vdead,act Dead operate level 100 % Vdead,± 1 % Vn
Dead reset level Vlive,act,± 1 % Vn
Repeatability ± 1 %
Variation
-10 °C to +55 °C £ 5 %
fnom ± 5 % £ 1 %
7SR21 & 7SR22 Performance Specification
Unrestricted © 2013 Siemens Protection Devices Limited Page 67 of 68
4.1.3 Line and Bus Undervoltage Elements
Attribute Value
Vline Operate level 100 % Vsl,± 1 % Vn
Reset level £Vline + 4 %
Vbus Operate level 100 % Vsb,± 1 % Vn
Reset level £Vbus + 4 %
Repeatability ± 1 %
Variation
-10 °C to +55 °C £ 5 %
fnom ± 5 % £ 1 %
4.1.4 Voltage Difference
Attribute Value
Vop Operate level 100 % Vdiff,± 1 % Vn
Reset level ³Vop – 4 %
Repeatability ± 2 %
4.1.5 General Autoreclose Timers
Attribute Value
tbasic Element basic operate time 20 ms ± 20 ms
top tdlc/tdbc/tcw top + tbasic ± 1%
Repeatability ± 20 ms
4.1.6 CS/SS/COZ Line and Bus Phase Angle Difference
Attribute Value
q
op Operate angle
q
diff, ± 1 º
Reset angle
q
op, ± 1 º
Repeatability ± 1 º
4.1.7 CS/SS/COZ Slip Frequency
Attribute Value
fop Operate frequency fslip, ± 10 mHz
Reset frequency fop, - 10 mHz
Repeatability ± 10 mHz
4.1.8 CS/SS Timer
Attribute Value
top Operate time ± 1 º, + 20 ms
Note: minimum synchronising time following restoration of voltage from a dead condition is 320 ms.
7SR21 & 7SR22 Performance Specification
Unrestricted Page 68 of 68 © 2013 Siemens Protection Devices Limited
4.1.9 Split Angle Detector
Attribute Value
q
op Operate angle
q
split,± 1 °
4.1.10 Split Slip Frequency Detector
Attribute Value
fop Operate frequency fslip, ± 10 mHz
Reset frequency fop, - 10 mHz
Repeatability ± 10 mHz
4.2 Live/Dead
4.2.1 Reference
Parameter Value
VsSetting (ABC side) 5, 5.5…200 V
VsSetting (XYZ side) 5, 5.5…120 V
4.2.2 Live/Dead Detector Elements
Attribute Value
Vlive,act Live operate level 100 % Vlive,± 1 % Vn
Live reset level Vdead,act,± 1 % Vn
Vdead,act Dead operate level 100 % Vdead,± 1 % Vn
Dead reset level Vlive,act,± 1 % Vn
Repeatability ± 1 %
Variation
-10 °C to +55 °C £ 5 %
fnom ± 5 % £ 1 %
Chapter 4 - Data Communications Definitions
Data Communications Definitions
Overcurrent Relay
Document Release History
This document is issue 2017/07. The list of revisions up to and including this issue is:
The copyright and other intellectual property rights in this document, and in any model or article produced from it
(and including any registered or unregistered design rights) are the property of Siemens Protection Devices Limited.
No part of this document shall be reproduced or modified or stored in another form, in any data retrieval system,
without the permission of Siemens Protection Devices Limited, nor shall any model or article be reproduced from this
document unless Siemens Protection Devices Limited consent.
While the information and guidance given in this document is believed to be correct, no liability shall be accepted for
any loss or damage caused by any error or omission, whether such error or omission is the result of negligence or
any other cause. Any and all such liability is disclaimed.
© 2017 Siemens Protection Devices Limited
Date Description
2017/07 Addition of increases I/O and 32Power, 32S Sensitive Power, Frequency.
7SR220 Technical Manual
Chapter 4 - Page 2 of 96 © 2017 Siemens Protection Devices Limited
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 3 of 96
Contents
1. Introduction ............................................................................................................... 5
2. Physical Connection ................................................................................................. 7
2.1 Introduction ......................................................................................................................................... 7
2.2 USB Interface (COM2) ........................................................................................................................ 8
2.3 RS485 Interface (COM1) .................................................................................................................... 8
2.4 Serial Fibre Optic Interface (COM3 & COM4) .................................................................................... 10
2.5 Optional Rear RS485 (COM3) .......................................................................................................... 13
2.6 Optional Rear RS232 (COM3) .......................................................................................................... 14
2.7 Optional Rear EN100 Ethernet Module (COM3) ................................................................................ 16
3. IEC 60870-5-103 Definitions .................................................................................. 19
3.1 Introduction ....................................................................................................................................... 19
3.2 Cause of Transmission ..................................................................................................................... 20
3.3 Application Service Data Unit (ASDU) Type ...................................................................................... 21
3.4 Point List .......................................................................................................................................... 22
3.4.1 Event Function (FUN) & Information (INF) Numbers............................................................. 22
3.4.2 Measurands ........................................................................................................................ 32
3.4.3 Disturbance Recorder Actual Channel (ACC) Numbers ........................................................ 33
4. MODBUS Definitions .............................................................................................. 35
4.1 Introduction ....................................................................................................................................... 35
4.2 MODBUS Register Data Types ......................................................................................................... 36
4.2.1 FLOAT_IEEE_754 ............................................................................................................... 36
4.2.2 FP_32BITS_3DP ................................................................................................................. 37
4.2.3 UINT32 ............................................................................................................................... 37
4.2.4 UINT16 ............................................................................................................................... 37
4.2.5 EVENT ................................................................................................................................ 38
4.2.6 EVENTCOUNT .................................................................................................................... 39
4.2.7 TIME_METER ..................................................................................................................... 39
4.2.8 STR32 & STR64 ................................................................................................................. 39
4.2.9 BITSTRING ......................................................................................................................... 39
4.3 Point List .......................................................................................................................................... 41
4.3.1 Coils (Read Write Binary values) ......................................................................................... 41
4.3.2 Inputs (Read Only Binary values) ........................................................................................ 42
4.3.3 Input Registers (Read Only Registers) ................................................................................. 49
4.3.4 Holding Registers (Read Write Registers) ............................................................................ 52
5. DNP3 Definitions .................................................................................................... 53
5.1 Device Profile ................................................................................................................................... 53
5.2 Implementation Table ........................................................................................................................ 56
5.3 Point List .......................................................................................................................................... 62
5.3.1 Binary Input Points .............................................................................................................. 62
5.3.2 Double Bit Input Points ........................................................................................................ 70
5.3.3 Binary Output Status Points and Control Relay Output Blocks .............................................. 71
5.3.4 Counters ............................................................................................................................. 77
5.3.5 Analog Inputs ...................................................................................................................... 79
5.4 Additional Settings ............................................................................................................................ 83
6. Not Applicable ........................................................................................................ 85
7SR220 Technical Manual
Chapter 4 - Page 4 of 96 © 2017 Siemens Protection Devices Limited
7. IEC61850 Protocol Support .................................................................................... 87
7.1 Introduction ...................................................................................................................................... 87
8. Serial Modems ........................................................................................................ 89
8.1 Introduction ...................................................................................................................................... 89
8.2 Connecting a Modem to the Relay(s) ............................................................................................... 89
8.3 Setting the Remote Modem .............................................................................................................. 89
8.4 Connecting to the Remote Modem ................................................................................................... 89
9. Not Applicable ........................................................................................................ 91
10. Glossary ................................................................................................................ 93
Appendix 1 .................................................................................................................. 95
List of Figures
Fig. 2-1 Communication to Front USB Port ......................................................................................................... 8
Fig. 2-2 Communication to Multiple Devices using RS485 (Standard Port) ......................................................... 10
Fig. 2-3 Communication to Multiple Devices using Fibre-optic Ring Network....................................................... 13
Fig. 2-4 Communication to Multiple Devices from Control System and Laptop using Fibre-optic Star Network ...... 13
Fig. 2-5 Additional (Optional) Rear RS485 + IRIG-B Connection to a PC ........................................................... 14
Fig. 2-6 Additional (Optional) Rear RS232 + IRIG-B Connection to a PC ........................................................... 15
Fig. 2-7 RS232 Data Comms Pin Connections .................................................................................................. 15
Fig. 2-8 EN100 Ethernet Module ....................................................................................................................... 17
Fig. A1 Operating Mode Table .......................................................................................................................... 95
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 5 of 96
1. Introduction
This section describes how to use the Communication Interface with a control system or interrogating computer.
The interface is compatible with control and automation systems using industry standard communications protocols
DNP3 ,IEC 60870-5-103 ,IEC 61850 and MODBUS-RTU. Note, not all protocols are available on all devices.
Reydisp Evolution or Reydisp Manager Software is available, for computers running Microsoft Windows™, to connect
to devices to provide operational information, post-fault analysis, setting interrogation and editing facilities etc.
Configuration software can be downloaded from our website http://www.siemens.com/energy.
This section specifies connection details and lists the information available through the individual protocols.
7SR220 Technical Manual
Chapter 4 - Page 6 of 96 © 2017 Siemens Protection Devices Limited
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 7 of 96
2. Physical Connection
2.1 Introduction
The relay provides one “Front” USB communication interface (Com2) located on the fascia and one RS485 (Com1)
located on the “Rear” as standard. An additional module may be fitted as an ordering option to provide extra rear
serial port(s) or two Ethernet channels. Modules are available for serial fibre optic, RS232 and RS485. These modules
provide one (Com3) or two (Com3 and Com4) additional ports. The optional EN100 Ethernet module, available in
optical and electrical versions, supports the IEC 61850 protocol and Reydisp access through the network (LAN port)
interface.
A detailed description of the ports is given below.
COM1-RS485: This port can be used for IEC60870-5-103, MODBUS-RTU or DNP3 communications to
a substation SCADA or integrated control system or for engineer remote access. This
port can also be used for connection to Reydisp software.
COM2-USB: This port is used for IEC60870-5-103 (default setting) communication with the Reydisp
software.
An ASCII protocol is also available through this port, the main use of this protocol is to
allow the Relay firmware to be updated via the front connection.
MODBUS-RTU or the optional DNP3 protocols are also available.
COM3:
Where fitted, an additional rear serial fibre optic, RS232 or RS485 port.
This port can be used for IEC60870-5-103, MODBUS-RTU or DNP3 communications to
a substation SCADA or integrated control system or for engineer remote access. This
port can also be used for connection to Reydisp software.
COM4:
As COM3.
COM3-LAN: When the Ethernet module is fitted, in addition to IEC61850 a LAN connection is provided
to allow the Reydisp software to connect to the Relay via the network. This port only
supports the IEC60870-5-103 protocol.
Any or all serial ports can be mapped to the IEC60870-5-103, DNP3 or MODBUS-RTU protocol at any one time,
protocols available will depend upon relay model. The optional ethernet port uses IEC 61850 protocol and can also
provide an IEC 60870-5-103 protocol connection to Reydisp. Any port not required can be disabled by setting its
protocol to OFF.
When connecting to Reydisp Evolution software the protocol for the relevant port should be set to IEC60870-5-103.
7SR220 Technical Manual
Chapter 4 - Page 8 of 96 © 2017 Siemens Protection Devices Limited
2.2 USB Interface (COM2)
The USB communication port is connected using a standard USB cable with a type B connection to the relay and
type A to the PC.
The PC will require a suitable USB driver to be installed; this will be carried out automatically when the Reydisp
software is installed. When the Reydisp software is running with the USB cable connected to a device an additional
connection is shown. Connections to these devices are not shown when they are not connected.
The USB communication interface on the relay is labelled Com 2 and its associated settings are located in the Data
communications menu. When connecting to Reydisp using this connection the default settings can be used without
the need to first change any settings.
Access to the communication settings for the USB port is only available from the relay front fascia via the key pad
setting menu COMMUNICATIONS MENU.
Setting Name Range/Options Default Setting Notes
COM2-USB
Protocol
OFF
IEC60870-5-103
MODBUS-RTU
ASCII
DNP3
IEC60870-5-103
Reydisp
software requires
IEC60870-5-103.
COM2-USB
Station
Address
0 - 254 for IEC60870-5-103
1 - 247 for Modbus RTU
0 - 65534 for DNP3.0
0
An address within the
range of the relevant
protocol must be
given to identify the
relay. Each relay in a
network must have a
unique address.
COM2-USB
Mode
Local
Local or Remote
Remote
Local
Refer to Appendix
1, page 95, for
further explanation
Local Engineer Access
Fig. 2-1 Communication to Front USB Port
2.3 RS485 Interface (COM1)
The 2-wire RS485 communication port is located on the rear of the relay and can be connected using a suitable
RS485 120 Ohm screened twisted pair cable.
USB Type B
Socket on Device
USB Type A
Socket on PC
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 9 of 96
The RS485 electrical connection can be used in a single or multi-drop configuration. The RS485 master must support
and use the Auto Device Enable (ADE) feature. The last device in the connection must be terminated correctly in
accordance with the master device driving the connection. This can be done via the internal 120 ohm terminating
resistor, which can be connected between 14 (A) and 18 (B) by fitting an external wire loop between terminals 18
and 20 on the power supply module.
The polarity of the signal terminals is marked as A and B in line with the RS485 standard. The polarity is that when
the bus is in the quiescent state and no communication is taking place, the B terminal is more positive than A. This
can be used to identify the polarity of any equipment to be connected, typically measured at each terminal in turn
to ground. Connection of the device to a termination network at the end of the bus will also be to suit the quiescent
state as shown in the diagram below.
The polarity marking is often found to be reversed or marked as +/- on other equipment so care is required. If the
devices are connected in reverse, communication to all devices will be disturbed but no damage will occur. If problems
are experienced during commissioning, the connections should be tried in reverse.
The maximum number of relays that can be connected to the bus is 64.
The RS485 data comms link will be broken for that particular relay element if it is withdrawn from the case but the
chain of communication to the other relays is maintained.
The following settings, on the COMMUNICATIONS MENU, must be configured when using the RS485 interface.
Setting Name Range/Options Default Setting Notes
COM1-RS485
Protocol
COM1-RS485
Station
Address
OFF
IEC60870-5-103
MODBUS-RTU
DNP3
0 - 254 for IEC60870-5-103
1 - 247 for Modbus RTU
0 - 65534 for DNP3.0
IEC60870-5-103
0
The protocol used
to communicate on
the standard RS485
connection.
An address within the
range of the relevant
protocol must be
given to identify the
relay. Each relay in a
network must have a
unique address.
COM1-RS485
Baud Rate
75 110 150 300
600 1200 2400 4800
9600 19200 38400
19200
The baud rate set
on all of the relays
connected to the
control system must
be the same as the
one set on the master
device.
COM1-RS485
Parity
COM1-RS485
Mode
NONE
ODD
EVEN
Local
Local or Remote
Remote
EVEN
Remote
The parity set on
all of the relays
connected to the
control system must
be the same and in
accordance with the
master device.
Refer to Appendix
1, page 95, for
further explanation
7SR220 Technical Manual
Chapter 4 - Page 10 of 96 © 2017 Siemens Protection Devices Limited
To Control
System
Rear terminals
14
16
18
RS485 Screened
twisted pair 14
16
18
RS485 Screened
twisted pair
Rear terminals
14
16
18
20
Ext Wire loop
(terminating
resistance) added
where permanent
drive from master
station available
To Control
System
Bus Termination Polarity
5V
B
A
Sc
Fig. 2-2 Communication to Multiple Devices using RS485 (Standard Port)
2.4 Serial Fibre Optic Interface (COM3 & COM4)
When connecting via the optional fibre optic interface the selection of fibre-optic cable is important. Fibres must be
terminated with ST™ (BFOC/2.5) connectors.
The recommended type is 62.5/125µm glass fibre. Communication distances over 1 km are achievable using this
type of fibre.
A budget loss calculation should be made for all installations. The following table gives the launch power and receiver
sensitivity of each of the fibre optic communication ports on the Relay when used with specific fibre optic types.
Fibre Type
62.5/125µm
Tx Launch Power (dB) RX Receive Sensitivity (dB)
Min
-11.7
Max
-15.7
Min
-24
Max
-9.2
1mm Polymer -6.4 -10.4 -24 -9.2
200µm PCS -2.8 -6.8 -24 -9.2
Factors to be considered when calculating fibre-optic transmission distances:
Transmitter launch power.
Attenuation, based on light frequency, fibre material and fibre diameter. (Consult fibre
manufacturers' data for actual values of fibre attenuation).
Number of intermediate connectors and splices. Fibre cables are supplied on reels of
finite length which may necessitate additional jointing. Typical losses at connectors are
0.5-1.0dB each. This allows for normal age related deterioration. Typical losses at splices
are <0.3dB. (Consult fibre manufacturers' data for actual values).
RS485 RS485 RS485
RS
485
Twisted
pair
Cable
A 14
Sc 16
B 18
Term. 20
A 14
Sc 16
B 18
Term. 20
A 14
Sc 16
B 18
Term. 20
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 11 of 96
Receiver sensitivity. The light power at the receiver must be above the sensitivity of the
receiver in order that effective communication can occur.
A 3dB safety margin is usually allowed after the budget calculation is performed.
Following installation and prior to putting into service the actual losses should be measured for each fibre using a
calibrated light source and meter. Measured and calculated values can be compared.
The following table can be used to record budget calculations:
A Launch power dB
B Fibre Type
C
D
Loss (dB/km)
Length
dB/km
km
E Total fibre loss (CxD) dB
F No. of Splices
G Loss at each splice dB
H
I
Total loss at splices (FxG)
No. of connectors
dB
J Loss per connector dB
K Total loss at connectors (IxJ) dB
L Total losses (E+H+K) dB
M
N
Receive power budget (A-L)
Safety Margin
dB
dB
O Device Receive Sensitivity dB
The following settings, on the COMMUNICATIONS MENU, must be configured when using the fibre Optic Com3
interface.
Setting Name Range/Options Default Setting Notes
COM3
Protocol
OFF
IEC60870-5-103
MODBUS-RTU
DNP3
IEC60870-5-103
The protocol used
to communicate on
the standard RS485
connection.
COM3
Station
Address
0 - 254 for IEC60870-5-103
1 - 247 for Modbus RTU
0 - 65534 for DNP3.0
0
An address within the
range of the relevant
protocol must be
given to identify the
relay. Each relay in a
network must have a
unique address.
COM3
75 110 150 300
The baud rate set
on all of the relays
600 1200 2400 4800 19200
connected to the
control system must
Baud Rate
9600 19200 38400
be the same as the
57600 115200 one set on the master
device.
The parity set on
all of the relays
COM3
Parity
NONE
ODD
EVEN
EVEN
connected to the
control system must
be the same and in
accordance with the
master device.
7SR220 Technical Manual
Chapter 4 - Page 12 of 96 © 2017 Siemens Protection Devices Limited
Setting Name Range/Options Default Setting Notes
COM3
Line Idle
LIGHT ON
LIGHT OFF LIGHT OFF Sets the fibre optic
line idle state.
COM3
Data Echo#1
ON
OFF OFF
Set to ON when
relays are connected
in a fibre-optic ring
configuration.
COM3
Mode
Local
Local or Remote
Remote
Remote
Refer to Appendix
1, page 95, for
further explanation
The following settings, on the COMMUNICATIONS MENU, must be configured when using the fibre Optic Com4
interface
COM4
Data Echo#1
ON
OFF
COM4
Mode
Local
Local or Remote
Remote
#1 In ring mode, echo = on, the whole fibre optic data comms link will be interrupted if the relay element is withdrawn
from the case.
Setting Name Range/Options Default Setting Notes
COM4
Protocol
OFF
IEC60870-5-103
MODBUS-RTU
DNP3
IEC60870-5-103
The protocol used
to communicate on
the standard RS485
connection.
COM4 0 - 254 for IEC60870-5-103
0
An address within the
range of the relevant
protocol must be
Station 1 - 247 for Modbus RTU given to identify the
Address 0 - 65534 for DNP3.0
relay. Each relay in a
network must have a
unique address.
The baud rate set
on all of the relays
COM4
75 110 150 300
600 1200 2400
4800
19200
connected to the
control system must
Baud Rate
9600 19200 38400 be the same as the
one set on the master
device.
COM4
Parity
NONE
ODD
EVEN
EVEN
The parity set on
all of the relays
connected to the
control system must
be the same and in
accordance with the
master device.
COM4
Line Idle
LIGHT ON
LIGHT OFF LIGHT OFF Sets the fibre optic
line idle state.
OFF
Remote
Set to ON when
relays are connected
in a fibre-optic ring
configuration.
Refer to Appendix
1, page 95, for
further explanation
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 13 of 96
Rx Rx
Tx Tx
RS232 to Fibre
Optic Converter
RS232 straight
through cable Tx Rx
Computer or
Control System Rx Tx
USB or 9 pin male
D connector 25 pin male
D connector
62.5/125µm fibre optic with ST
connectors
Fig. 2-3 Communication to Multiple Devices using Fibre-optic Ring Network
To
Control
System
7SG24 Sigma 1
Tx
Master
Rx Rx Rx
Tx Tx Tx
Rx
Tx
Rx
Tx
Rx
RS232 straight
through cable
Tx Rx
Computer or
Control System
Rx Tx
62.5/125µm fibre optic
with ST connectors
USB or 9 pin male
D connector 25 pin male
D connector
Fig. 2-4 Communication to Multiple Devices from Control System and Laptop using Fibre-optic Star Network
2.5 Optional Rear RS485 (COM3)
The following settings, on the COMMUNICATIONS MENU, must be configured when using the electrical 2-wire RS485
Com3 interface.
7SR220 Technical Manual
Chapter 4 - Page 14 of 96 © 2017 Siemens Protection Devices Limited
Setting Name Range/Options Default Setting Notes
COM3
Protocol
OFF
IEC60870-5-103
MODBUS-RTU
DNP3
IEC60870-5-103
The protocol used
to communicate on
the standard RS485
connection.
COM3
Station
Address
0 - 254 for IEC60870-5-103
1 - 247 for Modbus RTU
0 - 65534 for DNP3.0
0
An address within the
range of the relevant
protocol must be
given to identify the
relay. Each relay in a
network must have a
unique address.
75 110 150 300
19200
The baud rate set
on all of the relays
COM3 600 1200 2400 4800
connected to the
control system must
Baud Rate
9600 19200 38400
be the same as the
57600 115200 one set on the master
device.
The parity set on
all of the relays
COM3
NONE
ODD
EVEN
connected to the
control system must
Parity
EVEN be the same and in
accordance with the
master device.
COM3
Line Idle
LIGHT ON
LIGHT OFF LIGHT OFF LIGHT OFF
Not applicable for
RS 485 or RS 232
option, set to OFF.
COM3
Data Echo#1
ON
OFF OFF OFF
Not applicable for
RS 485 or RS 232
option, set to OFF.
COM3
Mode
Local
Local or Remote
Remote
Remote
Refer to Appendix
1, page 95, for
further explanation
Fig. 2-5 Additional (Optional) Rear RS485 + IRIG-B Connection to a PC
2.6 Optional Rear RS232 (COM3)
The following settings, on the COMMUNICATIONS MENU, must be configured when using the electrical RS232
Com3 interface.
7SR24
COMMS MODULE
IRIG-B
RS485
Screened
twisted pair
COM3
GND
TERM
USB
or
9
pin
male
D connector
B
A
Laptop
computer
RS232
straight
through cable
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 15 of 96
Setting Name Range/Options Default Setting Notes
COM3
Protocol
OFF
IEC60870-5-103
MODBUS-RTU
DNP3
IEC60870-5-103
The protocol used
to communicate on
the standard RS485
connection.
COM3
Station
Address
0 - 254 for IEC60870-5-103
1 - 247 for Modbus RTU
0 - 65534 for DNP3.0
0
An address within the
range of the relevant
protocol must be
given to identify the
relay. Each relay in a
network must have a
unique address.
COM3
75 110 150 300
The baud rate set
on all of the relays
600 1200 2400 4800 19200
connected to the
control system must
Baud Rate
9600 19200 38400
be the same as the
57600 115200 one set on the master
device.
The parity set on
all of the relays
COM3
Parity
NONE
ODD
EVEN
EVEN
connected to the
control system must
be the same and in
accordance with the
master device.
COM3
Line Idle
LIGHT ON
LIGHT OFF LIGHT OFF LIGHT OFF
Not applicable for
RS 485 or RS 232
option, set to OFF.
COM3
Data Echo#1
ON
OFF OFF OFF
Not applicable for
RS 485 or RS 232
option, set to OFF.
COM3
Mode
Local
Local or Remote
Remote
Remote
Refer to Appendix
1, page 95, for
further explanation
Fig. 2-6 Additional (Optional) Rear RS232 + IRIG-B Connection to a PC
Pin Relay Function
1 Not Connected
2 Receive Data (RXD)
3 Transmit Data (TXD)
7SR24
COMMS MODULE
IRIG-B
COM3
USB
or
9
pin
male
D connector
Laptop
computer
RS232
cross
-
over
cable
or
RS232
to
USB
converter
cable
7SR220 Technical Manual
Chapter 4 - Page 16 of 96 © 2017 Siemens Protection Devices Limited
Pin Relay Function
4 Output Supply +5V 50mA
5 Signal Ground (GND)
6 Output Supply +5V 50mA
7 Linked to 8 (volts free)
8 Linked to 7 (volts free)
9 Output Supply +5V 50mA
Fig. 2-7 RS232 Data Comms Pin Connections
2.7 Optional Rear EN100 Ethernet Module (COM3)
The optional ethernet interface is primarily provided for support of IEC 61850 Protocol. Support for IEC 60870-5-103
is also provided over this interface to allow connection with Reydisp Evolution and Reydisp Manager Software for
interrogation, editing and download of relay settings and other data. Ordering options are available with two RJ45
electrical connectors or with two duplex LC fibre optic connectors.
Setting Name Range/Options Default Setting Notes
LAN
Protocol
OFF
IEC60870-5-103 IEC60870-5-103
Sets the protocol
used to communicate
on the LAN port.
If this setting is set to off, access to relay data using Reydisp Evolution and Reydisp Manager Software via the
Ethernet interface is not available.
Connections to the optional EN100 Ethernet module are made on the rear underside of the relay.
Connections are made to either RJ45 sockets (electrical) or Duplex LC (fibre optic) connectors. Fibre cables should
be 62.5/125µm (or 50/125µm) multimode with LC connectors.
The two types of EN100 module work slightly differently. The optical version contains an Ethernet switch to control
the two channels. The switch will manage data from either channel as an Ethernet switch would in a network. The
electrical version connects through one channel until it detects a break in the data traffic. After a delay it will swap to
the other channel to try and re-establish communication. Either method can be thought of as providing for redundancy.
While a 61850 session is established, an operator can simultaneously connect to the device via Reydisp Evolution
or a web browser through the EN100 module.
Configuration of 61850 communication is via the Reydisp Manager software package.
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 17 of 96
L
LED green LED green
EN100 Module RJ45 Interface EN100 Module Duplex-LC Interface
Green LED (Physical Link)
Off – No link
OnLink present
Yellow LED (Activity)
Off – No traffic
On/flashing - Traffic
Fig. 2-8 EN100 Ethernet Module
Ethernet
EN100
-
O
Ch 1
Ch 2
Ethernet – EN100-E
Ch 1 Ch 2
ED yellow LED yellow
7SR220 Technical Manual
Chapter 4 - Page 18 of 96 © 2017 Siemens Protection Devices Limited
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 19 of 96
3. IEC 60870-5-103 Definitions
3.1 Introduction
This section describes the IEC 60870-5-103 protocol implementation in the relays. This protocol is used for the
communication with Reydisp software and can also be used for communication with a suitable control system.
The control system or local PC acts as the master in the system with the relay operating as a slave responding
to the master's commands. The implementation provides event information, time synchronising, commands and
measurands and also supports the transfer of disturbance records.
This protocol can be set to use any or all of the relays hardware interfaces (USB, Fibre Optic, RS232, RS485 and
Ethernet) where fitted and is the standard protocol used by the USB port. The relay can communicate simultaneously
on all ports regardless of protocol used.
The Station Address of the port being used must be set to a suitable address within the range 0 - 254 to enable
communication. This can be set by the Communications Menu : COM n-xxxxx Station Address setting.
7SR220 Technical Manual
Chapter 4 - Page 20 of 96 © 2017 Siemens Protection Devices Limited
3.2 Cause of Transmission
The cause of transmission (COT) column of the “Information Number and Function” table lists possible causes of
transmission for these frames. The following abbreviations are used:
Abbreviation Description
SE spontaneous event
T test mode
GI general interrogation
Loc local operation
Rem remote operation
Ack command acknowledge
Nak Negative command acknowledge
Note: Events listing a GI cause of transmission can be raised and cleared; other events are raised only.
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 21 of 96
3.3 Application Service Data Unit (ASDU) Type
The Application Service Data Unit (ASDU) column of the “Information Number and Function table lists the possible
ASDUs returned for a point.
ASDU # Description
1 Time tagged message (monitor direction)
2
3.1
Time tagged message (relative time) (monitor direction)
Measurands I
4 Time-tagged measurands with relative time
5 Identification message
6 Time synchronisation
7
9
General Interrogation Initialization
Measurands II
20
General command
7SR220 Technical Manual
Chapter 4 - Page 22 of 96 © 2017 Siemens Protection Devices Limited
3.4 Point List
The following sub-sections contain tables listing the data points available via the IEC60870-5-103 protocol.
The information shown below is the default configuration.
The information shown below is the default configuration.
3.4.1 Event Function (FUN) & Information (INF) Numbers
The following Event EVT and INF numbers apply to this device.
FUN INF Description ASDU COT
60 4 Remote Mode
1
20
SE, GI
Ack, Nak
60 5 Out Of Service Mode
1
SE, GI
20 Ack, Nak
60 6 Local Mode
1
SE, GI
20 Ack, Nak
1 SE, GI
60 7 Local & Remote 20 Ack, Nak
60 12 Control Received
1
SE
60 13 Command Received
1
SE
60 128 Cold Start
1
SE
60 129 Warm Start
1
SE
60 130 Re-Start
1
SE
60 131 Expected Restart
1
SE, GI
60 132 Unexpected Restart
1
SE, GI
60 133 Reset Start Count
1
20
SE
Ack, Nak
60 135 Trigger Storage
1
SE
60 136 Clear Waveform Records
1
SE
60 137 Clear Fault Records
1
SE
60 138 Clear Event Records
1
SE
60 140 Demand metering reset
1
SE
20 Ack, Nak
1 SE, GI
60 170 General Alarm 1
60 171 General Alarm 2
1
SE, GI
60 172 General Alarm 3
1
SE, GI
60 173 General Alarm 4
1
SE, GI
60 174 General Alarm 5
1
SE, GI
60 175 General Alarm 6
1
SE, GI
60 176 General Alarm 7
1
SE, GI
60 177 General Alarm 8
1
SE, GI
60 178 General Alarm 9
1
SE, GI
60 179 General Alarm 10
1
SE, GI
60 180 General Alarm 11
1
SE, GI
60 181 General Alarm 12
1
SE, GI
Quick Logic E1
Quick Logic E2
60 182 1 SE, GI
60 183 1 SE, GI
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 23 of 96
FUN INF Description ASDU COT
60 184 Quick Logic E3
1
SE, GI
60 185 Quick Logic E4
1
SE, GI
60 186 Quick Logic E5
1
SE, GI
60 187 Quick Logic E6
1
SE, GI
60 188 Quick Logic E7
1
SE, GI
60 189 Quick Logic E8
1
SE, GI
60 190 Quick Logic E9
1
SE, GI
60 191 Quick Logic E10
1
SE, GI
60 192 Quick Logic E11
1
SE, GI
60 193 Quick Logic E12
1
SE, GI
60 194 Quick Logic E13
1
SE, GI
60 195 Quick Logic E14
1
SE, GI
60 196 Quick Logic E15
1
SE, GI
60 197 Quick Logic E16
1
SE, GI
61
1
General Alarm 13
1
SE, GI
61
2
General Alarm 14
1
SE, GI
61
3
General Alarm 15
1
SE, GI
61
4
General Alarm 16
1
SE, GI
61
5
General Alarm 17
1
SE, GI
61
6
General Alarm 18
1
SE, GI
61
7
General Alarm 19
1
SE, GI
61
8
General Alarm 20
1
SE, GI
70
5
Binary Input 5
1
SE, GI
70
6
Binary Input 6
1
SE, GI
70
7
Binary Input 7
1
SE, GI
70
8
Binary Input 8
1
SE, GI
70
9
Binary Input 9
1
SE, GI
70 10 Binary Input 10
1
SE, GI
70 11 Binary Input 11
1
SE, GI
70 12 Binary Input 12
1
SE, GI
70 13 Binary Input 13
1
SE, GI
75
1
Virtual Input 1
1
SE, GI
75
2
Virtual Input 2
1
SE, GI
75
3
Virtual Input 3
1
SE, GI
75
4
Virtual Input 4
1
SE, GI
75
5
Virtual Input 5
1
SE, GI
75
6
Virtual Input 6
1
SE, GI
75
7
Virtual Input 7
1
SE, GI
75
8
Virtual Input 8
1
SE, GI
75
9
Virtual Input 9
1
SE, GI
75 10 Virtual Input 10
1
SE, GI
75 11 Virtual Input 11
1
SE, GI
75 12 Virtual Input 12
1
SE, GI
75 13 Virtual Input 13
1
SE, GI
75 14 Virtual Input 14
1
SE, GI
75 15 Virtual Input 15
1
SE, GI
75 16 Virtual Input 16
1
SE, GI
80
1
Binary Output 1
1
SE, GI
7SR220 Technical Manual
Chapter 4 - Page 24 of 96 © 2017 Siemens Protection Devices Limited
FUN INF Description ASDU COT
20 Ack, Nak
80 2 Binary Output 2 1 SE, GI
20 Ack, Nak
80 3 Binary Output 3 1 SE, GI
20 Ack, Nak
80 4 Binary Output 4 1 SE, GI
20 Ack, Nak
80 5
80 6
Binary Output 5
Binary Output 6
1 SE, GI
20 Ack, Nak
1 SE, GI
20 Ack, Nak
80 7 Binary Output 7 1 SE, GI
20 Ack, Nak
80 8 Binary Output 8 1 SE, GI
20 Ack, Nak
80 9 Binary Output 9 1 SE, GI
20 Ack, Nak
80 10
80 11
80 12
Binary Output 10
Binary Output 11
Binary Output 12
1 SE, GI
20 Ack, Nak
1 SE, GI
20 Ack, Nak
1 SE, GI
20 Ack, Nak
80 13 Binary Output 13 1 SE, GI
20 Ack, Nak
80 14 Binary Output 14 1 SE, GI
20 Ack, Nak
90 1 LED 1 1 SE, GI
90 2
90 3
LED 2
LED 3
1 SE, GI
1 SE, GI
90 4
90 5
LED 4
LED 5
1 SE, GI
1 SE, GI
90 6 LED 6 1 SE, GI
90 7
90 8
LED 7
LED 8
1 SE, GI
1 SE, GI
90 9
90 10
LED 9
LED 10
1 SE, GI
1 SE, GI
90 11 LED 11 1 SE, GI
90 12 LED 12 1 SE, GI
90 13
90 14
LED 13
LED 14
1 SE, GI
1 SE, GI
90 15 LED 15 1 SE, GI
90 16 LED 16 1 SE, GI
91 1
91 2
LED PU 1
LED PU 2
1 SE, GI
1 SE, GI
91 3
91 4
LED PU 3
LED PU 4
1 SE, GI
1 SE, GI
91 5 LED PU 5 1 SE, GI
91 6 LED PU 6 1 SE, GI
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 25 of 96
FUN INF Description ASDU COT
91
7
LED PU 7
1
SE, GI
91
8
LED PU 8
1
SE, GI
91
9
LED PU 9
1
SE, GI
91 10 LED PU 10
1
SE, GI
91 11 LED PU 11
1
SE, GI
91 12 LED PU 12
1
SE, GI
91 13 LED PU 13
1
SE, GI
91 14 LED PU 14
1
SE, GI
91 15 LED PU 15
1
SE, GI
91 16 LED PU 16
1
SE, GI
160
2
Reset FCB
5
SE
160
3
Reset CU
5
SE
160
4
Start/Restart
5
SE
160
5
Power On
1
SE, GI
160 16 Auto-reclose active
1
SE, GI
20 Ack, Nak
160 19 LED Reset
1
SE
20 Ack, Nak
160 22 Settings changed
1
SE
160 23 Setting G1 selected
1
SE, GI
20 Ack, Nak
160 24 Setting G2 selected
1
SE, GI
20 Ack, Nak
160 25 Setting G3 selected
1
20
SE, GI
Ack, Nak
160 26 Setting G4 selected
1
20
SE, GI
Ack, Nak
160 27 Binary Input 1
1
SE, GI
160 28 Binary Input 2
1
SE, GI
160 29 Binary Input 3
1
SE, GI
160 30 Binary Input 4
1
SE, GI
160 36 Trip Circuit Fail
1
SE, GI
160 38 VT Fuse Failure
1
SE, GI
160 51 Earth Fault Forward/Line
2
SE, GI
160 52 Earth Fault Reverse/Busbar
2
SE, GI
160 64 Start/Pick-up L1
2
SE, GI
160 65 Start/Pick-up L2
2
SE, GI
160 66 Start/Pick-up L3
2
SE, GI
160 67 Start/Pick-up N
2
SE, GI
160 68 General Trip
2
SE
160 69 Trip L1
2
SE
160 70 Trip L2
2
SE
160 71 Trip L3
2
SE
160 73 Fault Impedance
1
SE
160 74 Fault Forward/Line
2
SE, GI
160 75 Fault Reverse/Busbar
2
SE, GI
160 84 General Start/Pick-up
2
SE, GI
160 85 Breaker Failure
2
SE
7SR220 Technical Manual
Chapter 4 - Page 26 of 96 © 2017 Siemens Protection Devices Limited
FUN INF Description ASDU COT
160 90 Trip I>
2
SE
160 91 Trip I>>
2
SE
160 92 Trip In>
2
SE
160 93 Trip In>>
2
SE
160 128 CB on by auto reclose
1
SE
183 10 51-1
2
SE, GI
183 11 50-1
2
SE, GI
183 12 51N-1
2
SE, GI
183 13 50N-1
2
SE, GI
183 14 51G-1
2
SE, GI
183 15 50G-1
2
SE, GI
183 16 51-2
2
SE, GI
183 17 50-2
2
SE, GI
183 18 51N-2
2
SE, GI
183 19 50N-2
2
SE, GI
183 20 51G-2
2
SE, GI
183 21 50G-2
2
SE, GI
183 22 51-3
2
SE, GI
183 23 50-3
2
SE, GI
183 24 51N-3
2
SE, GI
183 25 50N-3
2
SE, GI
183 26 51G-3
2
SE, GI
183 27 50G-3
2
SE, GI
183 28 51-4
2
SE, GI
183 29 50-4
2
SE, GI
183 30 51N-4
2
SE, GI
183 31 50N-4
2
SE, GI
183 32 51G-4
2
SE, GI
183 33 50G-4
2
SE, GI
183 34 50BF Stage 2
2
SE, GI
183 35 49-Alarm
2
SE, GI
183 36 49-Trip
2
SE, GI
183 40 60 CTS
2
SE, GI
183 41 51SEF-1
2
SE, GI
183 42 50SEF-1
2
SE, GI
183 43 51SEF-2
2
SE, GI
183 44 50SEF-2
2
SE, GI
183 45 51SEF-3
2
SE, GI
183 46 50SEF-3
2
SE, GI
183 47 51SEF-4
2
SE, GI
183 48 50SEF-4
2
SE, GI
183 49 SEF Out
2
SE, GI
20 Ack, Nak
183 50 46IT
2
SE, GI
183 51 46DT
2
SE, GI
183 52 64H
2
SE, GI
183 53 E/F Out
2
SE, GI
20 Ack, Nak
183 56 50BF Stage 1
2
SE, GI
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 27 of 96
FUN INF Description ASDU COT
183 60 47-1
2
SE, GI
183 61 47-2
2
SE, GI
183 62 37-1
2
SE, GI
183 63 37-2
2
SE, GI
183 64 37G-1
2
SE, GI
183 65 37G-2
2
SE, GI
183 66 37SEF-1
2
SE, GI
183 67 37SEF-2
2
SE, GI
183 70 46BC
2
SE, GI
183 81 27/59-1
2
SE, GI
183 82 27/59-2
2
SE, GI
183 83 27/59-3
2
SE, GI
183 84 27/59-4
2
SE, GI
183 85 59NIT
2
SE, GI
183 86 59NDT
2
SE, GI
183 87 Vx27/59
2
SE, GI
183 90 81-1
2
SE, GI
183 91 81-2
2
SE, GI
183 92 81-3
2
SE, GI
183 93 81-4
2
SE, GI
183 94 81-5
2
SE, GI
183 95 81-6
2
SE, GI
183 96 81HBL2
1
SE, GI
183 100 CB Alarm
1
SE, GI
183 101 Trip Circuit Fail 1
2
SE, GI
183 102 Trip Circuit Fail 2
2
SE, GI
183 103 Trip Circuit Fail 3
2
SE, GI
183 110 Setting G5 selected
1
SE, GI
20 Ack, Nak
183 111 Setting G6 selected
1
SE, GI
20 Ack, Nak
183 112 Setting G7 selected
1
SE, GI
20 Ack, Nak
183 113 Setting G8 selected
1
20
SE, GI
Ack, Nak
183 114 Close CB Failed
1
SE, GI
183 115 Open CB Failed
1
SE, GI
183 116 Reclaim
1
SE, GI
183 117 Lockout
1
SE, GI
183 119 Successful DAR Close
1
SE
183 120 Successful Man Close
1
SE
183 121 HotLine Working
1
SE, GI
20 Ack, Nak
183 122 Inst Protection Out
1
20
SE, GI
Ack, Nak
183 123 CB Total Trip Count
1
SE, GI
183 124 CB Delta Trip Count
1
SE, GI
183 125 CB Count To AR Block
1
SE, GI
7SR220 Technical Manual
Chapter 4 - Page 28 of 96 © 2017 Siemens Protection Devices Limited
FUN INF Description ASDU COT
183 126 Reset CB Total Trip Count 1 SE
20 Ack, Nak
183 127
183 128
Reset CB Delta Trip Count
Reset CB Count To AR Block
1 SE
20 Ack, Nak
1 SE
20 Ack, Nak
183 129 I^2t CB Wear 1 SE, GI
183 130
183 131
Reset I^2t CB Wear
79 AR In progress
1 SE
20 Ack, Nak
1 SE, GI
183 132 CB Frequent Ops Count 1 SE, GI
183 133 Reset CB Frequent Ops Count 1 SE
20 Ack, Nak
183 136
183 137
CB On By Manual Close
CB on by auto reclose
1 SE
1 SE, GI
183 140 Cold Load Active 1 SE, GI
183 141 P/F Inst Protection Inhibited 1 SE, GI
183 142 E/F Inst Protection Inhibited 1 SE, GI
183 143
183 144
SEF Inst Protection Inhibited
Ext Inst Protection Inhibited
1 SE, GI
1 SE, GI
183 163
183 164
Trip Time Alarm
Close Circuit Fail 1
1 SE
2 SE, GI
183 165 Close Circuit Fail 2 2 SE, GI
183 166
183 167
Close Circuit Fail 3
Close Circuit Fail
2 SE, GI
2 SE, GI
183 168
183 169
Distance To Fault
Distance To Fault Percent
1 SE
1 SE
183 170 Fault Reactance 1 SE
183 171
183 172
60 CTS-I
Act Energy Exp
2 SE, GI
4 SE
183 173
183 174
Act Energy Imp
React Energy Exp
4 SE
4 SE
183 175 React Energy Imp 4 SE
183 176 Reset Energy Meters 1 SE
20 Ack, Nak
183 177
183 178
Active Exp Meter Reset
Active Imp Meter Reset
1 SE
1 SE
183 179 Reactive Exp Meter Reset 1 SE
183 180 Reactive Imp Meter Reset 1 SE
183 181
183 182
CB Total Trip Count
CB Delta Trip Count
4 SE
4 SE
183 183 CB Count To AR Block 4 SE
183 184 CB Freq Ops Count 4 SE
183 198
183 199
25 Check Sync
25 System Sync
1 SE, GI
1 SE, GI
183 200
183 201
25 Close On Zero
25 System Split
1 SE, GI
1 SE, GI
183 202 25 Live Line 1 SE, GI
183 203 25 Live Bus 1 SE, GI
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 29 of 96
FUN INF Description ASDU COT
183 204 25 Line U/V
1
SE, GI
183 205 25 Bus U/V
1
SE, GI
183 206 25 Voltage Dif >
1
SE, GI
183 207 25 CS Slip Freq >
1
SE, GI
183 208 25 SS Slip Freq >
1
SE, GI
183 209 25 COZ Slip Freq >
1
SE, GI
183 210 25 In Sync
1
SE, GI
183 211 25 CS In Progress
1
SE, GI
183 212 25 SS In Progress
1
SE, GI
183 213 25 COZ In Progress
1
SE, GI
183 214 25 System Split LO
1
SE, GI
183 215 60VTF-Bus
1
SE, GI
183 217 Man Override Sync
1
SE, GI
20 Ack, Nak
183 218 79 Override Sync
1
SE, GI
20 Ack, Nak
183 219 Dead Line Close
1
SE, GI
183 220 Dead Bus Close
1
SE, GI
183 221 Wattmetric Po>
1
SE, GI
183 222 37-PhA
2
SE, GI
183 223 37-PhB
2
SE, GI
183 224 37-PhC
2
SE, GI
183 231 50BF-PhA
2
SE, GI
183 232 50BF-PhB
2
SE, GI
183 233 50BF-PhC
2
SE, GI
183 234 50BF-EF
2
SE, GI
183 235 79 Last Trip Lockout
2
SE, GI
183 237 CB DBI
1
SE, GI
183 238 CB Travelling
1
SE, GI
183 239 In Fault Current
4
SE
183 240 Ia Fault Current
4
SE
183 241 Ib Fault Current
4
SE
183 242 Ic Fault Current
4
SE
183 243 Ig Fault Current
4
SE
183 244 Isef Fault Current
4
SE
183 245 Va Fault Voltage
4
SE
183 246 Vb Fault Voltage
4
SE
183 247 Vc Fault Voltage
4
SE
183 249 60 CTS-I-PhA
2
SE, GI
183 250 60 CTS-I-PhB
2
SE, GI
183 251 60 CTS-I-PhC
2
SE, GI
183 252 Trip PhA
2
SE, GI
183 253 Trip PhB
2
SE, GI
183 254 Trip PhC
2
SE, GI
185
9
CB Phase A Trip Count
4
SE
185 10 CB Phase B Trip Count
4
SE
185 11 CB Phase C Trip Count
4
SE
185 12 CB E/F Trip Count
4
SE
7SR220 Technical Manual
Chapter 4 - Page 30 of 96 © 2017 Siemens Protection Devices Limited
FUN INF Description ASDU COT
185 37 27/59 PhA
2
SE, GI
185 38 27/59 PhB
2
SE, GI
185 39 27/59 PhC
2
SE, GI
185 43 General Trip
2
SE, GI
185 44 32-1
1
SE, GI
185 45 32-2
1
SE, GI
185 46 32S-1
1
SE, GI
185 47 32S-2
1
SE, GI
185 48 55-1
1
SE, GI
185 49 55-2
1
SE, GI
185 171 User Output 1
1
SE, GI
185 172 User Output 2
1
SE, GI
185 173 User Output 3
1
SE, GI
185 174 User Output 4
1
SE, GI
185 175 User Output 5
1
SE, GI
185 176 User Output 6
1
SE, GI
185 177 User Output 7
1
SE, GI
185 178 User Output 8
1
SE, GI
185 179 User Output 9
1
SE, GI
185 180 User Output 10
1
SE, GI
185 181 User Output 11
1
SE, GI
185 182 User Output 12
1
SE, GI
185 183 User Output 13
1
SE, GI
185 184 User Output 14
1
SE, GI
185 185 User Output 15
1
SE, GI
185 186 User Output 16
1
SE, GI
185 187 User Output 17
1
SE, GI
185 188 User Output 18
1
SE, GI
185 189 User Output 19
1
SE, GI
185 190 User Output 20
1
SE, GI
185 191 User Output 21
1
SE, GI
185 192 User Output 22
1
SE, GI
185 193 User Output 23
1
SE, GI
185 194 User Output 24
1
SE, GI
185 195 User Output 25
1
SE, GI
185 196 User Output 26
1
SE, GI
185 197 User Output 27
1
SE, GI
185 198 User Output 28
1
SE, GI
185 199 User Output 29
1
SE, GI
185 200 User Output 30
1
SE, GI
185 201 User Output 31
1
SE, GI
185 202 User Output 32
1
SE, GI
185 238 E/F In
2
SE, GI
20 Ack, Nak
2 SE, GI
185 239 SEF In 20 Ack, Nak
1 SE, GI
185 241 Start Count Alarm
185 242 21LB-3P Fwd
1
SE, GI
185 243 21LB-3P Rev
1
SE, GI
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 31 of 96
FUN INF Description ASDU COT
185 244 21LB-1P Fwd
1
SE, GI
185 245 21LB-1P Rev
1
SE, GI
185 246 81HBL5
1
SE, GI
186
1
50AFD PhA
1
SE, GI
186
2
50AFD PhB
1
SE, GI
186
3
50AFD PhC
1
SE, GI
186
4
50AFD
1
SE, GI
186
5
AFD Zone 1 Flash
1
SE, GI
186
6
AFD Zone 1
1
SE, GI
186
7
AFD Zone 2 Flash
1
SE, GI
186
8
AFD Zone 2
1
SE, GI
186
9
AFD Zone 3 Flash
1
SE, GI
186 10 AFD Zone 3
1
SE, GI
186 11 AFD Zone 4 Flash
1
SE, GI
186 12 AFD Zone 4
1
SE, GI
186 13 AFD Zone 5 Flash
1
SE, GI
186 14 AFD Zone 5
1
SE, GI
186 15 AFD Zone 6 Flash
1
SE, GI
186 16 AFD Zone 6
1
SE, GI
186 17 AFD Zone1 Count
4
SE
186 18 AFD Zone2 Count
4
SE
186 19 AFD Zone3 Count
4
SE
186 20 AFD Zone4 Count
4
SE
186 21 AFD Zone5 Count
4
SE
186 22 AFD Zone6 Count
4
SE
200
1
CB 1
1
20
SE
Ack, Nak
200
6
CB 1 Opened
1
SE, GI
20 Ack, Nak
200
7
CB 1 Closed
1
SE, GI
20 Ack, Nak
200 150 User SP Command 1
1
SE, GI
20 Ack, Nak
200 151 User SP Command 2
1
20
SE, GI
Ack, Nak
200 152 User SP Command 3
1
20
SE, GI
Ack, Nak
200 153 User SP Command 4
1
SE, GI
20 Ack, Nak
200 154 User SP Command 5
1
20
SE, GI
Ack, Nak
200 155 User SP Command 6
1
SE, GI
20 Ack, Nak
200 156 User SP Command 7
1
20
SE, GI
Ack, Nak
200 157 User SP Command 8
1
20
SE, GI
Ack, Nak
200 158 User DP Command 1
1
SE
7SR220 Technical Manual
Chapter 4 - Page 32 of 96 © 2017 Siemens Protection Devices Limited
FUN INF Description ASDU COT
20 Ack, Nak
200 159 User DP Command 2 1 SE
20 Ack, Nak
200 160 User DP Command 3 1 SE
20 Ack, Nak
200 161 User DP Command 4 1 SE
20 Ack, Nak
200 162
200 163
User DP Command 5
User DP Command 6
1 SE
20 Ack, Nak
1 SE
20 Ack, Nak
200 164 User DP Command 7 1 SE
20 Ack, Nak
200 165 User DP Command 8 1 SE
20 Ack, Nak
200 200 CB 1 Trip & Reclose 1 SE
20 Ack, Nak
200 201
200 255
CB 1 Trip & Lockout
Blocked By Interlocking
1 SE
20 Ack, Nak
1 SE, GI
255 0
255 0
General Interrogation (GI) Initiation
General Interrogation (GI) End
7 Init. GI
8 End of GI
255 0 Time Synchronisation 6Time
Synch.
3.4.2 Measurands
The following Measurand EVT and INF numbers apply to this device.
FUN INF Description ASDU COT
183 148
Measurand IL1,2,3, VL1,2,3, P, Q, F, VL1-2,L2-3,L3-1
---
IL1 (2.4x) (Window 1%)
IL2 (2.4x) (Window 1%)
IL3 (2.4x) (Window 1%)
VL1 (1.2x) (Window 1%)
VL2 (1.2x) (Window 1%)
VL3 (1.2x) (Window 1%)
P (2.4x) (Window 1%)
Q (2.4x) (Window 1%)
F (1.2x) (Window 0.1%)
VL1-2 (1.2x) (Window 1%)
VL2-3 (1.2x) (Window 1%)
VL3-1 (1.2x) (Window 1%)
Cyclic -
Refresh
rate 5
seconds
9or value
change
greater
than
Window x
%.
183 149
Measurand Power W1,2,3, Power VAr1,2,3, Power Factor1,2,3,
---
W1(2.4x) (Window 1%)
W2(2.4x) (Window 1%)
W3(2.4x) (Window 1%)
Cyclic -
Refresh
rate 5
9 seconds
or value
change
greater
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 33 of 96
FUN INF Description ASDU COT
VAr1(2.4x) (Window 1%)
VAr2(2.4x) (Window 1%)
VAr3(2.4x) (Window 1%)
PF1(1.2x) (Window 1%)
PF2(1.2x) (Window 1%)
PF3(1.2x) (Window 1%)
than
Window x
%.
183 216
Measurand Vx, Bus Freq, Phase Diff, Diff Volts and Slip Freq
---
Vx (1.2x) (Window 0%)
Bus Freq (1.2x) (Window 0%)
Phase Diff (1.2x) (Window 0%)
Diff Volts (1.2x) (Window 0%)
Slip Freq (1.2x) (Window 0%)
---
Note - Phase difference is stored as -1
to +1 as a multiple of 180deg nominal
9
Cyclic -
Refresh
rate 5
seconds
or value
change
greater
than
Window x
%.
183 236
Measurand Max Ia,b,c, Van,bn,cn, P, Q, Vab,bc,ca
---
Ia Max (2.4x) (Window 1%)
Ib Max (2.4x) (Window 1%)
Ic Max (2.4x) (Window 1%)
Van Max1(1.2x) (Window 1%)
Vbn Max2(1.2x) (Window 1%)
Vcn Max3(1.2x) (Window 1%)
P Max (2.4x) (Window 1%)
Q Max (2.4x) (Window 1%)
Vab Max (1.2x) (Window 1%)
Vbc Max (1.2x) (Window 1%)
Vca Max (1.2x) (Window 1%)
---
Voltages only supported on 7SR1915/6
9
Cyclic -
Refresh
rate 5
seconds
or value
change
greater
than
Window x
%.
3.4.3 Disturbance Recorder Actual Channel (ACC) Numbers
The following Disturbance Recorder channel numbers apply to this device.
FUN ACC Description
182
1
V1
182
2
V2
182
3
V3
182
4
Vx
182
5
Ia
182
6
Ib
182
7
Ic
182
8
Ig1
182
9
Ig2
7SR220 Technical Manual
Chapter 4 - Page 34 of 96 © 2017 Siemens Protection Devices Limited
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 35 of 96
4. MODBUS Definitions
4.1 Introduction
This section describes the MODBUS-RTU protocol implementation in the relays. This protocol is used for
communication with a suitable control system.
This protocol can be set to use any or all of the relays hardware interfaces (USB, Fibre Optic, RS232 and RS485)
where fitted. The relay can communicate simultaneously on all ports regardless of protocol used.
The Station Address of the port being used must be set to a suitable address within the range 1 - 247 to enable
communication. This can be set by the Communications Menu : COM n-xxxxx Station Address setting.
Communication via MODBUS over Ethernet requires external devices. Please refer to the documents TCPIP
Catalogue Sheet and TCPIP Interface Technical Guidance Notes for more information.
Definitions with shaded area are not available on all relay models.
7SR220 Technical Manual
Chapter 4 - Page 36 of 96 © 2017 Siemens Protection Devices Limited
4.2 MODBUS Register Data Types
4.2.1 FLOAT_IEEE_754
The float data type conforms to the IEEE 754 floating point definition. This specifies that 32 bits of data will be
formatted as a sign bit in the most significant bit (MSB) followed by an 8 bit exponent then a 23 bit mantissa, down
to the least significant bit (LSB).
MSB LSB
Sign Exponent Mantissa
FLOAT_IEEE_754 IN DETAIL
The exponent is an 8 bit unsigned integer. To allow for negative exponents, it is offset by 127. Therefore
the actual exponent is e - 127. The following table shows a detailed layout of the exponent.
2726252423222120
128 64 32 16 8 4 2 1
The mantissa contains the fractional part of a number normalized to the form 1.xyz i.e. in this instance
xyz. The mantissa represents the binary fraction of a number; therefore the MSB represents 2-1 (or
1/21) and its LSB 2-23 (or 1/223). The following table shows a detailed layout of the mantissa.
1
21
1
22
1
23
1
24
1
221
1
222
1
223
0.5 0.25 0.125 0.0625 4.768e-7 2.384e-7 1.192e-7
As an example 1,000,000 would be represented as follows (hex 49742400).
4974240
0
0 1 0 0 1 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
This calculates out as:
Sign = +1
Exponent = 100100102= 128 + 16 + 2 = 146, subtract 127 = 19.
Mantissa = 1 +
1 1
+ +
2
1
22
1 1
+
2
3
2
5
1
+ +
210
1
213
= 1 +
4096 + 2048 + 1024 + 256 + 8 + 1
213 = 1 +
7433
213 = 1.907348632
Therefore Sign * 2Exponent *Mantissa = 1 * 219 * 1.907348632 = 1000000
FLOAT_IEEE_754 & MODBUS
In this MODBUS implementation the 32 bit float is stored in 2 16 registers in Big-Endian format. As an
example, if we take the hex representation of 1,000,000 as a float (from above) we have 49742400h.
Assume this is stored in the registers 30001 and 30002, it would look as follows.
Address
30001
Value
4974
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 37 of 96
Address Value
30002 2400
On reception these two registers should be interpreted in the correct order as IEEE754 floating point
representation.
4.2.2 FP_32BITS_3DP
The FP_32BITS_3DP is a 32 bit integer fixed point value, containing 3 decimal places of information. It is used
to send a real value to 3 decimal places as an integer. For example, if the value in a device is 123.456 it will
be sent as 123456. As it is an integer, negative numbers are sent as 2's complement.
FP_32BITS_3DP & MODBUS
In this MODBUS implementation the 32 bit value is stored in 2 16 registers in Big-Endian format. As
an example, if we take the hex representation of 123456, we have 1E240h. Assume this is stored in
the registers 30001 and 30002, it would look as follows:
Address
30001
Value
1
30002 E240
On reception these two registers should be interpreted in the correct order as a 32 bit integer.
4.2.3 UINT32
The UINT32 is a signed 32 bit integer. As it is an integer, negative numbers are sent as 2's complement.
UINT32 & MODBUS
In this MODBUS implementation the 32 bit value is stored in 2 16 bit registers in Big-Endian format. As
an example, if we take the hex representation of -123456, in 2's complement, we have FFFE1DC0h.
Assume this is stored in the registers 30001 and 30002, it would look as follows:
Address
30001
Value
FFFE
30002 1DC0
On reception these two registers should be interpreted in the correct order as a 32 bit integer.
4.2.4 UINT16
The UINT16 is a signed 16 bit integer. As it is an integer, negative numbers are sent as 2's complement.
UINT16 & MODBUS
In this MODBUS implementation the 16 bit value is stored in a 16 bit register in Big-Endian format. As
an example, if we take the hex representation of 5678 we have 162Eh. Assume this is stored in the
register 30001, it would look as follows:
Address Value
30001 162E
On reception this register should be interpreted as a 16 bit integer.
7SR220 Technical Manual
Chapter 4 - Page 38 of 96 © 2017 Siemens Protection Devices Limited
Truncation
Calculations are performed as 32 bit. The 16 bit value is the lowest 16 bits of the 32 bit value. Therefore,
when values overflow the returned value is the lowest 16 bits of the calculated value. For Example, if the
value is 85400 = 14D98h, the value returned would be the lowest 16 bits = 4D98h which equals 19864.
4.2.5 EVENT
MODBUS does not define a method for extracting events; therefore a private method has been defined
based on that defined by IEC60870-5-103.
The EVENT register contains the earliest event record available. The event record is 8 registers (16
bytes) of information, whose format is described below. When this record has been read it will be
replaced by the next available record. Event records must be read completely; therefore the quantity
value must be set to 8 before reading. Failing to do this will result in an exception code 2. If no event
record is present the exception code 2 will be returned. The EVENT register should be polled regularly
by the master for events.
The EVENTCOUNT register can be checked periodically to determine how many events are stored.
The format of the event record is defined by the zero byte. It signifies the type of record which is used
to decode the event information. The zero byte can be one of the following.
Format
The format of the event record is defined by the zero byte. It signifies the type of record which is used
to decode the event information. The zero byte can be one of the following.
Type Description
1
Event
2
4
Event with Relative Time
Measurand Event with Relative Time
The following table describes the fields in the event record.
Key
FUN
Description
Function Type, as defined for IEC870-5-103.
INF
DPI
Information Number, as defined for IEC870-5-103.
Measurand Event with Relative Time, values 1 = OFF, 2 = ON.
ms L Time Stamp Milliseconds low byte.
ms H Time Stamp Milliseconds high byte.
Mi
Ho
Time Stamp Minutes (MSB = invalid, time not set > 23 hours).
Time Stamp Hours (MSB = Summer time flag).
RT L Relative Time low byte.
RT H Relative Time high byte.
F# L Fault Number low byte.
F# H
Meas
Fault Number high byte.
Measurand format R32.23, sent least significant byte first.
The following tables show the fields in the different event records as they are returned.
Byte 0
Content 1
14 15
Mi Ho
Event Type 1 Format.
1 2 3 4 5 6 7 8 9 10 11 12 13
0 FUN INF DPI 0 0 0 0 0 0 0 ms L ms
H
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 39 of 96
Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Content 2 0 FUN INF DPI RT L RT
HF# L F# H 0 0 0 ms L ms
HMi Ho
Event Type 2 Format.
Byte 0 1 2 3 4 567 8 9 10 11 12 13 14 15
Content 4 0 FUN INF Meas 0 0 0 0 ms L ms
HMi Ho
Event Type 4 Format.
4.2.6 EVENTCOUNT
The EVENTCOUNT register contains the current number of events in the relay's event buffer.
On reception this register should be interpreted as a 16 bit integer.
4.2.7 TIME_METER
The TIME_METER register contains the device's time. The time must be read or written in one step;
therefore the quantity should be 4 registers. Failing to do this will result in an exception code 2. The
time format is 8 bytes as follows.
The following table describes the fields in the time.
Key Description
ms L Time Stamp Milliseconds low byte.
ms H Time Stamp Milliseconds high byte.
Mi Time Stamp Minutes (MSB = invalid, time not set > 23 hours).
Ho Time Stamp Hours (MSB = Summer time flag).
Da Time Stamp Days.
Mo Time Stamp Months.
Ye L Time Stamp Years low byte.
Ye H Time Stamp Years high byte (Not Used).
The following table shows the fields in the time as they are returned.
Byte 0 1 2 3 4 5 6 7
Content ms L ms H Mi Ho Da Mo Ye L Ye H
Time Format.
4.2.8 STR32 & STR64
4.2.9 BITSTRING
A Bit-String (or Bit-Array) is a method of compactly storing a number of bits of data. In this instance we store
up to 16 bit values, for example the states of binary inputs, in a single 16 bit register. The first bit value is
stored in the Least Significant Bit (LSB) of the register. The 16th value would be in the Most Significant Bit
(MSB). Bit values can only be zero or one. Any unused bits will be set to zero.
BITSTRING & MODBUS
7SR220 Technical Manual
Chapter 4 - Page 40 of 96 © 2017 Siemens Protection Devices Limited
In this MODBUS implementation the 16 bit value is stored in a 16 bit register in Big-Endian format.
As an example, assume bits 1, 3, 9 and 12 are set. The binary representation of this would be
00001001000001012giving a hex representation of 0905h. Assume this is stored in the register 30001,
it would look as follows:
On reception this register should be interpreted as a 16 bit integer.
Address
30001
Value
0905
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 41 of 96
4.3 Point List
The information shown below is the default configuration.
4.3.1 Coils (Read Write Binary values)
Address
00001 Binary Output 1
Description
00002 Binary Output 2
00003 Binary Output 3
00004 Binary Output 4
00005 Binary Output 5
00006 Binary Output 6
00007 Binary Output 7
00008 Binary Output 8
00009 Binary Output 9
00010 Binary Output 10
00011 Binary Output 11
00012 Binary Output 12
00013 Binary Output 13
00014 Binary Output 14
00101 Setting G1 selected
00102 Setting G2 selected
00103 Setting G3 selected
00104 Setting G4 selected
00105 Setting G5 selected
00106 Setting G6 selected
00107 Setting G7 selected
00108 Setting G8 selected
00109 CB 1
00112 Auto-reclose active
00113 HotLine Working
00114 E/F Out
00115 SEF Out
00116 Inst Protection Out
00155 Remote Mode
00156 Out Of Service Mode
00157 Local Mode
00158 Local & Remote
00159 Man Override Sync
00160 79 Override Sync
00165 Reset Start Count
00180 CB 1 Opened
00181 CB 1 Closed
00200 User SP Command 1
00201 User SP Command 2
00202 User SP Command 3
00203 User SP Command 4
7SR220 Technical Manual
Chapter 4 - Page 42 of 96 © 2017 Siemens Protection Devices Limited
Address
Description
00204 User SP Command 5
00205 User SP Command 6
00206 User SP Command 7
00207 User SP Command 8
00208 User DP Command 1
00209 User DP Command 2
00210 User DP Command 3
00211 User DP Command 4
00212 User DP Command 5
00213 User DP Command 6
00214 User DP Command 7
00215 User DP Command 8
4.3.2 Inputs (Read Only Binary values)
Address Description
10001 Binary Input 1
10002 Binary Input 2
10003 Binary Input 3
10004 Binary Input 4
10005 Binary Input 5
10006 Binary Input 6
10007 Binary Input 7
10008 Binary Input 8
10009 Binary Input 9
10010 Binary Input 10
10011 Binary Input 11
10012 Binary Input 12
10013 Binary Input 13
10102 Remote Mode
10103 Out Of Service Mode
10104 Local Mode
10105 Local & Remote
10110 General Trip
10111 Trip Circuit Fail
10112 Start/Pick-up L1
10113 Start/Pick-up L2
10114 Start/Pick-up L3
10115 General Start/Pick-up
10116 VT Fuse Failure
10117 Earth Fault Forward/Line
10118 Earth Fault Reverse/Busbar
10119 Start/Pick-up N
10120 Fault Forward/Line
10121 Fault Reverse/Busbar
10122 51-1
10123 50-1
10124 51N-1
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 43 of 96
Address Description
10125 50N-1
10126 51G-1
10127 50G-1
10128 51-2
10129 50-2
10130 51N-2
10131 50N-2
10132 51G-2
10133 50G-2
10134 51-3
10135 50-3
10136 51N-3
10137 50N-3
10138 51G-3
10139 50G-3
10140 51-4
10141 50-4
10142 51N-4
10143 50N-4
10144 51G-4
10145 50G-4
10146 50BF Stage 2
10147 49-Alarm
10148 49-Trip
10149 60 CTS
10150 46IT
10151 46DT
10152 47-1
10153 47-2
10154 46BC
10155 27/59-1
10156 27/59-2
10157 27/59-3
10158 27/59-4
10159 59NIT
10160 59NDT
10161 81-1
10162 81-2
10163 81-3
10164 81-4
10165 81-5
10166 81-6
10167 64H
10168 37-1
10169 37-2
10170 Vx27/59
10171 Auto-reclose active
10172 CB on by auto reclose
7SR220 Technical Manual
Chapter 4 - Page 44 of 96 © 2017 Siemens Protection Devices Limited
Address Description
10173 Reclaim
10174 Lockout
10175 HotLine Working
10176 Inst Protection Out
10177 CB Total Trip Count
10178 CB Delta Trip Count
10179 CB Count To AR Block
10180 I^2t CB Wear
10181 79 AR In progress
10182 Cold Load Active
10183 E/F Out
10184 P/F Inst Protection Inhibited
10185 E/F Inst Protection Inhibited
10186 SEF Inst Protection Inhibited
10187 Ext Inst Protection Inhibited
10202 51SEF-1
10203 50SEF-1
10204 51SEF-2
10205 50SEF-2
10206 51SEF-3
10207 50SEF-3
10208 51SEF-4
10209 50SEF-4
10210 SEF Out
10211 Trip Circuit Fail 1
10212 Trip Circuit Fail 2
10213 Trip Circuit Fail 3
10214 CB Total Trip Count
10215 CB Delta Trip Count
10216 CB Count To AR Block
10217 CB Frequent Ops Count
10218 I^2t CB Wear
10219 CB 1 Opened
10220 CB 1 Closed
10283 Close Circuit Fail 1
10284 Close Circuit Fail 2
10285 Close Circuit Fail 3
10286 Close Circuit Fail
10290 General Alarm 1
10291 General Alarm 2
10292 General Alarm 3
10293 General Alarm 4
10294 General Alarm 5
10295 General Alarm 6
10296 General Alarm 7
10297 General Alarm 8
10298 General Alarm 9
10299 General Alarm 10
10300 General Alarm 11
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 45 of 96
Address Description
10301 General Alarm 12
10302 Quick Logic E1
10303 Quick Logic E2
10304 Quick Logic E3
10305 Quick Logic E4
10306 Quick Logic E5
10307 Quick Logic E6
10308 Quick Logic E7
10309 Quick Logic E8
10310 Quick Logic E9
10311 Quick Logic E10
10312 Quick Logic E11
10313 Quick Logic E12
10314 Quick Logic E13
10315 Quick Logic E14
10316 Quick Logic E15
10317 Quick Logic E16
10334 60 CTS-I
10335 81HBL2
10336 37G-1
10337 37G-2
10338 37SEF-1
10339 37SEF-2
10352 25 System Split
10353 25 Live Line
10354 25 Live Bus
10355 25 Line U/V
10356 25 Bus U/V
10357 25 Voltage Dif >
10358 25 CS Slip Freq >
10359 25 SS Slip Freq >
10360 25 COZ Slip Freq >
10361 25 In Sync
10362 25 CS In Progress
10363 25 SS In Progress
10364 25 COZ In Progress
10365 25 System Split LO
10366 60VTF-Bus
10367 50BF Stage 1
10368 Wattmetric Po>
10369 37-PhA
10370 37-PhB
10371 37-PhC
10378 50BF-PhA
10379 50BF-PhB
10380 50BF-PhC
10381 50BF-EF
10383 60 CTS-I-PhA
7SR220 Technical Manual
Chapter 4 - Page 46 of 96 © 2017 Siemens Protection Devices Limited
Address
Description
10384 60 CTS-I-PhB
10385 60 CTS-I-PhC
10390 Trip PhA
10391 Trip PhB
10392 Trip PhC
10401 27/59 PhA
10402 27/59 PhB
10403 27/59 PhC
10410 CB Alarm
10411 General Alarm 13
10412 General Alarm 14
10413 General Alarm 15
10414 General Alarm 16
10415 General Alarm 17
10416 General Alarm 18
10417 General Alarm 19
10418 General Alarm 20
10501 Virtual Input 1
10502 Virtual Input 2
10503 Virtual Input 3
10504 Virtual Input 4
10505 Virtual Input 5
10506 Virtual Input 6
10507 Virtual Input 7
10508 Virtual Input 8
10509 Virtual Input 9
10510 Virtual Input 10
10511 Virtual Input 11
10512 Virtual Input 12
10513 Virtual Input 13
10514 Virtual Input 14
10515 Virtual Input 15
10516 Virtual Input 16
10601 LED 1
10602 LED 2
10603 LED 3
10604 LED 4
10605 LED 5
10606 LED 6
10607 LED 7
10608 LED 8
10609 LED 9
10610 LED 10
10611 LED 11
10612 LED 12
10613 LED 13
10614 LED 14
10615 LED 15
10616 LED 16
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 47 of 96
Address Description
10701 LED PU 1
10702 LED PU 2
10703 LED PU 3
10704 LED PU 4
10705 LED PU 5
10706 LED PU 6
10707 LED PU 7
10708 LED PU 8
10709 LED PU 9
10710 LED PU 10
10711 LED PU 11
10712 LED PU 12
10713 LED PU 13
10714 LED PU 14
10715 LED PU 15
10716 LED PU 16
10800 Cold Start
10801 Warm Start
10802 Re-Start
10803 Power On
10804 Expected Restart
10805 Unexpected Restart
10806 Reset Start Count
10900 User SP Command 1
10901 User SP Command 2
10902 User SP Command 3
10903 User SP Command 4
10904 User SP Command 5
10905 User SP Command 6
10906 User SP Command 7
10907 User SP Command 8
10908 User DP Command 1
10909 User DP Command 2
10910 User DP Command 3
10911 User DP Command 4
10912 User DP Command 5
10913 User DP Command 6
10914 User DP Command 7
10915 User DP Command 8
10916 32-1
10917 32-2
10918 32S-1
10919 32S-2
10920 55-1
10921 55-2
11020 User Output 1
11021 User Output 2
11022 User Output 3
7SR220 Technical Manual
Chapter 4 - Page 48 of 96 © 2017 Siemens Protection Devices Limited
Address Description
11023 User Output 4
11024 User Output 5
11025 User Output 6
11026 User Output 7
11027 User Output 8
11028 User Output 9
11029 User Output 10
11030 User Output 11
11031 User Output 12
11032 User Output 13
11033 User Output 14
11034 User Output 15
11035 User Output 16
11036 User Output 17
11037 User Output 18
11038 User Output 19
11039 User Output 20
11040 User Output 21
11041 User Output 22
11042 User Output 23
11043 User Output 24
11044 User Output 25
11045 User Output 26
11046 User Output 27
11047 User Output 28
11048 User Output 29
11049 User Output 30
11050 User Output 31
11051 User Output 32
11071 E/F In
11072 SEF In
11073 CB DBI
11074 CB Travelling
11075 Close CB Failed
11076 Open CB Failed
11077 Start Count Alarm
11078 50AFD PhA
11079 50AFD PhB
11080 50AFD PhC
11081 50AFD
11082 AFD Zone 1 Flash
11083 AFD Zone 1
11084 AFD Zone 2 Flash
11085 AFD Zone 2
11086 AFD Zone 3 Flash
11087 AFD Zone 3
11088 AFD Zone 4 Flash
11089 AFD Zone 4
11090 AFD Zone 5 Flash
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 49 of 96
Address Description
11091 AFD Zone 5
11092 AFD Zone 6 Flash
11093 AFD Zone 6
11094
11095
21LB-3P Fwd
21LB-3P Rev
11096 21LB-1P Fwd
11097 21LB-1P Rev
11098 81HBL5
4.3.3 Input Registers (Read Only Registers)
Address
30001
Description
Event Count
Format
EVENTCOUNT
Mult
0.000000
Description
Events Counter
30002 Event EVENT 0.000000 8 Registers
30010 Vab Primary FP_32BITS_3DP 1.000000 Vab V
30012 Vbc Primary FP_32BITS_3DP 1.000000 Vbc V
30014 Vca Primary FP_32BITS_3DP 1.000000 Vca V
30016 Va Primary FP_32BITS_3DP 1.000000 Va V
30018 Vb Primary FP_32BITS_3DP 1.000000 Vb V
30020 Vc Primary FP_32BITS_3DP 1.000000 Vc V
30022 Va Secondary FP_32BITS_3DP 1.000000 Va V
30024 Vb Secondary FP_32BITS_3DP 1.000000 Vb V
30026 Vc Secondary FP_32BITS_3DP 1.000000 Vc V
30034 Vab Nominal FP_32BITS_3DP 1.000000 Vab Degrees
30036 Vbc Nominal FP_32BITS_3DP 1.000000 Vbc Degrees
30038 Vca Nominal FP_32BITS_3DP 1.000000 Vca Degrees
30040 Va Nominal FP_32BITS_3DP 1.000000 Va Degrees
30042 Vb Nominal FP_32BITS_3DP 1.000000 Vb Degrees
30044 Vc Nominal FP_32BITS_3DP 1.000000 Vc Degrees
30048 Vzps FP_32BITS_3DP 1.000000 Vzps V
30050 Vpps FP_32BITS_3DP 1.000000 Vpps V
30052 Vnps FP_32BITS_3DP 1.000000 Vnps V
30054 Vzps FP_32BITS_3DP 1.000000 Vzps Degrees
30056 Vpps FP_32BITS_3DP 1.000000 Vpps Degrees
30058 Vnps FP_32BITS_3DP 1.000000 Vnps Degrees
30060 Frequency FP_32BITS_3DP 1.000000 Frequency Hz
30064 Ia Primary FP_32BITS_3DP 1.000000 Ia A
30066 Ib Primary FP_32BITS_3DP 1.000000 Ib A
30068 Ic Primary FP_32BITS_3DP 1.000000 Ic A
30070 Ia Secondary FP_32BITS_3DP 1.000000 Ia A
30072 Ib Secondary FP_32BITS_3DP 1.000000 Ib A
30074 Ic Secondary FP_32BITS_3DP 1.000000 Ic A
30076 Ia Nominal FP_32BITS_3DP 1.000000 Ia xIn
30078 Ib Nominal FP_32BITS_3DP 1.000000 Ib xIn
30080 Ic Nominal FP_32BITS_3DP 1.000000 Ic xIn
30082 Ia Nominal FP_32BITS_3DP 1.000000 Ia Degrees
30084 Ib Nominal FP_32BITS_3DP 1.000000 Ib Degrees
7SR220 Technical Manual
Chapter 4 - Page 50 of 96 © 2017 Siemens Protection Devices Limited
Address
Description Format Mult Description
30086 Ic Nominal FP_32BITS_3DP 1.000000 Ic Degrees
30088 In Primary FP_32BITS_3DP 1.000000 In A
30090 In Secondary FP_32BITS_3DP 1.000000 In A
30092 In Nominal FP_32BITS_3DP 1.000000 In xInom
30094 Ig Primary FP_32BITS_3DP 1.000000 Ig A
30096 Ig Secondary FP_32BITS_3DP 1.000000 Ig A
30098 Ig Nominal FP_32BITS_3DP 1.000000 Ig xInom
30100 Izps Nominal FP_32BITS_3DP 1.000000 Izps xIn
30102 Ipps Nominal FP_32BITS_3DP 1.000000 Ipps xIn
30104 Inps Nominal FP_32BITS_3DP 1.000000 Inps xIn
30106 Izps Nominal FP_32BITS_3DP 1.000000 Izps Degrees
30108 Ipps Nominal FP_32BITS_3DP 1.000000 Ipps Degrees
30110 Inps Nominal FP_32BITS_3DP 1.000000 Inps Degrees
30112 Active Power A FP_32BITS_3DP 0.000001 A Phase W
30114 Active Power B FP_32BITS_3DP 0.000001 B Phase W
30116 Active Power C FP_32BITS_3DP 0.000001 C Phase W
30118 P (3P) FP_32BITS_3DP 0.000001 3 Phase W
30120 Reactive Power A FP_32BITS_3DP 0.000001 Phase A VAr
30122 Reactive Power B FP_32BITS_3DP 0.000001 Phase B VAr
30124 Reactive Power C FP_32BITS_3DP 0.000001 Phase C VAr
30126 Q (3P) FP_32BITS_3DP 0.000001 3 Phase VAr
30128 Apparent Power A FP_32BITS_3DP 0.000001 Phase A VA
30130 Apparent Power B FP_32BITS_3DP 0.000001 Phase B VA
30132 Apparent Power C FP_32BITS_3DP 0.000001 Phase C VA
30134 S (3P) FP_32BITS_3DP 0.000001 3 Phase VA
30136 Power Factor A FP_32BITS_3DP 1.000000 Phase A
30138 Power Factor B FP_32BITS_3DP 1.000000 Phase B
30140 Power Factor C FP_32BITS_3DP 1.000000 Phase C
30142 Power Factor(3P) FP_32BITS_3DP 1.000000 3 Phase
30144 Act Energy Exp UINT32 1.000000 Act Energy Exp
30146 Act Energy Imp UINT32 1.000000 Act Energy Imp
30148 React Energy Exp UINT32 1.000000 React Energy Exp
30150 React Energy Imp UINT32 1.000000 React Energy Imp
30152 Thermal Status Ph A UINT16 1.000000 Thermal Status Ph A %
30153 Thermal Status Ph B UINT16 1.000000 Thermal Status Ph B %
30154 Thermal Status Ph C UINT16 1.000000 Thermal Status Ph C %
30167 Fault Records UINT16 1.000000 Fault Records
30168 Event Records UINT16 1.000000 Event Records
30169 Waveform Records UINT16 1.000000 Waveform Records
30170 Vab Secondary FP_32BITS_3DP 1.000000 Vab V
30172 Vbc Secondary FP_32BITS_3DP 1.000000 Vbc V
30174 Vca Secondary FP_32BITS_3DP 1.000000 Vca V
30176 Vn Primary FP_32BITS_3DP 1.000000 Vn V
30178 Vn Secondary FP_32BITS_3DP 1.000000 Vn V
30180 Vn Secondary FP_32BITS_3DP 1.000000 Vn Degrees
30182 Vx Primary FP_32BITS_3DP 1.000000 Vx V
30184 Vx Secondary FP_32BITS_3DP 1.000000 Vx V
30186 Vx Secondary FP_32BITS_3DP 1.000000 Vx Degrees
30193 I Phase A Max FP_32BITS_3DP 1.000000 Ia Max Demand
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 51 of 96
Address Description Format Mult Description
30195 I Phase B Max FP_32BITS_3DP 1.000000 Ib Max Demand
30197 I Phase C Max FP_32BITS_3DP 1.000000 Ic Max Demand
30199 P 3P Max FP_32BITS_3DP 0.000001 Power Max Demand
30201 Q 3P Max FP_32BITS_3DP 0.000001 VARs Max Demand
30203 Ig Max FP_32BITS_3DP 1.000000 Ig Max Demand
30207 Isef Primary FP_32BITS_3DP 1.000000 Isef A
30209 Isef Secondary FP_32BITS_3DP 1.000000 Isef A
30211 Isef Nominal FP_32BITS_3DP 1.000000 Isef xInom
30213 Fault Distance Percent FP_32BITS_3DP 1.000000 Fault Distance Percent
30215 Fault Reactance FP_32BITS_3DP 1.000000 Fault Reactance
30241 CB Total Trip Count UINT32 1.000000 CB Total Trip Count
30243 CB Delta Trip Count UINT32 1.000000 CB Delta Trip Count
30245 CB Count To AR Block UINT32 1.000000 CB Count to AR Block
30247 CB Frequent Ops Count UINT32 1.000000 CB Frequent Ops Count
30293 Bus Freq FP_32BITS_3DP 1.000000 Vx Frequency
30295 Phase Diff FP_32BITS_3DP 1.000000 25 Phase Diff
30297 Slip Freq FP_32BITS_3DP 1.000000 25 Slip Freq
30299 Voltage Diff FP_32BITS_3DP 1.000000 25 Voltage Diff
30301 Ia Last Trip FP_32BITS_3DP 1.000000 Ia Fault
30303 Ib Last Trip FP_32BITS_3DP 1.000000 Ib Fault
30305 Ic Last Trip FP_32BITS_3DP 1.000000 Ic Fault
30307 Va Last Trip FP_32BITS_3DP 1.000000 Va Fault
30309 Vb Last Trip FP_32BITS_3DP 1.000000 Vb Fault
30311 Vc Last Trip FP_32BITS_3DP 1.000000 Vc Fault
30313 In Last Trip FP_32BITS_3DP 1.000000 In Fault
30315 Ig Last Trip FP_32BITS_3DP 1.000000 Ig Fault
30317 Isef Last Trip FP_32BITS_3DP 1.000000 Isef Fault
30319 V Phase A Max FP_32BITS_3DP 1.000000 Va Max Demand
30321 V Phase B Max FP_32BITS_3DP 1.000000 Vb Max Demand
30323 V Phase C Max FP_32BITS_3DP 1.000000 Vc Max Demand
30325 V Phase AB Max FP_32BITS_3DP 1.000000 Vab Max Demand
30327 V Phase BC Max FP_32BITS_3DP 1.000000 Vbc Max Demand
30329 V Phase CA Max FP_32BITS_3DP 1.000000 Vca Max Demand
30331 CB Ph A Trip Count UINT32 1.000000 CB Phase A Trip Count
30333 CB Ph B Trip Count UINT32 1.000000 CB Phase B Trip Count
30335 CB Ph C Trip Count UINT32 1.000000 CB Phase C Trip Count
30337 CB E/F Trip Count UINT32 1.000000 CB EF Trip Count
30341 LED1-n BITSTRING 0.000000 Led 1-16 status
30342 LED1-n BITSTRING 0.000000 Led 17-32 status
30343 INP1-n BITSTRING 0.000000 Input 1-16 status
30344 INP1-n BITSTRING 0.000000 Input 17-32 status
30345 OUT1-n BITSTRING 0.000000 Output 1-16 status
30346 OUT1-n BITSTRING 0.000000 Output 17-32 status
30347 VRT1-n BITSTRING 0.000000 Virtual 1-16 status
30348 VRT1-n BITSTRING 0.000000 Virtual 17-32 status
30349 EQN1-n BITSTRING 0.000000 Equation 1-16 status
30350 EQN1-n BITSTRING 0.000000 Equation 17-32 status
30352 Fault Distance Perunit FP_32BITS_3DP 1.000000 Fault Distance Perunit
7SR220 Technical Manual
Chapter 4 - Page 52 of 96 © 2017 Siemens Protection Devices Limited
Address
40001 Time
Address
Description Format Mult Description
30354 CB Wear A FP_32BITS_3DP 0.000001 CB Wear A
30356 CB Wear B FP_32BITS_3DP 0.000001 CB Wear B
30358 CB Wear C FP_32BITS_3DP 0.000001 CB Wear C
30360 CB Wear A Remaining FP_32BITS_3DP 1.000000 CB Wear A Remaining
30362 CB Wear B Remaining FP_32BITS_3DP 1.000000 CB Wear B Remaining
30364 CB Wear C Remaining FP_32BITS_3DP 1.000000 CB Wear C Remaining
30366 CB Wear Minimum FP_32BITS_3DP 1.000000 CB Wear Minimum
30380 StartCount FP_32BITS_3DP 1.000000 Start Count
30382 Start Count Target FP_32BITS_3DP 1.000000 Start Count Target
30392 Active Setting Group UINT16 1.000000 Active Setting Group
30400 Frequency Max FP_32BITS_3DP 1.000000 Frequency Max
30402 S 3P Max FP_32BITS_3DP 0.000010 S 3P Max
30444 Sec Active Power A FP_32BITS_3DP 1.000000 Secondary A Phase W
30446 Sec Active Power B FP_32BITS_3DP 1.000000 Secondary B Phase W
30448 Sec Active Power C FP_32BITS_3DP 1.000000 Secondary C Phase W
30450 Sec P (3P) FP_32BITS_3DP 1.000000 Secondary 3 Phase W
30452 Sec Reactive Power A FP_32BITS_3DP 1.000000 Secondary Phase A VAr
30454 Sec Reactive Power B FP_32BITS_3DP 1.000000 Secondary Phase B VAr
30456 Sec Reactive Power C FP_32BITS_3DP 1.000000 Secondary Phase C VAr
30458 Sec Q (3P) FP_32BITS_3DP 1.000000 Secondary 3 Phase VAr
30460 Sec Apparent Power A FP_32BITS_3DP 1.000000 Secondary Phase A VA
30462 Sec Apparent Power B FP_32BITS_3DP 1.000000 Secondary Phase B VA
30464 Sec Apparent Power C FP_32BITS_3DP 1.000000 Secondary Phase C VA
30466 Sec S (3P) FP_32BITS_3DP 1.000000 Secondary 3 Phase VA
30468 CB Trip Time Meter FP_32BITS_3DP 1.000000 CB Trip Time
30482 PF 3P Max FP_32BITS_3DP 1.000000 Power Factor 3 Phase Max
4.3.4 Holding Registers (Read Write Registers)
Description Format Mult Description
TIME_METER 0.000000 Time
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 53 of 96
5. DNP3 Definitions
5.1 Device Profile
The following table provides a “Device Profile Document in the standard format defined in the DNP 3.0 Subset
Definitions Document. While it is referred to in the DNP 3.0 Subset Definitions as a “Document,” it is in fact a table, and
only a component of a total interoperability guide. The table, in combination with the Implementation Table provided
in Section 5.2 (beginning on page 56), and the Point List Tables provided in Section 5.3 (beginning on page
62), should provide a complete configuration/interoperability guide for communicating with a device implementing
the Triangle MicroWorks, Inc. DNP 3.0 Slave Source Code Library.
DNP V3.0
DEVICE PROFILE DOCUMENT
(Also see the DNP 3.0 Implementation Table in Section 5.2, beginning on page 56).
Vendor Name: Siemens Protection Devices Ltd.
Device Name: 7SR220, using the Triangle MicroWorks, Inc. DNP3 Slave Source Code Library, Version 3.
Highest DNP Level Supported:
For Requests: Level 3
For Responses: Level 3
Device Function:
Master
Slave
Notable objects, functions, and/or qualifiers supported in addition to the Highest DNP Levels Supported (the
complete list is described in the attached table):
For static (non-change-event) object requests, request qualifier codes 07 and 08 (limited quantity), and 17 and 28
(index) are supported. Static object requests sent with qualifiers 07, or 08, will be responded with qualifiers 00 or
01.
Output Event Object 11 is supported.
Maximum Data Link Frame Size (octets):
Transmitted: 256
Received: 256
Maximum Application Fragment Size (octets):
Transmitted: 2048
Received: 2048
Maximum Data Link Re-tries:
None
Fixed (3)
Configurable from 0 to 65535 (Default 3)
Maximum Application Layer Re-tries:
None
Configurable
Requires Data Link Layer Confirmation:
Never
Always
Sometimes
Configurable as: Never, Only for multi-frame messages, or Always
Requires Application Layer Confirmation:
Never
Always
When reporting Event Data (Slave devices only)
When sending multi-fragment responses (Slave devices only)
Sometimes
Configurable as: “Only when reporting event data”, or “When reporting event data or multi-fragment
messages.”
Timeouts while waiting for:
Data Link Confirm:
None
Fixed at
Variable
Configurable (2sec)
Complete Appl. Fragment: None Fixed at
Variable
Configurable
Application Confirm:
None
Fixed at
Variable
Configurable (10sec)
Complete Appl. Response: None Fixed at
Variable
Configurable
Others:
Transmission Delay, (Configurable, default 0 sec)
Select/Operate Arm Timeout, (Configurable, default 5 sec)
Need Time Interval, (Configurable, default 30 minutes)
7SR220 Technical Manual
Chapter 4 - Page 54 of 96 © 2017 Siemens Protection Devices Limited
DNP V3.0
DEVICE PROFILE DOCUMENT
(Also see the DNP 3.0 Implementation Table in Section 5.2, beginning on page 56).
Unsolicited Notification Delay, (Configurable, default 5 seconds)
Unsolicited Response Retry Delay, (Configurable (between 3 - 9), default 5 seconds)
Unsolicited Offline Interval, (Configurable, default 30 seconds)
Binary Change Event Scan Period, (Polled, Not Applicable)
Double Bit Change Event Scan Period, (Polled - Not Applicable)
Analog Change Event Scan Period, (Polled - Not Applicable)
Counter Change Event Scan Period, (Polled - Not Applicable)
Frozen Counter Change Event Scan Period, (Polled - Not Applicable)
String Change Event Scan Period, (Unsupported - Not Applicable)
Virtual Terminal Event Scan Period, (Unsupported - Not Applicable)
Sends/Executes Control Operations:
WRITE Binary Outputs Never Always Sometimes Configurable
SELECT/OPERATE Never Always Sometimes Configurable
DIRECT OPERATE Never Always Sometimes Configurable
DIRECT OPERATE - NO ACK Never Always Sometimes Configurable
Count > 1 Never Always Sometimes Configurable
Pulse On Never Always Sometimes Configurable
Pulse Off Never Always Sometimes Configurable
Latch On Never Always Sometimes Configurable
Latch Off Never Always Sometimes Configurable
Queue
Never Always Sometimes Configurable
Clear Queue
Never
Always Sometimes Configurable
Attach explanation if “Sometimes” or “Configurable” was checked for any operation.
Reports Binary Input Change Events when no specific
variation requested:
Never
Only time-tagged
Only non-time-tagged
Configurable to send one or the other
Reports time-tagged Binary Input Change Events when
no specific variation requested:
Never
Binary Input Change With Time
Binary Input Change With Relative Time
Configurable
Sends Unsolicited Responses:
Never
Configurable
Only certain objects
Sometimes (attach explanation)
ENABLE/DISABLE UNSOLICITED
Function codes supported
Sends Static Data in Unsolicited Responses:
Never
When Device Restarts
When Status Flags Change
No other options are permitted.
Default Counter Object/Variation:
No Counters Reported
Configurable
Default Object
Default Variation:
Point-by-point list attached
Counters Roll Over at:
No Counters Reported
Configurable (attach explanation)
16 Bits
32 Bits
Other Value:
Point-by-point list attached
Sends Multi-Fragment Responses:
Yes
No
Configurable
Sequential File Transfer Support:
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 55 of 96
DNP V3.0
DEVICE PROFILE DOCUMENT
(Also see the DNP 3.0 Implementation Table in Section 5.2, beginning on page 56).
File Transfer Support
Append File Mode
Yes
Yes
No
No
Custom Status Code Strings Yes No
Permissions Field Yes No
File Events Assigned to Class Yes No
File Events Send Immediately Yes No
Multiple Blocks in a Fragment
Max Number of Files Open 0
Yes No
7SR220 Technical Manual
Chapter 4 - Page 56 of 96 © 2017 Siemens Protection Devices Limited
5.2 Implementation Table
The following table identifies which object variations, function codes, and qualifiers the Triangle MicroWorks, Inc.
DNP 3.0 Slave Source Code Library supports in both request messages and in response messages. For static (non-
change-event) objects, requests sent with qualifiers 00, 01, 06, 07, or 08, will be responded with qualifiers 00 or 01.
Requests sent with qualifiers 17 or 28 will be responded with qualifiers 17 or 28. For change-event objects, qualifiers
17 or 28 are always responded.
In the table below, text shaded as 00, 01 (start stop) indicates Subset Level 3 functionality (beyond Subset Level 2).
In the table below, text shaded as 07, 08 (limited qty) indicates functionality beyond Subset Level 3.
OBJECT REQUEST
(Library will parse)
RESPONSE
(Library will respond with)
Object
Number
1
Variation
0
Description
Binary Input
- Any Variation
Function Codes
(dec)
1 (read)
22 (assign class)
Qualifier Codes
(hex)
00, 01 (start-stop)
06 (no range, or all)
07, 08 (limited qty)
17, 27, 28 (index)
Function
Codes
(dec)
Qualifier Codes
(hex)
1 1 Binary Input 1 (read)
00, 01 (start-stop)
06 (no range, or all)
07, 08 (limited qty)
17, 27, 28 (index)
129
(response)
00, 01 (start-stop)
17, 28 (index
- see note 2)
12 (default -
see note 1)
Binary Input
with Status 1 (read)
00, 01 (start-stop)
06 (no range, or all)
07, 08 (limited qty)
17, 27, 28 (index)
129
(response)
00, 01 (start-stop)
17, 28 (index
- see note 2)
20Binary Input Change
- Any Variation 1 (read) 06 (no range, or all)
07, 08 (limited qty)
2 1 Binary Input Change
without Time 1 (read) 06 (no range, or all)
07, 08 (limited qty)
129
(response)
130
(unsol. resp)
17, 28 (index)
22 (default -
see note 1)
Binary Input Change
with Time 1 (read) 06 (no range, or all)
07, 08 (limited qty)
129
17, 28 (index)
(response)
130
(unsol. resp)
129
2 3 Binary Input Change
with Relative Time 1 (read) 06 (no range, or all)
07, 08 (limited qty)
(response)
130 17, 28 (index)
(unsol. resp)
30Double Bit Input
- Any Variation
1 (read)
22 (assign class)
00, 01 (start-stop)
06 (no range, or all)
07, 08 (limited qty)
17, 27, 28 (index)
31 (default -
see note 1) Double Bit Input 1 (read)
00, 01 (start-stop)
06 (no range, or all)
07, 08 (limited qty)
17, 27, 28 (index)
129
(response)
00, 01 (start-stop)
17, 28 (index
- see note 1)
32Double Bit Input
with Status 1 (read)
00, 01 (start-stop)
06 (no range, or all)
07, 08 (limited qty)
17, 27, 28 (index)
129
(response)
00, 01 (start-stop)
17, 28 (index
- see note 1)
4 0 Double Bit Input Change
- Any Variation 1 (read) 06 (no range, or all)
07, 08 (limited qty)
4 1 Double Bit Input Change
without Time 1 (read) 06 (no range, or all)
07, 08 (limited qty)
129
17, 28 (index)
(response)
130
(unsol. resp)
129
4 2 Double Bit Input Change
with Time 1 (read) 06 (no range, or all)
07, 08 (limited qty)
(response)
130 17, 28 (index)
(unsol. resp)
43 (default -
see note 1)
Double Bit Input Change
with Relative Time 1 (read) 06 (no range, or all)
07, 08 (limited qty)
129
17, 28 (index)
(response)
130
(unsol. resp)
10 0Binary Output
- Any Variation
1 (read)
22 (assign class)
00, 01 (start-stop)
06 (no range, or all)
07, 08 (limited qty)
17, 27, 28 (index)
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 57 of 96
OBJECT
REQUEST
(Library will parse)
RESPONSE
(Library will respond with)
Object
Number Variation Description Function Codes
(dec)
Qualifier Codes
(hex)
Function Qualifier Codes
Codes
(hex)
(dec)
10
10
1
2 (default -
see note 1)
Binary Output
Binary Output
Status
1 (read)
00, 01 (start-stop)
06 (no range, or all)
07, 08 (limited qty)
17, 27, 28 (index)
129 00, 01 (start-stop)
(response) 17, 28 (index
- see note 2)
2 (write)
1 (read)
00, 01 (start-stop)
00, 01 (start-stop)
06 (no range, or all)
07, 08 (limited qty)
17, 27, 28 (index)
129 00, 01 (start-stop)
(response) 17, 28 (index
- see note 2)
11 0 Binary Output Change 1 (read)
- Any Variation
06 (no range, or all)
07, 08 (limited qty)
11
11
1
2 (default -
see note 1)
Binary Output Change 1 (read)
without Time
Binary Output Change 1 (read)
with Time
06 (no range, or all)
07, 08 (limited qty)
06 (no range, or all)
07, 08 (limited qty)
129
(response) 17, 28 (index)
130
(unsol. resp)
129
(response) 17, 28 (index)
130
(unsol. resp)
12 0 Control Relay 22 (assign class)
Output Block
00, 01 (start-stop)
06 (no range, or all)
07, 08 (limited qty)
17, 27, 28 (index)
12 1
3 (select)
Control Relay 4 (operate)
Output Block 5 (direct op)
6 (dir. op, noack)
17, 28 (index) 129 echo of request
(response)
12
12
2
3
3 (select)
Pattern Control
Block
3 (select)
Pattern Mask
7 (limited quantity)
00, 01 (start-stop)
129 echo of request
(response)
129 echo of request
(response)
13 0
Binary Output
Command Event 1 (read)
- Any Variation
06 (no range, or all)
07, 08 (limited qty)
13 1 (default -
see note 1)
Binary Output
Command Event 1 (read)
without Time
06 (no range, or all)
07, 08 (limited qty)
129
(response) 17, 28 (index)
130
(unsol. resp)
13 2
Binary Output
Command Event 1 (read)
with Time
06 (no range, or all)
07, 08 (limited qty)
129
(response) 17, 28 (index)
130
(unsol. resp)
20 0 Binary Counter
- Any Variation
1 (read)
22 (assign class)
00, 01 (start-stop)
06 (no range, or all)
07, 08 (limited qty)
17, 27, 28 (index)
7 (freeze)
8 (freeze noack)
9 (freeze clear)
10 (frz. cl. noack)
00, 01 (start-stop)
06 (no range, or all)
07, 08 (limited qty)
20 1 32-Bit Binary Counter 1 (read)
(with Flag)
00, 01 (start-stop)
06 (no range, or all)
07, 08 (limited qty)
17, 27, 28 (index)
129 00, 01 (start-stop)
(response) 17, 28 (index
- see note 2)
20
20
2
3
16-Bit Binary Counter 1 (read)
(with Flag)
32-Bit Delta Counter
(with Flag)
00, 01 (start-stop)
06 (no range, or all)
07, 08 (limited qty)
17, 27, 28 (index)
129 00, 01 (start-stop)
(response) 17, 28 (index
- see note 2)
20 4 16-Bit Delta Counter
(with Flag)
20 5 (default
see note 1)
32-Bit Binary Counter 1 (read)
(without Flag)
00, 01 (start-stop)
06 (no range, or all)
07, 08 (limited qty)
17, 27, 28 (index)
129 00, 01 (start-stop)
(response) 17, 28 (index
- see note 2)
4 (operate)
5 (direct op)
6 (dir. op, noack)
4 (operate)
5 (direct op)
6 (dir. op, noack)
7SR220 Technical Manual
Chapter 4 - Page 58 of 96 © 2017 Siemens Protection Devices Limited
OBJECT REQUEST
(Library will parse)
RESPONSE
(Library will respond with)
Object
Number Variation Description Function Codes
(dec)
Qualifier Codes
(hex)
Function
Codes
(dec)
Qualifier Codes
(hex)
20 6 16-Bit Binary Counter
(without Flag) 1 (read)
00, 01 (start-stop)
06 (no range, or all)
07, 08 (limited qty)
17, 27, 28 (index)
129
(response)
00, 01 (start-stop)
17, 28 (index
- see note 2)
20 7 32-Bit Delta Counter
(without Flag)
20 8 16-Bit Delta Counter
(without Flag)
21 0Frozen Counter
-
Any Variation
1 (read)
22 (assign class)
00, 01 (start
-
stop)
129
(response)
00, 01 (start-stop)
17, 28 (index
- see note 2)
06 (no range, or all)
07, 08 (limited qty)
17, 27, 28 (index)
21 1 32-Bit Frozen Counter
(with Flag) 1 (read)
00, 01 (start-stop)
06 (no range, or all)
07, 08 (limited qty)
17, 27, 28 (index)
21 2 16-Bit Frozen Counter
(with Flag) 1 (read)
00, 01 (start-stop)
06 (no range, or all)
07, 08 (limited qty)
17, 27, 28 (index)
129
(response)
00, 01 (start-stop)
17, 28 (index
- see note 2)
21 3 32-Bit Frozen Delta
Counter (with Flag)
21 4 16-Bit Frozen Delta
Counter (with Flag)
21 5 32-Bit Frozen Counter
(without Time Of Freeze) 1 (read)
00, 01 (start-stop)
06 (no range, or all)
07, 08 (limited qty)
17, 27, 28 (index)
129
(response)
00, 01 (start-stop)
17, 28 (index
- see note 2)
21 6 16-Bit Frozen Counter
(without Time Of Freeze) 1 (read)
00, 01 (start-stop)
06 (no range, or all)
07, 08 (limited qty)
17, 27, 28 (index)
129
(response)
00, 01 (start-stop)
17, 28 (index
- see note 2)
21 7 32-Bit Frozen Delta Counter
(with Time Of Freeze)
21 8 16-Bit Frozen Delta Counter
(with Time Of Freeze)
21 9 (default -
see note 1)
32-Bit Frozen Counter
(without Flag) 1 (read)
00, 01 (start-stop)
06 (no range, or all)
07, 08 (limited qty)
17, 27, 28 (index)
129
(response)
00, 01 (start-stop)
17, 28 (index
- see note 2)
21 10 16-Bit Frozen Counter
(without Flag) 1 (read)
00, 01 (start-stop)
06 (no range, or all)
07, 08 (limited qty)
17, 27, 28 (index)
129
(response)
00, 01 (start-stop)
17, 28 (index
- see note 2)
21 11 32-Bit Frozen Delta Counter
(without Flag)
21 12 16-Bit Frozen Delta Counter
(without Flag)
22 0 Counter Change Event
- Any Variation 1 (read) 06 (no range, or all)
07, 08 (limited qty)
22 1 (default -
see note 1)
32-Bit Counter Change
Event (without Time) 1 (read) 06 (no range, or all)
07, 08 (limited qty)
129
17, 28 (index)
(response)
130
(unsol. resp)
129
22 2 16-Bit Counter Change
Event (without Time) 1 (read) 06 (no range, or all)
07, 08 (limited qty)
(response)
130 17, 28 (index)
(unsol. resp)
22 3
32-Bit Delta Counter
Change Event
(without Time)
22 4
16-Bit Delta Counter
1 (read) 06 (no range, or
all) 07, 08 (limited
qty)
129
17, 28 (index)
Change Event
(without Time)
22 5 32-Bit Counter Change
Event (with Time)
(response)
130
(unsol. resp)
22 6 16-Bit Counter Change
Event (with Time) 1 (read) 06 (no range, or all)
07, 08 (limited qty)
129
(response)
130
17, 28 (index)
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 59 of 96
OBJECT
REQUEST
(Library will parse)
RESPONSE
(Library will respond with)
Object
Number Variation Description Function Codes
(dec)
Qualifier Codes
(hex)
Function
Codes
(dec)
Qualifier Codes
(hex)
(unsol. resp)
22 7 32-Bit Delta Counter
Change Event (with Time)
22 8 16-Bit Delta Counter
Change Event (with Time)
23 0
Frozen Counter Event
(Variation 0 is used to
request default variation)
1 (read) 06 (no range, or all)
07, 08 (limited qty)
23 1 (default -
see note 1)
32-Bit Frozen
Counter Event 1 (read) 06 (no range, or all)
07, 08 (limited qty)
129
(response) 17, 28 (index)
23 2 16-Bit Frozen
Counter Event 1 (read) 06 (no range, or all)
07, 08 (limited qty)
129
(response) 17, 28 (index)
23 3 32-Bit Frozen Delta
Counter Event
23 4 16-Bit Frozen Delta
Counter Event
23 5 32-Bit Frozen Counter
Event (with Time) 1 (read) 06 (no range, or all)
07, 08 (limited qty)
129
17, 28 (index)
(response)
130
(unsol. resp)
129
23 6 32-Bit Frozen Counter
Event (with Time) 1 (read) 06 (no range, or all)
07, 08 (limited qty)
(response)
130 17, 28 (index)
(unsol. resp)
23 7 32-Bit Frozen Delta Counter
Event (with Time)
23 8 16-Bit Frozen Delta Counter
Event (with Time)
30 0 Analog Input
- Any Variation
1 (read)
22 (assign class)
00, 01 (start-stop)
06 (no range, or all)
07, 08 (limited qty)
17, 27, 28 (index)
30 1 32-Bit Analog Input 1 (read)
00, 01 (start-stop)
06 (no range, or all)
07, 08 (limited qty)
17, 27, 28 (index)
129
(response)
00, 01 (start-stop)
17, 28 (index
- see note 2)
30 2 (default -
see note 1) 16-Bit Analog Input 1 (read)
00, 01 (start-stop)
06 (no range, or all)
07, 08 (limited qty)
17, 27, 28 (index)
129
(response)
00, 01 (start-stop)
17, 28 (index
- see note 2)
30 3 32-Bit Analog Input
(without Flag) 1 (read)
00, 01 (start-stop)
06 (no range, or all)
07, 08 (limited qty)
17, 27, 28 (index)
129
(response)
00, 01 (start-stop)
17, 28 (index
- see note 2)
30 4 16-Bit Analog Input
(without Flag) 1 (read)
00, 01 (start-stop)
06 (no range, or all)
07, 08 (limited qty)
17, 27, 28 (index)
129
(response)
00, 01 (start-stop)
17, 28 (index
- see note 2)
30 5 short floating point 1 (read)
00, 01 (start-stop)
06 (no range, or all)
07, 08 (limited qty)
17, 27, 28 (index)
129
(response)
00, 01 (start-stop)
17, 28 (index
- see note 2)
30 6 long floating point 1 (read)
00, 01 (start-stop)
06 (no range, or all)
07, 08 (limited qty)
17, 27, 28 (index)
129
(response)
00, 01 (start-stop)
17, 28 (index
- see note 2)
31 0 Frozen Analog Input
- Any Variation
31 1 32-Bit Frozen Analog Input
31 2 16-Bit Frozen Analog Input
31 3 32-Bit Frozen Analog Input
(with Time of freeze)
31 4 16-Bit Frozen Analog Input
(with Time of freeze)
31 5 32-Bit Frozen Analog Input
(without Flag)
31 6 16-Bit Frozen Analog Input
(without Flag)
7SR220 Technical Manual
Chapter 4 - Page 60 of 96 © 2017 Siemens Protection Devices Limited
OBJECT REQUEST
(Library will parse)
RESPONSE
(Library will respond with)
Object
Number Variation Description Function Codes
(dec)
Qualifier Codes
(hex)
Function
Codes
(dec)
Qualifier Codes
(hex)
32 0Analog Change Event
- Any Variation) 1 (read) 06 (no range, or all)
07, 08 (limited qty)
32 1 32Bit-Analog Change Event
(without Time) 1 (read) 06 (no range, or all)
07, 08 (limited qty)
129
(response)
130
(unsol. resp)
17, 28 (index)
32 2 16Bit-Analog Change Event
(without Time) 1 (read) 06 (no range, or all)
07, 08 (limited qty)
129
17, 28 (index)
(response)
130
(unsol. resp)
129
32 3 32Bit-Analog Change Event
(with Time) 1 (read) 06 (no range, or all)
07, 08 (limited qty)
(response)
130 17, 28 (index)
(unsol. resp)
32 4 (default -
see note 1)
16Bit-Analog Change Event
(with Time) 1 (read) 06 (no range, or all)
07, 08 (limited qty)
129
17, 28 (index)
(response)
130
(unsol. resp)
32 5
short floating point
Analog Change Event
(without Time)
1 (read) 06 (no range, or all)
07, 08 (limited qty)
129
(response)
130
(unsol. resp)
17, 28 (index)
32 6
long floating point
Analog Change Event
(without Time)
1 (read) 06 (no range, or all)
07, 08 (limited qty)
129
(response)
130
(unsol. resp)
17, 28 (index)
32 7
short floating point
Analog Change Event
(with Time)
1 (read) 06 (no range, or all)
07, 08 (limited qty)
129
(response)
130
(unsol. resp)
17, 28 (index)
32 8
long floating point
Analog Change Event
(with Time)
1 (read) 06 (no range, or all)
07, 08 (limited qty)
129
(response)
130
(unsol. resp)
17, 28 (index)
33 0Frozen Analog Event
- Any Variation
33 1 32-Bit Frozen Analog Event
(without Time)
33 2 16-Bit Frozen Analog Event
(without Time)
33 3 32-Bit Frozen Analog Event
(with Time)
33 4 16-Bit Frozen Analog Event
(with Time)
33 5 Short Floating Point
Frozen Analog Event
33 6 Long Floating Point
Frozen Analog Event
33 7 Extended Floating Point
Frozen Analog Event
34
34
0
1
Analog Input Deadband
(Variation 0 is used to
request default
variation)
16 bit Analog
Input
Deadband
1 (read)
1 (read)
00, 01 (start-stop)
06 (no range, or all)
07, 08 (limited qty)
17, 27, 28 (index)
00, 01 (start-stop)
06 (no range, or all)
07, 08 (limited qty)
17, 27, 28 (index)
129
(response)
00, 01 (start-stop)
17, 28 (index
- see note 2)
00, 01 (start-stop)
2 (write) 07, 08 (limited qty)
17, 27, 28 (index)
34 2 (default -
see note 1)
32 bit Analog
Input Deadband
1 (read)
2(write)
00, 01 (start-stop)
06 (no range, or all)
07, 08 (limited qty)
17, 27, 28 (index)
00, 01 (start-stop)
07, 08 (limited qty)
17, 27, 28 (index)
129
(response)
00, 01 (start-stop)
17, 28 (index
- see note 2)
34 3 Short Floating Point
Analog Input Deadband 1 (read)
00, 01 (start-stop)
06 (no range, or all)
07, 08 (limited qty)
129
(response)
00, 01 (start-stop)
17, 28 (index
- see note 2)
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 61 of 96
OBJECT
REQUEST
(Library will parse)
RESPONSE
(Library will respond with)
Object
Number Variation Description Function Codes
(dec)
Qualifier Codes
(hex)
Function Qualifier Codes
Codes
(hex)
(dec)
17, 27, 28 (index)
2 (write)
00, 01 (start-stop)
07, 08 (limited qty)
17, 27, 28 (index)
50
50
0
1 (default -
see note 1)
Time and Date
Time and Date
1 (read) 07, 08 (limited qty) 129 07 (limited qty = 1)
(response)
2 (write)
00, 01 (start-stop)
07, 08 (limited qty)
17, 27, 28 (index)
50 3 Time and Date Last 2 (write)
Recorded Time 07 (limited qty)
51 1Time and Date CTO
129
(response) (limited qty = 1)
130
(unsol. resp)
51 2 Unsynchronized
Time and Date CTO
129
(response) (limited qty = 1)
130
(unsol. resp)
52 1 Time Delay Coarse 129 (limited qty = 1)
(response)
52 2 Time Delay Fine 129 (limited qty = 1)
(response)
60 0Not Defined
60 1 Class 0 Data 1 (read) 06 (no range, or all)
60
60
60
2
3
4
Class 1 Data
Class 2 Data
Class 3 Data
1 (read) 06 (no range, or all)
07, 08 (limited qty)
20 (enbl. unsol.)
21 (dab. unsol.)
22 (assign class)
1 (read)
06 (no range, or all)
06 (no range, or all)
07, 08 (limited qty)
20 (enbl. unsol.)
21 (dab. unsol.)
22 (assign class)
1 (read)
06 (no range, or all)
06 (no range, or all)
07, 08 (limited qty)
20 (enbl. unsol.)
21 (dab. unsol.)
22 (assign class)
06 (no range, or all)
80 1 Internal Indications
1 (read) 00, 01 (start-stop) 129 00, 01 (start-stop)
(response)
2 (write)(see note 3) 00 (start-
stop) index=7
No Object 13 (cold restart)
(function code only)
No Object 14 (warm restart)
(function code only)
No Object 23 (delay meas.)
(function code only)
No Object 24 (record
(function code only) current time)
Note 1: A Default variation refers to the variation responded when variation 0 is requested and/or in class 0, 1, 2, or
3 scans. Default variations are configurable; however, default settings for the configuration parameters are indicated
in the table above.
Note 2: For static (non-change-event) objects, qualifiers 17 or 28 are only responded when a request is sent with
qualifiers 17 or 28, respectively. Otherwise, static object requests sent with qualifiers 00, 01, 06, 07, or 08, will be
responded with qualifiers 00 or 01. (For change-event objects, qualifiers 17 or 28 are always responded.)
Note 3: Writes of Internal Indications are only supported for index 7 (Restart IIN1-7).
7SR220 Technical Manual
Chapter 4 - Page 62 of 96 © 2017 Siemens Protection Devices Limited
5.3 Point List
The tables below identify all the default data points provided by the implementation of the Triangle MicroWorks, Inc.
DNP 3.0 Slave Source Code Library.
This protocol can be set to use any or all of the relays hardware interfaces (USB, Fibre Optic, RS232 and RS485)
where fitted. The relay can communicate simultaneously on all ports regardless of protocol used.
The Station Address of the port being used must be set to a suitable address within the range 0 - 65534 to enable
communication. This can be set by the Communications Menu : COM n-xxxxx Station Address setting.
Communication via DNP3 over Ethernet requires external devices. Please refer to the documents TCPIP Catalogue
Sheet and TCPIP Interface Technical Guidance Notes for more information.
The information shown below is the default configuration.
5.3.1 Binary Input Points
The default binary input event buffer size is set to allow 100 events.
Binary inputs are by default returned in a class zero interrogation.
Note, not all points listed here apply to all builds of devices.
Binary Input Points
Static (Steady-State) Object Number: 1 (Packed Format)
Change Event Object Number: 1 (w/o Time)
Static Variation reported when variation 0 requested: 1 (Binary Input w/o status)
or 2 (Binary Input with status)
Change Event Variation reported when variation 0 requested: 1 (Binary Input Change w/o Time)
or 2 (Binary Input Change with Absolute Time)
or 3 (Binary Input Change with Relative Time)
Point
Index Description
Default Change Event
Assigned Class (1,
2, 3 or none)
Default Variation
Static Object 1
Default Variation
Event Object 2
1
Binary Input 1 0,2 2 2
2
Binary Input 2 0,2 2 2
3
Binary Input 3 0,2 2 2
4
Binary Input 4 0,2 2 2
5
Binary Input 5 0,2 2 2
6
Binary Input 6 0,2 2 2
7
Binary Input 7 0,2 2 2
8
Binary Input 8 0,2 2 2
9
Binary Input 9 0,2 2 2
10 Binary Input 10 0,2 2 2
11 Binary Input 11 0,2 2 2
12 Binary Input 12 0,2 2 2
13 Binary Input 13 0,2 2 2
35 Remote Mode 0,2 2 2
36 Out Of Service Mode 0,2 2 2
37 Local Mode 0,2 2 2
38 Local & Remote 0,2 2 2
40 General Trip 0,2 2 2
41 Trip Circuit Fail 0,2 2 2
42 Start/Pick-up L1 0,2 2 2
43 Start/Pick-up L2 0,2 2 2
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 63 of 96
Binary Input Points
Static (Steady-State) Object Number: 1 (Packed Format)
Change Event Object Number: 1 (w/o Time)
Static Variation reported when variation 0 requested: 1 (Binary Input w/o status)
or 2 (Binary Input with status)
Change Event Variation reported when variation 0 requested: 1 (Binary Input Change w/o Time)
or 2 (Binary Input Change with Absolute Time)
or 3 (Binary Input Change with Relative Time)
Point
Index Description
Default Change Event
Assigned Class (1,
2, 3 or none)
Default Variation
Static Object 1
Default Variation
Event Object 2
44 Start/Pick-up L3 0,2 2 2
45 General Start/Pick-up 0,2 2 2
46 VT Fuse Failure 0,2 2 2
47 Earth Fault Forward/Line 0,2 2 2
48 Earth Fault Reverse/Busbar 0,2 2 2
49 Start/Pick-up N 0,2 2 2
50 Fault Forward/Line 0,2 2 2
51 Fault Reverse/Busbar 0,2 2 2
52 51-1 0,2 2 2
53 50-1 0,2 2 2
54 51N-1 0,2 2 2
55 50N-1 0,2 2 2
56 51G-1 0,2 2 2
57 50G-1 0,2 2 2
58 51-2 0,2 2 2
59 50-2 0,2 2 2
60 51N-2 0,2 2 2
61 50N-2 0,2 2 2
62 51G-2 0,2 2 2
63 50G-2 0,2 2 2
64 60 CTS 0,2 2 2
65 46IT 0,2 2 2
66 46DT 0,2 2 2
67 47-1 0,2 2 2
68 47-2 0,2 2 2
69 46BC 0,2 2 2
70 27/59-1 0,2 2 2
71 27/59-2 0,2 2 2
72 27/59-3 0,2 2 2
73 27/59-4 0,2 2 2
74 59NIT 0,2 2 2
75 59NDT 0,2 2 2
76 81-1 0,2 2 2
77 81-2 0,2 2 2
78 81-3 0,2 2 2
79 81-4 0,2 2 2
80 Auto-reclose active 0,2 2 2
81 CB on by auto reclose 0,2 2 2
82 Reclaim 0,2 2 2
83 Lockout 0,2 2 2
84 81-5 0,2 2 2
7SR220 Technical Manual
Chapter 4 - Page 64 of 96 © 2017 Siemens Protection Devices Limited
Binary Input Points
Static (Steady-State) Object Number: 1 (Packed Format)
Change Event Object Number: 1 (w/o Time)
Static Variation reported when variation 0 requested: 1 (Binary Input w/o status)
or 2 (Binary Input with status)
Change Event Variation reported when variation 0 requested: 1 (Binary Input Change w/o Time)
or 2 (Binary Input Change with Absolute Time)
or 3 (Binary Input Change with Relative Time)
Point
Index Description
Default Change Event
Assigned Class (1,
2, 3 or none)
Default Variation
Static Object 1
Default Variation
Event Object 2
85 81-6 0,2 2 2
86 51-3 0,2 2 2
87 50-3 0,2 2 2
88 51N-3 0,2 2 2
89 50N-3 0,2 2 2
90 51G-3 0,2 2 2
91 50G-3 0,2 2 2
92 51-4 0,2 2 2
93 50-4 0,2 2 2
94 51N-4 0,2 2 2
95 50N-4 0,2 2 2
96 51G-4 0,2 2 2
97 50G-4 0,2 2 2
98 Cold Load Active 0,2 2 2
99 E/F Out 0,2 2 2
100 P/F Inst Protection Inhibited 0,2 2 2
101 E/F Inst Protection Inhibited 0,2 2 2
102 SEF Inst Protection Inhibited 0,2 2 2
103 Ext Inst Protection Inhibited 0,2 2 2
117 51SEF-1 0,2 2 2
118 50SEF-1 0,2 2 2
119 51SEF-2 0,2 2 2
120 50SEF-2 0,2 2 2
121 51SEF-3 0,2 2 2
122 50SEF-3 0,2 2 2
123 51SEF-4 0,2 2 2
124 50SEF-4 0,2 2 2
125 SEF Out 0,2 2 2
126 Trip Circuit Fail 1 0,2 2 2
127 Trip Circuit Fail 2 0,2 2 2
128 Trip Circuit Fail 3 0,2 2 2
129 CB Total Trip Count 0,2 2 2
130 CB Delta Trip Count 0,2 2 2
131 CB Count To AR Block 0,2 2 2
132 CB Frequent Ops Count 0,2 2 2
133 I^2t CB Wear 0,2 2 2
207 Close Circuit Fail 1 0,2 2 2
208 Close Circuit Fail 2 0,2 2 2
209 Close Circuit Fail 3 0,2 2 2
210 Close Circuit Fail 0,2 2 2
211 50BF Stage 1 0,2 2 2
212 50BF Stage 2 0,2 2 2
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 65 of 96
Binary Input Points
Static (Steady-State) Object Number: 1 (Packed Format)
Change Event Object Number: 1 (w/o Time)
Static Variation reported when variation 0 requested: 1 (Binary Input w/o status)
or 2 (Binary Input with status)
Change Event Variation reported when variation 0 requested: 1 (Binary Input Change w/o Time)
or 2 (Binary Input Change with Absolute Time)
or 3 (Binary Input Change with Relative Time)
Point
Index Description
Default Change Event
Assigned Class (1,
2, 3 or none)
Default Variation
Static Object 1
Default Variation
Event Object 2
213 49-Alarm 0,2 2 2
214 49-Trip 0,2 2 2
215 64H 0,2 2 2
216 Vx27/59 0,2 2 2
217 37-1 0,2 2 2
218 37-2 0,2 2 2
219 CB Alarm 0,2 2 2
225 General Alarm 1 0,2 2 2
226 General Alarm 2 0,2 2 2
227 General Alarm 3 0,2 2 2
228 General Alarm 4 0,2 2 2
229 General Alarm 5 0,2 2 2
230 General Alarm 6 0,2 2 2
231 General Alarm 7 0,2 2 2
232 General Alarm 8 0,2 2 2
233 General Alarm 9 0,2 2 2
234 General Alarm 10 0,2 2 2
235 General Alarm 11 0,2 2 2
236 General Alarm 12 0,2 2 2
237 Quick Logic E1 0,2 2 2
238 Quick Logic E2 0,2 2 2
239 Quick Logic E3 0,2 2 2
240 Quick Logic E4 0,2 2 2
241 Quick Logic E5 0,2 2 2
242 Quick Logic E6 0,2 2 2
243 Quick Logic E7 0,2 2 2
244 Quick Logic E8 0,2 2 2
245 Quick Logic E9 0,2 2 2
246 Quick Logic E10 0,2 2 2
247 Quick Logic E11 0,2 2 2
248 Quick Logic E12 0,2 2 2
249 Quick Logic E13 0,2 2 2
250 Quick Logic E14 0,2 2 2
251 Quick Logic E15 0,2 2 2
252 Quick Logic E16 0,2 2 2
269 60 CTS-I 0,2 2 2
270 81HBL2 0,2 2 2
271 37G-1 0,2 2 2
272 37G-2 0,2 2 2
273 Wattmetric Po> 0,2 2 2
274 37-PhA 0,2 2 2
7SR220 Technical Manual
Chapter 4 - Page 66 of 96 © 2017 Siemens Protection Devices Limited
Binary Input Points
Static (Steady-State) Object Number: 1 (Packed Format)
Change Event Object Number: 1 (w/o Time)
Static Variation reported when variation 0 requested: 1 (Binary Input w/o status)
or 2 (Binary Input with status)
Change Event Variation reported when variation 0 requested: 1 (Binary Input Change w/o Time)
or 2 (Binary Input Change with Absolute Time)
or 3 (Binary Input Change with Relative Time)
Point
Index Description
Default Change Event
Assigned Class (1,
2, 3 or none)
Default Variation
Static Object 1
Default Variation
Event Object 2
275 37-PhB 0,2 2 2
276 37-PhC 0,2 2 2
283 50BF-PhA 0,2 2 2
284 50BF-PhB 0,2 2 2
285 50BF-PhC 0,2 2 2
286 50BF-EF 0,2 2 2
287 79 Last Trip Lockout 0,2 2 2
288 60 CTS-I-PhA 0,2 2 2
289 60 CTS-I-PhB 0,2 2 2
290 60 CTS-I-PhC 0,2 2 2
291 Trip PhA 0,2 2 2
292 Trip PhB 0,2 2 2
293 Trip PhC 0,2 2 2
302 27/59 PhA 0,2 2 2
303 27/59 PhB 0,2 2 2
304 27/59 PhC 0,2 2 2
310 General Alarm 13 0,2 2 2
311 General Alarm 14 0,2 2 2
312 General Alarm 15 0,2 2 2
313 General Alarm 16 0,2 2 2
314 General Alarm 17 0,2 2 2
315 General Alarm 18 0,2 2 2
316 General Alarm 19 0,2 2 2
317 General Alarm 20 0,2 2 2
330 32-1 0,2 2 2
331 32-2 0,2 2 2
332 32S-1 0,2 2 2
333 32S-2 0,2 2 2
334 55-1 0,2 2 2
335 55-2 0,2 2 2
373 37SEF-1 0,2 2 2
374 37SEF-2 0,2 2 2
387 25 System Split 0,2 2 2
388 25 Live Line 0,2 2 2
389 25 Live Bus 0,2 2 2
390 25 Line U/V 0,2 2 2
391 25 Bus U/V 0,2 2 2
392 25 Voltage Dif > 0,2 2 2
393 25 CS Slip Freq > 0,2 2 2
394 25 SS Slip Freq > 0,2 2 2
395 25 COZ Slip Freq > 0,2 2 2
396 25 In Sync 0,2 2 2
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 67 of 96
Binary Input Points
Static (Steady-State) Object Number: 1 (Packed Format)
Change Event Object Number: 1 (w/o Time)
Static Variation reported when variation 0 requested: 1 (Binary Input w/o status)
or 2 (Binary Input with status)
Change Event Variation reported when variation 0 requested: 1 (Binary Input Change w/o Time)
or 2 (Binary Input Change with Absolute Time)
or 3 (Binary Input Change with Relative Time)
Point
Index Description
Default Change Event
Assigned Class (1,
2, 3 or none)
Default Variation
Static Object 1
Default Variation
Event Object 2
397 25 CS In Progress 0,2 2 2
398 25 SS In Progress 0,2 2 2
399 25 COZ In Progress 0,2 2 2
400 25 System Split LO 0,2 2 2
401 60VTF-Bus 0,2 2 2
411 Setting G1 selected 0,2 2 2
412 Setting G2 selected 0,2 2 2
413 Setting G3 selected 0,2 2 2
414 Setting G4 selected 0,2 2 2
415 Setting G5 selected 0,2 2 2
416 Setting G6 selected 0,2 2 2
417 Setting G7 selected 0,2 2 2
418 Setting G8 selected 0,2 2 2
420 79 AR In progress 0,2 2 2
422 HotLine Working 0,2 2 2
425 Inst Protection Out 0,2 2 2
427 CB 1 0,2 2 2
434 Man Override Sync 0,2 2 2
435 79 Override Sync 0,2 2 2
501 Virtual Input 1 0,2 2 2
502 Virtual Input 2 0,2 2 2
503 Virtual Input 3 0,2 2 2
504 Virtual Input 4 0,2 2 2
505 Virtual Input 5 0,2 2 2
506 Virtual Input 6 0,2 2 2
507 Virtual Input 7 0,2 2 2
508 Virtual Input 8 0,2 2 2
509 Virtual Input 9 0,2 2 2
510 Virtual Input 10 0,2 2 2
511 Virtual Input 11 0,2 2 2
512 Virtual Input 12 0,2 2 2
513 Virtual Input 13 0,2 2 2
514 Virtual Input 14 0,2 2 2
515 Virtual Input 15 0,2 2 2
516 Virtual Input 16 0,2 2 2
601 LED 1 0,2 2 2
602 LED 2 0,2 2 2
603 LED 3 0,2 2 2
604 LED 4 0,2 2 2
605 LED 5 0,2 2 2
606 LED 6 0,2 2 2
7SR220 Technical Manual
Chapter 4 - Page 68 of 96 © 2017 Siemens Protection Devices Limited
Binary Input Points
Static (Steady-State) Object Number: 1 (Packed Format)
Change Event Object Number: 1 (w/o Time)
Static Variation reported when variation 0 requested: 1 (Binary Input w/o status)
or 2 (Binary Input with status)
Change Event Variation reported when variation 0 requested: 1 (Binary Input Change w/o Time)
or 2 (Binary Input Change with Absolute Time)
or 3 (Binary Input Change with Relative Time)
Point
Index Description
Default Change Event
Assigned Class (1,
2, 3 or none)
Default Variation
Static Object 1
Default Variation
Event Object 2
607 LED 7 0,2 2 2
608 LED 8 0,2 2 2
609 LED 9 0,2 2 2
610 LED 10 0,2 2 2
611 LED 11 0,2 2 2
612 LED 12 0,2 2 2
613 LED 13 0,2 2 2
614 LED 14 0,2 2 2
615 LED 15 0,2 2 2
616 LED 16 0,2 2 2
701 LED PU 1 0,2 2 2
702 LED PU 2 0,2 2 2
703 LED PU 3 0,2 2 2
704 LED PU 4 0,2 2 2
705 LED PU 5 0,2 2 2
706 LED PU 6 0,2 2 2
707 LED PU 7 0,2 2 2
708 LED PU 8 0,2 2 2
709 LED PU 9 0,2 2 2
710 LED PU 10 0,2 2 2
711 LED PU 11 0,2 2 2
712 LED PU 12 0,2 2 2
713 LED PU 13 0,2 2 2
714 LED PU 14 0,2 2 2
715 LED PU 15 0,2 2 2
716 LED PU 16 0,2 2 2
801 Binary Output 1 0,2 2 2
802 Binary Output 2 0,2 2 2
803 Binary Output 3 0,2 2 2
804 Binary Output 4 0,2 2 2
805 Binary Output 5 0,2 2 2
806 Binary Output 6 0,2 2 2
807 Binary Output 7 0,2 2 2
808 Binary Output 8 0,2 2 2
809 Binary Output 9 0,2 2 2
810 Binary Output 10 0,2 2 2
811 Binary Output 11 0,2 2 2
812 Binary Output 12 0,2 2 2
813 Binary Output 13 0,2 2 2
814 Binary Output 14 0,2 2 2
871 Cold Start 0,2 2 2
872 Warm Start 0,2 2 2
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 69 of 96
Binary Input Points
Static (Steady-State) Object Number: 1 (Packed Format)
Change Event Object Number: 1 (w/o Time)
Static Variation reported when variation 0 requested: 1 (Binary Input w/o status)
or 2 (Binary Input with status)
Change Event Variation reported when variation 0 requested: 1 (Binary Input Change w/o Time)
or 2 (Binary Input Change with Absolute Time)
or 3 (Binary Input Change with Relative Time)
Point
Index Description
Default Change Event
Assigned Class (1,
2, 3 or none)
Default Variation
Static Object 1
Default Variation
Event Object 2
873 Re-Start 0,2 2 2
874 Power On 0,2 2 2
875 Expected Restart 0,2 2 2
876 Unexpected Restart 0,2 2 2
877 Reset Start Count 0,2 2 2
890 CB 1 Opened 0,2 2 2
891 CB 1 Closed 0,2 2 2
900 User SP Command 1 0,2 2 2
901 User SP Command 2 0,2 2 2
902 User SP Command 3 0,2 2 2
903 User SP Command 4 0,2 2 2
904 User SP Command 5 0,2 2 2
905 User SP Command 6 0,2 2 2
906 User SP Command 7 0,2 2 2
907 User SP Command 8 0,2 2 2
1010 User Output 1 0,2 2 2
1011 User Output 2 0,2 2 2
1012 User Output 3 0,2 2 2
1013 User Output 4 0,2 2 2
1014 User Output 5 0,2 2 2
1015 User Output 6 0,2 2 2
1016 User Output 7 0,2 2 2
1017 User Output 8 0,2 2 2
1018 User Output 9 0,2 2 2
1019 User Output 10 0,2 2 2
1020 User Output 11 0,2 2 2
1021 User Output 12 0,2 2 2
1022 User Output 13 0,2 2 2
1023 User Output 14 0,2 2 2
1024 User Output 15 0,2 2 2
1025 User Output 16 0,2 2 2
1026 User Output 17 0,2 2 2
1027 User Output 18 0,2 2 2
1028 User Output 19 0,2 2 2
1029 User Output 20 0,2 2 2
1030 User Output 21 0,2 2 2
1031 User Output 22 0,2 2 2
1032 User Output 23 0,2 2 2
1033 User Output 24 0,2 2 2
1034 User Output 25 0,2 2 2
1035 User Output 26 0,2 2 2
7SR220 Technical Manual
Chapter 4 - Page 70 of 96 © 2017 Siemens Protection Devices Limited
Binary Input Points
Static (Steady-State) Object Number: 1 (Packed Format)
Change Event Object Number: 1 (w/o Time)
Static Variation reported when variation 0 requested: 1 (Binary Input w/o status)
or 2 (Binary Input with status)
Change Event Variation reported when variation 0 requested: 1 (Binary Input Change w/o Time)
or 2 (Binary Input Change with Absolute Time)
or 3 (Binary Input Change with Relative Time)
Point
Index Description
Default Change Event
Assigned Class (1,
2, 3 or none)
Default Variation
Static Object 1
Default Variation
Event Object 2
1036 User Output 27 0,2 2 2
1037 User Output 28 0,2 2 2
1038 User Output 29 0,2 2 2
1039 User Output 30 0,2 2 2
1040 User Output 31 0,2 2 2
1041 User Output 32 0,2 2 2
1061 E/F In 0,2 2 2
1062 SEF In 0,2 2 2
1063 CB DBI 0,2 2 2
1064 CB Travelling 0,2 2 2
1065 Close CB Failed 0,2 2 2
1066 Open CB Failed 0,2 2 2
1067 Start Count Alarm 0,2 2 2
1068 50AFD PhA 0,2 2 2
1069 50AFD PhB 0,2 2 2
1070 50AFD PhC 0,2 2 2
1071 50AFD 0,2 2 2
1072 AFD Zone 1 Flash 0,2 2 2
1073 AFD Zone 1 0,2 2 2
1074 AFD Zone 2 Flash 0,2 2 2
1075 AFD Zone 2 0,2 2 2
1076 AFD Zone 3 Flash 0,2 2 2
1077 AFD Zone 3 0,2 2 2
1078 AFD Zone 4 Flash 0,2 2 2
1079 AFD Zone 4 0,2 2 2
1080 AFD Zone 5 Flash 0,2 2 2
1081 AFD Zone 5 0,2 2 2
1082 AFD Zone 6 Flash 0,2 2 2
1083 AFD Zone 6 0,2 2 2
1084 21LB-3P Fwd 0,2 2 2
1085 21LB-3P Rev 0,2 2 2
1086 21LB-1P Fwd 0,2 2 2
1087 21LB-1P Rev 0,2 2 2
1088 81HBL5 0,2 2 2
5.3.2 Double Bit Input Points
The default double bit input event buffer size is set to allow 100 events.
Double bit inputs are by default returned in a class zero interrogation.
Note, not all points listed here apply to all builds of devices.
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 71 of 96
Double Bit Input Points
Static (Steady-State) Object Number: 3
Change Event Object Number: 4
Static Variation reported when variation 0 requested: 1 (Double Bit Input w/o status)
or 2 (Double Bit Input with status)
Change Event Variation reported when variation 0 requested: 1 (Double Bit Input Change w/o Time)
or 2 (Double Bit Input Change with Absolute Time)
or 3 (Double Bit Input Change with Relative Time)
Point
Index Description
Default Change Event
Assigned Class (1,
2, 3 or none)
Default Variation
Static Object 3
Default Variation
Event Object 4
0
CB 1 0,2 1 3
10 User DP Command 1 0,2 1 3
11 User DP Command 2 0,2 1 3
12 User DP Command 3 0,2 1 3
13 User DP Command 4 0,2 1 3
14 User DP Command 5 0,2 1 3
15 User DP Command 6 0,2 1 3
16 User DP Command 7 0,2 1 3
17 User DP Command 8 0,2 1 3
5.3.3 Binary Output Status Points and Control Relay Output Blocks
The following table lists both the Binary Output Status Points (Object 10) and the Control Relay Output Blocks (Object
12).
While Binary Output Status Points are included here for completeness, they are not often polled by DNP 3.0 Masters.
Binary Output Status points are not recommended to be included in class 0 polls.
As an alternative, it is recommended that “actual” status values of Control Relay Output Block points be looped
around and mapped as Binary Inputs. (The “actual” status value, as opposed to the “commanded” status value, is the
value of the actuated control. For example, a DNP control command may be blocked through hardware or software
mechanisms; in this case, the actual status value would indicate the control failed because of the blocking. Looping
Control Relay Output Block actual status values as Binary Inputs has several advantages:
it allows actual statuses to be included in class 0 polls,
it allows change event reporting of the actual statuses, which is a more efficient and
time-accurate method of communicating control values,
and it allows reporting of time-based information associated with controls, including any
delays before controls are actuated, and any durations if the controls are pulsed.
The default select/control buffer size is large enough to hold 10 of the largest select requests possible.
Binary outputs are by default NOT returned in a class zero interrogation.
Note, not all points listed here apply to all builds of devices.
7SR220 Technical Manual
Chapter 4 - Page 72 of 96 © 2017 Siemens Protection Devices Limited
Binary Output Status Points
Static (Steady-State) Object Number: 10
Change Event Object Number: 11
Control Relay Output Blocks (CROB) Object Number: 12
Binary Output Command Event Object Number: 13
Static Variation reported when variation 0 requested: 1 (Binary Output w/o status)
or 2 (Binary Output with status)
Change Event Variation reported when variation 0 requested: 1 (Binary Output Event w/o Time)
or 2 (Binary Output Event with Time)
Command Event Variation reported when variation 0 requested: 1 (Command Status w/o Time)
or 2 (Command Status with Time)
Point
Index Description
Default
Change
Event
Assigned
Class
(1, 2, 3
or none)
Default
Variation
Static
Object 10
Default
Variation
Event
Object 11
Default
Command
Event
Object 13
Assigned
Class
(1, 2, 3
or none)
Default
Variation
Command
Event
Object 13
CROB
Supported
Operations
Default
CROB
Operations
1 RL 1 0 2 2 0 1
Pulse On
Pulse OnLatch On
Close
Pulse On
2 RL 2 0 2 2 0 1 Latch On Pulse On
Close
3 RL 3 0 2 2 0 1
Pulse On
Latch On
Close
Pulse On
4 RL 4 0 2 2 0 1
Pulse On
Latch On
Close
Pulse On
5 RL 5 0 2 2 0 1
Pulse On
Pulse OnLatch On
Close
Pulse On
6 RL 6 0 2 2 0 1 Latch On Pulse On
Close
7 RL 7 0 2 2 0 1
Pulse On
Latch On
Close
Pulse On
8 RL 8 0 2 2 0 1
Pulse On
Latch On
Close
Pulse On
9 RL 9 0 2 2 0 1
Pulse On
Latch On
Close
Pulse On
10 RL 10 0 2 2 0 1
Pulse On
Pulse OnLatch On
Close
Pulse On
11 RL 11 0 2 2 0 1 Latch On Pulse On
Close
12 RL 12 0 2 2 0 1
Pulse On
Pulse OnLatch On
Close
Pulse On
13 RL 13 0 2 2 0 1 Latch On Pulse On
Close
14 RL 14 0 2 2 0 1
Pulse On
Latch On
Close
Pulse On
33 LED reset, write only
location. 0 2 2 0 1
Pulse On
Latch On
Close
Pulse On
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 73 of 96
Binary Output Status Points
Static (Steady-State) Object Number: 10
Change Event Object Number: 11
Control Relay Output Blocks (CROB) Object Number: 12
Binary Output Command Event Object Number: 13
Static Variation reported when variation 0 requested: 1 (Binary Output w/o status)
or 2 (Binary Output with status)
Change Event Variation reported when variation 0 requested: 1 (Binary Output Event w/o Time)
or 2 (Binary Output Event with Time)
Command Event Variation reported when variation 0 requested: 1 (Command Status w/o Time)
or 2 (Command Status with Time)
Point
Description
Index
Default
Change
Event
Assigned
Class
(1, 2, 3
or none)
Default
Variation
Static
Object 10
Default
Variation
Event
Object 11
Default
Command
Event
Object 13
Assigned
Class
(1, 2, 3
or none)
Default
Variation
Command
Event
Object 13
CROB
Supported
Operations
Default
CROB
Operations
34 Settings Group 1 0 2 2 0 1
Pulse On
Latch On
Close
Latch On
35 Settings Group 2 0 2 2 0 1
Pulse On
Latch On Latch On
Close
Pulse On
36 Settings Group 3 0 2 2 0 1 Latch On Latch On
Close
37 Settings Group 4 0 2 2 0 1
Pulse On
Latch On Latch On
Close
Pulse On
38 Settings Group 5 0 2 2 0 1 Latch On Latch On
Close
39 Settings Group 6 0 2 2 0 1
Pulse On
Latch On
Close
Latch On
40 Settings Group 7 0 2 2 0 1
Pulse On
Latch On
Close
Latch On
41 Settings Group 8 0 2 2 0 1
Pulse On
Latch On
Close
Latch On
42 Auto-reclose on/off 0 2 2 0 1
Pulse On
Pulse Off
Latch On
Latch Off
Close
Trip
Pulse On
Pulse Off
Latch On
Latch Off
43 Hot Line Working on/off 0 2 2 0 1
Pulse On
Pulse Off Pulse On
Latch On
Latch Off
Pulse Off
Latch On
Close Latch Off
Trip
Pulse On
Pulse Off Pulse On
44 E/F Out on/off 0 2 2 0 1
Latch On
Latch Off
Pulse Off
Latch On
Close Latch Off
Trip
45 SEF Out on/off 0 2 2 0 1
Pulse On
Pulse Off
Latch On
Latch Off
Pulse On
Pulse Off
Latch On
Latch Off
7SR220 Technical Manual
Chapter 4 - Page 74 of 96 © 2017 Siemens Protection Devices Limited
Binary Output Status Points
Static (Steady-State) Object Number: 10
Change Event Object Number: 11
Control Relay Output Blocks (CROB) Object Number: 12
Binary Output Command Event Object Number: 13
Static Variation reported when variation 0 requested: 1 (Binary Output w/o status)
or 2 (Binary Output with status)
Change Event Variation reported when variation 0 requested: 1 (Binary Output Event w/o Time)
or 2 (Binary Output Event with Time)
Command Event Variation reported when variation 0 requested: 1 (Command Status w/o Time)
or 2 (Command Status with Time)
Point
Index Description
Default
Change
Event
Assigned
Class
(1, 2, 3
or none)
Default
Variation
Static
Object 10
Default
Variation
Event
Object 11
Default
Command
Event
Object 13
Assigned
Class
(1, 2, 3
or none)
Default
Variation
Command
Event
Object 13
CROB
Supported
Operations
Default
CROB
Operations
Close
Trip
46 Inst Protection off/on 0 2 2 0 1
Pulse On
Pulse Off
Latch On
Latch Off
Close
Trip
Pulse On
Pulse Off
Latch On
Latch Off
48 Reset CB Total Trip
Count, write only location. 0 2 2 0 1
Pulse On
Latch On
Close
Pulse On
49 Reset CB Delta Trip
Count, write only location. 0 2 2 0 1
Pulse On
Latch On
Close
Pulse On
50 Reset CB Count To AR
Block, write only location. 0 2 2 0 1
Pulse On
Latch On
Close
Pulse On
51 Reset CB Frequent Ops
Count, write only location. 0 2 2 0 1
Pulse On
Latch On
Close
Pulse On
53 Reset I^2t CB Wear 0 2 2 0 1
Pulse On
Latch On
Close
Pulse On
54 CB 1 0 2 2 0 1
Pulse On
Pulse Off
Latch On
Latch Off
Close
Trip
Pulse On
Pulse Off
Latch On
Latch Off
55
CB 1 Trip & Reclose, write
only location. 0 2 2 0 1
Pulse On
Latch On
Close
Pulse On
56 CB 1 Trip & Lockout, write
only location. 0 2 2 0 1
Pulse On
Latch On
Close
Pulse On
59 Demand metering reset,
write only location. 0 2 2 0 1
Pulse On
Latch On
Close
Pulse On
87 Reset Energy Meters 0 2 2 0 1
Pulse On
Latch On
Close
Pulse On
88 Remote mode 0 2 2 0 1
Pulse On
Pulse OnLatch On
Close
Pulse On
89 Service mode 0 2 2 0 1 Latch On Pulse On
Close
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 75 of 96
Pulse On
Latch On
Close
Pulse On
Latch On
Close
Pulse On
Pulse On
Binary Output Status Points
Static (Steady-State) Object Number: 10
Change Event Object Number: 11
Control Relay Output Blocks (CROB) Object Number: 12
Binary Output Command Event Object Number: 13
Static Variation reported when variation 0 requested: 1 (Binary Output w/o status)
or 2 (Binary Output with status)
Change Event Variation reported when variation 0 requested: 1 (Binary Output Event w/o Time)
or 2 (Binary Output Event with Time)
Command Event Variation reported when variation 0 requested: 1 (Command Status w/o Time)
or 2 (Command Status with Time)
Point
Description
Index
Default
Change
Event
Assigned
Class
(1, 2, 3
or none)
Default
Variation
Static
Object 10
Default
Variation
Event
Object 11
Default
Command
Event
Object 13
Assigned
Class
(1, 2, 3
or none)
Default
Variation
Command
Event
Object 13
CROB
Supported
Operations
Default
CROB
Operations
90 Local mode 0 2 2 0 1
Pulse On
Latch On
Close
Pulse On
91 Local & Remote 0 2 2 0 1
Pulse On
Latch On Pulse On
Close
Pulse On
Pulse Off Pulse On
92 Man Override Sync on/off 0 2 2 0 1
Latch On
Latch Off
Pulse Off
Latch On
Close Latch Off
Trip
93 79 Override Sync on/off 0 2 2 0 1
Pulse On
Pulse Off
Latch On
Latch Off
Close
Trip
Pulse On
Pulse Off
Latch On
Latch Off
94 Reset CB Phase A Trip
Count, write only location. 02201
Pulse On
Latch On
Close
Pulse On
95 Reset CB Phase B Trip
Count, write only location. 02201
Pulse On
Latch On
Close
Pulse On
96 Reset CB Phase C Trip
Count, write only location. 02201
Pulse On
Latch On
Close
Pulse On
97 Reset CB EF Trip Count,
write only location. 02201
Pulse On
Latch On
Close
Pulse On
98 Reset Start Count (Action) 0 2 2 0 1
Pulse On
Latch On
Close
Pulse On
Latch On
99 User SP Command 1. 0 2 2 0 1
Pulse On
Latch On Pulse On
Close
Pulse On
100 User SP Command 2. 0 2 2 0 1 Latch On Pulse On
Close
101 User SP Command 3. 0 2 2 0 1
102 User SP Command 4. 0 2 2 0 1
7SR220 Technical Manual
Chapter 4 - Page 76 of 96 © 2017 Siemens Protection Devices Limited
Binary Output Status Points
Static (Steady-State) Object Number: 10
Change Event Object Number: 11
Control Relay Output Blocks (CROB) Object Number: 12
Binary Output Command Event Object Number: 13
Static Variation reported when variation 0 requested: 1 (Binary Output w/o status)
or 2 (Binary Output with status)
Change Event Variation reported when variation 0 requested: 1 (Binary Output Event w/o Time)
or 2 (Binary Output Event with Time)
Command Event Variation reported when variation 0 requested: 1 (Command Status w/o Time)
or 2 (Command Status with Time)
Point
Index Description
Default
Change
Event
Assigned
Class
(1, 2, 3
or none)
Default
Variation
Static
Object 10
Default
Variation
Event
Object 11
Default
Command
Event
Object 13
Assigned
Class
(1, 2, 3
or none)
Default
Variation
Command
Event
Object 13
CROB
Supported
Operations
Default
CROB
Operations
103 User SP Command 5. 0 2 2 0 1
Pulse On
Latch On
Close
Pulse On
104 User SP Command 6. 0 2 2 0 1
Pulse On
Pulse OnLatch On
Close
Pulse On
105 User SP Command 7. 0 2 2 0 1 Latch On Pulse On
Close
106 User SP Command 8. 0 2 2 0 1
Pulse On
Pulse OnLatch On
Close
Pulse On
Pulse Off
107 User DP Command 1. 0 2 2 0 1
Latch On
Latch Off
Pulse On
Pulse Off
Close
Trip
108 User DP Command 2. 0 2 2 0 1
Pulse On
Pulse Off
Latch On
Latch Off
Close
Trip
Pulse On
Pulse Off
109 User DP Command 3. 0 2 2 0 1
Pulse On
Pulse On
Pulse Off
Pulse Off
Latch On
Latch Off
Close
Trip
Pulse On
Pulse Off
110 User DP Command 4. 0 2 2 0 1
Latch On
Latch Off
Pulse On
Pulse Off
Close
Trip
111 User DP Command 5. 0 2 2 0 1
Pulse On
Pulse Off
Latch On
Latch Off
Close
Trip
Pulse On
Pulse Off
112 User DP Command 6. 0 2 2 0 1
Pulse On
Pulse Off
Latch On
Latch Off
Close
Trip
Pulse On
Pulse Off
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 77 of 96
Pulse On
Pulse Off
Latch On
Latch Off
Close
Trip
Pulse On
Latch On
Close
Pulse On
Pulse Off
Latch On
Latch Off
Pulse On
5.3.4 Counters
The following table lists both Binary Counters (Object 20) and Frozen Counters (Object 21). When a freeze function
is performed on a Binary Counter point, the frozen value is available in the corresponding Frozen Counter point. The
default Binary Counter and Frozen Counter event buffer sizes are set to 30.
The “Default Deadband,” and the “Default Change Event Assigned Class” columns are used to represent the absolute
amount by which the point must change before a Counter change event will be generated, and once generated in
which class poll (1, 2, 3, or none) will the change event be reported.
Binary Output Status Points
Static (Steady-State) Object Number: 10
Change Event Object Number: 11
Control Relay Output Blocks (CROB) Object Number: 12
Binary Output Command Event Object Number: 13
Static Variation reported when variation 0 requested: 1 (Binary Output w/o status)
or 2 (Binary Output with status)
Change Event Variation reported when variation 0 requested: 1 (Binary Output Event w/o Time)
or 2 (Binary Output Event with Time)
Command Event Variation reported when variation 0 requested: 1 (Command Status w/o Time)
or 2 (Command Status with Time)
Point
Description
Index
Default
Change
Event
Assigned
Class
(1, 2, 3
or none)
Default
Variation
Static
Object 10
Default
Variation
Event
Object 11
Default
Command
Event
Object 13
Assigned
Class
(1, 2, 3
or none)
Default
Variation
Command
Event
Object 13
CROB
Supported
Operations
Default
CROB
Operations
113 User DP Command 7. 0 2 2 0 1
Pulse On
Pulse Off
Latch On
Latch Off
Close
Trip
Pulse On
Pulse Off
114 User DP Command 8. 0 2 2 0 1
Pulse On
Pulse Off
Latch On
Latch Off
Close
Trip
Pulse On
Pulse Off
115 CB-1 Open 0 2 2 0 1
Pulse On
Latch On
Close
Pulse On
Latch On
116 CB-1 Close 0 2 2 0 1
Pulse On
Latch On
Close
Pulse On
Latch On
126 E/F In on/off 0 2 2 0 1
Pulse On
Pulse Off
Latch On
Latch Off
Close
Trip
Pulse On
Pulse Off
Latch On
Latch Off
127 SEF In on/off 0 2 2 0 1
128 Reset Hrs In Service,
write only location. 02201
7SR220 Technical Manual
Chapter 4 - Page 78 of 96 © 2017 Siemens Protection Devices Limited
The default counter event buffer size is set 30. The counter event mode is set to Most Recent, only most recent event
for each point is stored.
Counters are by default returned in a class zero interrogation.
Note, not all points listed here apply to all builds of devices.
Counters
Static (Steady-State) Object Number: 20
Change Event Object Number: 22
Static Variation reported when variation 0 requested: 1 (32-Bit Counter with Flag)
or 2 (16-Bit Counter with Flag)
or 5 (32-Bit Counter w/o Flag)
or 6 (16-Bit Counter w/o Flag)
Change Event Variation reported when variation 0 requested: 1 (32-Bit Counter Event with Flag)
or 2 (16-Bit Counter Event with Flag)
or 5 (32-Bit Counter Event with Flag and Time)
or 6 (16-Bit Counter Event with Flag and Time)
Frozen Counters
Static (Steady-State) Object Number: 21
Change Event Object Number: 23
Static Variation reported when variation 0 requested: 1 (32-Bit Frozen Counter with Flag)
or 2 (16-Bit Frozen Counter with Flag)
or 5 (32-Bit Frozen Counter with Flag and Time)
or 6 (16-Bit Frozen Counter with Flag and Time)
or 9 (32-Bit Frozen Counter w/o Flag)
or 10 (16-Bit Frozen Counter w/o Flag)
Change Event Variation reported when variation 0 requested: 1 (32-Bit Frozen Counter Event with Flag)
or 2 (16-Bit Frozen Counter Event with Flag)
or 5 (32-Bit Frozen Counter Event with Flag and Time)
or 6 (16-Bit Frozen Counter Event with Flag and Time)
Counter Frozen Counter
Point
Index Description
Default
Change
Event
Assigned
Class
(1, 2, 3
or none)
Default
Variation
Static
Object 20
Default
Variation
Event
Object 22
Deadband
Is Resettable
IsFreezable
Default
Change
Event
Assigned
Class
(1, 2, 3
or none)
Default
Variation
Static
Object 21
Default
Variation
Event
Object 23
0 Waveform Records 0,3 5 1 1
0,2 9 1
1 Fault Records 0,3 5 1 1
0,2 9 1
2 Event Records 0,3 5 1 1
0,2 9 1
3 Data Log Records 0,3 5 1 1
0,2 9 1
5 StartCount 0,3 5 1 1
0,2 9 1
6 Start Count Target 0,3 5 1 1
0,2 9 1
7 Active Setting Group 0,3 5 1 1
0,2 9 1
11 CB Total Trip Count 0,3 5 1 1
0,2 9 1
12 CB Ph A Trip Count 0,3 5 1 1
0,2 9 1
13 CB Ph B Trip Count 0,3 5 1 1
0,2 9 1
14 CB Ph C Trip Count 0,3 5 1 1
0,2 9 1
15 CB E/F Trip Count 0,3 5 1 1
0,2 9 1
16 CB Delta Trip Count 0,3 5 1 1
0,2 9 1
17 CB Count To AR Block 0,3 5 1 1
0,2 9 1
18 CB Frequent Ops Count 0,3 5 1 1
0,2 9 1
21 E1 Counter 0,3 5 1 1
0,2 9 1
22 E2 Counter 0,3 5 1 1
0,2 9 1
23 E3 Counter 0,3 5 1 1
0,2 9 1
24 E4 Counter 0,3 5 1 1
0,2 9 1
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 79 of 96
Deadband
Counters
Static (Steady-State) Object Number: 20
Change Event Object Number: 22
Static Variation reported when variation 0 requested: 1 (32-Bit Counter with Flag)
or 2 (16-Bit Counter with Flag)
or 5 (32-Bit Counter w/o Flag)
or 6 (16-Bit Counter w/o Flag)
Change Event Variation reported when variation 0 requested: 1 (32-Bit Counter Event with Flag)
or 2 (16-Bit Counter Event with Flag)
or 5 (32-Bit Counter Event with Flag and Time)
or 6 (16-Bit Counter Event with Flag and Time)
Frozen Counters
Static (Steady-State) Object Number: 21
Change Event Object Number: 23
Static Variation reported when variation 0 requested: 1 (32-Bit Frozen Counter with Flag)
or 2 (16-Bit Frozen Counter with Flag)
or 5 (32-Bit Frozen Counter with Flag and Time)
or 6 (16-Bit Frozen Counter with Flag and Time)
or 9 (32-Bit Frozen Counter w/o Flag)
or 10 (16-Bit Frozen Counter w/o Flag)
Change Event Variation reported when variation 0 requested: 1 (32-Bit Frozen Counter Event with Flag)
or 2 (16-Bit Frozen Counter Event with Flag)
or 5 (32-Bit Frozen Counter Event with Flag and Time)
or 6 (16-Bit Frozen Counter Event with Flag and Time)
Point
Description
Index
Default
Change
Event
Assigned
Class
(1, 2, 3
or none)
Counter Frozen Counter
Default
Variation
Static
Object 20
Default
Variation
Event
Object 22
Is Resettable
IsFreezable
Default
Change
Event
Assigned
Class
(1, 2, 3
or none)
Default
Variation
Static
Object 21
Default
Variation
Event
Object 23
25 E5 Counter 0,3 5 1 1
0,2 9 1
26 E6 Counter 0,3 5 1 1
0,2 9 1
27 E7 Counter 0,3 5 1 1
0,2 9 1
28 E8 Counter 0,3 5 1 1
0,2 9 1
29 E9 Counter 0,3 5 1 1
0,2 9 1
30 E10 Counter 0,3 5 1 1
0,2 9 1
31 E11 Counter 0,3 5 1 1
0,2 9 1
32 E12 Counter 0,3 5 1 1
0,2 9 1
33 E13 Counter 0,3 5 1 1
0,2 9 1
34 E14 Counter 0,3 5 1 1
0,2 9 1
35 E15 Counter 0,3 5 1 1
0,2 9 1
36 E16 Counter 0,3 5 1 1
0,2 9 1
5.3.5 Analog Inputs
The following table lists Analog Inputs (Object 30). It is important to note that 16-bit and 32-bit variations of Analog
Inputs, Analog Output Control Blocks, and Analog Output Statuses are transmitted through DNP as signed numbers.
The “Default Deadband,” and the “Default Change Event Assigned Class” columns are used to represent the absolute
amount by which the point must change before an Analog change event will be generated, and once generated in
which class poll (1, 2, 3, or none) will the change event be reported.
The default analog input event buffer size is set 30. The analog input event mode is set to Most Recent, only most
recent event for each point is stored.
Analog inputs are by default returned in a class zero interrogation.
Note, not all points listed here apply to all builds of devices.
7SR220 Technical Manual
Chapter 4 - Page 80 of 96 © 2017 Siemens Protection Devices Limited
Analog Inputs
Static (Steady-State) Object Number: 30
Change Event Object Number: 32
Analog Input Deadband: 34
Static Variation reported when variation 0 requested: 1 (32-Bit Analog Input with Flag)
or 2 (16-Bit Analog Input with Flag)
or 3 (32-Bit Analog Input w/o Flag)
or 4 (16-Bit Analog Input w/o Flag)
or 5 (Single Precision, floating point Analog Input with Flag)
Change Event Variation reported when variation 0 requested: 1 (32-Bit Analog Change Event w/o Time)
or 2 (16-Bit Analog Input w/o Time)
or 3 (32-Bit Analog Input with Time)
or 4 (16-Bit Analog Input with Time)
or 5 (Single Precision, floating point Analog Input w/o Time)
or 7 (Single Precision, floating point Analog Input with Time)
Analog Input Reporting Deadband Variation reported when variation 0 requested: 1 (16-Bit)
or 2 (32-Bit)
or 3 (Single Precision, floating point)
Point
Index Description
Default
Change Event
Assigned Class
(1, 2, 3 or none)
Default
Variation
Static
Object 30
Default
Variation
Event
Object 32
Default
Multiplier
Default
Deadband
0 Frequency 0,3 2 4 100.000
1.000
1 Vab Primary 0,3 2 4
0.010
100.000
2 Vbc Primary 0,3 2 4
0.010
100.000
3 Vca Primary 0,3 2 4
0.010
100.000
4 Va Primary 0,3 2 4
0.010
100.000
5 Vb Primary 0,3 2 4
0.010
100.000
6 Vc Primary 0,3 2 4
0.010
100.000
7 Va Secondary 0,3 2 4 10.000
1.000
8 Vb Secondary 0,3 2 4 10.000
1.000
9 Vc Secondary 0,3 2 4 10.000
1.000
21 Vzps 0,3 2 4 10.000
1.000
22 Vpps 0,3 2 4 10.000
1.000
23 Vnps 0,3 2 4 10.000
1.000
31 Ia Primary 0,3 2 4
1.000
100.000
32 Ib Primary 0,3 2 4
1.000
100.000
33 Ic Primary 0,3 2 4
1.000
100.000
34 Ia Secondary 0,3 2 4 100.000
0.100
35 Ib Secondary 0,3 2 4 100.000
0.100
36 Ic Secondary 0,3 2 4 100.000
0.100
37 Ia Nominal 0,3 2 4 100.000
0.100
38 Ib Nominal 0,3 2 4 100.000
0.100
39 Ic Nominal 0,3 2 4 100.000
0.100
43 In Primary 0,3 2 4
1.000
100.000
44 In Secondary 0,3 2 4 100.000
0.100
45 In Nominal 0,3 2 4 100.000
0.100
46 Ig Primary 0,3 2 4
1.000
100.000
47 Ig Secondary 0,3 2 4 1000.000
0.100
48 Ig Nominal 0,3 2 4 1000.000
0.100
51 Izps Nominal 0,3 2 4 100.000
0.100
52 Ipps Nominal 0,3 2 4 100.000
0.100
53 Inps Nominal 0,3 2 4 100.000
0.100
57 Active Power A 0,3 2 4
0.000
1000000.000
58 Active Power B 0,3 2 4
0.000
1000000.000
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 81 of 96
Analog Inputs
Static (Steady-State) Object Number: 30
Change Event Object Number: 32
Analog Input Deadband: 34
Static Variation reported when variation 0 requested: 1 (32-Bit Analog Input with Flag)
or 2 (16-Bit Analog Input with Flag)
or 3 (32-Bit Analog Input w/o Flag)
or 4 (16-Bit Analog Input w/o Flag)
or 5 (Single Precision, floating point Analog Input with Flag)
Change Event Variation reported when variation 0 requested: 1 (32-Bit Analog Change Event w/o Time)
or 2 (16-Bit Analog Input w/o Time)
or 3 (32-Bit Analog Input with Time)
or 4 (16-Bit Analog Input with Time)
or 5 (Single Precision, floating point Analog Input w/o Time)
or 7 (Single Precision, floating point Analog Input with Time)
Analog Input Reporting Deadband Variation reported when variation 0 requested: 1 (16-Bit)
or 2 (32-Bit)
or 3 (Single Precision, floating point)
Point
Index
59
Description
Active Power C
Default
Change Event
Assigned Class
(1, 2, 3 or none)
0,3
Default
Variation
Static
Object 30
2
Default
Variation
Event
Object 32
4
Default
Multiplier
0.000
Default
Deadband
1000000.000
60 P (3P) 0,3 2 4 0.000 1000000.000
61 Reactive Power A 0,3 2 4 0.000 1000000.000
62 Reactive Power B 0,3 2 4 0.000 1000000.000
63 Reactive Power C 0,3 2 4 0.000 1000000.000
64 Q (3P) 0,3 2 4 0.000 1000000.000
65 Apparent Power A 0,3 2 4 0.000 1000000.000
66 Apparent Power B 0,3 2 4 0.000 1000000.000
67 Apparent Power C 0,3 2 4 0.000 1000000.000
68 S (3P) 0,3 2 4 0.000 1000000.000
71 Power Factor A 0,3 2 4 1000.000
0.100
72 Power Factor B 0,3 2 4 1000.000
0.100
73 Power Factor C 0,3 2 4 1000.000
0.100
74 Power Factor(3P) 0,3 2 4 1000.000
0.100
75 Act Energy Exp 0,3 1 3 1.000 Disabled
76 Act Energy Imp 0,3 1 3 1.000 Disabled
77 React Energy Exp 0,3 1 3 1.000 Disabled
78 React Energy Imp 0,3 1 3 1.000 Disabled
81 Thermal Status Ph A 0,1 4 4 100.000
1.000
82 Thermal Status Ph B 0,1 4 4 100.000
1.000
83 Thermal Status Ph C 0,1 4 4 100.000
1.000
95 Active Setting Group 0,3 2 4 1.000
1.000
99 Vab Secondary 0,3 2 4 10.000
1.000
100 Vbc Secondary 0,3 2 4 10.000
1.000
101 Vca Secondary 0,3 2 4 10.000
1.000
102 Vn Primary 0,3 2 4 0.010 100.000
103 Vn Secondary 0,3 2 4 10.000
1.000
105 Vx Primary 0,3 2 4 0.010 100.000
106 Vx Secondary 0,3 2 4 10.000
1.000
108 I Phase A Max 0,3 2 4 1.000 100.000
109 I Phase B Max 0,3 2 4 1.000 100.000
110 I Phase C Max 0,3 2 4 1.000 100.000
111 P 3P Max 0,3 2 4 0.000 1000000.000
7SR220 Technical Manual
Chapter 4 - Page 82 of 96 © 2017 Siemens Protection Devices Limited
Analog Inputs
Static (Steady-State) Object Number: 30
Change Event Object Number: 32
Analog Input Deadband: 34
Static Variation reported when variation 0 requested: 1 (32-Bit Analog Input with Flag)
or 2 (16-Bit Analog Input with Flag)
or 3 (32-Bit Analog Input w/o Flag)
or 4 (16-Bit Analog Input w/o Flag)
or 5 (Single Precision, floating point Analog Input with Flag)
Change Event Variation reported when variation 0 requested: 1 (32-Bit Analog Change Event w/o Time)
or 2 (16-Bit Analog Input w/o Time)
or 3 (32-Bit Analog Input with Time)
or 4 (16-Bit Analog Input with Time)
or 5 (Single Precision, floating point Analog Input w/o Time)
or 7 (Single Precision, floating point Analog Input with Time)
Analog Input Reporting Deadband Variation reported when variation 0 requested: 1 (16-Bit)
or 2 (32-Bit)
or 3 (Single Precision, floating point)
Point
Index
112
Description
Q 3P Max
Default
Change Event
Assigned Class
(1, 2, 3 or none)
0,3
Default
Variation
Static
Object 30
2
Default
Variation
Event
Object 32
4
Default
Multiplier
0.000
Default
Deadband
1000000.000
113 Ig Max 0,3 2 4
1.000
100.000
115 Isef Primary 0,3 2 4
1.000
10.000
116 Isef Secondary 0,3 2 4 1000.000
0.050
117 Isef Nominal 0,3 2 4 1000.000
0.050
118 Fault Distance Percent 0,3 2 4 100.000 Disabled
119 Fault Reactance 0,3 2 4 1000.000 Disabled
135 CB Total Trip Count 0,3 1 3
1.000 1.000
136 CB Delta Trip Count 0,3 1 3
1.000 1.000
137 CB Count To AR Block 0,3 1 3
1.000 1.000
138 CB Frequent Ops Count 0,3 1 3
1.000 1.000
162 Phase Diff 0,3 2 4 100.000
1.000
163 Slip Freq 0,3 2 4 100.000
1.000
164 Voltage Diff 0,3 2 4 100.000
1.000
165 Ia Last Trip 0,3 1 3
1.000
Disabled
166 Ib Last Trip 0,3 1 3
1.000
Disabled
167 Ic Last Trip 0,3 1 3
1.000
Disabled
168 Va Last Trip 0,3 1 3
1.000
Disabled
169 Vb Last Trip 0,3 1 3
1.000
Disabled
170 Vc Last Trip 0,3 1 3
1.000
Disabled
171 In Last Trip 0,3 1 3
1.000
Disabled
172 Ig Last Trip 0,3 1 3
1.000
Disabled
173 Isef Last Trip 0,3 1 3
1.000
Disabled
174 V Phase A Max 0,3 2 4
0.010
100.000
175 V Phase B Max 0,3 2 4
0.010
100.000
176 V Phase C Max 0,3 2 4
0.010
100.000
177 V Phase AB Max 0,3 2 4
0.010
100.000
178 V Phase BC Max 0,3 2 4
0.010
100.000
179 V Phase CA Max 0,3 2 4
0.010
100.000
180 CB Ph A Trip Count 0,3 1 3
1.000 1.000
181 CB Ph B Trip Count 0,3 1 3
1.000 1.000
182 CB Ph C Trip Count 0,3 1 3
1.000 1.000
183 CB E/F Trip Count 0,3 1 3
1.000 1.000
184 CB Wear A 0,3 1 3
0.000
1000000.000
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 83 of 96
Analog Inputs
Static (Steady-State) Object Number: 30
Change Event Object Number: 32
Analog Input Deadband: 34
Static Variation reported when variation 0 requested: 1 (32-Bit Analog Input with Flag)
or 2 (16-Bit Analog Input with Flag)
or 3 (32-Bit Analog Input w/o Flag)
or 4 (16-Bit Analog Input w/o Flag)
or 5 (Single Precision, floating point Analog Input with Flag)
Change Event Variation reported when variation 0 requested: 1 (32-Bit Analog Change Event w/o Time)
or 2 (16-Bit Analog Input w/o Time)
or 3 (32-Bit Analog Input with Time)
or 4 (16-Bit Analog Input with Time)
or 5 (Single Precision, floating point Analog Input w/o Time)
or 7 (Single Precision, floating point Analog Input with Time)
Analog Input Reporting Deadband Variation reported when variation 0 requested: 1 (16-Bit)
or 2 (32-Bit)
or 3 (Single Precision, floating point)
Point
Description
Index
185 CB Wear B
Default
Change Event
Assigned Class
(1, 2, 3 or none)
0,3
Default
Variation
Static
Object 30
1
Default
Variation
Event
Object 32
3
Default
Multiplier
0.000
Default
Deadband
1000000.000
186 CB Wear C 0,3 1 3 0.000 1000000.000
187 CB Wear A Remaining 0,3 1 3 1.000
1.000
188 CB Wear B Remaining 0,3 1 3 1.000
1.000
189 CB Wear C Remaining 0,3 1 3 1.000
1.000
190 CB Wear Minimum 0,3 1 3 1.000
1.000
191 Fault Distance Perunit 0,3 5 7 0.001
1.000
196 Frequency Max 0,3 2 4 100.000
1.000
197 S 3P Max 0,3 2 4 0.000 1000000.000
318 Sec Active Power A 0,3 2 4 1.000 10.000
319 Sec Active Power B 0,3 2 4 1.000 10.000
320 Sec Active Power C 0,3 2 4 1.000 10.000
321 Sec P (3P) 0,3 2 4 1.000 10.000
322 Sec Reactive Power A 0,3 2 4 1.000 10.000
323 Sec Reactive Power B 0,3 2 4 1.000 10.000
324 Sec Reactive Power C 0,3 2 4 1.000 10.000
325 Sec Q (3P) 0,3 2 4 1.000 10.000
326 Sec Apparent Power A 0,3 2 4 1.000 10.000
327 Sec Apparent Power B 0,3 2 4 1.000 10.000
328 Sec Apparent Power C 0,3 2 4 1.000 10.000
329 Sec S (3P) 0,3 2 4 1.000 10.000
330 CB Trip Time Meter 0,3 2 4 1000.000
0.010
337 PF 3P Max 0,3 2 4 1000.000
0.100
5.4 Additional Settings
The following relay settings are provided for configuration of the DNP 3.0 implementation when available and are
common to all ports using this protocol.
Setting Name Range/Options Default Setting Notes
Unsolicited
Mode DISABLED, ENABLED DISABLED As Required
Setting is only visible
when any port
Protocol is set to
DNP3.
7SR220 Technical Manual
Chapter 4 - Page 84 of 96 © 2017 Siemens Protection Devices Limited
Setting Name Range/Options Default Setting Notes
Destination
Address 0 - 65534 0 As Required
Setting is only
visible when DNP3
Unsolicited Events
set to Enabled.
DNP3
Application
Timeout
5, 6 ... 299, 300 10s As Required
Setting is only visible
when any port
Protocol is set to
DNP3.
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 85 of 96
6. Not Applicable
This section intentionally left blank.
7SR220 Technical Manual
Chapter 4 - Page 86 of 96 © 2017 Siemens Protection Devices Limited
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 87 of 96
7. IEC61850 Protocol Support
7.1 Introduction
The relay can optionally be provided with IEC61850 comms.
For further details refer to the following publications:
Model Implementation Conformance Statement (MICS)
Protocol Implementation Conformance Statement (PICS)
Protocol Implementation Extra Information for Testing (PIXIT)
7SR220 Technical Manual
Chapter 4 - Page 88 of 96 © 2017 Siemens Protection Devices Limited
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 89 of 96
8. Serial Modems
8.1 Introduction
The communications interface has been designed to allow data transfer via modems. A suitable Modem can be
connected directly to the Relay's serial interface, for example RS232, RS485 or fibre-optic port where fitted.
8.2 Connecting a Modem to the Relay(s)
RS232C defines devices as being either Data Terminal Equipment (DTE) e.g. computers, or data Communications
Equipment (DCE), e.g. modems, where one is designed to be connected to the other.
The optional RS232 port of the Relay is wired as a DTE device and can therefore be connected directly to a Modem.
The 7XV5652 RS232 fibre-optic converter is wired as a DCE device, the same as a Modem. Where two DCE devices
e.g. the modem and the fibre-optic converter are being connected together a null terminal connector is required which
switches various control lines. The fibre-optic converter is then connected to the relay Network Tx to Relay Rx and
Network Rx to Relay Tx.
8.3 Setting the Remote Modem
The exact settings of the modem are dependent on the type of modem. Although most modems support the basic
Hayes “AT” command format, different manufacturers use different commands for the same functions. In addition,
some modems use DIP switches to set parameters, others are entirely software configured.
Before applying settings, the modem's factory default settings should be applied, to ensure it is in a known state.
Several factors must be considered to allow remote dialling to the relays. The first is that the modem at the remote
end must be configured as auto answer. This will allow it to initiate communications with the relays. Next, the user
should set the data configuration at the local port, i.e. baud rate and parity, so that communication will be at the same
rate and format as that set on the relay and the error correction is disabled.
Auto-answer usually requires two parameters to be set. The auto-answer setting should be switched on and the
number of rings after which it will answer. The Data Terminal Ready (DTR) settings should be forced on. This tells
the modem that the device connected to it is ready to receive data.
The parameters of the modem's RS232C port are set to match those set on the relay, set baud rate and parity to
be the same as the settings on the relay and number of data bits to be 8 and stop bits 1. Note, although the device
may be able to communicate with the modem at, for example, 19200 bps, the modem may only be able to transmit
over the telephone lines at 14400 bps. Therefore, a baud rate setting on which the modem can transmit should be
chosen. In the above example, a baud rate of 9600 should be chosen.
As the modems are required to be transparent, simply passing on the data sent from the controller to the device and
vice versa, error correction and buffering is turned off.
Finally, the settings selected for configuration should be stored in the modem's memory for power on defaults.
8.4 Connecting to the Remote Modem
Once the remote modem has been configured correctly, it should be possible to make connection to the relay.
Where a “dial-up” modem system is installed the settings on the remote modem are fixed so the local modem should
negotiate with it on connection, choosing suitable matching settings. Where this is not possible the local modem
should be set with settings equivalent to those of the remote modem as described above.
7SR220 Technical Manual
Chapter 4 - Page 90 of 96 © 2017 Siemens Protection Devices Limited
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 91 of 96
9. Not Applicable
This section intentionally left blank.
7SR220 Technical Manual
Chapter 4 - Page 92 of 96 © 2017 Siemens Protection Devices Limited
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 93 of 96
10. Glossary
Baud Rate
Data transmission speed.
Bit
The smallest measure of computer data.
Bits Per Second (bps)
Measurement of data transmission speed.
Data Bits
A number of bits containing the data. Sent after the start bit.
Data Echo
When connecting relays in an optical ring architecture, the data must be passed from one relay to the next, therefore
when connecting in this method all relays must have the Data Echo ON.
EN100
Siemens' Ethernet communications module supporting IEC61850, available in optical and electrical versions.
Ethernet
A computer networking technology.
Full-Duplex Asynchronous Communications
Communications in two directions simultaneously.
Half-Duplex Asynchronous Communications
Communications in two directions, but only one at a time.
Hayes “AT”
Modem command set developed by Hayes Microcomputer products, Inc.
LAN
Local Area Network. A computer network covering a small geographic area.
LC
Fibre optic connector type designed by Lucent Technologies, Inc.
Line Idle
Determines when the device is not communicating if the idle state transmits light.
Modem
MOdulator / DEModulator device for connecting computer equipment to a telephone line.
Parity
Method of error checking by counting the value of the bits in a sequence, and adding a parity bit to make the outcome,
for example, even.
Parity Bit
Bit used for implementing parity checking. Sent after the data bits.
RS232C
Serial Communications Standard. Electronic Industries Association Recommended Standard Number 232, Revision
C.
RS485
Serial Communications Standard. Electronic Industries Association Recommended Standard Number 485.
7SR220 Technical Manual
Chapter 4 - Page 94 of 96 © 2017 Siemens Protection Devices Limited
Start Bit
Bit (logical 0) sent to signify the start of a byte during data transmission.
Stop Bit
Bit (logical 1) sent to signify the end.
USB
Universal Serial Bus standard for the transfer of data.
WAN
Wide Area Network. A computer network covering a large geographic area.
Chapter 4 - Data Communications Definitions
© 2017 Siemens Protection Devices Limited Chapter 4 - Page 95 of 96
Appendix 1
The operating mode of the device is set via the setting, or through a command sent to a communications port. There
are four options; Local,Remote,Local or Remote and Service.
The following table illustrates whether a function is Enabled () or Disabled () in each mode.
Fig. A1 Operating Mode Table
Fault Information
Setting Information
Function
Operation Mode
Local Remote Out of
Service
Control
Com1 when Com1-Mode = Local when Com1-Mode = Remote
Com2 (USB) when Com2-Mode = Local when Com2-Mode = Remote
Com3 when Com3-Mode = Local
Com4 when Com4-Mode = Local
when Com3-Mode = Remote
when Com4-Mode = Remote
Fascia (Control Mode)
Function Key (n)
Binary Input (n) when BI (n) Mode = Local
when F Key(n) Mode = Remote
when BI (n) Mode = Remote
Binary Outputs
Reporting
Spontaneous
IEC
DNP3
General Interrogation
IEC
DNP3
MODBUS
Change Settings
Com1 when Com1-Mode = Local when Com1-Mode = Remote
Com2 (USB) when Com2-Mode = Local
Com3 when Com3-Mode = Local
when Com2-Mode = Remote
when Com3-Mode = Remote
Com4 when Com4-Mode = Local
Fascia
when Com4-Mode = Remote
Historical Information
Waveform Records
Event Records
7SR220 Technical Manual
Chapter 4 - Page 96 of 96 © 2017 Siemens Protection Devices Limited
Siemens Protection Devices Ltd. (SPDL)
P.O. Box 8
Hebburn
Tyne and Wear
NE31 1TZ
United Kingdom
For enquiries please contact our Customer Support Centre
Tel.: +49 180/524 8437 (24hrs)
Fax.: +49 180/524 2471
E-Mail:support.ic@siemens.com
www.siemens.com/reyrolle
Template Revision 17.
Unrestricted The copyright and other intellectual property rights in this document, and in any model or article
produced from it (and including any registered or unregistered design rights) are the property of Siemens
Protection Devices Limited. No part of this document shall be reproduced or modified or stored in another form, in
any data retrieval system, without the permission of Siemens Protection Devices Limited, nor shall any model or
article be reproduced from this document unless Siemens Protection Devices Limited consent.
While the information and guidance given in this document is believed to be correct, no liability shall be accepted
for any loss or damage caused by any error or omission, whether such error or omission is the result of
negligence or any other cause. Any and all such liability is disclaimed.
©2018 Siemens Protection Devices Limited
7SR210 Non-Directional Relay
7SR220 Directional Relay
Installation Guide
7SR210 & 7SR220 Installation Guide
Unrestricted Page 2 of 36 ©2018 Siemens Protection Devices Limited
Document Release History
This document is issue 2018/10. The list of revisions up to and including this issue is: -
2011/05 First issue
2013/01 Typographical revisions and added data. Updated in line with software release.
2014/06 Typographical revisions and added data. Updated in line with software release.
2015/06 Typographical revisions amended drawings and added data. Updated in line with software
release.
2015/07 Amended drawings.
2016/02 Typographical revisions and added data. Updated in line with software release.
2016/11 Redundancy added to electrical ethernet interface
2017/08 Typographical revisions and added data. Updated in line with software release.
2017/12 Typographical revisions and added data.
2018/05 Amended RS485 connection diagrams.
2018/07 Addition of Disposal information
2018/10 Addition of check sync diagram
Software Revision History
2011/05 2435H85008R7a-7a (7SR210)
2435H85009R7a-7a (7SR220)
First Release
2013/01 2435H85008R7c-7b (7SR210)
2435H85009R7c-7b (7SR220)
Introduced journaling file system.
Added 61850 logical nodes for CB Counters, metering, 50BF,
46BC,
81HBL2 and line check.
Added Line Check on non-AR devices.
Added 74CCS Close Circuit Supervision.
2014/06 2435H85008R7f-7d (7SR210)
2435H85009R7f-7d (7SR220)
Added Fault Locator feature and Check Sync feature.
Fault data transmitted over 103.
Additional communications data, control features, meters.
2015/06 2435H85008R8a-7f (7SR210)
2435H85009R8a-7f (7SR220)
Added Power Factor Meters, Load Blinding feature, Arc Flash
Detector. Over current TM Setting Range extended.
2016/02 2435H85008R8b-7f (7SR210)
2435H85009R8b-7f (7SR220)
EN100+ Compatibility.
2017/08 2435H85008R8e-8a (7SR210)
2435H85009R8e-8a (7SR220)
Added 32 Directional Power, 32S Sensitive Power, 55 Power
Factor, 81HLB5 Overfluxing, 67SEF Compensated Network,
67SEF Wattmetric. Increased I/O. Event Data on LCD.
7SR210 & 7SR220 Installation Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 3 of 36
Table of Contents
Document Release History ............................................................................................................... 2
Software Revision History ................................................................................................................ 2
Section 1: Installation ....................................................................................................................... 5
1.1 Unpacking, Storage and Handling ........................................................................................ 5
1.2 Recommended Mounting Position ........................................................................................ 5
1.3 Wiring .................................................................................................................................. 5
1.4 Earthing ............................................................................................................................... 5
1.5 Ancillary Equipment.............................................................................................................. 5
Section 2: Equipment Operating Conditions ................................................................................... 6
2.1 Current Transformer Circuits ................................................................................................ 6
2.2 External Resistors ................................................................................................................ 6
2.3 Fibre Optic Communication .................................................................................................. 6
2.4 Front Cover .......................................................................................................................... 6
2.5 Disposal ............................................................................................................................... 6
2.5.1 Environmental Protection Hints ................................................................................ 6
Section 3: Dimensions and Panel Fixings ....................................................................................... 8
3.1 Relay Dimensions and Weight .............................................................................................. 8
3.2 Fixings ............................................................................................................................... 11
3.2.1 Crimps ................................................................................................................... 11
3.2.2 Panel Fixings ......................................................................................................... 11
3.2.3 Fibre Optic Connectors .......................................................................................... 11
3.2.4 Connectors Ethernet Option ................................................................................... 11
Section 4: Rear Terminal Drawings ................................................................................................ 12
4.1 E6 Case ............................................................................................................................. 12
4.2 E8 Case ............................................................................................................................. 14
4.3 E12 Case ........................................................................................................................... 16
Section 5: Connection/Wiring/Diagrams ........................................................................................ 19
5.1 Wiring Diagram: 7SR21 OC/EF Relay ................................................................................ 19
5.2 Wiring Diagram: 7SR22 Directional OC/EF Relay ............................................................... 20
Section 6: Data Comms Connections ............................................................................................ 21
6.1 Standard RS485 Connections ............................................................................................ 21
6.2 IRIG-B Connections ........................................................................................................... 21
6.3 Additional (Optional) Fibre Optic Connections..................................................................... 22
6.4 Additional (Optional) RS485 Connections ........................................................................... 23
6.5 Additional (Optional) RS232 Connections ........................................................................... 23
6.6 Additional (Optional) Ethernet Connection for IEC 61850 .................................................... 24
6.7 Ethernet Network Redundancy IEC 61850.......................................................................... 25
6.7.1 RSTP – Rapid Spanning Tree Protocol .................................................................. 26
6.7.2 PRP – Parallel Redundancy Protocol ..................................................................... 26
6.7.3 HSR – High Availability Seamless Redundancy Protocol ........................................ 28
Section 7: Connection Diagrams.................................................................................................... 29
7.1 Typical Connection: 7SR22 Directional OC/EF and REF..................................................... 29
7.2 Typical Connection: 7SR22 Directional OC/EF and NVD .................................................... 30
7.3 Typical Connection: 7SR22 Directional OC/EF and NVD .................................................... 31
7.4 Typical Connection: 7SR22 Directional OC/EF and NVD .................................................... 32
7.5 Typical Connection: 7SR22 Directional OC and EF ............................................................ 33
7.6 Typical Connection: 7SR22 Connected to VTs and Capacitor Cone Unit ............................ 34
7SR210 & 7SR220 Installation Guide
Unrestricted Page 4 of 36 ©2018 Siemens Protection Devices Limited
7.7 Typical Connection: 7SR22 Voltage Transformer Configurations for Check Synchronisation35
7.8 Voltage Transformer Configurations ................................................................................... 36
LIST OF FIGURES
Figure 3.1-1 Overall Dimensions (mm) and panel Drilling for Size E6 Epsilon case .............................. 8
Figure 3.1-2 Overall Dimensions (mm) and Panel Drilling for Size E8 Epsilon Case ............................. 9
Figure 3.1-3 Overall Dimensions (mm) and Panel Drilling for Size E12 Epsilon Case ......................... 10
Figure 4.1-1 E6 Standard Comms (USB Front Port, Rear RS485) (See Note 2)................................. 12
Figure 4.1-2 E6 Standard + Additional Comms (IRIG-B, 2 x F.O. (ST Connectors)) (See
Note 2) .......................................................................................................................... 12
Figure 4.1-3 E6 Standard + Additional Comms (IRIG B + RS485) (See Note 2) ................................. 13
Figure 4.1-4 E6 Standard + Additional Comms (IRIG B + RS232) (See Note 2) ................................ 13
Figure 4.2-1 E8 Standard Comms (USB Front Port, Rear RS485) (See Note 2)................................. 14
Figure 4.2-2 E8 Standard + Additional Comms (IRIG B, 2 x F.O. (ST Connectors)) (See
Note 2) .......................................................................................................................... 14
Figure 4.2-3 E8 Standard + Additional Comms (IRIG B + RS485) (See Note 2) ................................. 15
Figure 4.2-4 E8 Standard + Additional Comms (IRIG B + RS232) (See Note 2) ................................. 15
Figure 4.3-1 E12 Standard + Additional Comms (IRIG B, 2 x F.O. (ST Connectors)) (See
Note 2) .......................................................................................................................... 16
Figure 4.3-2 E12 Standard + Additional Comms (IRIG B + RS485) (See Note 2) ............................... 16
Figure 4.3-3 E12 Standard + Additional Comms (IRIG B + RS232) (See Note 2) ............................... 17
Figure 4.3-4 E12 Standard + Additional Comms (RS485 + Ethernet (x2)) (See Note 2) ..................... 17
Figure 4.3-5 Standard Comms + Additional Ethernet Ports (RJ45 shown, Duplex LC Fibre
Optic similar) ................................................................................................................. 18
Figure 5.1-1 Connection Diagram for 7SR21 Relay ........................................................................... 19
Figure 5.2-1 Connection Diagram for 7SR22 Relay ........................................................................... 20
Figure 6.1-1 RS485 Data Comms Connections Between Relays ....................................................... 21
Figure 6.3-1 Data Comms to Multiple Devices Using 7SG24 and F.O. Star Network .......................... 22
Figure 6.3-2 Data Comms to Multiple Devices Using 7SG24 and F.O. Ring Network ......................... 22
Figure 6.4-1 RS485 Data Comms Connections Between Relays ....................................................... 23
Figure 6.5-1 RS232 Data Comms Pin Connections ........................................................................... 23
Figure 6.6-1 Ethernet connection for IEC 61850 (star connection) ..................................................... 24
Figure 6.6-2 Ethernet connection for IEC 61850 (ring connection) ..................................................... 24
Figure 6.7-1 EN100 Redundancy Availability ..................................................................................... 25
Figure 7.1-1 7SR22 Applied to Transformer Incomer ......................................................................... 29
Figure 7.2-1 7SR22 Applied to Transformer Incomer Including HV NVD Protection......................... 30
Figure 7.3-1 7SR22 Applied to Feeder Including NVD Protection....................................................... 31
Figure 7.4-1 7SR22 Applied to Feeder .............................................................................................. 32
Figure 7.5-1 7SR22 Applied to Feeder - No Zero Sequence Voltage Source ..................................... 33
Figure 7.6-1 7SR22 Applied to Feeder with Capacitor Cones Fitted ................................................... 34
Figure 7.7-1 7SR22 Applied to Check Synchronisation ...................................................................... 35
Figure 7.7-1 7SR22 VT Connections ................................................................................................. 36
7SR210 & 7SR220 Installation Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 5 of 36
Section 1: Installation
1.1 Unpacking, Storage and Handling
On receipt remove the relay from the container in which it was received and inspect it for obvious damage. It is
recommended that the relay not be removed from its case.
If damage has been sustained a claim should be immediately be made against the carrier, also inform Siemens
Protection Devices Limited, and to the nearest Siemens agent, using the Defect Report Form in the Maintenance
section of this manual.
When not required for immediate use, the relay should be returned to its original carton and stored in a clean, dry
place.
The relay contains static sensitive devices, which are susceptible to damage due to static discharge. The relay’s
electronic circuits are protected from damage by static discharge when the relay is housed in its case.
There can be no requirement to disassemble any relay, since there are no user serviceable parts in the relay. If
any modules have been tampered with, then the guarantee will be invalidated. Siemens Protection Devices
Limited reserves the right to charge for any subsequent repairs.
1.2 Recommended Mounting Position
The relay uses a liquid crystal display (LCD) which is used in the programming and for operation. The LCD has a
vertical viewing angle of ± 30˚ and is back–lit. However, the best viewing position is at eye level, and this is
particularly important given its control features.
The relay should be mounted on the circuit breaker (or protection panel) to allow the operator the best access to
the relay functions.
1.3 Wiring
The product should be wired according to the scheme requirements, with reference to the appropriate wiring
diagram. Refer to the appropriate Diagrams and Parameters document for a cross-reference of wiring diagrams
and models.
1.4 Earthing
Terminal 28 of the PSU (Power Supply Unit) should be solidly earthed by a direct connection to the panel earth.
The Relay case earth stud connection should be connected to terminal 28 of the PSU.
It is normal practice to additionally 'daisy chain' together the case (safety) earths of all the Relays installed in a
panel to prevent earth current loops posing a risk to personnel.
1.5 Ancillary Equipment
The relay can be interrogated locally or remotely. For local interrogation a portable PC with suitable version of MS
Windows (2000 SP4 or XP SP2)and Reydisp Evolution™ s/w (Latest Version available 32 bit) using USB port
situated on front of the relay.
7SR21 & 7SR22 - Installation Guide
Unrestricted Page 6 of 36 ©2018 Siemens Protection Devices Limited
Section 2: Equipment Operating
Conditions
2.1 Current Transformer Circuits
The secondary circuit of a live CT must not be open circuited. Non-observance of this precaution can result in
injury to personnel or damage to equipment.
2.2 External Resistors
Where external resistors are fitted to relays, these may present a danger of electric shock or burns, if touched.
2.3 Fibre Optic Communication
Where fibre optic communication devices are fitted, these should not be viewed directly. Optical power meters
should be used to determine the operation or signal level of the device.
2.4 Front Cover
The front cover provides additional securing of the relay element within the case. The relay cover should be in
place during normal operating conditions.
2.5 Disposal
The Relay should be disposed of in a manner which does not provide a threat to health or the environment. All
laws and regulations specific to the country of disposal should be adhered to.
2.5.1 Environmental Protection Hints
Disposal of Old Equipment and Batteries (Applicable only for European Union and Countries with a
Recycling System)
The disposal of our products and possible recycling of their components after decommissioning has to be carried
out by an accredited recycling company, or the products/components must be taken to applicable collection
points. Such disposal activities must comply with all local laws, guidelines and environmental specifications of the
country in which the disposal is done. For the European Union the sustainable disposal of electronic scrap is
defined in the respective regulation for "waste electrical and electronic equipment" (WEEE).
The crossed-out wheelie bin on the products, packaging and/or accompanying
documents means that used electrical and electronic products and batteries must not be
mixed with normal household waste.
According to national legislation, penalties may be charged for incorrect disposal
of such waste.
!
!
!
!
!
7SR210 & 7SR220 Installation Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 7 of 36
By disposing of these products correctly you will help to save valuable resources and prevent any potential
negative effects on human health and the environment.
NOTE: Our products and batteries must not be disposed of as household waste. For disposing batteries it is
necessary to observe the local national/international directives.
Disposal of Mobile Storage Devices (e.g. USB Sticks and Memory Cards)
When disposing of/transferring mobile storage devices, using the format or delete functions only changes the file
management information and does not completely delete the data from your mobile storage device. When
disposing of or transferring a mobile storage device, Siemens strongly recommends physically destroying it or
completely deleting data from the mobile storage device by using a commercially available computer data erasing
software.
REACH/RoHS Declaration
You can find our current REACH/RoHS declarations at:
https://www.siemens.com/global/en/home/products/energy/ecotransparency/ecotransparency-downloads.html
NOTE: You can find more information about activities and programs to protect the climate at the
EcoTransparency website:
https://www.siemens.com/global/en/home/products/energy/ecotransparency.html
7SR21 & 7SR22 - Installation Guide
Unrestricted Page 8 of 36 ©2018 Siemens Protection Devices Limited
Section 3: Dimensions and Panel Fixings
3.1 Relay Dimensions and Weight
Relays are supplied in the modular size E6, E8 or E12
The following drawings are available which give panel cut-out and mounting details.
NOTE:
THE 3.6 HOLES ARE FOR M4 THREAD FORMING (TRILOBULAR) SCREWS. THESE ARE SUPPLIED AS STANDARD AND ARE SUITABLE FOR
USE IN FERROUS / ALUMINIUM PANELS 1.6mm THICK AND ABOVE. FOR OTHER PANELS, HOLES TO BE M4 CLEARANCE (TYPICALLY 4.5
DIAMETER) AND RELAYS MOUNTED USING M4 MACHINE SCREWS, NUTS AND LOCKWASHERS (SUPPLIED IN PANEL FIXING KIT).
2) ACCESS CLEARANCE REQUIRED FOR OPTIONAL ETHERNET COMMS MODULE RETAINING SCREW
Case Earth connection
TOP VIEW
Optional
ethernet
comms
module
FRONT
See note 2
PANEL CUT-OUT
168
130
150
159
10
Diameter 3.6 - 4 holes (see note)
FRONT VIEW
155.5
177
SIDE VIEW
31 216.5
151.5
11
Case Earth
connection
Typical
when
fitted
MINIMUM CLEARANCES:
25mm FOR TERMINAL WIRING
45mm FOR ETHERNET COMMS MODULE
70mm FOR F/O COMMS CABLE
75 mm MIN
CLEARANCE
FOR ETHERNET
COMMS WIRING
Figure 3.1-1 Overall Dimensions (mm) and panel Drilling for Size E6 Epsilon case
7SR210 & 7SR220 Installation Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 9 of 36
Case Earth connection
TOP VIEW
Optional
ethernet
comms
module
FRONT
See note 2
PANEL CUT-OUT
168
182
201.5
159
9.75
Diameter 3.6 - 4 holes (see note)
FRONT VIEW
207.5
177
SIDE VIEW
31 216.5
151.5
11
Case Earth
connection
Typical
when
fitted
MINIMUM CLEARANCES:
25mm FOR TERMINAL WIRING
45mm FOR ETHERNET COMMS MODULE
70mm FOR F/O COMMS CABLE
75 mm MIN
CLEARANCE
FOR ETHERNET
COMMS WIRING
NOTE:
THE 3.6 HOLES ARE FOR M4 THREAD FORMING (TRILOBULAR) SCREWS. THESE ARE SUPPLIED AS STANDARD AND ARE SUITABLE FOR
USE IN FERROUS / ALUMINIUM PANELS 1.6mm THICK AND ABOVE. FOR OTHER PANELS, HOLES TO BE M4 CLEARANCE (TYPICALLY 4.5
DIAMETER) AND RELAYS MOUNTED USING M4 MACHINE SCREWS, NUTS AND LOCKWASHERS (SUPPLIED IN PANEL FIXING KIT).
2) ACCESS CLEARANCE REQUIRED FOR OPTIONAL ETHERNET COMMS MODULE RETAINING SCREW
Figure 3.1-2 Overall Dimensions (mm) and Panel Drilling for Size E8 Epsilon Case
7SR21 & 7SR22 - Installation Guide
Unrestricted Page 10 of 36 ©2018 Siemens Protection Devices Limited
Figure 3.1-3 Overall Dimensions (mm) and Panel Drilling for Size E12 Epsilon Case
Hardware Model
Typical
Net Weight (kg)
7SR2102
4.2
7SR2103
4.6
7SR2104 4.8
7SR2105
8.4
7SR2106
8.4
7SR2202
4.8
7SR2203
4.9
7SR2204 5.3
7SR2205
8.4
7SR2206
8.4
NB:
For relays supplied with additional (optional) communication interface devices, please add an additional
0.165 kg to the figures in the above table.
For relays supplied with Ethernet EN100 interface (optional) please add 0.1 kg to the figures in the above
table.
7SR210 & 7SR220 Installation Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 11 of 36
3.2 Fixings
3.2.1 Crimps
Ring tongued crimps with 90˚ bend are recommended.
3.2.2 Panel Fixings
Typical mounting screw kit per Relay
Consists of 4 off M4x10 mm Screws
4 off M4 Nuts
4 off M4 Lock Washers
Typical rear terminal block fixing kit (1 kit per terminal block fitted to relay) consists of: -
28 x M4, 8 mm Screws
28 x M4 Lock Washers
3.2.3 Fibre Optic Connectors
The relay has Fibre-Optic STTM (BFOC/2.5) bayonet connectors fitted when specified.
3.2.4 Connectors Ethernet Option
The relay has RJ45 connectors for electrical Ethernet and Duplex LC Fibre Optic connectors for optical Ethernet.
7SR21 & 7SR22 - Installation Guide
Unrestricted Page 12 of 36 ©2018 Siemens Protection Devices Limited
B
A
Section 4: Rear Terminal Drawings
4.1 E6 Case
Figure 4.1-1 E6 Standard Comms (USB Front Port, Rear RS485) (See Note 2)
Figure 4.1-2 E6 Standard + Additional Comms (IRIG-B, 2 x F.O. (ST Connectors)) (See Note 2)
Notes
1) Recommended terminations are pre-insulated & must be crimped using approved tooling.
2) RS485 (block ”B” terms 14, 16, 18, 20) connections to this communication facility is by screened, twisted pair
cable. On site when wiring other facilities ensure that these terminals are not obscured by other wiring runs. Cable
should be RS485 compliant.
7SR210 & 7SR220 Installation Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 13 of 36
Figure 4.1-3 E6 Standard + Additional Comms (IRIG B + RS485) (See Note 2)
Figure 4.1-4 E6 Standard + Additional Comms (IRIG B + RS232) (See Note 2)
7SR21 & 7SR22 - Installation Guide
Unrestricted Page 14 of 36 ©2018 Siemens Protection Devices Limited
B
C
A
4.2 E8 Case
Figure 4.2-1 E8 Standard Comms (USB Front Port, Rear RS485) (See Note 2)
Figure 4.2-2 E8 Standard + Additional Comms (IRIG B, 2 x F.O. (ST Connectors)) (See Note 2)
7SR210 & 7SR220 Installation Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 15 of 36
Figure 4.2-3 E8 Standard + Additional Comms (IRIG B + RS485) (See Note 2)
Figure 4.2-4 E8 Standard + Additional Comms (IRIG B + RS232) (See Note 2)
7SR21 & 7SR22 - Installation Guide
Unrestricted Page 16 of 36 ©2018 Siemens Protection Devices Limited
4.3 E12 Case
Figure 4.3-1 E12 Standard + Additional Comms (IRIG B, 2 x F.O. (ST Connectors)) (See Note 2)
Figure 4.3-2 E12 Standard + Additional Comms (IRIG B + RS485) (See Note 2)
7SR210 & 7SR220 Installation Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 17 of 36
Figure 4.3-3 E12 Standard + Additional Comms (IRIG B + RS232) (See Note 2)
Figure 4.3-4 E12 Standard + Additional Comms (RS485 + Ethernet (x2)) (See Note 2)
7SR21 & 7SR22 - Installation Guide
Unrestricted Page 18 of 36 ©2018 Siemens Protection Devices Limited
Figure 4.3-5 Standard Comms + Additional Ethernet Ports (RJ45 shown, Duplex LC Fibre Optic similar)
Notes
1) Recommended terminations are pre-insulated & must be crimped using approved tooling.
2) RS485 (block ”B” terminals 14, 16, 18, 20 and optional COMMS MODULE) connections are by screened,
twisted pair cable.
Ensure that these terminals are not obscured by other wiring runs.
Cable should be RS485 compliant.
7SR210 & 7SR220 Installation Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 19 of 36
Section 5: Connection/Wiring/Diagrams
5.1 Wiring Diagram: 7SR21 OC/EF Relay
Figure 5.1-1 Connection Diagram for 7SR21 Relay
7SR21 & 7SR22 - Installation Guide
Unrestricted Page 20 of 36 ©2018 Siemens Protection Devices Limited
5.2 Wiring Diagram: 7SR22 Directional OC/EF Relay
RS485
Figure 5.2-1 Connection Diagram for 7SR22 Relay
7SR210 & 7SR220 Installation Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 21 of 36
Section 6: Data Comms Connections
6.1 Standard RS485 Connections
The standard RS485 communication port is located on terminal block 2 at the rear of the relay and can be
connected using a suitable RS485 120 Ohm screened twisted pair cable.
The RS485 electrical connection can be used in a single or multi-drop configuration. The RS485 master must
support and use the Auto Device Enable (ADE) feature.
The last device in the connection must be terminated correctly in accordance with the master driving the
connection. A terminating resistor is fitted in each relay, when required this is connected in circuit using an
external wire loop between terminals 18 and 20 of the power supply module.
Up to 64 relays can be connected to the RS485 bus.
The RS485 data communications link with a particular relay will be broken if the relay element is withdrawn from
the case, all other relays will still communicate.
Figure 6.1-1 RS485 Data Comms Connections Between Relays
6.2 IRIG-B Connections
A BNC plug is provided on the optional additional communication interface modules to connect a co-axial cable
carrying IRIG-B time synchronisation signals. Ensure that the stub length is minimised by connecting the tee-
connector directly to the rear of the relay. A suitable co-axial cable would be type RG58 50 Ohms.
7SR21 & 7SR22 - Installation Guide
Unrestricted Page 22 of 36 ©2018 Siemens Protection Devices Limited
6.3 Additional (Optional) Fibre Optic Connections
Rear Com ports 3 and 4 comprise Fibre–Optic ST™ (BFOC/2.5) bayonet connectors-4 per product. 62.5 / 125 μm
glass fibre is recommended for all distances.
When installing fibre, ensure that the fibres’ bend radii comply with the recommended minimum for the fibre used-
typically 50 mm is acceptable.
Computer or
Control System
7SG24
Tx
Rx Tx
Rx
62.5/125 µm fibre optic
with ST connectors
Tx
Rx
Tx
Rx
Tx
Rx
Tx
Rx
Tx
Rx
Tx
Rx
Master
To
Control
System
USB or 9 pin male
D connector
RS232 straight
Through cable
25 pin male
D connector
Figure 6.3-1 Data Comms to Multiple Devices Using 7SG24 and F.O. Star Network
Figure 6.3-2 Data Comms to Multiple Devices Using 7SG24 and F.O. Ring Network
The F.O. data communications link with a particular relay will be broken if the relay element is withdrawn from the
case, all other relays will still communicate.
7SR210 & 7SR220 Installation Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 23 of 36
6.4 Additional (Optional) RS485 Connections
The additional (optional) RS485 communication port is located at the rear of the relay and can be connected
using a suitable RS485 120 Ohm screened twisted pair cable.
The RS485 electrical connection can be used in a single or multi-drop configuration. The RS485 master must
support and use the Auto Device Enable (ADE) feature.
The last device in the connection must be terminated correctly in accordance with the master device driving the
connection. The relays are fitted with an internal terminating resistor which can be connected between the A and
B by fitting an external wire loop between terminals 18 and 20 on the power supply module.
Figure 6.4-1 RS485 Data Comms Connections Between Relays
6.5 Additional (Optional) RS232 Connections
The additional (optional) RS232 (9 pin plug) (DTE) communication port is located at the rear of the relay and can
be connected using a suitable RS232 cable.
Where there is a requirement for multi-drop RS232 connection, a suitable device to facilitate this should be
obtained.
Pin
Relay Function
1
Not Connected
2
Receive Data (RXD)
3 Transmit Data (TXD)
4
Input Supply +5 V
5
Signal Ground (GND)
6
Input Supply +5 V
7
Linked to 8 (volts free)
8 Linked to 7 (volts free)
9
Output Supply +5 V 50 mA
Figure 6.5-1 RS232 Data Comms Pin Connections
7SR21 & 7SR22 - Installation Guide
Unrestricted Page 24 of 36 ©2018 Siemens Protection Devices Limited
6.6 Additional (Optional) Ethernet Connection for IEC 61850
Rear Ethernet Comms port Ch 1 and Ch 2 comprises Duplex LC 100BaseF in acc. With IEEE802.3 Fibre–
Optic or RJ45 100BaseF in acc. With IEEE802.3 electrical connectors.
When installing fibre, ensure that the fibres’ bend radii comply with the recommended minimum for the fibre used-
typically 50 mm is acceptable, 62.5/125 mm glass fibre with Duplex-LC connector recommended for all
distances.
Figure 6.6-1 Ethernet connection for IEC 61850 (star connection)
Figure 6.6-2 Ethernet connection for IEC 61850 (ring connection)
7SR210 & 7SR220 Installation Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 25 of 36
6.7 Ethernet Network Redundancy IEC 61850
The EN100+ module is used on current Reyrolle devices (from 7SR21/22 hardware /DD) to provide
Ethernet/IEC61850 functionality. The RJ45 electrical EN100+ supports PRP redundancy protocols. The Duplex-
LC Optical EN100+ also supports RSTP and HSR redundancy protocols.
Earlier 7SR21/22 (/CC) devices were manufactured with the EN100 (not EN100+) module and the electrical
version cannot support redundancy. The optical version can support redundancy if firmware is updated. Earlier
devices do not support the EN100+ module cannot be updated by simply exchanging the EN100 module.
All current 7SR21/22 IEC61850 variants are delivered with the EN100+ (Plus) module and firmware 4.24 or later.
The EN100 module firmware can be updated by connecting to the relay via the rear Ethernet port. For more
information on connecting to the relay via the Ethernet port, please see the Reydisp Manager User guide.
Depending on the EN100 module type and Firmware version, the following protocol options are available:
Interface Type EN100
Firmware
Line Mode
Switch Mode
RSTP
OS
M
PRP
HSR
Electrical RJ45 EN100+ 4.21and later ü ü ü ü ü
Optical EN100+ 4.21and later ü ü ü ü ü
Electrical RJ45 EN100+ 4.08 or earlier ü ü ü û û
Optical EN100+ 4.08 or earlier ü ü ü û û
Electrical RJ45 EN100 4.21and later ü û û û û
Optical EN100 4.21and later ü ü ü ü ü
Electrical RJ45 EN100 4.08 or earlier ü û û û û
Optical EN100 4.08 or earlier ü ü ü û û
Figure 6.7-1 EN100 Redundancy Availability
7SR21 & 7SR22 - Installation Guide
Unrestricted Page 26 of 36 ©2018 Siemens Protection Devices Limited
6.7.1 RSTP – Rapid Spanning Tree Protocol
RSTP is a redundancy protocol with a minimal response time that has been standardized in IEEE-802.1D (2004).
The reconfiguration time depend on the topology and start at 50 ms.
RSTP need to be enabled on the device within Reydisp Manager (See Reydisp Manager user guide). Network
rings with up to 30 devices is possible.
Figure: 6.7.1-1 RSTP Ethernet Network Ring Configuration
6.7.2 PRP – Parallel Redundancy Protocol
The HSR redundancy protocol according to the IEC 62439-3 standard is based on double transmission of
message frames over ring-topology networks in both directions. In the case of an error, the message frame will be
transmitted without any delay. No reconfiguration time is necessary for the network, as is the case for RSTP.
PRP need to be enabled on the device within Reydisp Manager (See Reydisp Manager user guide).
7SR210 & 7SR220 Installation Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 27 of 36
Figure: 6.7.2-1 PRP Ethernet Network Configuration
7SR21 & 7SR22 - Installation Guide
Unrestricted Page 28 of 36 ©2018 Siemens Protection Devices Limited
6.7.3 HSR – High Availability Seamless Redundancy Protocol
The HSR redundancy protocol according to the IEC 62439-3 standard is based on double transmission of
message frames over ring-topology networks in both directions. In the case of an error, the message frame will be
transmitted without any delay. No reconfiguration time is necessary for the network.
HSR needs to be enabled on the device within Reydisp Manager (See Reydisp Manager user guide). Network
rings with up to 50 devices is possible.
Figure: 6.7.3-1 HSR Ethernet Network Ring Configuration
7SR210 & 7SR220 Installation Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 29 of 36
Section 7: Connection Diagrams
7.1 Typical Connection: 7SR22 Directional OC/EF and REF
IL1
(IA)
1
2
5
6
9
10
13
14
A
17
18
19
20
21
22
23
24
25
26
27
28
1A
5A
1A
5A
1A
5A
1A
5A
15
16
11
12
1A
5A
3
4
7
8
B
C
S1
S2
P2
L1 L2 L3
S1
S2
P1
V4
(VX)
VL3
(VC)
VL2
(VB)
VL1
(VA)
NOTES
1) CT circuits are shown connected to 1 A tap – use alternative tap for 5 A rated CTs.
2) CT and Earth connections are typical only.
3) Application shows use of I5as an REF input with external stabilising and voltage limiting resistor.
4) Phase Voltage Config:-VanVbnVcn
P2P1
S1 S2 S1 S2
IL2
(IB)
IL3
(IC)
I4
(IG)
I5
(ISEF)
Figure 7.1-1 7SR22 Applied to Transformer Incomer
7SR21 & 7SR22 - Installation Guide
Unrestricted Page 30 of 36 ©2018 Siemens Protection Devices Limited
7.2 Typical Connection: 7SR22 Directional OC/EF and NVD
Figure 7.2-1 7SR22 Applied to Transformer Incomer Including HV NVD Protection
7SR210 & 7SR220 Installation Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 31 of 36
7.3 Typical Connection: 7SR22 Directional OC/EF and NVD
S1
S2
P1
P2
L1 L2 L3
VL
VN
NOTES
1) CT circuits are shown connected to 1 A tap – use alternative tap for 5 A rated CTs.
2) CT and Earth connections are typical only.
3) Application shows use of V4as an NVD input.
4) Star Connected VT: Phase Voltage Config:-Van,Vbn,Vcn
IL1
(IA)
1
2
5
6
9
10
13
14
A
17
18
19
20
21
22
23
24
25
26
27
28
1A
5A
1A
5A
1A
5A
1A
5A
15
16
11
12
1A
5A
3
4
7
8
B
C
V4
(VX)
VL3
(VC)
VL2
(VB)
VL1
(VA)
IL2
(IB)
IL3
(IC)
I4
(IG)
I5
(ISEF)
Figure 7.3-1 7SR22 Applied to Feeder Including NVD Protection
7SR21 & 7SR22 - Installation Guide
Unrestricted Page 32 of 36 ©2018 Siemens Protection Devices Limited
7.4 Typical Connection: 7SR22 Directional OC/EF and NVD
VL
VN
L1 L2 L3
3Vo
S1
S2
P1
P2
IL1
(IA)
1
2
5
6
9
10
13
14
A
17
18
19
20
21
22
23
24
25
26
27
28
1A
5A
1A
5A
1A
5A
1A
5A
15
16
11
12
1A
5A
3
4
7
8
B
C
V4
(VX)
VL3
(VC)
VL2
(VB)
VL1
(VA)
IL2
(IB)
IL3
(IC)
I4
(IG)
I5
(ISEF)
NOTES
1) CT circuits are shown connected to 1 A tap – use alternative tap for 5 A rated CTs.
2) CT and Earth connections are typical only.
3) Voltage Config:-Vab, Vbc, 3V0
Figure 7.4-1 7SR22 Applied to Feeder
7SR210 & 7SR220 Installation Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 33 of 36
7.5 Typical Connection: 7SR22 Directional OC and EF
L1 L2 L3
A
C
B
S1
S2
P1
P2
IL1
(IA)
1
2
5
6
9
10
13
14
A
17
18
19
20
21
22
23
24
25
26
27
28
1A
5A
1A
5A
1A
5A
1A
5A
15
16
11
12
1A
5A
3
4
7
8
B
C
V4
(VX)
VL3
(VC)
VL2
(VB)
VL1
(VA)
IL2
(IB)
IL3
(IC)
I4
(IG)
I5
(ISEF)
NOTES
1) CT circuits are shown connected to 1 A tap – use alternative tap for 5 A rated CTs.
2) CT and Earth connections are typical only.
3) Vee Connected VT: Phase Voltage Config:-Va,Vb,Vc
4) DEF elements must be NPS polarised (Vo polarising not applicable)
Figure 7.5-1 7SR22 Applied to Feeder - No Zero Sequence Voltage Source
7SR21 & 7SR22 - Installation Guide
Unrestricted Page 34 of 36 ©2018 Siemens Protection Devices Limited
7.6 Typical Connection: 7SR22 Connected to VTs and
Capacitor Cone Unit
L1 L2 L3
A
C
B
S1
S2
P1
P2
IL1
(IA)
1
2
5
6
9
10
13
14
A
17
18
19
20
21
22
23
24
25
26
27
28
1A
5A
1A
5A
1A
5A
1A
5A
15
16
11
12
1A
5A
3
4
7
8
B
C
V4
(VX)
VL3
(VC)
VL2
(VB)
VL1
(VA)
IL2
(IB)
IL3
(IC)
I4
(IG)
I5
(ISEF)
NOTES
1) CT circuits are shown connected to 1 A tap – use alternative tap for 5 A rated CTs.
2) CT and Earth connections are typical only.
3) Vee Connected VT: Phase Voltage Config:-Va,Vb,Vc
4) DEF elements must be NPS polarised (Vo polarising not applicable)
5) V4 used for NVD input
Capacitor
Cones
Adaptor
Unit
Figure 7.6-1 7SR22 Applied to Feeder with Capacitor Cones Fitted
7SR210 & 7SR220 Installation Guide
Unrestricted ©2018 Siemens Protection Devices Limited Page 35 of 36
7.7 Typical Connection: 7SR22 Voltage Transformer
Configurations for Check Synchronisation
Relay Voltage
Configuration
Description Connection
Vbn line,
Vbn bus,
25 Check Sync,
A21
A22
A27
A28
A B C
N
n
a b c
A B C
N
n
a b c
V Line
V Bus
Vab line,
Vab bus,
25 Check Sync,
A21
A22
A27
A28
A B C
N
n
a b c
A B C
N
n
abc
V Line
V Bus
Figure 7.7-1 7SR22 Applied to Check Synchronisation
7SR21 & 7SR22 - Installation Guide
Unrestricted Page 36 of 36 ©2018 Siemens Protection Devices Limited
7.8 Voltage Transformer Configurations
Relay Voltage
Configuration Setting
Description Connection
Van, Vbn, Vcn 67 & 67N & 67G
47, 27/59 & 81
Phase – Neutral
Phase – Phase
Calculated
NPS
ZPS
Va, Vb, Vc 67
67N (NPS polarising)
47, 27/59 & 81
Phase – Phase
Calculated
NPS
Vab, Vbc, 3V0 67 & 67N & 67G
47, 59N, 27/59 & 81
Phase – Neutral
Calculated
Phase – Phase
Phase Vca Calculated
NPS
ZPS
Figure 7.8-1 7SR22 VT Connections
The copyright and other intellectual property rights in this document, and in any model or article produced from it
(and including any registered or unregistered design rights) are the property of Siemens Protection Devices
Limited. No part of this document shall be reproduced or modified or stored in another form, in any data retrieval
system, without the permission of Siemens Protection Devices Limited, nor shall any model or article be
reproduced from this document unless Siemens Protection Devices Limited consent.
While the information and guidance given in this document is believed to be correct, no liability shall be accepted
for any loss or damage caused by any error or omission, whether such error or omission is the result of
negligence or any other cause. Any and all such liability is disclaimed.
© 2013 Siemens Protection Devices Limited
7SR21 Non-Directional Relay
7SR22 Directional Relay
Commissioning & Maintenance
Guide
7SR210 & 7SR220 Commissioning & Maintenance Guide
Page 2 of 82 © 2013 Siemens Protection Devices Limited
Document Release History
This document is issue 2017/12. The list of revisions up to and including this issue is: -
2011/05 First issue
2013/01 Typographical revisions and added data. Updated in line with software release.
2014/06 Typographical revisions and added data. Updated in line with software release.
2015/06 Typographical revisions, drawing amendments and added data. Updated in line with
software release.
2016/02 Typographical revisions and added data. Updated in line with software release.
2017/08 Typographical revisions and added data. Updated in line with software release.
2017/12 Typographical revisions and added data.
Software Revision History
2011/05 2435H85008R7a-7a (7SR210)
2435H85009R7a-7a (7SR220)
First Release
2013/01 2435H85008R7c-7b (7SR210)
2435H85009R7c-7b (7SR220)
Introduced journaling file system.
Added 61850 logical nodes for CB Counters, metering, 50BF,
46BC, 81HBL2 and line check.
Added Line Check on non-AR devices.
Added 74CCS Close Circuit Supervision.
2014/06 2435H85008R7f-7d (7SR210)
2435H85009R7f-7d (7SR220)
Added Fault Locator feature and Check Sync feature.
Fault data transmitted over 103.
Additional communications data, control features, meters.
2015/06 2435H85008R8a-7f (7SR210)
2435H85009R8a-7f (7SR220)
Added Power Factor Meters, Load Blinding feature, Arc Flash
Detector. Over current TM Setting Range extended.
2016/02 2435H85008R8b-7f (7SR210)
2435H85009R8b-7f (7SR220)
EN100+ Compatibility.
2017/08 2435H85008R8e-8a (7SR210)
2435H85009R8e-8a (7SR220)
Added 32 Directional Power, 32S Sensitive Power, 55 Power
Factor, 81HLB5 Overfluxing, 67SEF Compensated Network,
67SEF Wattmetric. Increased I/O. Event Data on LCD.
7SR210 & 7SR220 Commissioning & Maintenance Guide
© 2013 Siemens Protection Devices Limited Page 3 of 82
Contents
Document Release History ............................................................................................................... 2
Software Revision History ................................................................................................................ 2
Contents ............................................................................................................................................ 3
Section 1: Common Functions ......................................................................................................... 6
1.1 Overview .............................................................................................................................. 6
1.2 Before Testing ...................................................................................................................... 6
1.2.1 Safety ...................................................................................................................... 6
1.2.2 Sequence of Tests ................................................................................................... 6
1.2.3 Test Equipment........................................................................................................ 7
1.2.4 Precautions.............................................................................................................. 7
1.2.5 Applying Settings ..................................................................................................... 7
1.3 Tests .................................................................................................................................... 9
1.3.1 Inspection ................................................................................................................ 9
1.3.2 Secondary Injection Tests ........................................................................................ 9
1.3.3 Primary Injection Tests............................................................................................. 9
1.3.4 Putting into Service .................................................................................................. 9
1.4 AC Energising Quantities ................................................................................................... 10
1.5 Binary Inputs ...................................................................................................................... 11
1.6 Binary Outputs ................................................................................................................... 12
1.7 Relay Case Shorting Contacts ............................................................................................ 13
Section 2: Protection Functions ..................................................................................................... 14
2.1 Phase Directional Polarity Check ........................................................................................ 15
2.1.1 2 out of 3 logic ....................................................................................................... 16
2.2 Phase Overcurrent (67/50,67/51) ....................................................................................... 17
2.2.1 Definite Time Overcurrent. (50) .............................................................................. 18
2.2.2 Inverse Time Overcurrent. (51) .............................................................................. 18
2.3 Voltage Controlled Overcurrent (51V) ................................................................................. 20
2.4 Cold Load (51c).................................................................................................................. 22
2.4.1 Inverse Time Overcurrent. (51C) ............................................................................ 23
2.1 Arc Flash Detection (50AFD) .............................................................................................. 25
2.2 Directional Earth Fault Polarity Check (67N) ....................................................................... 26
2.3 Derived Earth Fault (67/50N, 67/51N) ................................................................................. 27
2.3.1 Directional Polarity ................................................................................................. 28
2.3.2 Definite Time Overcurrent..(50N)............................................................................ 28
2.3.3 Inverse Time Overcurrent. (51N) ............................................................................ 28
2.4 Measured Earth fault (67/50G,67/51G) ............................................................................... 31
2.4.1 Directional Polarity ................................................................................................. 32
2.4.2 Definite Time Overcurrent..(67/50G)....................................................................... 32
2.4.3 Inverse Time Overcurrent. (67/51G) ....................................................................... 32
2.5 Sensitive Earth fault (67/50S,67/51S) ................................................................................. 35
2.5.1 Directional Polarity ................................................................................................. 36
2.5.2 Definite Time Overcurrent. (50SEF) ....................................................................... 36
2.5.3 Inverse Time Overcurrent. (51SEF) ........................................................................ 36
2.6 Restricted Earth fault. (64H) ............................................................................................... 39
2.7 Negative Phase Sequence Overcurrent (46NPS)................................................................ 41
2.7.1 Definite Time NPS Overcurrent. (46DT) ................................................................. 42
2.7.2 Inverse Time NPS Overcurrent. (46IT) ................................................................... 42
7SR210 & 7SR220 Commissioning & Maintenance Guide
Page 4 of 82 © 2013 Siemens Protection Devices Limited
2.8 Undercurrent. (37) .............................................................................................................. 44
2.9 Thermal Overload (49) ....................................................................................................... 46
2.10 Over/Under Voltage............................................................................................................ 48
2.10.1 Phase Under/Over Voltage. (27/59) ....................................................................... 48
2.10.2 Undervoltage Guard (27/59UVG) ........................................................................... 50
2.10.3 Vx Under/Over Voltage. (Vx 27/59) ........................................................................ 51
2.10.4 NPS Overvoltage (47) ............................................................................................ 53
2.10.5 Neutral Overvoltage (59N) ..................................................................................... 55
2.10.6 Definite Time (59NDT) ........................................................................................... 55
2.10.7 Inverse Time (59NIT) ............................................................................................. 56
2.10.8 Element Blocking ................................................................................................... 56
2.10.9 Under/Over Frequency (81) ................................................................................... 57
2.11 Power (32) ......................................................................................................................... 59
2.12 Sensitive Power (32S) ........................................................................................................ 61
2.13 Power Factor (55) .............................................................................................................. 63
Section 3: Supervision Functions .................................................................................................. 65
3.1 CB Fail. (50BF) .................................................................................................................. 65
3.2 Voltage Transformer Supervision. (60VTS) ......................................................................... 67
3.2.1 1 or 2 Phase VT fail ............................................................................................... 68
3.2.2 3 Phase VT fail ...................................................................................................... 68
3.3 Current Transformer Supervision. (60CTS) ......................................................................... 69
3.3.1 Element Blocking ................................................................................................... 70
3.4 Broken Conductor. (46BC) ................................................................................................. 71
3.4.1 Element Blocking ................................................................................................... 72
3.5 Load Blinder (21)................................................................................................................ 73
3.5.1 Determining Load Blinder Regions (21LB) .............................................................. 75
3.5.2 Determining Trip Level ........................................................................................... 76
3.6 Trip Circuit Supervision. (74TCS) ....................................................................................... 77
3.7 Magnetising Inrush Detector. (81HBL) ................................................................................ 78
3.1 Over Fluxing Detector. (81HBL5) ........................................................................................ 79
Section 4: Control & Logic Functions ............................................................................................ 80
4.1 Autoreclose (79) ................................................................................................................. 80
4.2 Quick Logic ........................................................................................................................ 80
Section 5: Testing and Maintenance .............................................................................................. 81
5.1 Periodic Tests .................................................................................................................... 81
5.2 Maintenance ...................................................................................................................... 81
5.3 Troubleshooting ................................................................................................................. 82
7SR210 & 7SR220 Commissioning & Maintenance Guide
© 2013 Siemens Protection Devices Limited Page 5 of 82
List of Figures
Figure 2.1-1 Directional Phase Fault Boundary System Angles ................................................... 16
Figure 2.2-1 Phase Overcurrent ..................................................................................................... 17
Figure 2.3-1 Voltage Controlled Overcurrent ................................................................................. 20
Figure 2.4-1 Cold Load ................................................................................................................... 22
Figure 2.4-2 Cold Load Logic diagram ........................................................................................... 23
Figure 2.1-1 Arc Flash Detection .................................................................................................... 25
Figure 2.5-1 Directional Earth Fault Boundary System Angles .................................................... 26
Figure 2.6-1 Derived Earth Fault .................................................................................................... 27
Figure 2.7-1 Measured Earth Fault ................................................................................................. 31
Figure 2.8-1 Sensitive Earth Fault .................................................................................................. 35
Figure 2.9-1 Restricted Earth Fault ................................................................................................ 39
Figure 2.10-1 Negative Phase Sequence Overcurrent .............................................................. 41
Figure 2.11-1 Undercurrent ........................................................................................................ 44
Figure 2.12-1 Thermal Overload ................................................................................................ 46
Figure 2.13-1 Phase Under/Over Voltage .................................................................................. 48
Figure 2.13-2 Vx Under/Over Voltage ........................................................................................ 51
Figure 2.13-3 NPS Overvoltage .................................................................................................. 53
Figure 2.13-4 Neutral Overvoltage ............................................................................................. 55
Figure 2.13-5 Under/Over Frequency ........................................................................................ 57
Figure 2.11-1 Power ................................................................................................................... 59
Figure 2.12-1 Sensitive Power ................................................................................................... 61
Figure 2.13-1 Power Factor ........................................................................................................ 63
Figure 3.1-1 CB Fail ........................................................................................................................ 65
Figure 3.2-1 Voltage Transformer Supervision.............................................................................. 67
Figure 3.3-1 Current Transformer Supervision.............................................................................. 69
Figure 3.4-1 Broken Conductor ...................................................................................................... 71
Figure 3.5-1 Load Blinder (21) ........................................................................................................ 73
Figure 3.5-2 Load Blinder (21) Boundary Points ........................................................................... 74
Figure 3.6-1 Trip Circuit Supervision ............................................................................................. 77
Figure 3.7-1 Magnetising Inrush Detector ..................................................................................... 78
Figure 3.1-1 Magnetising Inrush Detector ..................................................................................... 79
7SR210 & 7SR220 Commissioning & Maintenance Guide
Page 6 of 82 © 2013 Siemens Protection Devices Limited
Section 1: Common Functions
1.1 Overview
Commissioning tests are carried out to prove: -
a) Equipment has not been damaged in transit.
b) Equipment has been correctly connected and installed.
c) Prove characteristics of the protection and settings which are based on calculations.
d) Confirm that settings have been correctly applied.
e) To obtain a set of test results for future reference.
1.2 Before Testing
1.2.1 Safety
The commissioning and maintenance of this equipment should only be carried out by skilled personnel trained in
protective relay maintenance and capable of observing all the safety precautions and regulations appropriate to
this type of equipment and also the associated primary plant.
Ensure that all test equipment and leads have been correctly maintained and are in good condition. It is
recommended that all power supplies to test equipment be connected via a Residual Current Device (RCD),
which should be located as close to the supply source as possible.
The choice of test instrument and test leads must be appropriate to the application. Fused instrument leads
should be used when measurements of power sources are involved, since the selection of an inappropriate range
on a multi-range instrument could lead to a dangerous flashover. Fused test leads should not be used where the
measurement of a current transformer (C.T.) secondary current is involved, the failure or blowing of an instrument
fuse or the operation of an instrument cut-out could cause the secondary winding of the C.T. to become an open
circuit.
Open circuit secondary windings on energised current transformers are a hazard that can produce high voltages
dangerous to personnel and damaging to equipment, test procedures must be devised so as to eliminate this risk.
1.2.2 Sequence of Tests
If other equipment is to be tested at the same time, then such testing must be co-ordinated to avoid danger to
personnel and equipment.
When cabling and wiring is complete, a comprehensive check of all terminations for tightness and compliance
with the approved diagrams must be carried out. This can then be followed by the insulation resistance tests,
which if satisfactory allows the wiring to be energised by either the appropriate supply or test supplies.
When primary injection tests are completed satisfactorily, all remaining systems can be functionally tested before
the primary circuit is energised. Some circuits may require further tests before being put on load.
Protection relay testing will require access to the protection system wiring diagrams; relay configuration
information and protection settings. The following sequence of tests is loosely based on the arrangement of the
relay menu structure. A test log based on the actual tests completed should be recorded for each relay tested.
The ‘Description of Operation’ section of this manual provides detailed information regarding the operation of
each function of the relay.
7SR210 & 7SR220 Commissioning & Maintenance Guide
© 2013 Siemens Protection Devices Limited Page 7 of 82
1.2.3 Test Equipment
Required test equipment is: -
1. Secondary injection equipment with integral time interval meter
2. Primary injection equipment
3. A d.c. supply with nominal voltage within the working range of the relay's d.c. auxiliary supply rating
4. A d.c. supply with nominal voltage within the working range of the relay’s d.c. binary input rating
5. Other equipment as appropriate to the protection being commissioned – this will be specified in the
product specific documentation.
The secondary injection equipment should be appropriate to the protection functions to be tested. Additional
equipment for general tests and for testing the communications channel is:
Portable PC with appropriate interface equipment: -
6. Portable PC with appropriate interface equipment.
7. Printer to operate from the above PC (Optional).
Use of PC to facilitate testing
The functions of Reydisp Evolution (see Settings Guide) can be used during the commissioning tests to assist
with test procedures or to provide documentation recording the test and test parameters. One method is to clear
both the waveform and event records before each test is started, then, after the test upload from the relay the
settings, events and waveform files generated as a result of application of the test. These can then be saved off to
retain a comprehensive record of that test.
Relay settings files can be prepared on the PC (offline) or on the relay before testing commences. These settings
should be saved for reference and compared with the settings at the end of testing to check that errors have not
been introduced during testing and that any temporary changes to settings to suit the test process are returned to
the required service state.
A copy of the Relay Settings as a Rich Text Format (.rtf) file suitable for printing or for record purposes can be
produced from Reydisp as follows. From the File menu select Save As, change the file type to Export
Default/Actual Setting (.RTF) and input a suitable filename.
When testing is completed the event and waveform records should be cleared and the settings file checked to
ensure that the required in-service settings are being applied.
1.2.4 Precautions
Before electrical testing commences the equipment should be isolated from the current and voltage transformers.
The current transformers should be short-circuited in line with the local site procedure. The tripping and alarm
circuits should also be isolated where practical. The provision and use of secondary injection test sockets on the
panel simplifies the isolation and test procedure.
Ensure that the correct auxiliary supply voltage and polarity is applied. See the relevant scheme diagrams for the
relay connections.
Check that the nominal secondary current rating of the current and voltage transformers has been correctly set in
the System Config. menu of the relay.
1.2.5 Applying Settings
The relay settings for the particular application should be applied before any secondary testing occurs. If they are
not available then the relay has default settings that can be used for pre-commissioning tests.
Note that the tripping and alarm contacts for any function must be programmed correctly before any scheme tests
are carried out.
Relays feature multiple settings groups, only one of which is active at a time. In applications where more than one
settings group is to be used it may be necessary to test the relay in more than one configuration.
Note. One group may be used as a ‘Test’ group to hold test-only settings that can be used for regular
maintenance testing, eliminating the need for the Test Engineer to interfere with the actual in-service settings in
the normally active group. This Test group may also be used for functional testing where it is necessary to disable
or change settings to facilitate testing.
When using settings groups it is important to remember that the relay need not necessarily be operating
according to the settings that are currently being displayed.
7SR210 & 7SR220 Commissioning & Maintenance Guide
Page 8 of 82 © 2013 Siemens Protection Devices Limited
There is an ‘active settings group’ on which the relay operates and an ‘edit/view settings group’ which is visible on
the display and which can be altered. This allows the settings in one group to be altered from the relay fascia
while the protection continues to operate on a different unaffected group. The ‘Active Settings Group’ and the ‘Edit
Settings Group’ are selected in the ‘System Configuration Menu’.
The currently Active Group and the group currently Viewed are shown at the top of the display in the Settings
display screen. If the View Group is not shown at the top of the display, this indicates that the setting is common
to all groups. CT/VT ratio, I/O mapping and other settings which are directly related to hardware are common to
all groups.
If the relay is allowed to trip during testing then the instruments display will be interrupted and replaced by the
‘Trip Alert’ screen which displays fault data information. If this normal operation interferes with testing then this
function can be temporarily disabled for the duration of testing by use of the Trip Alert Enabled/Disabled setting in
the System Config Menu.
After applying a settings change to the relay, which may involve a change to the indication and output contacts,
the TEST/RESET key should be pressed to ensure any existing indication and output is correctly cleared.
7SR210 & 7SR220 Commissioning & Maintenance Guide
© 2013 Siemens Protection Devices Limited Page 9 of 82
1.3 Tests
1.3.1 Inspection
Ensure that all connections are tight and correct to the relay wiring diagram and the scheme diagram. Record any
deviations. Check that the relay is correctly programmed and that it is fully inserted into the case. Refer to
Settings Guide’ for information on programming the relay.
1.3.2 Secondary Injection Tests
Select the required relay configuration and settings for the application.
Isolate the auxiliary D.C. supplies for alarm and tripping from the relay and remove the trip and inter-trip links.
Carry out injection tests for each relay function, as described in this document
For all high current tests it must be ensured that the test equipment has the required rating and stability and that
the relay is not stressed beyond its thermal limit.
1.3.3 Primary Injection Tests
Primary injection tests are essential to check the ratio and polarity of the transformers as well as the secondary
wiring.
Note. If the current transformers associated with the protection are located in power transformer bushings it may
not be possible to apply test connections between the current transformer and the power transformer windings.
Primary injection is needed, however, to verify the polarity of the CTs. In these circumstances primary current
must be injected through the associated power transformer winding. It may be necessary to short circuit another
winding in order to allow current to flow. During these primary injection tests the injected current is likely to be
small due to the impedance of the transformer.
1.3.4 Putting into Service
After tests have been performed satisfactorily the relay should be put back into service as follows:-
Remove all test connections.
Replace all secondary circuit fuses and links, or close m.c.b.
Ensure the Protection Healthy LED is on, steady, and that all LED indications are correct. If necessary press
CANCEL until the Relay Identifier screen is displayed, then press TEST/RESET to reset the indication LEDs.
The relay meters should be checked in Instruments Mode with the relay on load.
The relay settings should be downloaded to a computer and a printout of the settings produced. The installed
settings should then be compared against the required settings supplied before testing began. Automated setting
comparison can be carried out by Reydisp using the Compare Settings Groups function in the Edit menu. Any
modified settings will be clerly highlighted.
7SR210 & 7SR220 Commissioning & Maintenance Guide
Page 10 of 82 © 2013 Siemens Protection Devices Limited
1.4 AC Energising Quantities
Voltage and current measurement for each input channel is displayed in the Instrumentation Mode sub-menus,
each input should be checked for correct connection and measurement accuracy by single phase secondary
injection at nominal levels. Ensure that the correct instrument displays the applied signal within limits of the
Performance Specification.
Applied Current Applied Voltage
IAIBICIGISEF VA/VAB VB/VBC VC/VCB VX
Secondary
Primary
Apply 3P balanced Current and Voltage at nominal levels and ensure that the measured Zero Phase Sequence
and Negative Phase Sequence quantities are approximately zero.
ZPS NPS
Voltage
Current
7SR210 & 7SR220 Commissioning & Maintenance Guide
© 2013 Siemens Protection Devices Limited Page 11 of 82
1.5 Binary Inputs
The operation of the binary input(s) can be monitored on the ‘Binary Input Meters’ display shown in ‘Instruments
Mode’. Apply the required supply voltage onto each binary input in turn and check for correct operation.
Depending on the application, each binary input may be programmed to perform a specific function; each binary
should be checked to prove that its mapping and functionality is as set as part of the Scheme Operation tests.
Where the pick-up timers associated with a binary input are set these delays should be checked either as part of
the scheme logic or individually. To check a binary pick-up time delay, temporarily map the binary to an output
relay that has a normally open contact. This can be achieved in the Output Matrix sub-menu by utilising the BI n
Operated settings. Use an external timer to measure the interval between binary energisation and closure of the
output contacts. Similarly, to measure the drop-off delay, map to an output relay that has a normally closed
contact, time the interval between binary de-energisation and closure of the output contacts.
Note. The time measured will include an additional delay, typically less than 20 ms, due to the response time of
the binary input hardware, software processing time and the operate time of the output relay.
BI Tested DO
Delay Measured PU
Delay Measured Notes (method of initiation)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
7SR210 & 7SR220 Commissioning & Maintenance Guide
Page 12 of 82 © 2013 Siemens Protection Devices Limited
1.6 Binary Outputs
A minimum of six output relays are provided. Two of these have change over contacts, BO2 & BO3, one has a
normally closed contact, BO1 and the remainder have normally open contacts.
Care should be observed with regard to connected devices when forcing contacts to operate for test purposes.
Short duration energisation can cause contact failure due to exceeding the break capacity when connected to
inductive load such as electrically reset trip relays.
Close each output relay in turn from the Reydisp Evolution PC programme, Relay – Control - Close output relay.
This function will energise the output for its minimum operate time. This time is specified in the Output Config -
Binary Output Config menu for each output relay and may be too short to measure with a continuity tester.
An alternative method of energising an output permanently so that wiring can be checked is to temporarily map
the relay being tested to the ‘Protection Healthy’ signal in the Output Matrix, as this signal is permanently
energised the mapped relay will be held energised, normally open contacts will be closed and vice versa.
BO Checked Notes (method of test)
1NC
2NO
2NC
3NO
3NC
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
7SR210 & 7SR220 Commissioning & Maintenance Guide
© 2013 Siemens Protection Devices Limited Page 13 of 82
1.7 Relay Case Shorting Contacts
CT inputs and terminals B25-B26 (Relay Withdrawn Alarm) are fitted with case mounted shorting contacts which
provide a closed contact when the relay is withdrawn from the case. The operation of these contacts should be
checked.
CT Shorting contacts checked
Relay Withdrawn Alarm Checked
7SR210 & 7SR220 Commissioning & Maintenance Guide
Page 14 of 82 © 2013 Siemens Protection Devices Limited
Section 2: Protection Functions
This section details the procedures for testing each protection function of the 7SR21 & 7SR22 relays. These tests
are carried out to verify the accuracy of the protection pick-ups and time delays at setting and to confirm correct
operation of any associated input and output functionality.
The exact model type must be checked to confirm the functions available in each type.
Guidance for calculating test input quantities is given in the relevant test description where required. In many
cases it may be necessary to disable some functions during the testing of other functions, this prevents any
ambiguity caused by the operation of multiple functions from one set of input quantities. The ‘Function Config’
Menu provides a convenient high level point at which all elements of a particular function can be
Enabled/Disabled to suit testing. The ‘Config’ tab in ‘Reydisp Evolution’ can be used to ‘Enable/Disable’ individual
elements. Note that this screen disables functions by applying setting changes to the relay and that any changes
must be sent to the relay to take effect and settings must be returned to their correct value after testing.
The table below indicates functions where function conflicts may occur during testing, consideration should be
given to disabling functions to avoid interference.
Any LED can be assigned to be a General Pickup LED in the Output Matrix menu and can be used to assess
operation of functions during testing if other functions are disabled or if the setting allocating General Pickup is
temporarily modified.
Voltage inputs may not be required for testing of non-directional Overcurrent elements but it may be
advantageous to apply balanced 3 phase nominal rated voltage to the VT inputs during testing to avoid
inadvertent operation of other functions. Particular care should be taken when testing overcurrent functions that
the thermal rating of the current inputs is not exceeded.
Function
Under Test
Phase
Overcurrent
Voltage Cont O/C
Cold Load
Derived E/F
Measured E/F
Sensitive E/F
Restricted E/F
NPS Overcurrent
Undercurrent
Thermal
Phase U/O voltage
NPS Overvoltage
U/O Frequency
CB Fail
VT Supervision
CT supervision
Broken Conductor
Trip cct
Supervision
Inrush Detector
Phase
Overcurrent
O O O O O O O
Voltage Cont
O/C
O O O O O O O
Cold Load O O O O O O O
Derived E/F O O O O O O O
Measured E/F O O O O
Sensitive E/F O
Restricted E/F O
NPS Overcurrent O O O O O O O
Undercurrent O O O
Thermal O O O O
Phase U/O
voltage
O O O
NPS
Overvoltage
O O O
U/O Frequency O O
CB Fail O O O O O O O O
VT Supervision O O
CT supervision O O
Broken
Conductor
O O O O
O
Trip cct
Supervision
Inrush Detector
7SR210 & 7SR220 Commissioning & Maintenance Guide
© 2013 Siemens Protection Devices Limited Page 15 of 82
It should be considered that where several overlapping elements are used simultaneously, the overall protection
operate time may be dependent on the operation of different individual elements at the various levels of applied
current or voltage. The resulting composite characteristic may be tested by enabling all of the relevant applicable
elements or the element operations can be separated or disabled and tested individually.
All relay settings should be checked before testing begins. It is recommended that the relay settings are extracted
from the relay using Reydisp Evolution software and a copy of these settings is stored for reference during and
after testing. It may be necessary to disable some protection functions during the testing of other functions to
allow unambiguous results to be obtained.
Care must be taken to reset or re-enable any settings that have been temporarily altered during the testing before
the relay can be put into service. At the end of testing the relay settings should be compared to the file extracted
at the start to ensure that errors have not been introduced.
2.1 Phase Directional Polarity Check
If the relay has Directional Overcurrent elements, the common direction polarising can be checked independently
from the individual overcurrent elements and their settings.
In the INSTRUMENTS MODE display, indication is provided in the DIRECTIONAL METERS menu which displays
current direction under P/F Dir as forward or reverse based on the output states of the directional elements, i.e.
whether they see forward current, reverse current or neither for each pole with respect to the 67 Char Angle
setting in the Phase Overcurrent menu. This display and the equivalent Measured and Calculated Earth Fault
direction meters can be used as an aid to commissioning testing.
1. Check the direction of each pole in turn by connecting to the appropriate terminals. The table below shows
the polarising quantity for each pole.
Connections for Directional Polarity
Overcurrent pole Polarising voltage
Phase A VBC
Phase B VCA
Phase C VAB
2. Inject single phase rated current and apply single phase-phase rated voltage at the Char Angle (MTA) phase
angle setting, to each phase in turn. For each pole, monitor the directional display in the instrument menu
and check that indication of forward current (FWD) is displayed. To achieve the required forward
Characteristic Angle, the phase angle of the current should be greater than that of the polarising voltage by
the angle setting.
3. Repeat all of the above with the current connections reversed. Indication should now be given of reverse
(REV) current flow.
Phase A B C
Forward FWD FWD FWD
Reverse REV REV REV
Apply balanced 3 phase rated voltage and current with Vbc voltage as a 0deg reference and Ia at the
characteristic angle. Increase current phase angle until the ‘Fwd’ indication is extinguished. Record this angle
in the table below (Forward lead DO). Continue to increase/decrease the angle until the instrument reads
‘Rev’. Record the angle (Reverse lead PU). Reduce the current angle until the ’Rev’ extinguishes (Reverse
lead DO). and the ‘Fwd’ subsequently returns (Forward lead PU), recording the angles. Repeat the above
tests, starting from the Characteristic Angle, but reducing the current phase angle to record the directional
boundaries in the opposite (lag) direction. The recorded angle should be the angle at which the phase current
leads the phase-phase polarising voltage. This measurement is greatly simplified if the polarising reference
voltage is set to 0deg and the current phase angle is measured with respect to this reference.
Alternatively, the instrument can be checked at the 4 points marked a,b,c & d on Figure 2-1 only.
7SR210 & 7SR220 Commissioning & Maintenance Guide
Page 16 of 82 © 2013 Siemens Protection Devices Limited
VCVB
VA
IA
With balanced 3-phase system quantities:
Adjust the phase angle of the currents
relative to the voltages:
Verify directional pick-up and drop off at
points A, B, C and D
Alternatively,
Verify correct directional indication at points
a, b, c and d (C.A +750, +950, -750, -950)
A
B
D
C
a
d
b
c
FWD
REV
+600
+300
00
+2700
+1800
+2100
+2400
+900
VBC
Forward Reverse
Lag (point C) Lead (point A) Lead(point B) Lag (point D)
Pick-up Drop-off Pick-up Drop-off Pick-up Drop-off Pick-up Drop-off
MTA MTA-85 MTA+85 MTA-85 MTA-85
Phase A
Phase B
Phase C
Figure 2.1-1 Directional Phase Fault Boundary System Angles
4. With the instrument reading ‘Fwd’ or ‘Rev’, reduce the voltage until the element resets. Record the
minimum phase-phase operate voltage.
Minimum Voltage Setting Measured
2.1.1 2 out of 3 logic
Ensure that at least 1 Phase Overcurrent element is set to Directional. Apply balanced nominal voltage. Apply
current at a level above on phase A only at the characteristic angle for forward operation, normally 45º lagging.
Ensure no Directional Phase Overcurrent element operation occurs. Note that non-directional Phase Overcurrent
and Non-direction Earth Fault elements may operate unless disabled.
Repeat the test with Phase A current as above but also with equal current in the B phase at 180º to that in the A
phase.
1 phase current 2 phase current
No 50/51-n Operation 50/51-n operation
7SR210 & 7SR220 Commissioning & Maintenance Guide
© 2013 Siemens Protection Devices Limited Page 17 of 82
2.2 Phase Overcurrent (67/50,67/51)
7SR22
46
BC
46
NPS
(x2)
37
(x2) 49 50
BF
VL1
(VA)
VL2
(VB)
VL3
(VC)
V4
(VX)
IL1
(IA)
81
HBL
2
37
(x2) 49 50
BF
IL2
(IB)
81
HBL
2
37
(x2) 49 50
BF
IL3
(IC)
81
HBL
2
60
CTS
I4
(IG)
I5
(ISEF)
74
TCS
NOTE: The use of some
functions are mutually exclusive
67/
50
(x4)
67/
51
(x4)
67/
50N
(x4)
67/
50
(x4)
67/
50
(x4)
67/
51
(x4)
67/
51
(x4)
67/
51N
(x4)
67/
50G
(x4)
67/
51G
(x4)
67/
50S
(x4)
67/
51S
(x4)
64
H
27
59
27
59
(x4)
27
59
(x4)
27
59
(x4)
47
(x2)
81
(x6)
79 Optional
59N
(x2)
81
HBL
2N
60
VTS
51V
51V
51V
37G
(x2)
37S
(x2)
51c
60
CTS-
I
60
CTS-
I
60
CTS-
I
37 50
BF
37 50
BF
25
50
ADF
50
ADF
50
ADF
51c
51c
51c
Figure 2.2-1 Phase Overcurrent
Voltage Inputs: VL1 (VA), VL2 (VB), VL3 (VC) for directional elements.
Current Inputs: IL1 (IA), IL2 (IB), IL3 (IC),
Disable: 51V, 51c, 46, 49, 50BF, 79
Map Pickup LED: 51-n/50-n - Self Reset
Other protection functions may overlap with these functions during testing, it may be useful to disable some
functions to avoid ambiguity. It should be particularly noted that if the function is enabled, the 51C Cold Load
settings may modify the normal 50-n and 51-n settings if the CB is open during testing.
Voltage inputs may not be required for this function if the Phase Overcurrent functions are not directional but it
may be advantageous to apply balanced 3 phase nominal rated voltage to the VT inputs during testing to avoid
inadvertent operation of other functions. Particular care should be taken when testing overcurrent functions that
the thermal rating of the current inputs is not exceeded.
7SR210 & 7SR220 Commissioning & Maintenance Guide
Page 18 of 82 © 2013 Siemens Protection Devices Limited
2.2.1 Definite Time Overcurrent. (50)
If DTL setting is small, gradually increase current until element operates.
If DTL is large apply 0.9x setting, check for no operation, apply 1.1x setting, and check operation.
Apply 2x setting current if possible and record operating time.
Phase Dir.
Is
(Amps)
DTL
(sec)
P.U. Current
Amps Tol
Operate Time
2 x Is Tol
I
L1
(I
A
)
I
L2
(I
B
)
I
L3
(I
C
)
Check correct indication, trip output, alarm contacts, waveform record.
2.2.2 Inverse Time Overcurrent. (51)
It will be advantageous to map the function being tested to temporarily drive the relevant Pickup output in the
Pickup Config sub-menu in the Output Config menu as this will allow the Pick-up led to operate for the function.
Gradually increase current until Pickup LED operates.
Apply 2x setting current and record operating time,
Apply 5x setting current and record operating time.
Compare to calculated values for operating times
Gradually reduce current until the element drops off and record the level.
P.U.
D.O.
&
TIMING
TESTS
Ph. Dir Char.
Curve
Is
(A) TM
Operate Current
Operate Time
P.U.
(Amps)
D.O.
(Amps) Tol
2 x Is
(sec)
5 x Is
(sec) Tol
I
L1
(I
A
)
I
L2
(I
B
)
I
L3
(I
C
)
Calculated Timing values in seconds for TM =1.0
Curve 2 xIs 5 xIs
IEC-NI 10.03 4.28
IEC-VI 13.50 3.38
IEC-EI 26.67 3.33
IEC-LTI 120.00 30.00
ANSI-MI 3.80 1.69
ANSI-VI 7.03 1.31
ANSI-EI 9.52 1.30
Note that the operate time may be subject to the Minimum op time setting for the element and/or may have a
Follower DTL applied.
7SR210 & 7SR220 Commissioning & Maintenance Guide
© 2013 Siemens Protection Devices Limited Page 19 of 82
1.1.1.1 Element Blocking
The Phase Overcurrent elements can be blocked by Binary Input Inhibit, VT Supervision and Inrush Detector
operation, as well as 79 Autoreclose settings for Inst/Delayed. The Characteristic can be modified by Cold Load
(51-n only) and Voltage Controlled Overcurrent and can be made non-directional by VT Supervision. This
functionality should be checked.
Element BI Inhibits VTS action Inrush Detector 79 Autoreclose
51-1
51-2
51-3
51-4
50-1
50-2
50-3
50-4
.
2.1.1.1 ANSI Reset
If the element is configured as an ANSI characteristic, it may have an ANSI (decaying) reset delay applied. If
ANSI reset is selected for an IEC characteristic element, the reset will be instantaneous.
ANSI reset times from operated condition to fully reset are as follows for zero applied current and Time multiplier
(TM) = 1.0. The reset curve characteristic type and TM is defined by the operating characteristic.
Curve Fully operated to reset with Zero current applied & TM=1 (secs)
ANSI-MI 4.85
ANSI-VI 21.6
ANSI-EI 29.1
Apply current in the following sequence, a) 2x setting for a time to ensure element operation, b) Zero current for
the reset time above (xTM), c) 2x setting for a time to ensure element operation. Check that the second operation
(c) is similar to the first (a) and in line with the expected operate time for the element at this current level.
Repeat the test with the reset time (b) reduced to 50% of the previous value. Ensure that the second operate time
(c) is 50% of the first (a) operate time.
Check correct indication, trip output, alarm contacts, waveform record.
Operate time
(expected)
Reset time
(calculated)
Operate time
(measured)
50% Reset
Time
(calculated)
50% operate
time
(calculated)
50% operate
time
(measured)
First test (c) Second Test (c)
7SR210 & 7SR220 Commissioning & Maintenance Guide
Page 20 of 82 © 2013 Siemens Protection Devices Limited
2.3 Voltage Controlled Overcurrent (51V)
7SR22
46
BC
46
NPS
(x2)
37
(x2) 49 50
BF
VL1
(VA)
VL2
(VB)
VL3
(VC)
V4
(VX)
IL1
(IA)
81
HBL
2
37
(x2) 49 50
BF
IL2
(IB)
81
HBL
2
37
(x2) 49 50
BF
IL3
(IC)
81
HBL
2
60
CTS
I4
(IG)
I5
(ISEF)
74
TCS
NOTE: The use of some
functions are mutually exclusive
67/
50
(x4)
67/
51
(x4)
67/
50N
(x4)
67/
50
(x4)
67/
50
(x4)
67/
51
(x4)
67/
51
(x4)
67/
51N
(x4)
67/
50G
(x4)
67/
51G
(x4)
67/
50S
(x4)
67/
51S
(x4)
64
H
27
59
27
59
(x4)
27
59
(x4)
27
59
(x4)
47
(x2)
81
(x6)
79 Optional
59N
(x2)
81
HBL
2N
60
VTS
51V
51V
51V
37G
(x2)
37S
(x2)
51c
60
CTS-
I
60
CTS-
I
60
CTS-
I
37 50
BF
37 50
BF
25
50
AFD
50
AFD
50
AFD
51c
51c
51c
Figure 2.3-1 Voltage Controlled Overcurrent
Voltage Inputs: VL1 (VA), VL2 (VB), VL3 (VC)
Current Inputs: IL1 (IA), IL2 (IB), IL3 (IC),
Disable: 51c, 46, 37, 49, 50BF, 79
Map Pickup LED: 51-n/50-n - Self Reset
Shaped Phase Overcurrent elements 51-n should be tested for pick-up and timing before this function is tested.
The General Pickup LED can be used to assess operation of this function if other functions are disabled or if the
setting allocating General Pickup is temporarily modified.
Apply nominal 3 phase balanced voltage. Apply 3 phase balanced current at a level below the normal 51-n setting
but above the effective 51V-n setting. Ensure that the thermal rating of the relay is not exceeded. Gradually
reduce the voltage until the a-b voltage is less than the Voltage setting. Pickup LED operation can be used to
confirm the Voltage setting. If the 51V-n current setting is above the continuous rating of the relay an alternative
procedure should be used, apply test current in short duration shots with applied voltage being gradually reduced
for each subsequent shot.
Apply nominal 3 phase balanced voltage. Reduce the voltage such that the a-b voltage is 110 % of the Voltage
setting.
OC Phase Control Voltage
IL1(IA) V12(VAB)
IL2(IB) V23(VBC)
IL3(IC) V31(VCA)
7SR210 & 7SR220 Commissioning & Maintenance Guide
© 2013 Siemens Protection Devices Limited Page 21 of 82
Gradually increase the a-b phase current or balanced 3P current until Pickup LED operates. Confirm result of
Phase O/C test above.
Reduce the applied voltage to a level such that V12(VAB) phase-phase voltage is less than 90 % of the setting.
Gradually increase the I12(IAB) phase-phase current until Pickup LED operates.
Note that these elements may be set as directional. If this is the case, the phase angle of the current must be set
with respect to the voltage to produce operation of the elements.
Voltage Setting (V, p-p) Measured (V, p-p)
I Setting Multiplier Calculated PU Measured Tolerance
51-1 Pickup
51-2 Pickup
51-3 Pickup
51-4 Pickup
1.1.1.1 Element Blocking
The Voltage Controlled Overcurrent function can be set to Inhibit for VT Supervision operation. This functionality
should be checked. Apply balanced voltage and current. Reduce a-phase voltage to cause a VTS condition.
Increase 3P current until the element operates at its full setting, i.e. 51V settings are not used.
Element VTS action
51-1
51-2
51-3
51-4
Check correct indication, trip output, alarm contacts.
7SR210 & 7SR220 Commissioning & Maintenance Guide
Page 22 of 82 © 2013 Siemens Protection Devices Limited
2.4 Cold Load (51c)
7SR22
46
BC
46
NPS
(x2)
37
(x2) 49 50
BF
VL1
(VA)
VL2
(VB)
VL3
(VC)
V4
(VX)
IL1
(IA)
81
HBL
2
37
(x2) 49 50
BF
IL2
(IB)
81
HBL
2
37
(x2) 49 50
BF
IL3
(IC)
81
HBL
2
60
CTS
I4
(IG)
I5
(ISEF)
74
TCS
NOTE: The use of some
functions are mutually exclusive
67/
50
(x4)
67/
51
(x4)
67/
50N
(x4)
67/
50
(x4)
67/
50
(x4)
67/
51
(x4)
67/
51
(x4)
67/
51N
(x4)
67/
50G
(x4)
67/
51G
(x4)
67/
50S
(x4)
67/
51S
(x4)
64
H
27
59
27
59
(x4)
27
59
(x4)
27
59
(x4)
47
(x2)
81
(x6)
79 Optional
59N
(x2)
81
HBL
2N
60
VTS
51V
51V
51V
37G
(x2)
37S
(x2)
51c
60
CTS-
I
60
CTS-
I
60
CTS-
I
37 50
BF
37 50
BF
25
50
AFD
50
AFD
50
AFD
51c
51c
51c
Figure 2.4-1 Cold Load
Voltage Inputs: VL1 (VA), VL2 (VB), VL3 (VC) for directional elements
Current Inputs: IL1 (IA), IL2 (IB), IL3 (IC),
Disable: 51V, 46, 49, 50BF, 79
Map Pickup LED:. 51-n - Self Reset
The CB must be open for more than the Cold Load Pick-up Time to allow testing of this function. It may be
convenient to reduce this setting to suit the test procedure. If the CB is open throughout the tests, the Cold Load
protection settings can be tested provided that the current is not allowed to fall below the level of the Reduced
Current Level for more than the Reduced Current Time during testing. It may be convenient to set the Reduced
Current setting to Disabled for the duration of the test. The Cold Load Active output is provided and can be used
as an indication during testing.
7SR210 & 7SR220 Commissioning & Maintenance Guide
© 2013 Siemens Protection Devices Limited Page 23 of 82
Figure 2.4-2 Cold Load Logic diagram
Ensure that the Cold load active is not raised. This can be reset by CB closed for more than the Cold Load Drop-
off Time or current less than the Reduced Current Level for greater than the Reduced Current Time. Check the
Cold Load Pick-up Delay by applying or simulating CB Open. Measure the time delay before Cold Load Active is
raised. Apply current above the Reduced Current Level if this functionality is Enabled before applying CB Closed.
Measure the time for Cold Load Active to reset.
2.4.1 Inverse Time Overcurrent. (51C)
It will be advantageous to map the function being tested to temporarily drive the relevant Pickup output in the
Pickup Config sub-menu in the Output Config menu as this will allow the Pick-up led to operate for the function.
Gradually increase current until Pickup LED operates.
Apply 2x setting current and record operating time.
Apply 5x setting current and record operating time.
Compare to calculated values for operating times
7SR210 & 7SR220 Commissioning & Maintenance Guide
Page 24 of 82 © 2013 Siemens Protection Devices Limited
P.U.
D.O.
&
TIMING
TESTS
Ph. Dir
Char.
(NI EI VI
LTI,
DTL)
Is
(A) TM
Operate Current
Operate Time
P.U.
(Amps)
D.O.
(Amps) Tol 2 x Is
(sec)
5 x Is
(sec) Tol
I
L1
(I
A
)
I
L2
(I
B
)
I
L3
(I
C
)
Calculated Timing values in seconds for TM =1.0
Curve 2 xIs 5 xIs
IEC-NI 10.03 4.28
IEC-VI 13.50 3.38
IEC-EI 26.67 3.33
IEC-LTI 120.00 30.00
ANSI-MI 3.80 1.69
ANSI-VI 7.03 1.31
ANSI-EI 9.52 1.30
Note that the operate time may be subject to the Minimum op time setting for the element and/or may have a
Follower DTL applied.
1.1.1.1 ANSI Reset
If the element is configured as an ANSI characteristic, it may have a reset delay applied. If ANSI reset is selected
for an IEC characteristic element, the reset will be instantaneous.
ANSI reset times from operated condition to fully reset are as follows for zero applied current and TM = 1.0. The
reset curve characteristic type and TM is defined by the operating characteristic.
Curve Fully operated to reset with Zero current applied & TM=1 (secs)
ANSI-MI 4.85
ANSI-VI 21.6
ANSI-EI 29.1
Apply current in the following sequence, a) 2x setting for a time to ensure element operation, b) Zero current for
the reset time above (xTM), c) 2x setting for a time to ensure element operation. Check that the second operation
(c) is similar to the first (a) and in line with the expected operate time for the element at this current level.
Repeat the test with the reset time (b) reduced to 50 % of the previous value. Ensure that the second operate
time (c) is 50 % of the first (a) operate time.
Check correct indication, trip output, alarm contacts, waveform record.
Operate time
(expected)
Reset time
(calculated)
Operate time
(measured)
50 % Reset
Time
(calculated)
50 % operate
time
(calculated)
50 % operate
time
(measured)
7SR210 & 7SR220 Commissioning & Maintenance Guide
© 2013 Siemens Protection Devices Limited Page 25 of 82
2.1 Arc Flash Detection (50AFD)
46
BC
46
NPS
(x2)
37
(x2) 49 50
BF
VL1
(VA)
VL2
(VB)
VL3
(VC)
V4
(VX)
IL1
(IA)
81
HBL
2/5
37
(x2) 49 50
BF
IL2
(IB)
81
HBL
2/5
37
(x2) 49 50
BF
IL3
(IC)
81
HBL
2/5
60
CTS
I4
(IG)
I5
(ISEF)
74
TCS
NOTE: The use of some
functions are mutually exclusive
67/
50/51
(x4)
67/
50/51N
(x4)
67/
50/51
(x4)
67/
50/51
(x4)
67/
50/51G
(x4)
67/
50/51S
(x4)
64
H
27
59
27
59
(x4)
27
59
(x4)
27
59
(x4)
47
(x2)
81
(x6)
79 Optional
59N
(x2)
81
HBL
2/5N
37G
(x2)
37S
(x2)
51c
60
CTS-
I
60
CTS-
I
60
CTS-
I
37 50
BF
37 50
BF
25
50
AFD
50
AFD
50
AFD
51c
51c
51c
32S32 55
21
LB
21
LB
21
LB
51V
21FL
60
VTS
51V
51V
Figure 2.1-1 Arc Flash Detection
Voltage Inputs: N/A
Current Inputs: IL1 (IA), IL2 (IB), IL3 (IC),
Disable: 49, 50, 51
Map Pickup LED: 50AFD Zone-n Flash - Hand Reset, 50AFD Zone-n – Hand/self Reset
The overcurrent level can be tested without an arc flash by separately energising or inverting the arc detector
binary input continuously for the duration of the test for the zone being tested.
If the current setting is low, gradually increase current until element operates.
If the current level required is greater than the thermal limit of the relay, apply 0.9x setting, check for no operation,
apply 1.1x setting, check operation.
Optical sensors such as 7XG31 can be tested by application of a suitable light source. Relay instrumentation can
be used to indicate binary input pickup or by the 50AFD Zone-n Flash outputs.
The 7XG31 devices will typically require 10000 lx light level for 1.25ms to trigger. A high powered photographic
flash is the most convenient means of initiating positive sensor operation.
Note that mobile phone or small compact camera flashes may not have sufficient power to cause sensor
operation but may be suitable if held directly against the sensor.
Check correct indication, trip output, alarm contacts, waveform record.
7SR210 & 7SR220 Commissioning & Maintenance Guide
Page 26 of 82 © 2013 Siemens Protection Devices Limited
2.2 Directional Earth Fault Polarity Check (67N)
Derived Earth Fault, Measured Earth Fault and Sensitive Earth Fault elements can be set as directional. These
are polarised from residual voltage, calculated from the 3 phase voltage inputs or the 3Vo input depending on the
Phase Voltage Config setting in the CT/VT Config menu.
The relay Char Angle setting is the Characteristic Phase angle of the fault impedance i.e. the phase angle of the
fault current with respect to the voltage driving the current. The earth fault functions are polarised from the
residual voltage which is in anti-phase with the fault voltage for a single-phase to earth fault. Care is required
when testing by secondary injection with regard to current and voltage polarity.
To simulate an earth fault on a relay with 3 phase-phase or 3 phase-neutral connected voltage inputs, defined by
the Phase Voltage Config setting of Van,Vbn,Vcn or Va,Vb,Vc, proceed as follows. Balanced 3P voltage should
first be applied, then the phase-neutral voltage magnitude on the faulted phase should be reduced in magnitude
with no change in phase angle to produce Vres and simulate the fault. The fault current, on the faulted phase
only, should be set at the MTA with respect to the phase-neutral voltage on the faulted phase, e.g. for a relay
setting of -15º, set the phase current to lag the ph-n voltage by 15º.
Alternatively, a single phase voltage source can be used in the above test. The polarity of this voltage, applied to
the faulted phase-neutral alone, must be reversed to produce the same residual voltage (Vres) phase direction as
that produced by the 3P voltage simulation described above.
For the Phase Voltage Config of Vab, Vbc, Vo, the single phase voltage applied to the Vo input is used as the
polarising quantity. The inversion is once again required since this input is designed to measure the residual
voltage directly, as produced by an ‘open delta VT’ arrangement. The current must be set at the MTA with respect
to the inversion of this voltage. e.g. for a relay setting of -15º, the phase current must lag the (Vo+180º) voltage by
15º, i.e. if Vo is set at 180º, set Iph at -15º.
If the Pickup of one directional Earth Fault element is mapped to an LED, this can be used to check directional
boundaries for pickup and drop-off as the current phase angle is increased and decreased. Note that the Derived
Earth Fault, Measured Earth Fault and Sensitive Earth Fault have separate directional settings and must be
tested individually.
Figure 2.2-1 Directional Earth Fault Boundary System Angles
7SR210 & 7SR220 Commissioning & Maintenance Guide
© 2013 Siemens Protection Devices Limited Page 27 of 82
2.3 Derived Earth Fault (67/50N, 67/51N)
7SR22
46
BC
46
NPS
(x2)
37
(x2) 49 50
BF
VL1
(VA)
VL2
(VB)
VL3
(VC)
V4
(VX)
IL1
(IA)
81
HBL
2
37
(x2) 49 50
BF
IL2
(IB)
81
HBL
2
37
(x2) 49 50
BF
IL3
(IC)
81
HBL
2
60
CTS
I4
(IG)
I5
(ISEF)
74
TCS
NOTE: The use of some
functions are mutually exclusive
67/
50
(x4)
67/
51
(x4)
67/
50N
(x4)
67/
50
(x4)
67/
50
(x4)
67/
51
(x4)
67/
51
(x4)
67/
51N
(x4)
67/
50G
(x4)
67/
51G
(x4)
67/
50S
(x4)
67/
51S
(x4)
64
H
27
59
27
59
(x4)
27
59
(x4)
27
59
(x4)
47
(x2)
81
(x6)
79 Optional
59N
(x2)
81
HBL
2N
60
VTS
51V
51V
51V
37G
(x2)
37S
(x2)
51c
60
CTS-
I
60
CTS-
I
60
CTS-
I
37 50
BF
37 50
BF
25
50
AFD
50
AFD
50
AFD
51c
51c
51c
Figure 2.3-1 Derived Earth Fault
Voltage Inputs: VL1 (VA), VL2 (VB), VL3 (VC)
Current Inputs: IL1 (IA), IL2 (IB), IL3 (IC),
Disable: 37, 46, 49, 60CTS, 50BF, 60CTS, 46BC, 79
Map Pickup LED: 51N-n/50N-n - Self Reset
Other protection functions may overlap with these functions during testing; it may be useful to disable some
functions to avoid ambiguity. Derived EF, Measured EF Sensitive EF & Restricted EF protections can be
Enabled/Disabled individually or as groups in the ‘Function Config’ menu.
Derived EF elements can be separated from Measured EF and sensitive EF by arrangement of the secondary
injection circuit by shorting/disconnecting I4 and I5 inputs.
If any of these elements are defined as directional the correct voltage phase direction will be required to produce
an operation of those elements.
7SR210 & 7SR220 Commissioning & Maintenance Guide
Page 28 of 82 © 2013 Siemens Protection Devices Limited
2.3.1 Directional Polarity
See section Directional Earth Fault Polarity Check above for testing details.
MTA
Forward Reverse
Lag (point C) Lead (point A) Lead(point B) Lag (point D)
Pick-up Drop-off Pick-up Drop-off Pick-up Drop-off Pick-up Drop-off
…………. MTA-85
………..
MTA+85
…………
MTA-85
…………
MTA-85
………...
Derived EF
2.3.2 Definite Time Overcurrent..(50N)
If DTL setting is small, gradually increase current until element operates.
If DTL is large apply 0.9x setting, check for no operation, apply 1.1x setting, and check operation
Apply 2x setting current if possible and record operating time
Check correct indication, trip output, alarm contacts, waveform record.
Note that these elements can be set to directional.
Phase Dir. Is
(Amps)
DTL
(sec)
P.U. Current
Amps
Operate Time
2 x Is NOTES
E
If VTS action is set to BLOCK, this option should be tested. Apply balanced voltage and current. Reduce a-phase
voltage to cause a VTS condition. Increase 3P current and check that the element does not operate.
If VTS action is set to Non-Directional, this option should be tested. Apply balanced voltage and current. Reduce
a-phase voltage to cause a VTS condition. Increase a-phase current and check that the element operates at its
normal setting. Reverse the voltage phase direction whilst checking that the element does not reset.
2.3.3 Inverse Time Overcurrent. (51N)
It will be advantageous to map the function being tested to temporarily drive the relevant Pickup output in the
Pickup Config sub-menu in the Output Config menu as this will allow the Pick-up led to operate for the function.
Gradually increase current until Pickup LED operates.
Apply 2x setting current and record operating time.
Apply 5x setting current and record operating time.
Compare to calculated values for operating times
7SR210 & 7SR220 Commissioning & Maintenance Guide
© 2013 Siemens Protection Devices Limited Page 29 of 82
P.U.
D.O.
&
TIMING
TESTS
Ph. Dir
Char.
(NI EI VI LTI,
DTL)
Is
(A) TM
Operate C
urrent
Operate Time
P.U.
(Amps)
D.O.
(Amps) Tol
2 x Is
(sec)
5 x Is
(sec) Tol
E
Calculated Timing values in seconds for TM =1.0
Curve 2 xIs 5 xIs
IEC-NI 10.03 4.28
IEC-VI 13.50 3.38
IEC-EI 26.67 3.33
IEC-LTI 120.00 30.00
ANSI-MI 3.80 1.69
ANSI-VI 7.03 1.31
ANSI-EI 9.52 1.30
Note that the operate time may be subject to the Minimum op time setting for the element and/or may have a
Follower DTL applied.
1.1.1.1 Element Blocking
The Derived Earth Fault elements can be blocked by Binary Input Inhibit, VT Supervision and Inrush Detector
operation. The Characteristic can be made non-directional by VT Supervision. This functionality should be
checked.
Element BI Inhibits VTS action Inrush Detector
51N-1
51N-2
51N-3
51N-4
50N-1
50N-2
50N-3
50N-4
7SR210 & 7SR220 Commissioning & Maintenance Guide
Page 30 of 82 © 2013 Siemens Protection Devices Limited
2.1.1.1 ANSI Reset
If the element is configured as an ANSI characteristic, it may have a reset delay applied. If ANSI reset is selected
for an IEC characteristic element, the reset will be instantaneous.
ANSI reset times from operated condition to fully reset are as follows for zero applied current and TM = 1.0. The
reset curve characteristic type and TM is defined by the operating characteristic.
Curve Fully operated to reset with Zero current applied & TM=1 (secs)
ANSI-MI 4.85
ANSI-VI 21.6
ANSI-EI 29.1
Apply current in the following sequence, a) 2x setting for a time to ensure element operation, b) Zero current for
the reset time above (xTM), c) 2x setting for a time to ensure element operation. Check that the second operation
(c) is similar to the first (a) and in line with the expected operate time for the element at this current level.
Repeat the test with the reset time (b) reduced to 50% of the previous value. Ensure that the second operate time
(c) is 50% of the first (a) operate time.
Check correct indication, trip output, alarm contacts, waveform record.
Operate time
(expected)
Reset time
(calculated)
Operate time
(measured)
50% Reset
Time
(calculated)
50% operate
time
(calculated)
50% operate
time
(measured)
First test (c) Second Test (c)
7SR210 & 7SR220 Commissioning & Maintenance Guide
© 2013 Siemens Protection Devices Limited Page 31 of 82
2.4 Measured Earth fault (67/50G,67/51G)
7SR22
46
BC
46
NPS
(x2)
37
(x2) 49 50
BF
VL1
(VA)
VL2
(VB)
VL3
(VC)
V4
(VX)
IL1
(IA)
81
HBL
2
37
(x2) 49 50
BF
IL2
(IB)
81
HBL
2
37
(x2) 49 50
BF
IL3
(IC)
81
HBL
2
60
CTS
I4
(IG)
I5
(ISEF)
74
TCS
NOTE: The use of some
functions are mutually exclusive
67/
50
(x4)
67/
51
(x4)
67/
50N
(x4)
67/
50
(x4)
67/
50
(x4)
67/
51
(x4)
67/
51
(x4)
67/
51N
(x4)
67/
50G
(x4)
67/
51G
(x4)
67/
50S
(x4)
67/
51S
(x4)
64
H
27
59
27
59
(x4)
27
59
(x4)
27
59
(x4)
47
(x2)
81
(x6)
79 Optional
59N
(x2)
81
HBL
2N
60
VTS
51V
51V
51V
37G
(x2)
37S
(x2)
51c
60
CTS-
I
60
CTS-
I
60
CTS-
I
37 50
BF
37 50
BF
25
50
AFD
50
AFD
50
AFD
51c
51c
51c
Figure 2.4-1 Measured Earth Fault
Voltage Inputs: VL1 (VA), VL2 (VB), VL3 (VC) for directional elements
Current Inputs: I4(IG)
Disable: 50BF, 79
Map Pickup LED: . 51G-n/50G-n - Self Reset
Other protection functions may overlap with these functions during testing, it may be useful to disable some
functions to avoid ambiguity. Derived EF, Measured EF, Sensitive EF & Restricted EF protections can be
Enabled/Disabled individually or as groups in the ‘Function Config’ menu.
Measured EF elements can be separated from Derived EF and Sensitive EF by secondary injection of current
through the I4 input circuit only.
If any of these elements are defined as directional the correct voltage phase direction will be required to produce
an operation of those elements.
7SR210 & 7SR220 Commissioning & Maintenance Guide
Page 32 of 82 © 2013 Siemens Protection Devices Limited
2.4.1 Directional Polarity
See section Directional Earth Fault Polarity Check above for testing details.
MTA
Forward Reverse
Lag (point C) Lead (point A) Lead(point B) Lag (point D)
Pick-up Drop-off Pick-up Drop-off Pick-up Drop-off Pick-up Drop-off
…………. MTA-85
………..
MTA+85
…………
MTA-85
…………
MTA-85
………...
Measured
EF
2.4.2 Definite Time Overcurrent..(67/50G)
If DTL setting is small, gradually increase current until element operates.
If DTL is large apply 0.9x setting, check for no operation, apply 1.1x setting, and check operation.
Apply 2x setting current if possible and record operating time.
Phase Dir. Is
(Amps)
DTL
(sec)
P.U. Current
Amps
Operate
Time
2 x Is
NOTES
I4
Check correct indication, trip output, alarm contacts, waveform record.
Note that these elements can be set to directional.
If VTS action is set to BLOCK, this option should be tested. Apply balanced voltage and current. Reduce a-phase
voltage to cause a VTS condition. Increase a-phase current and check that the element does not operate.
If VTS action is set to Non-Directional, this option should be tested..Apply balanced voltage and current. Reduce
a-phase voltage to cause a VTS condition. Increase a-phase current and check that the element operates at its
normal setting. Reverse the voltage phase direction whilst checking that the element does not reset.
2.4.3 Inverse Time Overcurrent. (67/51G)
It will be advantageous to map the function being tested to temporarily drive the relevant Pickup output in the
Pickup Config sub-menu in the Output Config menu as this will allow the Pick-up led to operate for the function.
Gradually increase current until Pickup LED operates.
Apply 2x setting current and record operating time.
Apply 5x setting current and record operating time.
Compare to calculated values for operating times.
7SR210 & 7SR220 Commissioning & Maintenance Guide
© 2013 Siemens Protection Devices Limited Page 33 of 82
P.U.
D.O.
&
TIMING
TESTS
Ph. Dir
Char.
(NI EI VI LTI,
DTL)
Is
(A) TM
Operate Current
Operate Time
P.U.
(Amps)
D.O.
(Amps) Tol 2 x Is
(sec)
5 x Is
(sec) Tol
I4
Calculated Timing values in seconds for TM =1.0
Curve 2 xIs 5 xIs
IEC-NI 10.03 4.28
IEC-VI 13.50 3.38
IEC-EI 26.67 3.33
IEC-LTI 120.00 30.00
ANSI-MI 3.80 1.69
ANSI-VI 7.03 1.31
ANSI-EI 9.52 1.30
Note that the operate time may be subject to the Minimum op time setting for the element and/or may have a
Follower DTL applied.
If VTS action is set to BLOCK, this option should be tested. Apply balanced voltage and current. Reduce a-phase
voltage to cause a VTS condition. Increase a-phase current and check that the element does not operate.
If VTS action is set to Non-Directional, this option should be tested..Apply balanced voltage and current. Reduce
a-phase voltage to cause a VTS condition. Increase a-phase current and check that the element operates at its
normal setting. Reverse the voltage phase direction whilst checking that the element does not reset.
1.1.1.1 Element Blocking
The Measured Earth Fault elements can be blocked by Binary Input Inhibit, VT Supervision and Inrush Detector
operation. The Characteristic can be made non-directional by VT Supervision. This functionality should be
checked.
Element BI Inhibits VTS action Inrush Detector
51G-1
51G-2
51G-3
51G-4
50G-1
50G-2
50G-3
50G-4
7SR210 & 7SR220 Commissioning & Maintenance Guide
Page 34 of 82 © 2013 Siemens Protection Devices Limited
2.1.1.1 ANSI Reset
If the element is configured as an ANSI characteristic, it may have a reset delay applied. If ANSI reset is selected
for an IEC characteristic element, the reset will be instantaneous.
ANSI reset times from operated condition to fully reset are as follows for zero applied current and TM = 1.0. The
reset curve characteristic type and TM is defined by the operating characteristic.
Curve Fully operated to reset with Zero current applied & TM=1 (secs)
ANSI-MI 4.85
ANSI-VI 21.6
ANSI-EI 29.1
Apply current in the following sequence, a) 2x setting for a time to ensure element operation, b) Zero current for
the reset time above (xTM), c) 2x setting for a time to ensure element operation. Check that the second operation
(c) is similar to the first (a) and in line with the expected operate time for the element at this current level.
Repeat the test with the reset time (b) reduced to 50% of the previous value. Ensure that the second operate time
(c) is 50% of the first (a) operate time.
Check correct indication, trip output, alarm contacts, waveform record.
Operate time
(expected)
Reset time
(calculated)
Operate time
(measured)
50% Reset
Time
(calculated)
50% operate
time
(calculated)
50% operate
time
(measured)
First test (c) Second Test (c)
7SR210 & 7SR220 Commissioning & Maintenance Guide
© 2013 Siemens Protection Devices Limited Page 35 of 82
2.5 Sensitive Earth fault (67/50S,67/51S)
7SR22
46
BC
46
NPS
(x2)
37
(x2) 49 50
BF
VL1
(VA)
VL2
(VB)
VL3
(VC)
V4
(VX)
IL1
(IA)
81
HBL
2
37
(x2) 49 50
BF
IL2
(IB)
81
HBL
2
37
(x2) 49 50
BF
IL3
(IC)
81
HBL
2
60
CTS
I4
(IG)
I5
(ISEF)
74
TCS
NOTE: The use of some
functions are mutually exclusive
67/
50
(x4)
67/
51
(x4)
67/
50N
(x4)
67/
50
(x4)
67/
50
(x4)
67/
51
(x4)
67/
51
(x4)
67/
51N
(x4)
67/
50G
(x4)
67/
51G
(x4)
67/
50S
(x4)
67/
51S
(x4)
64
H
27
59
27
59
(x4)
27
59
(x4)
27
59
(x4)
47
(x2)
81
(x6)
79 Optional
59N
(x2)
81
HBL
2N
60
VTS
51V
51V
51V
37G
(x2)
37S
(x2)
51c
60
CTS-
I
60
CTS-
I
60
CTS-
I
37 50
BF
37 50
BF
25
50
AFD
50
AFD
50
AFD
51c
51c
51c
Figure 2.5-1 Sensitive Earth Fault
Voltage Inputs: VL1 (VA), VL2 (VB), VL3 (VC) for directional elements
Current Inputs: I5(ISEF)
Disable: 64H, 50BF, 79
Map Pickup LED: 51SEF-n/50SEF-n - Self Reset
Other protection functions may overlap with these functions during testing; it may be useful to disable some
functions to avoid ambiguity. Derived EF, Measured EF, Sensitive EF & Restricted EF protections can be
Enabled/Disabled individually or as groups in the ‘Function Config’ menu.
Sensitive EF elements can be separated from Derived EF and Measured EF by secondary injection of current
through the I5 input circuit only.
If any of these elements are defined as directional the correct voltage phase direction will be required to produce
an operation of those elements.
7SR210 & 7SR220 Commissioning & Maintenance Guide
Page 36 of 82 © 2013 Siemens Protection Devices Limited
2.5.1 Directional Polarity
See section Directional Earth Fault Polarity Check above for testing details.
MTA
Forward Reverse
Lag (point C) Lead (point A) Lead(point B) Lag (point D)
Pick-up Drop-off Pick-up Drop-off Pick-up Drop-off Pick-up Drop-off
…………. MTA-85
………..
MTA+85
…………
MTA-85
…………
MTA-85
………...
SEF
2.5.2 Definite Time Overcurrent. (50SEF)
If DTL setting is small, gradually increase current until element operates.
If DTL is large apply 0.9x setting, check for no operation, apply 1.1x setting, and check operation.
Apply 2x setting current if possible and record operating time.
P.U.
D.O.
&
TIMING
TESTS
Ph. Dir
Char.
(NI EI VI LTI,
DTL)
Is
(A) TM
Operate Current
Operate Time
P.U.
(Amps)
D.O.
(Amps) Tol
2 x Is
(sec)
5 x Is
(sec) Tol
I5(ISEF)
Check correct indication, trip output, alarm contacts, waveform record.
Note that these elements can be set to directional.
If VTS action is set to BLOCK, this option should be tested. Apply balanced voltage and current. Reduce a-phase
voltage to cause a VTS condition. Increase a-phase current and check that the element does not operate.
If VTS action is set to Non-Directional, this option should be tested. Apply balanced voltage and current. Reduce
a-phase voltage to cause a VTS condition. Increase a-phase current and check that the element operates at its
normal setting. Reverse the voltage phase direction whilst checking that the element does not reset.
2.5.3 Inverse Time Overcurrent. (51SEF)
It will be advantageous to map the function being tested to temporarily drive the relevant Pickup output in the
Pickup Config sub-menu in the Output Config menu as this will allow the Pick-up led to operate for the function.
Gradually increase current until Pickup LED operates.
Apply 2x setting current and record operating time.
Apply 5x setting current and record operating time.
Compare to calculated values for operating times.
P.U.
D.O.
&
TIMING
TESTS
Ph. Dir
Char.
(NI EI VI LTI,
DTL)
Is
(A) TM
Operate Current
Operate Time
P.U.
(Amps)
D.O.
(Amps) Tol
2 x Is
(sec)
5 x Is
(sec) Tol
E
7SR210 & 7SR220 Commissioning & Maintenance Guide
© 2013 Siemens Protection Devices Limited Page 37 of 82
Calculated Timing values in seconds for TM =1.0
Curve 2 xIs 5 xIs
IEC-NI 10.03 4.28
IEC-VI 13.50 3.38
IEC-EI 26.67 3.33
IEC-LTI 120.00 30.00
ANSI-MI 3.80 1.69
ANSI-VI 7.03 1.31
ANSI-EI 9.52 1.30
Note that the operate time may be subject to the Minimum op time setting for the element and/or may have a
Follower DTL applied.
If VTS action is set to BLOCK, this option should be tested. Apply balanced voltage and current. Reduce a-phase
voltage to cause a VTS condition. Increase a-phase current and check that the element does not operate.
If VTS action is set to Non-Directional, this option should be tested..Apply balanced voltage and current. Reduce
a-phase voltage to cause a VTS condition. Increase a-phase current and check that the element operates at its
normal setting. Reverse the voltage phase direction whilst checking that the element does not reset.
1.1.1.1 Element Blocking
The Sensitive Earth Fault elements can be blocked by Binary Input Inhibit and VT Supervision. The Characteristic
can be made non-directional by VT Supervision. This functionality should be checked.
Element BI Inhibits VTS action
51SEF-1
51SEF-2
51SEF-3
51SEF-4
50SEF-1
50SEF-2
50SEF-3
50SEF-4
7SR210 & 7SR220 Commissioning & Maintenance Guide
Page 38 of 82 © 2013 Siemens Protection Devices Limited
2.1.1.1 ANSI Reset
If the element is configured as an ANSI characteristic, it may have a reset delay applied. If ANSI reset is selected
for an IEC characteristic element, the reset will be instantaneous.
ANSI reset times from operated condition to fully reset are as follows for zero applied current and TM = 1.0. The
reset curve characteristic type and TM is defined by the operating characteristic.
Curve Fully operated to reset with Zero current applied & TM=1 (secs)
ANSI-MI 4.85
ANSI-VI 21.6
ANSI-EI 29.1
Apply current in the following sequence, a) 2x setting for a time to ensure element operation, b) Zero current for
the reset time above (xTM), c) 2x setting for a time to ensure element operation. Check that the second operation
(c) is similar to the first (a) and in line with the expected operate time for the element at this current level.
Repeat the test with the reset time (b) reduced to 5 0% of the previous value. Ensure that the second operate
time (c) is 50 % of the first (a) operate time.
Check correct indication, trip output, alarm contacts, waveform record.
Operate time
(expected)
Reset time
(calculated)
Operate time
(measured)
50% Reset
Time
(calculated)
50% operate
time
(calculated)
50% operate
time
(measured)
First test (c) Second Test (c)
7SR210 & 7SR220 Commissioning & Maintenance Guide
© 2013 Siemens Protection Devices Limited Page 39 of 82
2.6 Restricted Earth fault. (64H)
7SR22
46
BC
46
NPS
(x2)
37
(x2) 49 50
BF
VL1
(VA)
VL2
(VB)
VL3
(VC)
V4
(VX)
IL1
(IA)
81
HBL
2
37
(x2) 49 50
BF
IL2
(IB)
81
HBL
2
37
(x2) 49 50
BF
IL3
(IC)
81
HBL
2
60
CTS
I4
(IG)
I5
(ISEF)
74
TCS
NOTE: The use of some
functions are mutually exclusive
67/
50
(x4)
67/
51
(x4)
67/
50N
(x4)
67/
50
(x4)
67/
50
(x4)
67/
51
(x4)
67/
51
(x4)
67/
51N
(x4)
67/
50G
(x4)
67/
51G
(x4)
67/
50S
(x4)
67/
51S
(x4)
64
H
27
59
27
59
(x4)
27
59
(x4)
27
59
(x4)
47
(x2)
81
(x6)
79 Optional
59N
(x2)
81
HBL
2N
60
VTS
51V
51V
51V
37G
(x2)
37S
(x2)
51c
60
CTS-
I
60
CTS-
I
60
CTS-
I
37 50
BF
37 50
BF
25
50
AFD
50
AFD
50
AFD
51c
51c
51c
Figure 2.6-1 Restricted Earth Fault
Voltage Inputs: n/a
Current Inputs: I5(IREF)
Disable: 51SEF, 50SEF, 79
Map Pickup LED:. 64H - Self Reset
The setting resistance should be measured and the value compared to that specified in the settings data. Both
values should be recorded.
Settings Data Resistor Value Measured
The high value of setting resistance R will often interfere with secondary current injection when using a digital test
set. It is normal practice in these cases to short out the resistor to allow testing; the shorting link should be
removed after testing.
Since the DTL setting is generally small the pick-up setting can be tested by gradually increasing current until
element operates. The relay should be disconnected from the current transformers for this test.
7SR210 & 7SR220 Commissioning & Maintenance Guide
Page 40 of 82 © 2013 Siemens Protection Devices Limited
Apply 2x setting current if possible and record operating time
Phase Is
(Amps)
DTL
(sec)
P.U. Current
Amps Tolerance Operate Time
2 x Is Tolerance
REF
It is also desirable to check the operating voltage achieved with the setting resistor and all parallel CTs connected
but de-energised. A higher capacity test set will be required for this test. Adequate current must be supplied to
provide the magnetising current of all connected CTs. Precautions should be taken to ensure that no personnel
are at risk of contact with any of the energised secondary wiring during the test.
Settings Data Voltage Setting Measured
To complete testing of the REF requires primary injection through the phase and residual (REF) CT in series to
simulate an out of zone fault and ensure stability of the relay. The test can then be repeated with the REF CT
secondary connections reversed to prove operation.
1.1.1.1 Element Blocking
The Restricted Earth Fault element can be blocked by Binary Input Inhibit. This functionality should be checked.
Element BI Inhibits
64H
Check correct indication, trip output, alarm contacts, waveform record.
Check that any shorting links are removed after testing.
7SR210 & 7SR220 Commissioning & Maintenance Guide
© 2013 Siemens Protection Devices Limited Page 41 of 82
2.7 Negative Phase Sequence Overcurrent (46NPS)
7SR22
46
BC
46
NPS
(x2)
37
(x2) 49 50
BF
VL1
(VA)
VL2
(VB)
VL3
(VC)
V4
(VX)
IL1
(IA)
81
HBL
2
37
(x2) 49 50
BF
IL2
(IB)
81
HBL
2
37
(x2) 49 50
BF
IL3
(IC)
81
HBL
2
60
CTS
I4
(IG)
I5
(ISEF)
74
TCS
NOTE: The use of some
functions are mutually exclusive
67/
50
(x4)
67/
51
(x4)
67/
50N
(x4)
67/
50
(x4)
67/
50
(x4)
67/
51
(x4)
67/
51
(x4)
67/
51N
(x4)
67/
50G
(x4)
67/
51G
(x4)
67/
50S
(x4)
67/
51S
(x4)
64
H
27
59
27
59
(x4)
27
59
(x4)
27
59
(x4)
47
(x2)
81
(x6)
79 Optional
59N
(x2)
81
HBL
2N
60
VTS
51V
51V
51V
37G
(x2)
37S
(x2)
51c
60
CTS-
I
60
CTS-
I
60
CTS-
I
37 50
BF
37 50
BF
25
50
AFD
50
AFD
50
AFD
51c
51c
51c
Figure 2.7-1 Negative Phase Sequence Overcurrent
Voltage Inputs: n/a
Current Inputs: IL1 (IA), IL2 (IB), IL3 (IC),
Disable: 51, 51V, 51c, 37, 49, 50BF, 60CTS, 46BC
Map Pickup LED: 46IT/46DT - Self Reset
Where two NPS elements are being used with different settings, it is convenient to test the elements with the
highest settings first. The elements with lower settings can then be tested without disabling the lower settings.
The Thermal withstand limitations of the current inputs, stated in the Performance Specification should always be
observed throughout testing.
NPS Overcurrent can be tested using a normal 3P balanced source. Two phase current connections should be
reversed so that the applied balanced 3P current is Negative Phase Sequence.
7SR210 & 7SR220 Commissioning & Maintenance Guide
Page 42 of 82 © 2013 Siemens Protection Devices Limited
2.7.1 Definite Time NPS Overcurrent. (46DT)
If DTL setting is small, gradually increase current until element operates.
If DTL is large apply 0.9x setting, check for no operation, apply 1.1x setting, and check operation.
Apply 2x setting current if possible and record operating time
Phase Is
(Amps)
DTL
(sec)
P.U. Current
Amps Tolerance Operate Time
2 x Is Tolerance
NPS
Check correct indication, trip output, alarm contacts, waveform record.
2.7.2 Inverse Time NPS Overcurrent. (46IT)
It will be advantageous to map the function being tested to temporarily drive the relevant Pickup output in the
Pickup Config sub-menu in the Output Config menu as this will allow the Pick-up led to operate for the function.
Gradually increase current until Pickup LED operates.
Apply 2x setting current and record operating time.
Apply 5x setting current and record operating time.
Compare to calculated values for operating times
P.U.
D.O.
&
TIMING
TESTS
Ph. Dir
Char.
(NI EI VI LTI,
DTL)
Is
(A) TM
Operate Current
Operate Time
P.U.
(Amps)
D.O.
(Amps) Tol
2 x Is
(sec)
5 x Is
(sec) Tol
NPS
Calculated Timing values in seconds for TM =1.0
Curve 2 xIs 5 xIs
IEC-NI 10.03 4.28
IEC-VI 13.50 3.38
IEC-EI 26.67 3.33
IEC-LTI 120.00 30.00
ANSI-MI 3.80 1.69
ANSI-VI 7.03 1.31
ANSI-EI 9.52 1.30
Note that the operate time may be subject to the Minimum op time setting for the element and/or may have a
Follower DTL applied.
7SR210 & 7SR220 Commissioning & Maintenance Guide
© 2013 Siemens Protection Devices Limited Page 43 of 82
1.1.1.1 ANSI Reset
If the element is configured as an ANSI characteristic, it may have a reset delay applied. If ANSI reset is selected
for an IEC characteristic element, the reset will be instantaneous.
ANSI reset times from operated condition to fully reset are as follows for zero applied current and TM = 1.0. The
reset curve characteristic type and TM is defined by the operating characteristic.
Curve Fully operated to reset with Zero current applied & TM=1 (secs)
ANSI-MI 4.85
ANSI-VI 21.6
ANSI-EI 29.1
Apply current in the following sequence, a) 2x setting for a time to ensure element operation, b) Zero current for
the reset time above (xTM), c) 2x setting for a time to ensure element operation. Check that the second operation
(c) is similar to the first (a) and in line with the expected operate time for the element at this current level.
Repeat the test with the reset time (b) reduced to 50 % of the previous value. Ensure that the second operate
time (c) is 50 % of the first (a) operate time.
2.1.1.1 Element Blocking
The NPS Overcurrent elements can be blocked by Binary Input Inhibit. This functionality should be checked.
Element BI Inhibits
46IT
46DT
Check correct indication, trip output, alarm contacts, waveform record.
When testing is complete reinstate any of the disabled functions.
Operate time
(expected)
Reset time
(calculated)
Operate time
(measured)
50% Reset
Time
(calculated)
50% operate
time
(calculated)
50% operate
time
(measured)
First test (c) Second Test
(c)
7SR210 & 7SR220 Commissioning & Maintenance Guide
Page 44 of 82 © 2013 Siemens Protection Devices Limited
2.8 Undercurrent. (37)
7SR22
46
BC
46
NPS
(x2)
37
(x2) 49 50
BF
VL1
(VA)
VL2
(VB)
VL3
(VC)
V4
(VX)
IL1
(IA)
81
HBL
2
37
(x2) 49 50
BF
IL2
(IB)
81
HBL
2
37
(x2) 49 50
BF
IL3
(IC)
81
HBL
2
60
CTS
I4
(IG)
I5
(ISEF)
74
TCS
NOTE: The use of some
functions are mutually exclusive
67/
50
(x4)
67/
51
(x4)
67/
50N
(x4)
67/
50
(x4)
67/
50
(x4)
67/
51
(x4)
67/
51
(x4)
67/
51N
(x4)
67/
50G
(x4)
67/
51G
(x4)
67/
50S
(x4)
67/
51S
(x4)
64
H
27
59
27
59
(x4)
27
59
(x4)
27
59
(x4)
47
(x2)
81
(x6)
79 Optional
59N
(x2)
81
HBL
2N
60
VTS
51V
51V
51V
37G
(x2)
37S
(x2)
51c
60
CTS-
I
60
CTS-
I
60
CTS-
I
37 50
BF
37 50
BF
25
50
AFD
50
AFD
50
AFD
51c
51c
51c
Figure 2.8-1 Undercurrent
Voltage Inputs: n/a
Current Inputs: IL1 (IA), IL2 (IB), IL3 (IC),
Disable: 51N, 51G, 46, 60CTS, 46BC
Map Pickup LED: 37-n - Self Reset
If two Undercurrent 37 elements are used with different settings, it is convenient to test the element with the
lowest setting first. The higher setting element can then be tested without interference from the other element.
Apply 3P balanced current at a level above the Undercurrent 37-n setting until the element resets.
If DTL setting is small, gradually reduce any each phase current in turn until element operates.
If DTL is large apply 1.1x setting, check for no operation, apply 0.9x setting, and check operation
Testing of this element phase by phase may cause inadvertent operation of the 46 NPS Overcurrent elements.
Apply 0.5x setting current and record operating time.
7SR210 & 7SR220 Commissioning & Maintenance Guide
© 2013 Siemens Protection Devices Limited Page 45 of 82
Phase Is
(Amps)
DTL
(sec)
P.U. Current
Amps Tolerance Operate Time
0.5 x Is Tolerance
I
L1
(I
A
)
I
L2
(I
B
)
I
L3
(I
C
)
1.1.1.1 Element Blocking
The Undercurrent elements can be blocked by Binary Input Inhibit. This functionality should be checked.
Element BI Inhibits
37-1
37-2
Check correct indication, trip output, alarm contacts, waveform record.
7SR210 & 7SR220 Commissioning & Maintenance Guide
Page 46 of 82 © 2013 Siemens Protection Devices Limited
2.9 Thermal Overload (49)
7SR22
46
BC
46
NPS
(x2)
37
(x2) 49 50
BF
VL1
(VA)
VL2
(VB)
VL3
(VC)
V4
(VX)
IL1
(IA)
81
HBL
2
37
(x2) 49 50
BF
IL2
(IB)
81
HBL
2
37
(x2) 49 50
BF
IL3
(IC)
81
HBL
2
60
CTS
I4
(IG)
I5
(ISEF)
74
TCS
NOTE: The use of some
functions are mutually exclusive
67/
50
(x4)
67/
51
(x4)
67/
50N
(x4)
67/
50
(x4)
67/
50
(x4)
67/
51
(x4)
67/
51
(x4)
67/
51N
(x4)
67/
50G
(x4)
67/
51G
(x4)
67/
50S
(x4)
67/
51S
(x4)
64
H
27
59
27
59
(x4)
27
59
(x4)
27
59
(x4)
47
(x2)
81
(x6)
79 Optional
59N
(x2)
81
HBL
2N
60
VTS
51V
51V
51V
37G
(x2)
37S
(x2)
51c
60
CTS-
I
60
CTS-
I
60
CTS-
I
37 50
BF
37 50
BF
25
50
AFD
50
AFD
50
AFD
51c
51c
51c
Figure 2.9-1 Thermal Overload
Voltage Inputs: n/a
Current Inputs: IL1 (IA), IL2 (IB), IL3 (IC),
Disable: 51, 50, 37, 50BF
Map Pickup LED:. 49Alarm
The current can be applied from a 3P balanced supply or phase by phase from a 1P supply. Alternatively the 3
phase current inputs can be connected in series and injected simultaneously from a single 1P source.
The Thermal Overload Setting and Time Constant Setting can be considered together to calculate the operating
time for a particular applied current.
The following table lists operate times for a range of Time Constant Settings for an applied current of 2x the
Thermal Overload setting. Ensure that the thermal rating of the relay is not exceeded during this test.
7SR210 & 7SR220 Commissioning & Maintenance Guide
© 2013 Siemens Protection Devices Limited Page 47 of 82
Time Constant (mins) Operate Time (sec)
1 17.3
2 34.5
3 51.8
4 69
5 86.3
10 173
15 259
20 345
25 432
30 51.8
50 863
100 1726
The Thermal State must be in the fully reset condition in order to measure the operate time correctly. This can be
achieved by setting change in the Thermal protection settings menu or by pressing the Test/Reset button when
the Thermal Meter is shown in the Instruments Mode.
Reset the thermal State then apply 2x the Overload Setting current.
Calculated Operate Time (s) Measured Operate Time (s)
If the Thermal Overload Capacity Alarm is used, this can be tested by monitoring the Thermal Capacity in the
instruments menu. If the Thermal time constant is longer than a few minutes, this can be assessed during the
timing test above. If the Time Constant is less than a few minutes, a lower multiple of current will be required such
that the rate of capacity increase is slowed to allow monitoring of the instrument to be accurate.
Capacity Alarm Setting Measured
1.1.1.1 Element Blocking
The Thermal element can be blocked by Binary Input Inhibit. This functionality should be checked.
Element BI Inhibits
49
7SR210 & 7SR220 Commissioning & Maintenance Guide
Page 48 of 82 © 2013 Siemens Protection Devices Limited
2.10 Over/Under Voltage
2.10.1 Phase Under/Over Voltage. (27/59)
7SR22
46
BC
46
NPS
(x2)
37
(x2) 49 50
BF
VL1
(VA)
VL2
(VB)
VL3
(VC)
V4
(VX)
IL1
(IA)
81
HBL
2
37
(x2) 49 50
BF
IL2
(IB)
81
HBL
2
37
(x2) 49 50
BF
IL3
(IC)
81
HBL
2
60
CTS
I4
(IG)
I5
(ISEF)
74
TCS
NOTE: The use of some
functions are mutually exclusive
67/
50
(x4)
67/
51
(x4)
67/
50N
(x4)
67/
50
(x4)
67/
50
(x4)
67/
51
(x4)
67/
51
(x4)
67/
51N
(x4)
67/
50G
(x4)
67/
51G
(x4)
67/
50S
(x4)
67/
51S
(x4)
64
H
27
59
27
59
(x4)
27
59
(x4)
27
59
(x4)
47
(x2)
81
(x6)
79 Optional
59N
(x2)
81
HBL
2N
60
VTS
51V
51V
51V
37G
(x2)
37S
(x2)
51c
60
CTS-
I
60
CTS-
I
60
CTS-
I
37 50
BF
37 50
BF
25
50
AFD
50
AFD
50
AFD
51c
51c
51c
Figure 2.10-1 Phase Under/Over Voltage
Voltage Inputs: VL1 (VA), VL2 (VB), VL3 (VC)
Current Inputs: n/a apply zero current to stabilize other functions
Disable: 47, 59N, 60VTS
Map Pickup LED:. 27/59-n - Self Reset
Where more than one Undervoltage (27) elements are being used with different settings, it is convenient to test
the elements with the lowest settings first. The elements with higher settings can then be tested without disabling
the lower settings.
Note that if the voltage is reduced below the 27UVG setting, the function may be blocked. VTS operation may
also block the 27 Undervoltage function. Current inputs are not normally required to stabilise the relay during
voltage element testing.
If the ‘O/P Phases’ is set to ‘All’, the voltage on all phases must be reduced simultaneously. Otherwise the 3
phases should be tested individually.
7SR210 & 7SR220 Commissioning & Maintenance Guide
© 2013 Siemens Protection Devices Limited Page 49 of 82
If the DTL is short, starting from nominal voltage, slowly decrease the applied 3P or VL1 test voltage until the
Pickup LED (temporarily mapped) is lit. Record the operate voltage. The LED should light at setting Volts +/- 5 %.
Slowly increase the input voltage until the LED extinguishes. Record the reset voltage to check the ‘Hysteresis’
setting. If the DTL is long, the operate level level should be checked by applying a voltage of 90 % of setting
voltage. Check Hysteresis by resetting element to the operate level setting plus the hysteresis setting.
Connect the relevant output contact(s) to stop the test set. Step the applied voltage to a level below the setting.
The test set should be stopped at the operate time setting +/- 5 %
Test inputs VL2 and VL3 by repeating the above if necessary.
When testing is complete reinstate any of the disabled functions.
Where more than one overvoltage (59) elements are being used with different settings, it is convenient to test the
elements with the highest settings first. The elements with lower settings can then be tested without disabling the
higher settings.
If the ‘O/P Phases’ is set to ‘All’, the voltage on all phases must be increased simultaneously. Otherwise the 3
phases should be tested individually. If the DTL setting is short, starting from nominal voltage, slowly increase the
applied 3P or VL1 test voltage until the Pickup LED (temporarily mapped) is lit. The LED should light at setting
Volts +/- 5 % Decrease the input voltage to nominal Volts and the LED will extinguish. Record the reset voltage to
check the ‘Hysteresis’ setting. If the DTL setting is long, the operate level can be checked by applying 100 % of
setting to cause operation followed by setting minus the Hysteresis setting to cause reset.
Connect the relevant output contact(s) to stop the test set. Step the applied voltage to a level above the setting.
The test set should be stopped at the operate time setting +/- 5 %.
Test inputs VL2 and VL3 by repeating the above if necessary.
Phase
27/59
setting
(Volts)
U/O DTL
(sec) Hyst. D.O.
(calculated)
P.U.
Volts
D.O
Volts
Op. Time
2x Vs (OV)
0.5x Vs (UV)
UV
Guard Tol
V
1
(V
A
)
V
2
(V
B
)
V
3
(V
C
)
1.1.1.1 Element Blocking
The NPS Overcurrent elements can be blocked by Binary Input Inhibit and VT Supervision. This functionality
should be checked.
Element BI Inhibits VT Supervision
27/59-1
27/59-2
27/59-3
27/59-4
When testing is complete reinstate any of the disabled functions.
7SR210 & 7SR220 Commissioning & Maintenance Guide
Page 50 of 82 © 2013 Siemens Protection Devices Limited
2.10.2 Undervoltage Guard (27/59UVG)
If any 27 Undervoltage element is set to be inhibited by the 27 Undervoltage Guard element, this function should
be tested.
Connect the test voltage inputs to suit the installation wiring diagram utilising any test socket facilities available. It
may be useful to temporarily map an LED as ‘General Pickup’ to assist during testing. 27UVG operation will reset
the General Pickup if no other element is operated. This LED should not be set as ‘Hand Reset’ in the Output
matrix.
Starting from nominal voltage, apply a step decrease to the applied voltage to a level below the 27 Undervoltage
setting but above the 27UVG setting such that an Undervoltage element operation occurs. Slowly reduce the
applied voltage until the 27 Undervoltage element resets, this can be detected by the General Pickup LED reset if
no other element is operated (this includes any Undervoltage element which is not UV Guarded).
Phase Vs
(Volts) Tol V element
Used for test
Blocked
Volts NOTES
UVG
7SR210 & 7SR220 Commissioning & Maintenance Guide
© 2013 Siemens Protection Devices Limited Page 51 of 82
2.10.3 VXUnder/Over Voltage. (Vx 27/59)
7SR22
46
BC
46
NPS
(x2)
37
(x2) 49 50
BF
VL1
(VA)
VL2
(VB)
VL3
(VC)
V4
(VX)
IL1
(IA)
81
HBL
2
37
(x2) 49 50
BF
IL2
(IB)
81
HBL
2
37
(x2) 49 50
BF
IL3
(IC)
81
HBL
2
60
CTS
I4
(IG)
I5
(ISEF)
74
TCS
NOTE: The use of some
functions are mutually exclusive
67/
50
(x4)
67/
51
(x4)
67/
50N
(x4)
67/
50
(x4)
67/
50
(x4)
67/
51
(x4)
67/
51
(x4)
67/
51N
(x4)
67/
50G
(x4)
67/
51G
(x4)
67/
50S
(x4)
67/
51S
(x4)
64
H
27
59
27
59
(x4)
27
59
(x4)
27
59
(x4)
47
(x2)
81
(x6)
79 Optional
59N
(x2)
81
HBL
2N
60
VTS
51V
51V
51V
37G
(x2)
37S
(x2)
51c
60
CTS-
I
60
CTS-
I
60
CTS-
I
37 50
BF
37 50
BF
25
50
AFD
50
AFD
50
AFD
51c
51c
51c
Figure 2.10-2 Vx Under/Over Voltage
Voltage Inputs: V4 (VX)
Current Inputs: n/a apply zero current to stabilize other functions
Disable:
Map Pickup LED:. Vx 27/59 - Self Reset
If DTL setting is small, gradually increase single phase voltage applied to Vx input until element operates if the
element is Overvoltage. Alternatively, if the element is Undervoltage, increase single phase voltage applied to Vx
input until element operates.
If DTL is large, for Overvoltage elements, apply 0.9x setting, check for no operation, apply 1.1x setting, check
operation. For Undervoltage elements, apply 1.1x setting, check for no operation, apply 0.9x setting, check
operation.
Apply 2x setting voltage if possible and record operating time.
Starting with the element in the operated condition, gradually increase or decrease the applied voltage until the
element resets. Measure the reset voltage level to check the 27/59 Hysteresis setting.
7SR210 & 7SR220 Commissioning & Maintenance Guide
Page 52 of 82 © 2013 Siemens Protection Devices Limited
Phase
27/59
setting
(Volts)
U/O DTL
(sec) Hyst. D.O.
(calculated)
P.U.
Volts
D.O
Volts
Op. Time
2x Vs (OV)
0.5x Vs
(UV)
Tolerence
V4(Vx)
1.1.1.1 Element Blocking
The Vx Under/Over Voltage elements can be blocked by Binary Input Inhibit and VT Supervision. This
functionality should be checked.
Element BI Inhibits VT Supervision
27/59x
Check correct indication, trip output, alarm contacts, waveform record.
7SR210 & 7SR220 Commissioning & Maintenance Guide
© 2013 Siemens Protection Devices Limited Page 53 of 82
2.10.4 NPS Overvoltage (47)
7SR22
46
BC
46
NPS
(x2)
37
(x2) 49 50
BF
VL1
(VA)
VL2
(VB)
VL3
(VC)
V4
(VX)
IL1
(IA)
81
HBL
2
37
(x2) 49 50
BF
IL2
(IB)
81
HBL
2
37
(x2) 49 50
BF
IL3
(IC)
81
HBL
2
60
CTS
I4
(IG)
I5
(ISEF)
74
TCS
NOTE: The use of some
functions are mutually exclusive
67/
50
(x4)
67/
51
(x4)
67/
50N
(x4)
67/
50
(x4)
67/
50
(x4)
67/
51
(x4)
67/
51
(x4)
67/
51N
(x4)
67/
50G
(x4)
67/
51G
(x4)
67/
50S
(x4)
67/
51S
(x4)
64
H
27
59
27
59
(x4)
27
59
(x4)
27
59
(x4)
47
(x2)
81
(x6)
79 Optional
59N
(x2)
81
HBL
2N
60
VTS
51V
51V
51V
37G
(x2)
37S
(x2)
51c
60
CTS-
I
60
CTS-
I
60
CTS-
I
37 50
BF
37 50
BF
25
50
AFD
50
AFD
50
AFD
51c
51c
51c
Figure 2.10-3 NPS Overvoltage
Voltage Inputs: VL1 (VA), VL2 (VB), VL3 (VC)
Current Inputs: n/a apply zero current to stabilize other functions
Disable: 27/59, 59N, 60VTS
Map Pickup LED:. 47-n - Self Reset
Where two NPS elements are being used with different settings, it is convenient to test the elements with the
highest settings first. The elements with lower settings can then be tested without disabling the lower settings.
NPS Overvoltage can be tested using a normal 3P balanced source. Two phase voltage connections should be
reversed so that the applied balanced 3P voltage is Negative Phase Sequence.
If the 47-n delay is small, gradually increased the applied balanced 3P voltage until element operates.
If DTL is large apply 0.9x setting, check for no operation, apply 1.1x setting, and check operation.
Apply 2x setting current if possible and record operating time.
7SR210 & 7SR220 Commissioning & Maintenance Guide
Page 54 of 82 © 2013 Siemens Protection Devices Limited
Phase
27/59
setting
(Volts)
U/O DTL
(sec) Hyst. D.O.
(calculated)
P.U.
Volts
D.O
Volts
Op. Time
2x Vs Tolerence
NPS
1.1.1.1 Element Blocking
The NPS Overvoltage element can be blocked by Binary Input Inhibit. This functionality should be checked.
Element BI Inhibits
47-1
47-2
Check correct indication, trip output, alarm contacts, waveform record.
7SR210 & 7SR220 Commissioning & Maintenance Guide
© 2013 Siemens Protection Devices Limited Page 55 of 82
2.10.5 Neutral Overvoltage (59N)
7SR22
46
BC
46
NPS
(x2)
37
(x2) 49 50
BF
VL1
(VA)
VL2
(VB)
VL3
(VC)
V4
(VX)
IL1
(IA)
81
HBL
2
37
(x2) 49 50
BF
IL2
(IB)
81
HBL
2
37
(x2) 49 50
BF
IL3
(IC)
81
HBL
2
60
CTS
I4
(IG)
I5
(ISEF)
74
TCS
NOTE: The use of some
functions are mutually exclusive
67/
50
(x4)
67/
51
(x4)
67/
50N
(x4)
67/
50
(x4)
67/
50
(x4)
67/
51
(x4)
67/
51
(x4)
67/
51N
(x4)
67/
50G
(x4)
67/
51G
(x4)
67/
50S
(x4)
67/
51S
(x4)
64
H
27
59
27
59
(x4)
27
59
(x4)
27
59
(x4)
47
(x2)
81
(x6)
79 Optional
59N
(x2)
81
HBL
2N
60
VTS
51V
51V
51V
37G
(x2)
37S
(x2)
51c
60
CTS-
I
60
CTS-
I
60
CTS-
I
37 50
BF
37 50
BF
25
50
AFD
50
AFD
50
AFD
51c
51c
51c
Figure 2.10-4 Neutral Overvoltage
Voltage Inputs: VL1 (VA), VL2 (VB), VL3 (VC)
Current Inputs: n/a apply zero current to stabilize other functions
Disable: 27/59, 47, 60VTS
Map Pickup LED:. 59N-n - Self Reset
The voltage source for the Neutral Overvoltage 59N function can be set as either Vn , calculated from the applied
3 phase voltage inputs or Vx, the V4 input. Apply test voltage to 1 phase input or V4 input to suit.
2.10.6 Definite Time (59NDT)
If DTL setting is small, gradually increase single phase voltage until element operates.
If DTL is large apply 0.9x setting, check for no operation, apply 1.1x setting, and check operation.
Apply 2x setting voltage if possible and record operating time.
7SR210 & 7SR220 Commissioning & Maintenance Guide
Page 56 of 82 © 2013 Siemens Protection Devices Limited
Phase Vs
(Volts)
DTL
(sec)
P.U. Current
Volts
Operat
e Time
2x Vs
Tolerence
E
Check correct indication, trip output, alarm contacts, waveform record.
2.10.7 Inverse Time (59NIT)
It will be advantageous to map the function being tested to temporarily drive the relevant Pickup output in the
Pickup Config sub-menu in the Output Config menu as this will allow the Pick-up led to operate for the function.
Gradually increase voltage until Pickup LED operates.
Apply 2x setting voltage and record operating time,
Apply a higher multiple of setting voltage and record operating time.
Compare to calculated values for operating times from:
( )
[ ]
ú
û
ù
ê
ë
é
-
=1
1
)sec
Vs
Vn
op Mondst
Where M = Time multiplier and Vn/Vs = multiple of setting.
P.U.
D.O.
&
TIMING
TESTS
Ph. Vs
(V) TM
Operate Voltage
Operate Time
P.U.
(Volts)
D.O.
(Volts) Tol 2.x Vs
(sec)
x Vs
(sec) Tol
E
2.10.8 ELEMENT BLOCKING
The Neutral Overvoltage elements can be blocked by Binary Input Inhibit. This functionality should be checked.
Element BI Inhibits
59NIT
59NDT
Check correct indication, trip output, alarm contacts, waveform record.
When testing is complete reinstate any of the disabled functions.
7SR210 & 7SR220 Commissioning & Maintenance Guide
© 2013 Siemens Protection Devices Limited Page 57 of 82
2.10.9 Under/Over Frequency (81)
7SR22
46
BC
46
NPS
(x2)
37
(x2) 49 50
BF
VL1
(VA)
VL2
(VB)
VL3
(VC)
V4
(VX)
IL1
(IA)
81
HBL
2
37
(x2) 49 50
BF
IL2
(IB)
81
HBL
2
37
(x2) 49 50
BF
IL3
(IC)
81
HBL
2
60
CTS
I4
(IG)
I5
(ISEF)
74
TCS
NOTE: The use of some
functions are mutually exclusive
67/
50
(x4)
67/
51
(x4)
67/
50N
(x4)
67/
50
(x4)
67/
50
(x4)
67/
51
(x4)
67/
51
(x4)
67/
51N
(x4)
67/
50G
(x4)
67/
51G
(x4)
67/
50S
(x4)
67/
51S
(x4)
64
H
27
59
27
59
(x4)
27
59
(x4)
27
59
(x4)
47
(x2)
81
(x6)
79 Optional
59N
(x2)
Note:
Example shows
Voltage Config =
Van, Vbn, Vcn
81
HBL
2N
81
HBL
2G
60
CTS-
I
60
VTS
51V
51V
51V
37G
(x2)
37S
(x2)
51c
51c
51c
Figure 2.10-5 Under/Over Frequency
Voltage Inputs: VL1 (VA), VL2 (VB), VL3 (VC)
Current Inputs: n/a apply zero current to stabilize other functions.
Disable:
Map Pickup LED: 81-n - Self Reset.
This function can be tested by application of 1P or 3P voltage. For Over-frequency, the elements with the highest
setting should be tested first and for Under-frequency the elements with the lowest settings should be tested first.
The elements with other settings can then be tested without need to disable the elements already tested. Note
that the relay is designed to track the gradual changes in power system frequency and that sudden step changes
in frequency during testing do not reflect normal system operation. Normal ‘instantaneous’ operation of the
frequency element is 140 ms to 175 ms in line with the Performance Specification. Application of sudden step
changes to frequency can add additional delay which can produce misleading test results.
Gradually increase/decrease applied voltage frequency until 81-n operation occurs. Elements set for more
extreme frequency fluctuation should be tested first with lesser elements disabled.
7SR210 & 7SR220 Commissioning & Maintenance Guide
Page 58 of 82 © 2013 Siemens Protection Devices Limited
If the 81-n Delay setting is long it will be advantageous to map the function to temporarily drive the relevant
Pickup output in the Pickup Config sub-menu in the Output Config menu as this will allow the Pick-up led to
operate for the function. If the delay setting is short the operation of the element can be easily checked directly.
The frequency should then be gradually decreased/increased until the element resets. The reset frequency can
be used to check the Hysteresis setting.
If the element is set as 81-n U/V Guarded, The applied voltage must be above the 81 UV Guard Setting in the
U/O Frequency menu.
Apply setting frequency +0.5 Hz for Over-frequency or -0.5 Hz for Under-frequency and record operating time.
Starting with the element in the operated condition, gradually increase or decrease the applied voltage until the
element resets. Measure the reset voltage level to check the 81 Hysteresis setting.
F
(Hertz)
U/O
DTL
(sec)
Hyst.
D.O.
(calc.)
P.U.
Freq
Hertz
D.O.
Freq.
Hertz
Operate
Time
+/- 0.5Hz
UV
Guard
NOTES
If the element is set as 81-nU/V Guarded,this setting can be tested by applying the test voltage at a level below
the 81 U/V Guard Setting at a frequency in the operate range. Increase the voltage until the relay operates.
UVG
UVG
Setting
(Volts)
Freq element
Used for test
Blocked
Volts (D.O.)
Unblocked
Volts (P.U.)
NOTES
U/O
Freq
1.1.1.1 ELEMENT BLOCKING
The U/O Frequency elements can be blocked by Binary Input Inhibit. This functionality should be checked.
Element BI Inhibits
81-1
81-2
81-3
81-4
81-5
81-6
Check correct indication, trip output, alarm contacts, waveform record.
When testing is complete reinstate any of the disabled functions.
7SR210 & 7SR220 Commissioning & Maintenance Guide
© 2013 Siemens Protection Devices Limited Page 59 of 82
2.11 Power (32)
46
BC
46
NPS
(x2)
37
(x2) 49 50
BF
VL1
(VA)
VL2
(VB)
VL3
(VC)
V4
(VX)
IL1
(IA)
81
HBL
2/5
37
(x2) 49 50
BF
IL2
(IB)
81
HBL
2/5
37
(x2) 49 50
BF
IL3
(IC)
81
HBL
2/5
60
CTS
I4
(IG)
I5
(ISEF)
74
TCS
NOTE: The use of some
functions are mutually exclusive
67/
50/51
(x4)
67/
50/51N
(x4)
67/
50/51
(x4)
67/
50/51
(x4)
67/
50/51G
(x4)
67/
50/51S
(x4)
64
H
27
59
27
59
(x4)
27
59
(x4)
27
59
(x4)
47
(x2)
81
(x6)
79 Optional
59N
(x2)
81
HBL
2/5N
37G
(x2)
37S
(x2)
51c
60
CTS-
I
60
CTS-
I
60
CTS-
I
37 50
BF
37 50
BF
25
50
AFD
50
AFD
50
AFD
51c
51c
51c
32S
(x2)
32
(x2) 55
21
LB
21
LB
21
LB
51V
21FL
60
VTS
51V
51V
Figure 2.11-1 Power
Voltage Inputs: VL1 (VA), VL2 (VB), VL3 (VC)
Current Inputs: IL1 (IA), IL2 (IB), IL3 (IC),
Disable: 50, 51,27
Map Pickup LED: 32-n - Self Reset
This function can be tested by application 3P current and voltage. For Over-power, the elements with the highest
setting should be tested first and for Under-power the elements with the lowest settings should be tested first. The
elements with other settings can then be tested without need to disable the elements already tested.
From the nominal power setting Sn gradually increase/decrease applied voltage or current until 32-n operation
occurs.
If the 32-n Delay setting is long it will be advantageous to map the function to temporarily drive the relevant
Pickup output in the Pickup Config sub-menu in the Output Config menu as this will allow the Pick-up led to
operate for the function. If the delay setting is short the operation of the element can be easily checked directly.
The current or voltage should then be decreased/increased until the element resets.
If the element is set as 32-n U/C Guarded, The applied current must be above the 32 U/C Guard Setting.
Apply setting power +10% for Over-power or -10% for Under-power and record operating time.
7SR210 & 7SR220 Commissioning & Maintenance Guide
Page 60 of 82 © 2013 Siemens Protection Devices Limited
Power
(xSn)
U/O
DTL
(sec)
P.U.
Power
(xSn)
D.O.
Power
(xSn)
Operate
Time
+/- 0.5Hz
UC
Guard
NOTES
32-1
32-2
If the element is set as 32-n U/C Guarded,the setting can be tested by applying the test current at a level below
the 32-n U/C Guard Setting at a power in the operate range. Increase the current until the relay operates.
UCG
UCG
Setting
(xIn)
Power element
Used for test
Blocked
Current
(D.O.)
Unblocked
Current
(P.U.)
NOTES
U/O
Power
1.1.1.1 Element Blocking
The U/O Power elements can be blocked by Binary Input Inhibit. This functionality should be checked.
Element BI Inhibits
32-1
32-2
Check correct indication, trip output, alarm contacts, waveform record.
When testing is complete reinstate any of the disabled functions.
7SR210 & 7SR220 Commissioning & Maintenance Guide
© 2013 Siemens Protection Devices Limited Page 61 of 82
2.12 Sensitive Power (32S)
46
BC
46
NPS
(x2)
37
(x2) 49 50
BF
VL1
(VA)
VL2
(VB)
VL3
(VC)
V4
(VX)
IL1
(IA)
81
HBL
2/5
37
(x2) 49 50
BF
IL2
(IB)
81
HBL
2/5
37
(x2) 49 50
BF
IL3
(IC)
81
HBL
2/5
60
CTS
I4
(IG)
I5
(ISEF)
74
TCS
NOTE: The use of some
functions are mutually exclusive
67/
50/51
(x4)
67/
50/51N
(x4)
67/
50/51
(x4)
67/
50/51
(x4)
67/
50/51G
(x4)
67/
50/51S
(x4)
64
H
27
59
27
59
(x4)
27
59
(x4)
27
59
(x4)
47
(x2)
81
(x6)
79 Optional
59N
(x2)
81
HBL
2/5N
37G
(x2)
37S
(x2)
51c
60
CTS-
I
60
CTS-
I
60
CTS-
I
37 50
BF
37 50
BF
25
50
AFD
50
AFD
50
AFD
51c
51c
51c
32S
(x2)
32
(x2) 55
21
LB
21
LB
21
LB
51V
21FL
60
VTS
51V
51V
Figure 2.12-1 Sensitive Power
Voltage Inputs: VL1 (VA), VL2 (VB), VL3 (VC)
Current Inputs: I4(ISEF)
Disable: 27
Map Pickup LED: 32S-n - Self Reset
This function can be tested by application 1P current and 3P voltage. For Over-power, the elements with the
highest setting should be tested first and for Under-power the elements with the lowest settings should be tested
first. The elements with other settings can then be tested without need to disable the elements already tested.
From the nominal power setting Sn gradually increase/decrease applied voltage or current until 32S-n operation
occurs.
If the 32S-n Delay setting is long it will be advantageous to map the function to temporarily drive the relevant
Pickup output in the Output Config > Pickup Config menu. This will allow the Pick-up led to operate for the
function. If the delay setting is short the operation of the element can be easily checked directly.
The current or voltage should then be decreased/increased until the element resets.
If the element is set as 32S-n U/C Guarded, The applied current must be above the 32S U/C Guard Setting.
Apply setting power +10% for Over-power or -10% for Under-power and record operating time.
7SR210 & 7SR220 Commissioning & Maintenance Guide
Page 62 of 82 © 2013 Siemens Protection Devices Limited
Power
(xSn)
U/O
DTL
(sec)
P.U.
Power
(xSn)
D.O.
Power
(xSn)
Operate
Time
+/- 0.5Hz
UC
Guard
NOTES
32S-1
32S-2
If the element is set as 32S-n U/C Guarded,the setting can be tested by applying the test current at a level below
the 32S-n U/C Guard Setting at a power in the operate range. Increase the current until the relay operates.
UCG
UCG
Setting
(xIn)
Power element
Used for test
Blocked
Current
(D.O.)
Unblocked
Current
(P.U.)
NOTES
U/O
Power
1.1.1.1 Element Blocking
The U/O Power elements can be blocked by Binary Input Inhibit. This functionality should be checked.
Element BI Inhibits
32S-1
32S-2
Check correct indication, trip output, alarm contacts, waveform record.
When testing is complete reinstate the disabled functions.
7SR210 & 7SR220 Commissioning & Maintenance Guide
© 2013 Siemens Protection Devices Limited Page 63 of 82
2.13 Power Factor (55)
46
BC
46
NPS
(x2)
37
(x2) 49 50
BF
VL1
(VA)
VL2
(VB)
VL3
(VC)
V4
(VX)
IL1
(IA)
81
HBL
2/5
37
(x2) 49 50
BF
IL2
(IB)
81
HBL
2/5
37
(x2) 49 50
BF
IL3
(IC)
81
HBL
2/5
60
CTS
I4
(IG)
I5
(ISEF)
74
TCS
NOTE: The use of some
functions are mutually exclusive
67/
50/51
(x4)
67/
50/51N
(x4)
67/
50/51
(x4)
67/
50/51
(x4)
67/
50/51G
(x4)
67/
50/51S
(x4)
64
H
27
59
27
59
(x4)
27
59
(x4)
27
59
(x4)
47
(x2)
81
(x6)
79 Optional
59N
(x2)
81
HBL
2/5N
37G
(x2)
37S
(x2)
51c
60
CTS-
I
60
CTS-
I
60
CTS-
I
37 50
BF
37 50
BF
25
50
AFD
50
AFD
50
AFD
51c
51c
51c
32S
(x2)
32
(x2) 55
21
LB
21
LB
21
LB
51V
21FL
60
VTS
51V
51V
Figure 2.13-1 Power Factor
Voltage Inputs: VL1 (VA), VL2 (VB), VL3 (VC)
Current Inputs: IL1 (IA), IL2 (IB), IL3 (IC),
Disable: 49
Map Pickup LED: 55-n - Self Reset
Apply balanced 3 phase rated voltage and current. Increase current phase angle until the LED assigned to ’55-n’
is lit. Record this angle in the table below. Decrease the angle until the LED resets. Record the angle.
55 Setting Angle Pick-Up Drop-Off
55-1
55-2
7SR210 & 7SR220 Commissioning & Maintenance Guide
Page 64 of 82 © 2013 Siemens Protection Devices Limited
If the element is set as 55-n U/C Guarded,the setting can be tested by applying the test current at a level below
the 55-n U/C Guard Setting at a power in the operate range. Increase the current until the relay operates.
UCG
UCG
Setting
(xIn)
Power element
Used for test
Blocked
Current
(D.O.)
Unblocked
Current
(P.U.)
NOTES
Power
Factor
1.1.1.1 Element Blocking
The Power Factor elements can be blocked by Binary Input Inhibit. This functionality should be checked.
Element BI Inhibits
55-1
55-2
Check correct indication, trip output, alarm contacts, waveform record.
When testing is complete reinstate any of the disabled functions.
7SR210 & 7SR220 Commissioning & Maintenance Guide
© 2013 Siemens Protection Devices Limited Page 65 of 82
Section 3: Supervision Functions
3.1 CB Fail. (50BF)
7SR22
46
BC
46
NPS
(x2)
37
(x2) 49 50
BF
VL1
(VA)
VL2
(VB)
VL3
(VC)
V4
(VX)
IL1
(IA)
81
HBL
2
37
(x2) 49 50
BF
IL2
(IB)
81
HBL
2
37
(x2) 49 50
BF
IL3
(IC)
81
HBL
2
60
CTS
I4
(IG)
I5
(ISEF)
74
TCS
NOTE: The use of some
functions are mutually exclusive
67/
50
(x4)
67/
51
(x4)
67/
50N
(x4)
67/
50
(x4)
67/
50
(x4)
67/
51
(x4)
67/
51
(x4)
67/
51N
(x4)
67/
50G
(x4)
67/
51G
(x4)
67/
50S
(x4)
67/
51S
(x4)
64
H
27
59
27
59
(x4)
27
59
(x4)
27
59
(x4)
47
(x2)
81
(x6)
79 Optional
59N
(x2)
81
HBL
2N
60
VTS
51V
51V
51V
37G
(x2)
37S
(x2)
51c
60
CTS-
I
60
CTS-
I
60
CTS-
I
37 50
BF
37 50
BF
25
50
AFD
50
AFD
50
AFD
51c
51c
51c
Figure 3.1-1 CB Fail
Voltage Inputs: n/a
Current Inputs: IL1 (IA), IL2 (IB), IL3 (IC),
Disable:
Map Pickup LED: 50BF-n - Self Reset
The circuit breaker fail protection time delays are initiated either from: -
A binary output mapped as Trip Contact in the OUTPUT CONFIG>BINARY OUTPUT CONFIG menu,
or
A binary input mapped as 50BF Ext Trip in the INPUT CONFIG>INPUT MATRIX menu.
7SR210 & 7SR220 Commissioning & Maintenance Guide
Page 66 of 82 © 2013 Siemens Protection Devices Limited
Apply a trip condition by injection of current to cause operation of a suitable protection element. Allow current to
continue after the trip at a level of 110 % of the 50BF Setting current level on any phase. Measure the time for
operation of operation of 50BF-1 Delay and 50BF-2 Delay. Repeat the sequence with current at 90 % of the 50BF
Setting.current level after the element trip and check for no CB Fail operation.
50BF Setting (xIn) Test Current 50BF-1 Delay 50BF-2 Delay
(110%)
(90%) No Operation..No Operation..
50BF CB Faulty Operation No Delay Operation No Delay
50BF-I4 Setting
(xIn) Test Current 50BF-1 Delay 50BF-2 Delay
(110%)
(90%) No Operation..No Operation..
50BF CB Faulty Operation No Delay Operation No Delay
1.1.1.1 Element Blocking
The CB Fail function can be blocked by Binary Input Inhibit. This functionality should be checked.
Element BI Inhibits
50BF
7SR210 & 7SR220 Commissioning & Maintenance Guide
© 2013 Siemens Protection Devices Limited Page 67 of 82
3.2 Voltage Transformer Supervision. (60VTS)
7SR22
46
BC
46
NPS
(x2)
37
(x2) 49 50
BF
VL1
(VA)
VL2
(VB)
VL3
(VC)
V4
(VX)
IL1
(IA)
81
HBL
2
37
(x2) 49 50
BF
IL2
(IB)
81
HBL
2
37
(x2) 49 50
BF
IL3
(IC)
81
HBL
2
60
CTS
I4
(IG)
I5
(ISEF)
74
TCS
NOTE: The use of some
functions are mutually exclusive
67/
50
(x4)
67/
51
(x4)
67/
50N
(x4)
67/
50
(x4)
67/
50
(x4)
67/
51
(x4)
67/
51
(x4)
67/
51N
(x4)
67/
50G
(x4)
67/
51G
(x4)
67/
50S
(x4)
67/
51S
(x4)
64
H
27
59
27
59
(x4)
27
59
(x4)
27
59
(x4)
47
(x2)
81
(x6)
79 Optional
59N
(x2)
81
HBL
2N
60
VTS
51V
51V
51V
37G
(x2)
37S
(x2)
51c
60
CTS-
I
60
CTS-
I
60
CTS-
I
37 50
BF
37 50
BF
25
50
AFD
50
AFD
50
AFD
51c
51c
51c
Figure 3.2-1 Voltage Transformer Supervision
Voltage Inputs: VL1 (VA), VL2 (VB), VL3 (VC)
Current Inputs: IL1 (IA), IL2 (IB), IL3 (IC),
Disable: 27, 47, 59N
Map Pickup LED: 60VTS - Self Reset
7SR210 & 7SR220 Commissioning & Maintenance Guide
Page 68 of 82 © 2013 Siemens Protection Devices Limited
3.2.1 1 or 2 Phase VT fail
Apply 3P balanced nominal current and voltage. Reduce 1 phase voltage until VTS operates, record voltage
reduction level.
60VTS V Setting Setting x 3 Measured Voltage Reduction
Increase the voltage until VTS resets. Increase current on 1 phase by 110 % of 3x the 60VTS I setting. Reduce
voltage as above and check for no operation. Return voltage to nominal. Increase current on 1 phase by 90 % of
3x the 60VTS I.setting. Reduce voltage as above and check for VTS operation.
3.2.2 3 Phase VT fail
Apply 3P balanced nominal voltage and 3P balanced current at a level between the 60VTS Ipps Load setting and
the 60VTS Ipps Fault setting. Reduce the balanced Voltage on all 3 phases until the VTS operates at the 60VTS
Vpps setting. Return the voltage to nominal and ensure that VTS resets.
Reduce the 3P balanced current to a level below the 60VTS Ipps Load setting. Reduce the 3P balanced voltage
to a level below the operate level above. Gradually increase the 3P balanced current until the VTS operates.
Check that the thermal rating of the relay current inputs is not exceeded during the following test. Increase the 3P
balanced current to a level above the 60VTS Ipps Fault setting. Reduce the 3P balanced voltage to a level below
the operate level above. Gradually reduce the 3P balanced current until the VTS operates.
Setting Measured
60VTS Vpps
60VTS Ipps Load
60VTS Ipps Fault
If the VTS can be started from a status input fed from an external source, this functionality should be tested.
Ext_Trig 60VTS Operation Not Applicable.
1.1.1.1 Element Blocking
The VT Supervision can be blocked by Binary Input Inhibit. This functionality should be checked.
Element BI Inhibits
60VTS
60VTS I Setting Setting x 3 110% of Setting x 3 90% of Setting x 3
No VTS. VTS operation.
7SR210 & 7SR220 Commissioning & Maintenance Guide
© 2013 Siemens Protection Devices Limited Page 69 of 82
3.3 Current Transformer Supervision. (60CTS)
7SR22
46
BC
46
NPS
(x2)
37
(x2) 49 50
BF
VL1
(VA)
VL2
(VB)
VL3
(VC)
V4
(VX)
IL1
(IA)
81
HBL
2
37
(x2) 49 50
BF
IL2
(IB)
81
HBL
2
37
(x2) 49 50
BF
IL3
(IC)
81
HBL
2
60
CTS
I4
(IG)
I5
(ISEF)
74
TCS
NOTE: The use of some
functions are mutually exclusive
67/
50
(x4)
67/
51
(x4)
67/
50N
(x4)
67/
50
(x4)
67/
50
(x4)
67/
51
(x4)
67/
51
(x4)
67/
51N
(x4)
67/
50G
(x4)
67/
51G
(x4)
67/
50S
(x4)
67/
51S
(x4)
64
H
27
59
27
59
(x4)
27
59
(x4)
27
59
(x4)
47
(x2)
81
(x6)
79 Optional
59N
(x2)
81
HBL
2N
60
VTS
51V
51V
51V
37G
(x2)
37S
(x2)
51c
60
CTS-
I
60
CTS-
I
60
CTS-
I
37 50
BF
37 50
BF
25
21
FL
21
FL
21
FL
51c
51c
51c
Figure 3.3-1 Current Transformer Supervision
Voltage Inputs: VL1 (VA), VL2 (VB), VL3 (VC) for directional elements.
Current Inputs: IL1 (IA), IL2 (IB), IL3 (IC),
Disable: 51N, 46IT, 46DT, 46BC
Map Pickup LED:. 60CTS - Self Reset
The presence of NPS current without NPS voltage is used to indicate a current transformer failure.
Apply normal 3P balanced current with a crossover of any two phases at a level above 60CTS Inps setting.
Measure the delay to operation.
Apply 3P balanced voltage with a similar phase crossover to the current. Increase the applied 3P voltage until the
CTS element resets.
Reduce the 3P voltage to cause CTS operation again. Gradually reduce the 3P current until the element resets.
7SR210 & 7SR220 Commissioning & Maintenance Guide
Page 70 of 82 © 2013 Siemens Protection Devices Limited
Setting Measured
60CTS Delay
60CTS Inps
60CTS Vnps
3.3.1 ELEMENT BLOCKING
The CT Supervision function can be blocked by Binary Input Inhibit. This functionality should be checked.
Element BI Inhibits
60CTS
7SR210 & 7SR220 Commissioning & Maintenance Guide
© 2013 Siemens Protection Devices Limited Page 71 of 82
3.4 Broken Conductor. (46BC)
7SR22
46
BC
46
NPS
(x2)
37
(x2) 49 50
BF
VL1
(VA)
VL2
(VB)
VL3
(VC)
V4
(VX)
IL1
(IA)
81
HBL
2
37
(x2) 49 50
BF
IL2
(IB)
81
HBL
2
37
(x2) 49 50
BF
IL3
(IC)
81
HBL
2
60
CTS
I4
(IG)
I5
(ISEF)
74
TCS
NOTE: The use of some
functions are mutually exclusive
67/
50
(x4)
67/
51
(x4)
67/
50N
(x4)
67/
50
(x4)
67/
50
(x4)
67/
51
(x4)
67/
51
(x4)
67/
51N
(x4)
67/
50G
(x4)
67/
51G
(x4)
67/
50S
(x4)
67/
51S
(x4)
64
H
27
59
27
59
(x4)
27
59
(x4)
27
59
(x4)
47
(x2)
81
(x6)
79 Optional
59N
(x2)
81
HBL
2N
60
VTS
51V
51V
51V
37G
(x2)
37S
(x2)
51c
60
CTS-
I
60
CTS-
I
60
CTS-
I
37 50
BF
37 50
BF
25
50
AFD
50
AFD
50
AFD
51c
51c
51c
Figure 3.4-1 Broken Conductor
Voltage Inputs: n/a
Current Inputs: IL1 (IA), IL2 (IB), IL3 (IC),
Disable: 51N, 46IT, 46DT
Map Pickup LED:. 46BC - Self Reset
Broken Conductor uses the ratio of NPS current to PPS current to detect an open circuit conductor. These
quantities can be produced directly from many advanced test sets but with limited equipment the following
approach can be applied.
Apply 3P balanced current with normal phase rotation direction. This current will consist of PPS alone, no NPS or
ZPS.
Increase 1 phase current magnitude in isolation to produce NPS. The single phase unbalance current will contain
equal quantities of ZPS, NPS and PPS. The NPS component will be 1/3 of the unbalance current and the total
PPS component will be value of the original balanced 3P current plus 1/3 of the additional unbalance current. i.e.
as the single phase unbalance current increases, the ratio of NPS to PPS will also increase. The levels of each
sequence component current can be monitored in the Current Meters in Instruments Mode.
7SR210 & 7SR220 Commissioning & Maintenance Guide
Page 72 of 82 © 2013 Siemens Protection Devices Limited
Inject 1 A of balanced current. Gradually increase imbalance current, operating level should be as follows:
46BC Setting 1P unbalance current
(% of 3P current)
20% 75%
25% 100%
30% 129%
35% 161%
40% 200%
46BC Setting 3P balanced current (A) 1P unbalance current (A) Measured Unbalance
current
Apply 1 A 1P unbalance current without 3P balanced current. Measure 46BC operating time.
46BC Delay setting Measured
3.4.1 ELEMENT BLOCKING
The Broken Conductor element can be blocked by Binary Input Inhibit. This functionality should be checked.
Element BI Inhibits
46BC
7SR210 & 7SR220 Commissioning & Maintenance Guide
© 2013 Siemens Protection Devices Limited Page 73 of 82
3.5 Load Blinder (21)
7SR22
46
BC
46
NPS
(x2)
37
(x2) 49 50
BF
VL1
(VA)
VL2
(VB)
VL3
(VC)
V4
(VX)
IL1
(IA)
81
HBL
2
37
(x2) 49 50
BF
IL2
(IB)
81
HBL
2
37
(x2) 49 50
BF
IL3
(IC)
81
HBL
2
60
CTS
I4
(IG)
I5
(ISEF)
74
TCS
NOTE: The use of some
functions are mutually exclusive
67 / 50 /
51( x 4 )
67/
50 /51N
( x 4 )
67/
50/51G
( x 4 )
67/
50/51S
( x 4 )
64
H
27
59
27
59
(x4)
27
59
(x4)
27
59
(x4)
47
(x2)
81
(x6)
79 Optional
59N
(x2)
81
HBL
2N
60
VTS
51V
51V
51V
37G
(x2)
37S
(x2)
51c
60
CTS-
I
60
CTS-
I
60
CTS-
I
37 50
BF
37 50
BF
25
21
LB
21
LB
21
LB
51c
51c
51c
50
AFD
50
AFD
50
AFD
67 / 50 /
51( x 4 )
67 / 50 /
51( x 4 )
Figure 3.5-1 Load Blinder (21)
Voltage Inputs: VL1 (VA), VL2 (VB), VL3 (VC)
Current Inputs: IL1 (IA), IL2 (IB), IL3 (IC),
Disable: 51-n, 51V, 51c, 46, 49, 50BF, 79
Map Pickup LED: 21LB-3P, 21LB-1P - Self Reset
Load Blinders are designed to block Overcurrent elements from tripping in heavy load conditions.
User settings 21LB-3P Angle and 21LB-3P Impedance allow user to define the Blinder region depending on the
networks or specifically a line’s loading and fault limits.
The calculated impedance can be: -
· In Blinder Region in which case the Load Blinder FWD or REV is active depending on if the impedance is
in the 1st or 4th and/or 2nd or 3rd quadrant of the R-X plot respectively.
· In operate region in which case there is no active Load Blinder block and the Overcurrent element
operates depending on additional factors.
· A 5 degree Hysteresis is allowed between operate and block zone.
7SR210 & 7SR220 Commissioning & Maintenance Guide
Page 74 of 82 © 2013 Siemens Protection Devices Limited
The design of a Load Blinder 3Ph is based on the theory that protection blocking should be issued only during
definable allowable system power flow conditions i.e. an overcurrent blocking signal can only be issued when:
§ Positive Sequence Voltage Vpps is not significantly changed, when the Vpps is above the 21LB-3P VPPS
Setting.
AND
§ Negative Sequence Current Inps is lower than 21LB-3P INPS Setting
AND
§ Distributed generators feed in PPS current into the system. In case of high load in system due to
distributed generation hence resulting in change of Zpps.
Zpps is calculated from Vpps and Ipps. The magnitude and angle of Zpps is compared with 21LB-3P
Impedance and 21LB-3P Angle to determine if the impedance is in operate or block and/or FWD or
REV zone.
+R
+X
Phase
Fault
Block
Zone
Load
Impedance
b
a
Nominal
Impedance
Z = 1p.u. =
VL/ (√3 x I)
c
-R
-X
Vpps value Point 1
Point 2
Point 3
Point 4
0
360
Trip Level
I = Vs / Z
Operate
Zone
a = 21LB-3P Impedance
setting
b = 21LB-3P Angle +ve
setting
c = 21LB-3P Angle -ve
setting
Point 6
Point 5
Block
Zone
Load
Impedance
ba
c
Point 7
Point 10
Point 9
Point 8
Figure 3.5-2 Load Blinder (21) Boundary Points
7SR210 & 7SR220 Commissioning & Maintenance Guide
© 2013 Siemens Protection Devices Limited Page 75 of 82
3.5.1 DETERMINING LOAD BLINDER REGIONS (21LB)
Test Procedure (Using Omicron Relay Test Set)
1. Set-up the relay with default or appropriate parameter settings.
2. Set-up Omicron current and voltage settings e.g. 63.5 V and 0.5 A three-phase.
3. Select all three currents and set an appropriate initial angle for rotation on the Omicron.
4. Apply Omicron current and voltage to the relay.
5. Using the PC mouse click the appropriate arrow ’ to rotate the angle of current in the anti-clockwise
(positive degree) direction.
6. View the LEDs for indication of Load Blinder operation as the angle moves out-of or into the Load Blinder
region.
7. Rotating the angle in an anti-clockwise direction will see the LEDs extinguish, this indicates the drop-off
point of the Load Blinder region. Record the angle as Point1 in the table of values.
8. Rotating the angle from this point in a clockwise direction will see the LEDs illuminate which indicates the
pick-up point of the Load Blinder region. Record the angle as Point 2 in the table of values.
9. Continue this process to find the other boundaries. See Error! Reference source not found. below.
Angle data points (b and c) Default Settings
Load Blinder
region
Forward (+) Boundary
Forward (
-
) Boundary
Angle = 20 (b)
Angle = 340 (
-
20) (c)
PU (Raised)
DO (Reset)
PU (Raised)
DO (Reset)
Angle
Point 2
Point 1
Point 3
Point 4
Angle limits (b and c). Typical values.
Load Blinder
region
Forward (+) Boundary
Foreward (
-
) Boundary
Angle = 20 (b)
Angle = 340 (
-
20) (c)
PU (Raised)
DO (Reset)
PU (Raised)
DO (Reset)
Angle
20
21
340
339
7SR210 & 7SR220 Commissioning & Maintenance Guide
Page 76 of 82 © 2013 Siemens Protection Devices Limited
3.5.2 DETERMINING TRIP LEVEL
Test Procedure (Using Omicron Relay Test Set)
1. Set-up the relay with default or appropriate parameter settings (see table below).
2. Set-up Omicron current and voltage settings e.g. 63.5 V and 1.0 A three-phase.
3. Select all three currents and set an appropriate initial current level for increase on the Omicron.
4. Apply Omicron current and voltage to the relay.
5. Using the PC mouse click the appropriate arrow ’ to adjust current level.
6. View the LEDs for indication of Load Blinder operation as the current increases out-of the Load Blinder
region. This is the DO point 5.
7. View the LEDs for indication of Load Blinder operation as the current decreases into the Load Blinder
region. This is the PU point 6.
Trip Level I = Vs / Z Default Settings
Parameters
Setting
DO
PU
Impedance
42
Point 5 Point 6
Voltage V
63.5
Trip Level I = Vs / Z. Typical values.
Parameters
Setting
DO
PU
Impedance
42
1.591 A 1.511 A
Voltage V
63.5
7SR210 & 7SR220 Commissioning & Maintenance Guide
© 2013 Siemens Protection Devices Limited Page 77 of 82
3.6 Trip Circuit Supervision. (74TCS)
7SR22
46
BC
46
NPS
(x2)
37
(x2) 49 50
BF
VL1
(VA)
VL2
(VB)
VL3
(VC)
V4
(VX)
IL1
(IA)
81
HBL
2
37
(x2) 49 50
BF
IL2
(IB)
81
HBL
2
37
(x2) 49 50
BF
IL3
(IC)
81
HBL
2
60
CTS
I4
(IG)
I5
(ISEF)
74
TCS
NOTE: The use of some
functions are mutually exclusive
67/
50
(x4)
67/
51
(x4)
67/
50N
(x4)
67/
50
(x4)
67/
50
(x4)
67/
51
(x4)
67/
51
(x4)
67/
51N
(x4)
67/
50G
(x4)
67/
51G
(x4)
67/
50S
(x4)
67/
51S
(x4)
64
H
27
59
27
59
(x4)
27
59
(x4)
27
59
(x4)
47
(x2)
81
(x6)
79 Optional
59N
(x2)
81
HBL
2N
60
VTS
51V
51V
51V
37G
(x2)
37S
(x2)
51c
60
CTS-
I
60
CTS-
I
60
CTS-
I
37 50
BF
37 50
BF
25
50
AFD
50
AFD
50
AFD
51c
51c
51c
Figure 3.6-1 Trip Circuit Supervision
Voltage Inputs: n/a
Current Inputs: n/a
Disable:
Map Pickup LED: 74TCS-n - Self Reset
The TCS-n Delay can be initiated by applying an inversion to the relevant status input and measured by
monitoring of the alarm output.
TCS-n Delay setting Measured
7SR210 & 7SR220 Commissioning & Maintenance Guide
Page 78 of 82 © 2013 Siemens Protection Devices Limited
3.7 Magnetising Inrush Detector. (81HBL)
7SR22
46
BC
46
NPS
(x2)
37
(x2) 49 50
BF
VL1
(VA)
VL2
(VB)
VL3
(VC)
V4
(VX)
IL1
(IA)
81
HBL
2
37
(x2) 49 50
BF
IL2
(IB)
81
HBL
2
37
(x2) 49 50
BF
IL3
(IC)
81
HBL
2
60
CTS
I4
(IG)
I5
(ISEF)
74
TCS
NOTE: The use of some
functions are mutually exclusive
67/
50
(x4)
67/
51
(x4)
67/
50N
(x4)
67/
50
(x4)
67/
50
(x4)
67/
51
(x4)
67/
51
(x4)
67/
51N
(x4)
67/
50G
(x4)
67/
51G
(x4)
67/
50S
(x4)
67/
51S
(x4)
64
H
27
59
27
59
(x4)
27
59
(x4)
27
59
(x4)
47
(x2)
81
(x6)
79 Optional
59N
(x2)
81
HBL
2N
60
VTS
51V
51V
51V
37G
(x2)
37S
(x2)
51c
60
CTS-
I
60
CTS-
I
60
CTS-
I
37 50
BF
37 50
BF
25
50
AFD
50
AFD
50
AFD
51c
51c
51c
Figure 3.7-1 Magnetising Inrush Detector
Voltage Inputs: n/a
Current Inputs: IL1 (IA), IL2 (IB), IL3 (IC),
Disable:
Map Pickup LED:
Logical operation of the harmonic blocking can be tested by current injection at 100 Hz to cause operation of the
blocking signals.
7SR210 & 7SR220 Commissioning & Maintenance Guide
© 2013 Siemens Protection Devices Limited Page 79 of 82
3.1 Over Fluxing Detector. (81HBL5)
7SR22
46
BC
46
NPS
(x2)
37
(x2) 49 50
BF
VL1
(VA)
VL2
(VB)
VL3
(VC)
V4
(VX)
IL1
(IA)
81
HBL
5
37
(x2) 49 50
BF
IL2
(IB)
81
HBL
5
37
(x2) 49 50
BF
IL3
(IC)
81
HBL
5
60
CTS
I4
(IG)
I5
(ISEF)
74
TCS
NOTE: The use of some
functions are mutually exclusive
67/
50
(x4)
67/
51
(x4)
67/
50N
(x4)
67/
50
(x4)
67/
50
(x4)
67/
51
(x4)
67/
51
(x4)
67/
51N
(x4)
67/
50G
(x4)
67/
51G
(x4)
67/
50S
(x4)
67/
51S
(x4)
64
H
27
59
27
59
(x4)
27
59
(x4)
27
59
(x4)
47
(x2)
81
(x6)
79 Optional
59N
(x2)
Note:
Example shows
Voltage Config =
Van, Vbn, Vcn
81
HBL
2N
81
HBL
2G
60
CTS-
I
60
VTS
51V
51V
51V
37G
(x2)
37S
(x2)
51c
51c
51c
Figure 3.1-1 Magnetising Inrush Detector
Voltage Inputs: n/a
Current Inputs: IL1 (IA), IL2 (IB), IL3 (IC),
Disable:
Map Pickup LED:
Logical operation of the harmonic blocking can be tested by injection of 5th harmonic current (at 250Hz for 50Hz
relay) to cause operation of the blocking signals. Note that injection of any level of 5th harmonic alone on a
current input will cause the block to be raised since the harmonic content on this input is 100%, i.e. greater than
setting.
Fundamental frequency current can be injected into the other winding simultaneously to operate the 87BD or
87HS protection elements if required to test the blocking operation. Care should be taken that the thermal limits of
the relay are not exceeded during these tests.
More advanced test equipment is required, with the facility to combine harmonic and fundamental frequencies of
current, to test the level of the blocking element. Note that the 81HBL5 Setting is set as a fraction of the total
current. e.g. 0.25A at 250Hz combined with 1A at 50Hz gives a 5th harmonic content of 0.2 i.e. (0.25/(0.25+1.0)).
7SR210 & 7SR220 Commissioning & Maintenance Guide
Page 80 of 82 © 2013 Siemens Protection Devices Limited
Section 4: Control & Logic Functions
4.1 Autoreclose (79)
Autoreclose sequences can be specified differently for Phase. Earth, Externally Initiated and SEF faults.
Sequences should be simulated for each applicable different fault type with the actual relay settings required for
service installed in the relay.
The relay requires that the correct indications are received at the CB auxiliary contact inputs and that the injected
current and voltage used to generate protection operations are timed to the autoreclose sequence to provide a
realistic simulation of the actual system conditions.
The Instruments Menu contains Autoreclose Meters for the Autoreclose State and the Shot No. which are useful
during sequence testing.
The time stamped Events listing can be downloaded from the relay to a pc to allow diagnosis of the sequence
including measurements of sequence Dead Times and other timing without the use of external measuring
equipment or complex connections.
4.2 Quick Logic
If this functionality is used, the logic equations may interfere with testing of other protection functions in the relay.
The function of the Quick Logic equations should be tested conjunctively with connected plant or by simulation to
assess suitability and check for correct operation on an individual basis with tests specifically devised to suit the
particular application.
7SR210 & 7SR220 Commissioning & Maintenance Guide
© 2013 Siemens Protection Devices Limited Page 81 of 82
Section 5: Testing and Maintenance
7SR21 & 7SR22 relays are maintenance free, with no user serviceable parts.
5.1 Periodic Tests
During the life of the relay, it should be checked for operation during the normal maintenance period for the site
on which the product is installed. It is recommended the following tests are carried out: -
Visual inspection of the metering display.
1. Operation of output contacts
2. Secondary injection of each element
5.2 Maintenance
Relay failure will be indicated by the ‘Protection Healthy’ LED being off or flashing. A message may also be
displayed on the LCD. In the event of failure Siemens Protection Devices Ltd. (or one of its agents) should be
contacted – see defect report sheet in section 5.3.
The relay should be returned as a complete unit. No attempt should be made to disassemble the unit to isolate
and return only the damaged sub-assembly. It may however be convenient to fit the withdrawable relay to the
outer case from a spare relay, to avoid the disturbance of relay panel wiring, for return to Siemens Protection
Devices Ltd. The withdrawable relay should never be transported without the protection of the outer case.
7SR210 & 7SR220 Commissioning & Maintenance Guide
Page 82 of 82 © 2013 Siemens Protection Devices Limited
5.3 Troubleshooting
Table 5-1 Troubleshooting Guide
Observation Action
Relay does not power up. Check that the correct auxiliary DC voltage is applied and that the
polarity is correct.
Relay won’t accept the password. The Password being entered is wrong. Enter correct password.
If correct password has been forgotten, note down the Numeric
Code which is displayed at the Change Password screen e.g.
To retrieve the password, communicate this code to a Siemens
Protection Devices Ltd. representative.
Protection Healthy LED flashes General failure. Contact a Siemens Protection Devices Ltd.
representative.
LCD screen flashes continuously. The LCD has many possible error messages which when
displayed will flash continuously. These indicate various processor
card faults.
General failure. Contact a Siemens Protection Devices Ltd.
representative.
Backlight is on but no text can be seen. Adjust the contrast.
Scrolling text messages are unreadable. Adjust the contrast.
Relay displays one instrument after
another with no user intervention.
This is normal operation, default instruments are enabled.
Remove all instruments from the default list and only add those
that are required.
Cannot communicate with the relay. Check that all of the communications settings match those used
by Reydisp Evolution.
Check that the Tx and Rx fibre-optic cables are connected
correctly. (Tx –> Rx and Rx –> Tx).
Check that all cables, modems and fibre-optic cables work
correctly.
Ensure that IEC 60870-5-103 is specified for the connected port
(COM1, COM2, COM3 or COM4).
Relays will not communicate in a ring
network.
Check that the Data Echo setting on all relays is set to ON.
Check that all relays are powered up.
Check that all relays have unique addresses.
Status inputs do not work. Check that the correct DC voltage is applied and that the polarity
is correct.
Check that the status input settings such as the pick-up and drop-
off timers and the status inversion function are correctly set.
Relay instrument displays show small
currents or voltages even though the
system is dead.
This is normal. The relay is displaying calculation noise. This will
not affect any accuracy claims for the relay.
If the above checklist does not help in correcting the problem please contact the local Siemens office or contact
PTD 24hr Customer Support, Tel: +49 180 524 7000, Fax: +49 180 524 2471, e-mail:
support.energy@siemens.com.
Change password
= 1234567
The copyright and other intellectual property rights in this document, and in any model or article produced from it
(and including any registered or unregistered design rights) are the property of Siemens Protection Devices
Limited. No part of this document shall be reproduced or modified or stored in another form, in any data retrieval
system, without the permission of Siemens Protection Devices Limited, nor shall any model or article be
reproduced from this document unless Siemens Protection Devices Limited consent.
While the information and guidance given in this document is believed to be correct, no liability shall be accepted
for any loss or damage caused by any error or omission, whether such error or omission is the result of
negligence or any other cause. Any and all such liability is disclaimed.
© 2013 Siemens Protection Devices Limited
7SR210 Non-Directional Relay
7SR220 Directional Relay
Applications Guide
7SR210 & 7SR220 Applications Guide
Page 2 of 48 © 2013 Siemens Protection Devices Limited
Document Release History
This document is issue 2018/05 The list of revisions up to and including this issue is: -
2011/05 First issue
2013/01 Typographical revisions and added data. Updated in line with software release.
2014/06 Typographical revisions and added data. Updated in line with software release.
2015/06 Typographical revisions and added data. Updated in line with software release.
2016/02 Typographical revisions and added data. Updated in line with software release.
2016/11 Typographical revisions and added data.
2017/08 Typographical revisions and added data. Updated in line with software release.
2017/12 Typographical revisions and added data.
2018/05 Typographical revisions and added data.
Software Revision History
2011/05 2435H85008R7a-7a (7SR210)
2435H85009R7a-7a (7SR220)
First Release
2013/01 2435H85008R7c-7b (7SR210)
2435H85009R7c-7b (7SR220)
Introduced journaling file system.
Added 61850 logical nodes for CB Counters, metering, 50BF,
46BC, 81HBL2 and line check.
Added Line Check on non-AR devices.
Added 74CCS Close Circuit Supervision.
2014/06 2435H85008R7f-7d (7SR210)
2435H85009R7f-7d (7SR220)
Added Fault Locator feature and Check Sync feature.
Fault data transmitted over 103.
Additional communications data, control features, meters.
2015/06 2435H85008R8a-7f (7SR210)
2435H85009R8a-7f (7SR220)
Added Power Factor Meters, Load Blinding feature, Arc Flash
Detector. Over current TM Setting Range extended.
2016/02 2435H85008R8b-7f (7SR210)
2435H85009R8b-7f (7SR220)
EN100+ Compatibility.
2017/08 2435H85008R8e-8a (7SR210)
2435H85009R8e-8a (7SR220)
Added 32 Directional Power, 32S Sensitive Power, 55 Power
Factor, 81HLB5 Overfluxing, 67SEF Compensated Network,
67SEF Wattmetric. Increased I/O. Event Data on LCD.
7SR210 & 7SR220 Applications Guide
© 2013 Siemens Protection Devices Limited Page 3 of 48
Contents
Document Release History ............................................................................................................... 2
Software Revision History ................................................................................................................ 2
Section 1: Common Functions ......................................................................................................... 5
1.1 Multiple Settings Groups ...................................................................................................... 5
1.2 Binary Inputs ........................................................................................................................ 6
1.3 Binary Outputs ..................................................................................................................... 9
1.4 LEDs .................................................................................................................................... 9
Section 2: Protection Functions ..................................................................................................... 11
2.1 Time delayed overcurrent (51/51G/51N) ............................................................................. 11
2.1.1 Selection of Overcurrent Characteristics................................................................. 12
2.1.2 Reset Delay ........................................................................................................... 13
2.2 Voltage dependent overcurrent (51V) ................................................................................. 14
2.3 Cold Load Settings (51c) .................................................................................................... 14
2.4 Arc Flash Detection (50AFD) .............................................................................................. 15
2.5 Instantaneous Overcurrent (50/50G/50N) ........................................................................... 16
2.5.1 Blocked Overcurrent Protection Schemes .............................................................. 16
2.6 Sensitive Earth-fault Protection (50SEF) ............................................................................. 18
2.7 Directional Protection (67) .................................................................................................. 19
2.8 Directional Earth-Fault (50/51G, 50/51N, 51/51SEF)........................................................... 22
2.9 High Impedance Restricted Earth Fault Protection (64H) .................................................... 23
2.10 Negative Phase Sequence Overcurrent (46NPS)................................................................ 25
2.11 Undercurrent (37) ............................................................................................................... 25
2.12 Thermal Overload (49) ....................................................................................................... 25
2.13 Under/Over Voltage Protection (27/59) ............................................................................... 26
2.14 Neutral Overvoltage (59N) .................................................................................................. 27
2.14.1 Application with Capacitor Cone Units .................................................................... 28
2.14.2 Derived NVD Voltage ............................................................................................. 28
2.15 Negative Phase Sequence Overvoltage (47) ...................................................................... 28
2.16 Under/Over Frequency (81) ................................................................................................ 29
2.17 Power Protection ................................................................................................................ 30
2.17.1 Power (32) ............................................................................................................. 30
Section 3: CT Requirements ........................................................................................................... 31
3.1 CT Requirements for Overcurrent and Earth Fault Protection ............................................. 31
3.1.1 Overcurrent Protection CTs .................................................................................... 31
3.1.2 Earth Fault Protection CTs ..................................................................................... 31
3.2 CT Requirements for High Impedance Restricted Earth Fault Protection ............................. 31
Section 4: Control Functions.......................................................................................................... 32
4.1 Auto-reclose Applications ................................................................................................... 32
4.1.1 Auto-Reclose Example 1 ........................................................................................ 33
4.1.2 Auto-Reclose Example 2 (Use of Quicklogic with AR) ............................................ 34
4.2 Quick Logic Applications .................................................................................................... 35
4.2.1 Auto-Changeover Scheme Example ...................................................................... 35
Section 5: Supervision Functions .................................................................................................. 36
5.1 Circuit-Breaker Fail (50BF) ................................................................................................. 36
5.1.1 Settings Guidelines ................................................................................................ 36
5.2 Current Transformer Supervision (60CTS).......................................................................... 38
5.3 Voltage Transformer Supervision (60VTS).......................................................................... 39
5.4 Trip-Circuit Supervision (74TCS) ........................................................................................ 40
5.4.1 Trip Circuit Supervision Connections ...................................................................... 40
7SR210 & 7SR220 Applications Guide
Page 4 of 48 © 2013 Siemens Protection Devices Limited
5.5 Inrush Detector (81HBL2) ................................................................................................... 42
5.6 Broken Conductor / Load Imbalance (46BC) ....................................................................... 42
5.7 Circuit-Breaker Maintenance .............................................................................................. 42
5.8 Overfluxing Detector (81HBL5) ........................................................................................... 42
5.9 Load Blinder (21)................................................................................................................ 43
5.10 Load Blinder Design ........................................................................................................... 44
5.10.1 Application view ..................................................................................................... 44
5.10.2 Design View........................................................................................................... 45
5.10.3 Setting Example – 3 Pole Load Blinder .................................................................. 47
5.10.4 Calculating the Impedance ..................................................................................... 48
List of Figures
Figure 1.1-1 Example Use of Alternative Settings Groups.................................................................... 5
Figure 1.2-1 Example of Transformer Alarm and Trip Wiring................................................................ 6
Figure 1.2-2 Binary Input Configurations Providing Compliance with EATS 48-4 Classes
ESI 1 and ESI 2 ............................................................................................................... 8
Figure 1.4-1 LED configuration via the LED Matrix tab ........................................................................ 9
Figure 1.4-2 LED configuration via the Settings \ OUTPUT CONFIG \ LED CONFIG menu................ 10
Figure 2.1-1 IEC NI Curve with Time Multiplier and Follower DTL Applied ......................................... 11
Figure 2.1-2 IEC NI Curve with Minimum Operate Time Setting Applied ............................................ 12
Figure 2.1-3 Reset Delay .................................................................................................................. 13
Figure 2.4-1 Arc Flash Detection ....................................................................................................... 15
Figure 2.5-1 General Form of DTL Operate Characteristic ................................................................. 16
Figure 2.5-2 Blocking Scheme Using Instantaneous Overcurrent Elements ....................................... 17
Figure 2.6-1 Sensitive Earth Fault Protection Application ................................................................... 18
Figure 2.7-1 Directional Characteristics ............................................................................................. 19
Figure 2.7-2 Phase Fault Angles ....................................................................................................... 19
Figure 2.7-3 Application of Directional Overcurrent Protection ........................................................... 20
Figure 2.7-4 Feeder Fault on Interconnected Network ....................................................................... 21
Figure 2.8-1 Earth Fault Angles ......................................................................................................... 22
Figure 2.9-1 Balanced and Restricted Earth-fault protection of Transformers ..................................... 23
Figure 2.9-2 Composite Overcurrent and Restricted Earth-fault Protection ........................................ 24
Figure 2.12-1 Thermal Overload Heating and Cooling Characteristic........................................... 25
Figure 2.14-1 NVD Application .................................................................................................... 27
Figure 2.14-2 NVD Protection Connections ................................................................................. 27
Figure 2.16-1 Load Shedding Scheme Using Under-Frequency Elements................................... 29
Figure 4.1-1 Sequence Co-ordination ................................................................................................ 32
Figure 4.1-2 Example of Logic Application ......................................................................................... 34
Figure 4.2-1 Example Use of Quick Logic .......................................................................................... 35
Figure 5.1-1 Circuit Breaker Fail ........................................................................................................ 36
Figure 5.1-2 Single Stage Circuit Breaker Fail Timing ........................................................................ 37
Figure 5.1-3 Two Stage Circuit Breaker Fail Timing ........................................................................... 37
Figure 5.4-1 Trip Circuit Supervision Scheme 1 (H5) ......................................................................... 40
Figure 5.4-2 Trip Circuit Supervision Scheme 2 (H6) ......................................................................... 41
Figure 5.4-3 Trip Circuit Supervision Scheme 3 (H7) ......................................................................... 41
Figure 5.9-1 Paralleled Transformers and Feeders ............................................................................ 43
Figure 5.10.1-1 Impedance Setting and Angle Setting .................................................................... 44
Figure 5.10.2.1-1 Logic Diagram 3 Phase ....................................................................................... 45
Figure 5.10.2.2-1 Logic Diagram 1 Phase ....................................................................................... 46
Figure 5.10.3-1 Scheme and Impedance Illustration ....................................................................... 47
List of Tables
Table 2-1 Application of IDMTL Characteristics 13
Table 5-2 Determination of CT Failure (1 or 2 Phases) 37
Table 5-3 Determination of VT Failure (1 or 2 Phases) 38
Table 5-4 Determination of VT Failure (3 Phases) 38
Table 5-5 Magnetic Inrush Bias 41
7SR210 & 7SR220 Applications Guide
© 2013 Siemens Protection Devices Limited Page 5 of 48
Section 1: Common Functions
1.1 Multiple Settings Groups
Alternate settings groups can be used to reconfigure the relay during significant changes to system conditions
e.g.
Primary plant switching in/out.
Summer/winter or day/night settings.
switchable earthing connections.
Loss of Grid connection (see below)
Figure 1.1-1 Example Use of Alternative Settings Groups
RADIAL SUBSTATION
Start
generators
Select alternate
settings group
Local
Generation
Industrial system draws power from grid
system during normal operation
Relays normally use settings group 1
On loss of mains:
Local generation switched in.
Non essential loads tripped
Relays on essential circuits switched to
settings group 2 to reflect new load and
fault currents
Non-essential
loads
Trip non-essential loads
7SR210 & 7SR220 Applications Guide
Page 6 of 48 ©2018 Siemens Protection Devices Limited
1.2 Binary Inputs
Each Binary Input (BI) can be programmed to operate one or more of the relay functions, LEDs or output relays.
These could be used to bring such digital signals as Inhibits for protection elements, the trip circuit supervision
status, autoreclose control signals etc. into the Relay.
Alarm and Tripping Inputs
A common use of binary inputs is to provide indication of alarm or fault conditions e.g. transformer Buchholz Gas
or Buchholz Surge conditions. The Binary Inputs are mapped to LED(s), waveform storage trigger and binary
outputs. Note that transformer outputs which require high speed tripping, such as a Buchholz Surge, should be
wired to a binary input to provide LED indication and also have a parallel connection wired to directly trip the
circuit via a blocking diode, see fig. 1.2-1:
Figure 1.2-1 Example of Transformer Alarm and Trip Wiring
7SR210 & 7SR220 Applications Guide
© 2013 Siemens Protection Devices Limited Page 7 of 48
The Effects of Capacitance Current
The binary inputs have a low minimum operate current and may be set for instantaneous operation. Consideration
should be given to the likelihood of mal-operation due to capacitance current. Capacitance current can flow
through the BI for example if an earth fault occurs on the dc circuits associated with the relay. The binary inputs
will be less likely to mal-operate if they:
1 Have both the positive and negative switched (double-pole switched).
2 Do not have extensive external wiring associated with them e.g. if the wiring is confined to the
relay room.
Where a binary input is both used to influence a control function (e.g. provide a tripping function) and it is
considered to be susceptible to mal-operation the external circuitry can be modified to provide immunity to such
disturbances, see fig 1.2-2.
AC Rejection
The default pick-up time delay of 20 ms provides immunity to ac current e.g. induced from cross site wiring.
7SR210 & 7SR220 Applications Guide
Page 8 of 48 ©2018 Siemens Protection Devices Limited
2K0
BI (19 V)
ESI-1 30 V DC Nominal
(24 V to 37.5 V Operative)
IOP > 10 mA
470
1K5
48 V DC Nominal
(37.5 V to 60 V Operative)
IOP > 10 mA
1K6
1K5
110 V DC Nominal
(87.5 V to 137.5 V
Operative)
IOP > 25 mA
560
ESI-2 30 V DC Nominal
(24 V to 37.5 V Operative)
IOP > 20 mA
220
820
48 V DC Nominal
(37.5 V to 60 V Operative)
IOP > 20 mA
820
820
110 V DC Nominal
(87.5 V to 137.5 V
Operative)
IOP > 50 mA
1K2
330
BI DTL = 10 ms
(10 µF, 60 V Capacitance discharge)
BI DTL = 10 ms
(10 µF, 150 V Capacitance discharge)
BI (19 V)
BI (19 V)
BI (19 V)
BI (19 V)
BI (19 V)
+
-
+
+
+
+
+
-
-
-
-
-
Resistor power ratings: 30 V DC Nominal >3 W
48 V DC Nominal >3 W
110 V DC Nominal >10 W (ESI-1)
110 V DC Nominal >20 W (ESI-2)
Resistors must be wired with crimped connections as they may run hot
110 V DC Nominal
(87.5 V to 137.5 V
Operative)
IOP > 25 mA
2K7
110 V DC Nominal
(87.5 V to 137.5 V
Operative)
IOP > 50 mA
1K3
BI DTL = 10 ms
(10 µF, 150 V Capacitance discharge)
BI (88 V) BI (88 V)
++
--
Figure 1.2-2 Binary Input Configurations Providing Compliance with EATS 48-4 Classes ESI 1 and ESI 2
7SR210 & 7SR220 Applications Guide
© 2013 Siemens Protection Devices Limited Page 9 of 48
1.3 Binary Outputs
Binary Outputs are mapped to output functions by means of settings. These could be used to bring out such
digital signals as trips, a general pick-up, plant control signals etc.
All Binary Outputs are Trip rated
Each can be defined as Self or Hand Reset. Self-reset contacts are applicable to most protection applications.
Hand-reset contacts are used where the output must remain active until the user expressly clears it e.g. in a
control scheme where the output must remain active until some external feature has correctly processed it.
Case contacts 26 and 27 will automatically short-circuit when the relay is withdrawn from the case. This can be
used to provide an alarm that the Relay is out of service.
Notes on Self Reset Outputs
With a failed breaker condition the relay may remain operated until current flow in the primary system is
interrupted by an upstream device. The relay will then reset and attempt to interrupt trip coil current flowing
through an output contact. Where this level is above the break rating of the output contact an auxiliary relay with
heavy-duty contacts should be utilised.
1.4 LEDs
Output-function LEDs are mapped to output functions by means of settings. These could be used to display such
digital signals as trips, a general pick-up, plant control signals etc.
User Defined Function Key LEDs are used to indicate the status of Function Key operation. These do not relate
directly to the operation of the Function Key but rather to its consequences. If a Function Key is depressed to
close a Circuit-Breaker, the associated LED would show the status of the Circuit-Breaker closed Binary Input.
Each LED can be defined as Self or Hand Reset. Hand reset LEDs are used where the user is required to
expressly acknowledge the change in status e.g. critical operations such as trips or system failures. Self-reset
LEDs are used to display features which routinely change state, such as Circuit-Breaker open or close.
The status of hand reset LEDs is retained in capacitor-backed memory in the event of supply loss.
Each LED can be assigned as red, yellow or green in colour. There are two methods for doing this: -
1) In the LED Matrix tab, to assign the LED as a red colour select a box on the red row. To assign the
LED as a green colour select a box on the green row. To assign the LED as a yellow colour, select
boxes on both the red and green rows.
NB: If there are no boxes selected the LED will not illuminate.
Figure 1.4-1 LED configuration via the LED Matrix tab
7SR210 & 7SR220 Applications Guide
Page 10 of 48 ©2018 Siemens Protection Devices Limited
In the OUTPUT CONFIG\LED CONFIG menu in the Settings tab, to assign the required LED as a
particular colour, either red or green, type the LED number in the appropriate row. To assign the
required LED as a yellow colour, type the LED number in both red and green rows.
NB: If a LED number is not assigned that particular LED will not illuminate.
Figure 1.4-2 LED configuration via the Settings \ OUTPUT CONFIG \ LED CONFIG menu
7SR210 & 7SR220 Applications Guide
© 2013 Siemens Protection Devices Limited Page 11 of 48
Section 2: Protection Functions
2.1 Time delayed overcurrent (51/51G/51N)
The 51-n characteristic element provides a number of time/current operate characteristics. The element can be
defined as either an Inverse Definite Minimum Time Lag (IDMTL) or Definite Time Lag (DTL) characteristic. If an
IDMTL characteristic is required, then IEC, ANSI/IEEE and a number of manufacturer specific curves are
supported.
IDMTL characteristics are defined as “Inverse” because their tripping times are inversely proportional to the Fault
Current being measured. This makes them particularly suitable to grading studies where it is important that only
the Relay(s) closest to the fault operate. Discrimination can be achieved with minimised operating times.
To optimise the grading capability of the relay additional time multiplier, ‘Follower DTL’ (Fig. 2.1-1) or ‘Minimum
Operate Time’ (Fig. 2.1-2) settings can be applied.
0.01
0.10
1.00
10.00
100.00
1000.00
1 10 100 1000
Curr ent (x Is)
Operating Time (Seconds)
0.01
0.10
1.00
10.00
100.00
1000.00
1 10 100 1000
Current (x Is)
Operating Time (Seconds )
Figure 2.1-1 IEC NI Curve with Time Multiplier and Follower DTL Applied
7SR210 & 7SR220 Applications Guide
Page 12 of 48 ©2018 Siemens Protection Devices Limited
IEC NI Curve: TM = 1
Min Operate Time = 4sec
0.01
0.10
1.00
10.00
100.00
1000.00
1 10 100 1000
Current (x Is)
Operating Time (Seconds)
OPERATE
ZONE
Figure 2.1-2 IEC NI Curve with Minimum Operate Time Setting Applied
To increase sensitivity, dedicated Earth fault elements are used. There should be little or no current flowing to
earth in a healthy system so such relays can be given far lower pick-up levels than relays which detect excess
current ( > load current) in each phase conductor. Such dedicated earth fault relays are important where the fault
path to earth is a high-resistance one (such as in highly arid areas) or where the system uses high values of
earthing resistor / reactance and the fault current detected in the phase conductors will be limited.
2.1.1 Selection of Overcurrent Characteristics
Each pole has two independent over-current characteristics. Where required the two curves can be used:
To produce a composite curve
To provide a two stage tripping scheme
Where one curve is to be directionalised in the forward direction the other in the reverse direction.
The characteristic curve shape is selected to be the same type as the other relays on the same circuit or to grade
with items of plant e.g. fuses or earthing resistors.
The application of IDMTL characteristic is summarised in the following table:
7SR210 & 7SR220 Applications Guide
© 2013 Siemens Protection Devices Limited Page 13 of 48
OC/EF Curve Characteristic Application
IEC Normal Inverse (NI)
ANSI Moderately Inverse (MI)
Generally applied
IEC Very Inverse (VI)
ANSI Very Inverse (VI)
Used with high impedance paths where there is a significant difference
between fault levels at protection points
IEC Extreme Inversely (EI)
ANSI Extremely Inverse (EI)
Grading with Fuses
IEC Long Time Inverse (LTI) Used to protect transformer earthing resistors having long withstand times
Recloser Specific Use when grading with specific recloser
Table 2-1 Application of IDMTL Characteristics
2.1.2 Reset Delay
The increasing use of plastic insulated cables, both conventionally buried and aerial bundled conductors, have
given rise to the number of flashing intermittent faults on distribution systems. At the fault position, the plastic
melts and temporarily reseals the faulty cable for a short time after which the insulation fails again. The same
phenomenon has occurred in compound-filled joint boxes or on ‘clashing’ overhead line conductors. The
repeating process of the fault can cause electromechanical disc relays to “ratchet” up and eventually trip the faulty
circuit if the reset time of the relay is longer than the time between successive faults.
To mimic an electromechanical relay the relay can be user programmed for an ANSI DECAYING characteristic
when an ANSI operate characteristic is applied. Alternatively a DTL reset (0 to 60 seconds) can be used with
other operate characteristics.
For protection of cable feeders, it is recommended that a 60 second DTL reset be used.
On overhead line networks, particularly where reclosers are incorporated in the protected system, instantaneous
resetting is desirable to ensure that, on multiple shot reclosing schemes, correct grading between the source
relays and the relays associated with the reclosers is maintained.
FAULT
Clashing
conductors or
re-sealing cable
R1R2R3
Electro-mechanical Relay
Time
TRIP
Argus (Inst. Reset)
Time
Argus (DTL Reset)
TRIP
Figure 2.1-3 Reset Delay
7SR210 & 7SR220 Applications Guide
Page 14 of 48 ©2018 Siemens Protection Devices Limited
2.2 Voltage dependent overcurrent (51V)
Reduced voltage can indicate a fault on the system, it can be used to make the 51 elements more sensitive.
Typically Voltage Dependent Over-current (51V) is applied to:
Transformer Incomers: Where the impedance of the transformer limits fault current the measured
voltage level can be used to discriminate between load and fault current.
Long lines: Where the impedance of the line limits fault current the measured voltage level can be used
to discriminate between load and fault current.
Generator circuits: When a Generator is subjected to a short circuit close to its terminals the short-
circuit current follows a complex profile. After the initial "sub-transient" value, generally in the order of 7
to 10 times full load current, it falls rapidly (around 10 ms to 20 ms) to the "transient" value. This is still
about 5 to 7 times full load and would be sufficient to operate the protection's over-current elements.
However the effect on armature reactance of the highly inductive short-circuit current is to increase
significantly the internal impedance to the synchronous reactance value. If the Automatic Voltage
Regulation (AVR) system does not respond to increase the excitation, the fault current will decay over
the next few seconds to a value below the full load current. This is termed the steady state fault current,
determined by the Generator's synchronous reactance (and pre-fault excitation). It will be insufficient to
operate the protection's over-current elements and the fault will not be detected. Even if AVR is active,
problems may still be encountered. The AVR will have a declared minimum sustained fault current and
this must be above the protection over-current settings. Close-in short circuit faults may also cause the
AVR to reach its safety limits for supplying maximum excitation boost, in the order of several seconds,
and this will result in AVR internal protection devices such as diode fuses to start operating. The
generator excitation will then collapse, and the situation will be the same as when no AVR was present.
The fault may again not be detected.
Current grading remains important since a significant voltage reduction may be seen for faults on other parts of
the system. An inverse time operating characteristic must therefore be used.
The VDO Level - the voltage setting below which the more sensitive operating curve applies - must be set low
enough to discriminate between short-circuits and temporary voltage dips due to overloads. However, it must also
be high enough to cover a range of voltage drops for different circuit configurations, from around 0.6Vn to almost
zero. Typically it will be set in the range 0.6 to 0.8Vn.
2.3 Cold Load Settings (51c)
Once a Circuit-Breaker has been open for a period of time ed, higher than normal levels of load current may flow
following CB re-closure e.g. heating or refrigeration plant. The size and duration of this current is dependent upon
the type of load and the time that the CB is open.
The feature allows the relay to use alternative Shaped Overcurrent (51c) settings when a Cold Load condition is
identified. The cold load current and time multiplier settings will normally be set higher than those of the normal
overcurrent settings.
The relay will revert to its usual settings (51-n) after elapse of the cold load period. This is determined either by a
user set delay, or by the current in all 3-phases falling below a set level (usually related to normal load levels) for
a user set period.
7SR210 & 7SR220 Applications Guide
© 2013 Siemens Protection Devices Limited Page 15 of 48
2.4 Arc Flash Detection (50AFD)
The overcurrent setting should be set above maximum load current and below the minimum expected arc fault
current.
Optical sensor location should be arranged to provide full coverage of the protected chambers. See 7XG31
technical documentation.
Sensor inputs are configured in Zones to provide the required tripping. i.e. the line circuit breaker alone should be
tripped for arc faults in the cable termination and CT compartment. The whole busbar must be cleared for arc
faults which cannot be identified as being on the line side of the circuit breaker.
Overcurrent supervision can only be applied if the arrangement ensures that current will be measured for all arc
faults. In Figure , Zone 2 can only be supervised by current if the feeders are radial and cannot supply fault
current with CB A open. Arc sensor pickup can be transferred between relays using IEC 61850 GOOSE allowing
Zone2 50AFD to be duplicated in all relays.
Zone1
Zone2
A
Figure 2.4-1 Arc Flash Detection
7SR210 & 7SR220 Applications Guide
Page 16 of 48 ©2018 Siemens Protection Devices Limited
2.5 Instantaneous Overcurrent (50/50G/50N)
Each instantaneous element has an independent setting for pick-up current and a follower definite time lag (DTL)
which can be used to provide time grading margins, sequence co-ordination grading or scheme logic. The
“instantaneous” description relates to the pick-up of the element rather than its operation.
Operating time
Figure 2.5-1 General Form of DTL Operate Characteristic
Instantaneous elements can be used in current graded schemes where there is a significant difference between
the fault current levels at different relay point. The Instantaneous element is set to pick up at a current level above
the maximum Fault Current level at the next downstream relay location, and below its own fault current level. The
protection is set to operate instantaneously and is often termed ‘Highset Overcurrent’. A typical application is the
protection of transformer HV connections the impedance of the transformer ensuring that the LV side has a
much lower level of fault current.
The 50-n elements have a very low transient overreach i.e. their accuracy is not appreciably affected by the initial
dc offset transient associated with fault inception.
2.5.1 Blocked Overcurrent Protection Schemes
A combination of instantaneous and DTL elements can be used in blocked overcurrent protection schemes.
These protection schemes are applied to protect substation busbars or interconnectors etc. Blocked overcurrent
protection provides improved fault clearance times when compared against normally graded overcurrent relays.
The blocked overcurrent scheme of busbar protection shown in Figure 2.4-2 illustrates that circuit overcurrent and
earth fault protection relays can additionally be configured with busbar protection logic.
The diagram shows a substation. The relay on the incomer is to trip for busbar faults (F1) but remain inoperative
for circuit faults (F2).
In this example the overcurrent and earth fault settings for the incomer 50-1 element are set to below the relevant
busbar fault levels. 50-1 time delay is set longer than it would take to acknowledge receipt of a blocking signal
from an outgoing circuit.
Close up faults on the outgoing circuits will have a similar fault level to busbar faults. As the incomer 50-1
elements would operate for these faults it is necessary to provide a blocking output from the circuit protections.
The 50-1 elements of the output relays are given lower current settings than the incomer 50-1 settings, the time
delay is set to 0ms. The output is mapped to a contact. The outgoing relay blocking contacts of all circuits are
wired in parallel and this wiring is also connected to a BI on the incomer relay. The BI on the incomer relay is
mapped to block its 50-1 element.
7SR210 & 7SR220 Applications Guide
© 2013 Siemens Protection Devices Limited Page 17 of 48
Figure 2.5-2 Blocking Scheme Using Instantaneous Overcurrent Elements
Typically a time delay as low as 50 ms on the incomer 50-1 element will ensure that the incomer is not tripped for
outgoing circuit faults. However, to include for both equipment tolerances and a safety margin a minimum time
delay of 100 ms is recommended.
This type of scheme is very cost effective and provides a compromise between back-up overcurrent busbar
protection and dedicated schemes of busbar protection.
Instantaneous elements are also commonly applied to autoreclose schemes to grade with downstream circuit
reclosers and maximise the probability of a successful auto-reclose sequence – see section 4.
7SR210 & 7SR220 Applications Guide
Page 18 of 48 ©2018 Siemens Protection Devices Limited
2.6 Sensitive Earth-fault Protection (50SEF)
Earth fault protection is based on the assumption that fault current levels will be limited only by the earth fault
impedance of the line and associated plant. However, it may be difficult to make an effective short circuit to earth
due to the nature of the terrain e.g. dry earth, desert or mountains. The resulting earth fault current may therefore
be limited to very low levels.
Sensitive earth fault (SEF) protection is used to detect such faults. The RM range of relays have a low burden, so
avoiding unacceptable loading of the CTs at low current settings.
SEF provides a backup to the main protection. A DTL characteristic with a time delay of several seconds is
typically applied ensuring no interference with other discriminative protections. A relatively long time delay can be
tolerated since fault current is low and it is impractical to grade SEF protection with other earth fault protections.
Although not suitable for grading with other forms of protection SEF relays may be graded with each other.
Where very sensitive current settings are required then it is preferable to use a core balance CT rather than wire
into the residual connection of the line CTs. The turns ratio of a core balance CT can be much smaller than that of
phase conductors as they are not related to the rated current of the protected circuit. Since only one core is used,
the CT magnetising current losses are also reduced by a factor of 3.
Figure 2.6-1 Sensitive Earth Fault Protection Application
There are limits to how sensitive an SEF relay may be set since the setting must be above any line charging
current levels that can be detected by the relay. On occurrence of an out of zone earth fault e.g. on circuit 3 the
elevation of sound phase voltage to earth in a non-effectively earthed system can result in a zero sequence
current of up 3 times phase charging current flowing through the relay location.
The step change from balanced 3-phase charging currents to this level of zero sequence current includes
transients. It is recommended to allow for a transient factor of 2 to 3 when determining the limit of charging
current. Based on the above considerations the minimum setting of a relay in a resistance earthed power system
is 6 to 9 times the charging current per phase.
7SR210 & 7SR220 Applications Guide
© 2013 Siemens Protection Devices Limited Page 19 of 48
2.7 Directional Protection (67)
Each overcurrent stage can operate for faults in either forward or reverse direction. Convention dictates that
forward direction refers to power flow away from the busbar, while reverse direction refers to power flowing
towards the busbar.
The directional phase fault elements, 67/50 and 67/51, work with a Quadrature Connection to prevent loss of
polarising quantity for close-in phase faults. That is, each of the current elements is directionalised by a voltage
derived from the other two phases.
This connection introduces a 90° Phase Shift (Current leading Voltage) between reference and operate quantities
which must be allowed for in the Characteristic Angle setting. This is the expected fault angle, sometimes termed
the Maximum Torque Angle (MTA) as an analogy to older Electro-mechanical type relays
Example: Expected fault angle is -30º (Current lagging Voltage) so set Directional Angle to: +90° -30° = +60°.
A fault is determined to be in the selected direction if its phase relationship lies within a quadrant +/- 85° either
side of the Characteristic Angle setting.
Figure 2.7-1 Directional Characteristics
A number of studies have been made to determine the optimum MTA settings e.g. W.K Sonnemann’s paper “A
Study of Directional Element Connections for Phase Relays”. Figure 2.6-2 shows the most likely fault angle for
phase faults on Overhead Line and Cable circuits.
Figure 2.7-2 Phase Fault Angles
7SR210 & 7SR220 Applications Guide
Page 20 of 48 ©2018 Siemens Protection Devices Limited
Directional overcurrent elements allow greater fault selectivity than non-directional elements for interconnected
systems where fault current can flow in both directions through the relaying point. Consider the network shown in
fig. 2.6-3.
The Circuit breakers at A, B, E and G have directional overcurrent relays fitted since fault current can flow in both
directions at these points. The forward direction is defined as being away from the busbar and against the
direction of normal load current flow. These forward looking IDMTL elements can have sensitive settings applied
i.e. low current and time multiplier settings. Note that 7SR22 relays may be programmed with forward, reverse
and non-directional elements simultaneously when required by the protection scheme.
Figure 2.7-3 Application of Directional Overcurrent Protection
7SR210 & 7SR220 Applications Guide
© 2013 Siemens Protection Devices Limited Page 21 of 48
Figure 2.7-4 Feeder Fault on Interconnected Network
Considering the D-G feeder fault shown in fig. 2.6-4: the current magnitude through breakers C and D will be
similar and their associated relays will similar prospective operate times. To ensure that only the faulted feeder is
isolated G FWD must be set to be faster than C. Relay G will thus Trip first on FWD settings, leaving D to operate
to clear the fault. The un-faulted Feeder C-E maintains power to the load.
Relays on circuits C and D at the main substation need not be directional to provide the above protection scheme.
However additional directional elements could be mapped to facilitate a blocked overcurrent scheme of busbar
protection.
At A and B, forward looking directional elements enable sensitive settings to be applied to detect transformer
faults whilst reverse elements can be used to provide back-up protection for the relays at C and D.
By using different settings for forward and reverse directions, closed ring circuits can be set to grade correctly
whether fault current flows in a clockwise or counter clockwise direction i.e. it may be practical to use only one
relay to provide dual directional protection.
2 Out of 3 Logic
Sensitive settings can be used with directional overcurrent relays since they are directionalised in a way which
opposes the flow of normal load current i.e. on the substation incomers as shown on fig. 2.6-4. However on
occurrence of transformer HV or feeder incomer phase-phase faults an unbalanced load current may still flow as
an un balanced driving voltage is present. This unbalanced load current during a fault may be significant where
sensitive overcurrent settings are applied - the load current in one phase may be in the operate direction and
above the relay setting.
Where this current distribution may occur then the relay is set to CURRENT PROTECTION>PHASE
OVERCURRENT> 67 2-out-of-3 Logic = ENABLED
Enabling 2-out-of-3 logic will prevent operation of the directional phase fault protection for a single phase to earth
fault. Dedicated earth-fault protection should therefore be used if required.
7SR210 & 7SR220 Applications Guide
Page 22 of 48 ©2018 Siemens Protection Devices Limited
2.8 Directional Earth-Fault (50/51G, 50/51N, 51/51SEF)
The directional earth-fault elements, either measure directly or derive from the three line currents the zero
sequence current (operate quantity) and compare this against the derived zero phase sequence voltage
(polarising quantity). The Technical Manual ‘Description of Operation’ details the method of measurement. The
required setting is entered directly as dictated by the system impedances.
Example: -
Expected fault angle is -45° (i.e. residual current lagging residual voltage) therefore 67G Char Angle =-45°
However directional earth elements can be selectable to use either ZPS or NPS Polarising. This is to allow for the
situation where ZPS voltage is not available; perhaps because a 3-limb VT is being used. Care must be taken as
the Characteristic Angle will change if NPS Polarising is used.
Once again the fault angle is completely predictable, though this is a little more complicated as the method of
earthing must be considered.
Figure 2.8-1 Earth Fault Angles
7SR210 & 7SR220 Applications Guide
© 2013 Siemens Protection Devices Limited Page 23 of 48
2.9 High Impedance Restricted Earth Fault Protection (64H)
Restricted Earth Fault (REF) protection is applied to Transformers to detect low level earth faults in the
transformer windings. Current transformers are located on all connections to the transformer. During normal
operation or external fault conditions no current will flow in the relay element. When an internal earth fault occurs,
the currents in the CTs will not balance and the resulting unbalance flows through the relay.
The current transformers may saturate when carrying high levels of fault current. The high impedance name is
derived from the fact that a resistor is added to the relay leg to prevent relay operation due to CT saturation under
through fault conditions.
The REF Trip output is configured to provide an instantaneous trip output from the relay to minimise damage from
developing winding faults.
The application of the element to a Argus RM-Star transformer is shown in Figure 2.8-1. Although the connection
on the Argus RM winding is more correctly termed a Balanced Earth-Fault element, it is still usually referred to as
Restricted Earth Fault because of the presence of the transformer.
Figure 2.9-1 Balanced and Restricted Earth-fault protection of Transformers
The calculation of the value of the Stability Resistor is based on the worst case where one CT fully saturates and
the other balancing CT does not saturate at all. A separate Siemens Protection Devices Limited Publication is
available covering the calculation procedure for REF protection. To summarise this: -
The relay Stability (operating) Vs voltage is calculated using worst case lead burden to avoid relay operation for
through-fault conditions where one of the CTs may be fully saturated. The required fault setting (primary operate
current) of the protection is chosen; typically, this is between 10 % and 25 % of the protected winding rated
current. The relay setting current is calculated based on the secondary value of the operate current, note,
however, that the summated CT magnetising current @ Vs must be subtracted to obtain the required relay
operate current setting.
Since the relay operate current setting and stability/operating voltage are now known, a value for the series
resistance can now be calculated.
A check is made as to whether a Non-Linear Resistor is required to limit scheme voltage during internal fault
conditions – typically where the calculated voltage is in excess of 2 kV.
The required thermal ratings for external circuit components are calculated.
Balanced
Earth Fault
Restricted
Earth Fault
7SR210 & 7SR220 Applications Guide
Page 24 of 48 ©2018 Siemens Protection Devices Limited
Composite overcurrent and REF protection can be provided using a multi-element relay as.
Figure 2.9-2 Composite Overcurrent and Restricted Earth-fault Protection
Although core-balance CTs are traditionally used with elements requiring sensitive pickup settings, cost and size
usually precludes this on REF schemes. Instead single-Phase CTs are used and their secondary’s connected in
parallel.
Where sensitive settings are required, the setting must be above any line charging current levels that can be
detected by the relay.
On occurrence of an out of zone earth fault the elevation of sound phase voltage to earth in a non-effectively
earthed system can result in a zero sequence current of up 3 times phase charging current flowing through the
relay location.
The step change from balanced 3-phase charging currents to this level of zero sequence current includes
transients. It is recommended to allow for a transient factor of 2 to 3 when determining the limit of charging
current. Based on the above considerations the minimum setting of a relay in a resistance earthed power system
is 6 to 9 times the charging current per phase.
High impedance differential protection is suitable for application to auto transformers as line currents are in phase
and the secondary current through the relay is balanced to zero by the use of CTs ratios at all three terminals.
High impedance protection of this type is very sensitive and fast operating for internal faults.
25
non-linear resistor
series
stabilising
resistor
overcurrent
elements
REF
element
7SR210 & 7SR220 Applications Guide
© 2013 Siemens Protection Devices Limited Page 25 of 48
2.10 Negative Phase Sequence Overcurrent (46NPS)
The presence of Negative Phase Sequence (NPS) current indicates an unbalance in the phase currents, either
due to a fault or unbalanced load.
NPS current presents a major problem for 3-phase rotating plant. It produces a reaction magnetic field which
rotates in the opposite direction, and at twice the frequency, to the main field created by the DC excitation system.
This induces double-frequency currents into the rotor which cause very large eddy currents in the rotor body. The
resulting heating of the rotor can be severe and is proportional to (I2)2 t.
Generators and Motors are designed, manufactured and tested to be capable of withstanding unbalanced current
for specified limits. Their withstand is specified in two parts; continuous capability based on a figure of I2, and
short time capability based on a constant, K, where K = (I2)2 t. NPS overcurrent protection is therefore configured
to match these two plant characteristics.
2.11 Undercurrent (37)
Undercurrent elements are used in control logic schemes such as Auto-Changeover Schemes, Auto-Switching
Interlock and Loss of Load. They are used to indicate that current has ceased to flow or that a low load situation
exists. For this reason simple Definite Time Lag (DTL) elements may be used.
For example, once it has been determined that fault current has been broken the CB is open and no current
flows – an auto-isolation sequence may safely be initiated.
2.12 Thermal Overload (49)
The element uses measured 3-phase current to estimate the real-time Thermal State, θ, of cables or
transformers. The Thermal State is based on both past and present current levels.
θ = 0% for unheated equipment, and θ = 100% for maximum thermal withstand of equipment or the Trip
threshold.
Figure 2.12-1 Thermal Overload Heating and Cooling Characteristic
For given current level, the Thermal State will ramp up over time until Thermal Equilibrium is reached when
Heating Effects of Current = Thermal Losses.
The heating / cooling curve is primarily dependent upon the Thermal Time Constant. This must be matched
against that quoted for the item of plant being protected. Similarly the current tripping threshold, qI is related to the
thermal withstand of the plant.
Thermal Overload is a slow acting protection, detecting faults or system conditions too small to pick-up fast acting
protections such as Phase Overcurrent. An Alarm is provided for θ at or above a set % of capacity to indicate that
a potential trip condition exists and that the system should be scrutinised for abnormalities.
7SR210 & 7SR220 Applications Guide
Page 26 of 48 ©2018 Siemens Protection Devices Limited
2.13 Under/Over Voltage Protection (27/59)
Power system under-voltages on may occur due to:
System faults.
An increase in system loading,
Non-energized power system e.g. loss of an incoming transformer
During normal system operating conditions regulating equipment such as transformer On Load Tap Changers
(OLTC) and generator Automatic Voltage Regulators (AVR) ensure that the system runs within acceptable
voltage limits.
7SR24 undervoltage/DTL elements can be used to detect abnormal undervoltage conditions due to system
overloads. Binary outputs can be used to trip non-essential loads - returning the system back to its normal
operating levels. This ‘load shedding’ should be initiated via time delay elements so avoiding operation during
transient disturbances. An under voltage scheme (or a combined under frequency/under voltage scheme) can
provide faster tripping of non-essential loads than under-frequency load shedding so minimising the possibility of
system instability.
Where a transformer is supplying 3-phase motors a significant voltage drop e.g. to below 80% may cause the
motors to stall. An undervoltage element can be set to trip motor circuits when the voltage falls below a preset
value so that on restoration of supply an overload is not caused by the simultaneous starting of all the motors. A
time delay is required to ensure voltage dips due to remote system faults do not result in an unnecessary
disconnection of motors.
To confirm presence/loss of supply, the voltage elements should be set to values safely above/below that where a
normal system voltage excursion can be expected. The switchgear/plant design should be considered. The ‘Dead
level may be very near to the ‘live’ level or may be significantly below it. The variable hysteresis setting allows the
relay to be used with all types of switchgear.
System over-voltages can damage component insulation. Excessive voltage may occur for: -
Sudden loss of load
A tap changer run-away condition occurs in the high voltage direction,
Generator AVR equipment malfunctions or
Reactive compensation control malfunctions.
System regulating equipment such as transformer tap changers and generator AVRs may correct the overvoltage
unless this equipment mal-functions. The overvoltage/DTL elements can be used to protect against damage
caused by system overvoltages.
If the overvoltage condition is small a relatively long DTL time delay can be used. If the overvoltage is more
severe then another element, set at a higher pickup level and with a shorter DTL can be used to isolate the circuit
more quickly. Alternatively, elements can be set to provide alarm and tripping stages, with the alarm levels set
lower than the tripping stages.
The use of DTL settings allows a grading system to be applied to co-ordinate the network design, the regulating
plant design, system plant insulation withstand and with other overvoltage relays elsewhere on the system. The
DTL also prevents operation during transient disturbances.
The use of IDMTL protection is not recommended because of the difficulty of choosing settings to ensure correct
co-ordination and security of supply.
7SR210 & 7SR220 Applications Guide
© 2013 Siemens Protection Devices Limited Page 27 of 48
2.14 Neutral Overvoltage (59N)
Neutral Overvoltage Displacement (Residual Overvoltage) protection is used to detect an earth fault where little or
no earth current flows.
This can occur where a feeder has been tripped at its HV side for an earth fault, but the circuit is still energised
from the LV side via an unearthed transformer winding. Insufficient earth current would be present to cause a trip,
but residual voltage would increase significantly; reaching up to 3-times the normal phase-earth voltage level.
If Neutral Overvoltage protection is used, it must be suitably time graded with other protections in order to prevent
unwanted tripping for external system earth faults.
Figure 2.14-1 NVD Application
Typically NVD protection measures the residual voltage (3V0) directly from an open delta VT or from capacitor
cones – see fig. 2.13-2 below.
Figure 2.14-2 NVD Protection Connections
7SR210 & 7SR220 Applications Guide
Page 28 of 48 ©2018 Siemens Protection Devices Limited
2.14.1 Application with Capacitor Cone Units
Capacitor cones provide a cost effective method of deriving residual voltage. The wide range of capacitor cone
component values used by different manufacturer’s means that the relay cannot be connected directly to the
cones.
The external adaptor unit contains parallel switched capacitors that enable a wide range of values to be selected
using a DIL switch and hence the Capacitor Cone output can be scaled to the standard relay input range.
2.14.2 Derived NVD Voltage
Alternatively NVD voltage can be derived from the three phase to neutral voltages, this setting is available within
the relay. Note with this method the NVD protection may mal-operate during a VT Fail condition.
2.15 Negative Phase Sequence Overvoltage (47)
Negative Phase Sequence (NPS) protection detects phase unbalances and is widely used in protecting rotating
plant such as motors and generators. However such protection is almost universally based on detecting NPS
Current rather than Voltage. This is because the NPS impedance of motors etc. is much less than the Positive
Phase Sequence (PPS) impedance and therefore the ratio of NPS to PPS Current is much higher than the
equivalent ratio of NPS to PPS Voltage.
NPS Voltage is instead used for monitoring busbar supply quality rather than detecting system faults. The
presence of NPS Voltage is due to unbalanced load on a system. Any system voltage abnormality is important
since it will affect every motor connected to the source of supply and can result in mass failures in an industrial
plant.
The two NPS Voltage DTL elements should therefore be used as Alarms to indicate that the level of NPS has
reached abnormal levels. Remedial action can then be taken, such as introducing a Balancer network of
capacitors and inductors. Very high levels of NPS Voltage indicate incorrect phase sequence due to an incorrect
connection.
7SR210 & 7SR220 Applications Guide
© 2013 Siemens Protection Devices Limited Page 29 of 48
2.16 Under/Over Frequency (81)
During normal system operation the frequency will continuously vary over a relatively small range due to the
changing generation/load balance. Excessive frequency variation may occur for: -
Loss of generating capacity, or loss of mains supply (underfrequency): If the governors and other
regulating equipment cannot respond to correct the balance, a sustained underfrequency condition may
lead to a system collapse.
Loss of load excess generation (overfrequency): The generator speeds will increase causing a
proportional frequency rise. This may be unacceptable to industrial loads, for example, where the
running speeds of synchronous motors will be affected.
In the situation where the system frequency is falling rapidly it is common practise to disconnect non-essential
loads until the generation-load balance can be restored. Usually, automatic load shedding, based on
underfrequency is implemented. Underfrequency relays are usually installed on the transformer incomers of
distribution or industrial substations as this provides a convenient position from which to monitor the busbar
frequency. Loads are disconnected from the busbar (shed) in stages until the frequency stabilises and returns to
an acceptable level.
The relay has six under/over frequency elements.
An example scheme may have the first load shedding stage set just below the nominal frequency, e.g. between
49.0 Hz and 49.5 Hz. A time delay element would be associated with this to allow for transient dips in frequency
and to provide a time for the system regulating equipment to respond. If the first load shedding stage disconnects
sufficient plant the frequency will stabilise and perhaps return to nominal. If, however, this is not sufficient then a
second load shedding stage, set at a lower frequency, will shed further loads until the overload is relieved. This
process will continue until all stages have operated. In the event of the load shedding being unsuccessful, a final
stage of underfrequency protection should be provided to totally isolate all loads before plant is damaged, e.g.
due to overfluxing.
An alternative type of load shedding scheme would be to set all underfrequency stages to about the same
frequency setting but to have different length time delays set on each stage. If after the first stage is shed the
frequency doesn’t recover then subsequent stages will shed after longer time delays have elapsed.
Generator
Network
Incomer
G59
300/5
STAGE 1: Least important
STAGE 2
STAGE 3
STAGE 4
Essential
Load
STAGE 5
STAGE 6
6
125 5 3 4 24
Figure 2.16-1 Load Shedding Scheme Using Under-Frequency Elements
7SR210 & 7SR220 Applications Guide
Page 30 of 48 ©2018 Siemens Protection Devices Limited
2.17 Power Protection
2.17.1 Power (32)
Parallel Busbar Feeder
If power is fed to a busbar through two parallel infeeds, then in the event of any fault on one of these infeeds it
should be selectively interrupted. This ensures a continued supply to the busbar through the remaining the
remaining infeed. For this purpose directional devises are needed which detect a shortcircuit current or a power
flow from the busbar in the direction of the infeed. Reverse-power protection can be set far below the rated power.
Motor Protection
An under power element protects against a loss of load condition by measuring the real power flow. This feature
provides an alternative to under current measurement as load loss may result in only a small change in current.
The under power output is initiated by a voltage element operating after a definite time delay. The applied power
setting will typically be 10-20% below minimum load, the power and time delay settings must take into account:
Where rated power cannot be reached during starting (for example where the motor is started with no
connected load) it may be necessary to inhibit this function for a set time. This feature requires a 52a
circuit breaker auxiliary contact mapped to an opto input to get the information CB Closed/CB Open.
Directional power measurement may operate on occurrence of a system power supply fail or system
fault. Power flow into the motor will reverse since the motor will act as a generator due to the inertia of
the connected load.
General Calculation
Real, apparent or reactive power is set in the relay as a multiple of the relay (or secondary) nominal
power where: -
Nominal relay power (secondary) = relay nominal current x relay nominal voltage.
Example:
CT ratio = 400:1
VT ratio = 33000:110
Nominal secondary apparent power (S):
Nominal 3-phase VA (secondary) = 3 x VL x IL
=3 x 110 x 1
= 190.53 VA
= 1 xSn
When calculating the required operate value in primary quantities the CT and VT ratios must be
considered i.e. where the above corresponds to a nominal primary 3-phase apparent power (S) of:
Nominal 3-phase VA (primary) = 3 x VL x IL
=3 x 330000 x 400
= 22.863 MVA
= 1 xSn
The primary nominal VA calculated above may not match that of the protected primary plant and so
settings should be adjusted accordingly.
7SR210 & 7SR220 Applications Guide
© 2013 Siemens Protection Devices Limited Page 31 of 48
Section 3: CT Requirements
3.1 CT Requirements for Overcurrent and Earth Fault
Protection
3.1.1 Overcurrent Protection CTs
a) For industrial systems with relatively low fault current and no onerous grading requirements - a class
10P10 with VA rating to match the load.
b) For utility distribution networks with relatively high fault current and several grading stages - a class
5P20, with VA rating to match the load.
Note: If an accuracy limit factor is chosen which is much lower than the maximum fault current it will be
necessary to consider any effect on the protection system performance and accuracy e.g. grading margins.
For i.d.m.t.l. applications, because the operating time at high fault current is a definite minimum value, partial
saturation of the CT at values beyond the overcurrent factor has only a minimal effect. However, this must be
taken into account in establishing the appropriate setting to ensure proper grading.
c) For dtl applications utilities as for (b) above - a class 5P10 (or 20), with rated burden to suit the load.
Note: Overcurrent factors do not need to be high for definite time protection because once the setting is
exceeded magnitude accuracy is not important. Often, however, there is also the need to consider
instantaneous HighSet overcurrent protection as part of the same protection system and the settings would
normally be of the order of 10x the CT rating or higher. Where higher settings are to be used then the
overcurrent factor must be raised accordingly, e.g. to P20.
3.1.2 Earth Fault Protection CTs
Considerations and requirements for earth fault protection are the same as for Phase fault. Usually the relay
employs the same CT's e.g. three phase CTs star connected to derive the residual earth fault current.
The accuracy class and overcurrent accuracy limit factors are therefore already determined and for both these
factors the earth fault protection requirements are normally less onerous than for overcurrent.
3.2 CT Requirements for High Impedance Restricted Earth
Fault Protection
For high impedance REF it is recommended that: -
Low reactance CTs to IEC 60044 Class PX are used, this allows a sensitive current setting to be applied.
All CT’s should, if possible have identical turns ratios.
The knee point voltage of the CTs must be greater than 2 x 64H setting voltage Vs.
Where the REF function is used then this dictates that the other protection functions are also used with class PX
CTs.
A full explanation of how to specify CTs for use with REF protection, and set REF relays is available on our
website: www.siemens.com/energy
7SR210 & 7SR220 Applications Guide
Page 32 of 48 ©2018 Siemens Protection Devices Limited
Section 4: Control Functions
4.1 Auto-reclose Applications
Automatic circuit reclosing is extensively applied to overhead line circuits where a high percentage of faults that
occur are of a transient nature. By automatically reclosing the circuit-breaker the function attempts to minimise the
loss of supply to the customer and reduce the need for manual intervention.
The function supports up to 4 ARC sequences. That is, 4 x Trip / Recloses followed by a Trip & Lockout. A lockout
condition prevents any further attempts, automatic or manual, to close the circuit-breaker. The number of
sequences selected depends upon the type of faults expected. If there are a sufficient percentage of semi-
permanent faults which could be burnt away, e.g. fallen branches, a multi shot scheme would be appropriate.
Alternatively, if there is a high likelihood of permanent faults, a single shot scheme would minimise the chances of
causing damage by reclosing onto a fault. In general, 80% of faults will be cleared by a single Trip and Reclose
sequence. A further 10% will be cleared by a second Trip and Reclose. Different sequences can be selected for
different fault types (Phase/Earth/Sensitive Earth faults).
The Deadtime is the interval between the trip and the CB close pulse being issued. This is to allow for the line to
go ‘dead’ after the fault is cleared. The delay chosen is a compromise between the need to return the line to
service as soon as possible and prevented unnecessary trips through re-closing too soon. The Reclaim Time is
the delay following a re-closure before the line can be considered back in service. This should be set long enough
to allow for protection operation for the same fault, but not so long that two separate faults could occur in the
same Autoreclose (ARC) sequence and cause unnecessary lockouts.
Since large fault currents could potentially damage the system during a prolonged ARC sequence, there are also
settings to identify which protection elements are High-sets and these can cause an early termination of the
sequence.
Where a relay is to operate as part of an ARC scheme involving a number of other relays, the feature attempts to
clear any faults quickly without regard to normal fault current grading. It does this by setting each Trip element to
be either Delayed or Instantaneous. Instantaneous Trips are set to operate at just above maximum load current
with small delays while Delayed Trips are set to suit actual fault levels and with delays suitable for current
grading.
A typical sequence would be 2 Instantaneous Trips followed by a Delayed Trip & Lockout: -
When any fault occurs, the relay will trip instantaneously and then reclose.
If this does not clear the fault, the relay will do the same again.
If this still does not clear the fault, the fault is presumed to be permanent and the next Trip will be
Delayed and so suitable for grading with the rest of the network. Thus allowing downstream
protection time to operate.
This Trip will Lockout the ARC sequence and prevent further recloses.
It is important that all the relays in an ARC scheme shadow this process advancing through their own ARC
sequences when a fault is detected by an element pickup even though they are not actually causing a trip or
reclose. This is termed Sequence Co-ordination and prevents an excessive number of recloses as each
successive relay attempts to clear the fault in isolation. For this reason each relay in an ARC scheme must be set
with identical Instantaneous and Delayed sequence of trips.
Figure 4.1-1 Sequence Co-ordination
7SR210 & 7SR220 Applications Guide
© 2013 Siemens Protection Devices Limited Page 33 of 48
The relay closest to the fault (D) would step through its Instantaneous Trips in an attempt to clear the fault. If
unsuccessful, the relay would move to a Delayed Trip sequence.
The other relays in the network (A, B and C) would recognise the sequence of Pick-up followed by current switch-
off as ARC sequences. They would therefore also step to their Delayed Trip to retain co-ordination with the
respective downstream devices.
The next Trip would be subject to current grading and Lockout the ARC sequence such that the fault is cleared by
the correct CB.
4.1.1 Auto-Reclose Example 1
Requirement: Settings shall provide four phase fault recloses – two instantaneous and two delayed - and only two
recloses for faults detected by the SEF protection.
Proposed settings include:
CONTROL & LOGIC > AUTORECLOSE PROT’N:
79 P/F Inst Trips: 50-1
79 P/F Delayed Trips: 51-1
79 SEF Delayed Trips: 51SEF-1
CONTROL & LOGIC > AUTORECLOSE CONFIG
79 Num Shots: 4
CONTROL & LOGIC > AUTORECLOSE CONFIG > P/F SHOTS
79 P/F Prot’n Trip 1 : Inst
79 P/F Prot’n Trip 2 : Inst
79 P/F Prot’n Trip 3 : Delayed
79 P/F Prot’n Trip 4 : Delayed
79 P/F Delayed Trips to Lockout : 3
CONTROL & LOGIC > AUTORECLOSE CONFIG > SEF SHOTS
79 SEF Prot’n Trip 1 : Delayed
79 SEF Prot’n Trip 2 : Delayed
79 SEF Delayed Trips to Lockout : 3
Note that Instantaneous’ shots are inhibited if the shot is defined as ‘Delayed’
7SR210 & 7SR220 Applications Guide
Page 34 of 48 ©2018 Siemens Protection Devices Limited
4.1.2 Auto-Reclose Example 2 (Use of Quicklogic with AR)
TIME
Figure 4.1-2 Example of Logic Application
Requirement: The relay at location ‘A’ it is required to provide a reclose sequence of 2 Instantaneous followed by
2 delayed recloses. Where the fault current level is between the values ‘I1’ and ‘I2’ and the first trip is initiated
from the 51-1 (IDMT) element, the IDMT characteristic should trip the CB and lockout the auto-reclose.
Typical settings are:
CONTROL & LOGIC > AUTORECLOSE PROT’N:
79 P/F Inst Trips: 50-1
79 P/F Delayed Trips: 51-1
CONTROL & LOGIC > AUTORECLOSE CONFIG > P/F SHOTS
79 P/F Prot’n Trip 1 : Inst
79 P/F Prot’n Trip 2 : Inst
79 P/F Prot’n Trip 3 : Delayed
79 P/F Prot’n Trip 4 : Delayed
The above settings are suitable at values of fault current above ‘I2’ however were a fault to occur with a current
value between ‘I1’ and ‘I2’ this would be detected by the 51-1 element only. As Prot’n Trip 1 = Inst then the relay
would trip and reclose whereas it is required to lockout for this occurrence.
To provide a lockout for the above faults an additional element 50-2 with identical settings to 50-1 is assigned as
a Delayed Trip and is used in conjunction with the Quick Logic feature i.e.
OUTPUT CONFIG>OUTPUT MATRIX: 51-1 = V1
OUTPUT CONFIG>OUTPUT MATRIX: 50-2 = V2
OUTPUT CONFIG>OUTPUT MATRIX: E1 = V3
CONTROL & LOGIC>QUICK LOGIC: E1 = V1.!V2
INPUT CONFIG>INPUT MATRIX: 79 Lockout = V3
7SR210 & 7SR220 Applications Guide
© 2013 Siemens Protection Devices Limited Page 35 of 48
4.2 Quick Logic Applications
4.2.1 Auto-Changeover Scheme Example
Figure 4.2-1 Example Use of Quick Logic
The MV installation illustrated above is fed from two incomers. To limit the substation fault level the busbar is run
with CB3 open. When a fault occurs on one of the incomers it is isolated by the circuit protection. To re-supply the
disconnected loads from the remaining incomer CB3 is closed.
If the line fault occurs on incomer 1 it must be confirmed that CB 1 has opened before CB3 can be closed. The
relay on incomer 1 confirms that a trip has been issued to CB1 (e.g. Binary Output 2), that CB 1 has opened (e.g.
Binary Input 1) and that no current flows in the circuit (e.g. 37-1 = Virtual 1): -
Incomer 1 Relay is Configured:
CB1 Open auxiliary switch wired to B.I. 1
Trip output to CB1 = B.O. 2
OUTPUT CONFIG>OUTPUT MATRIX: 37-1 = V1
OUTPUT CONFIG>OUTPUT MATRIX: E1 = BO3
CONTROL & LOGIC>QUICK LOGIC: E1 = O2.I1.V1
The output from Incomer 1 (BO3) relay is input to the relay on CB 3 (Binary Input 1). A panel switch may be used
to enable the On-Load Change-over scheme (Binary Input 2). Before Closing CB3 a check may be made that
there is no voltage on busbar 1 (27/59-1 = Virtual 1). CB 3 is closed from Binary Output 3.
CB3 Relay is Configured:
Panel switch (ON-Load Change-over Enabled) wired to B.I. 1
OUTPUT CONFIG>OUTPUT MATRIX: 27/59-1 = V1
OUTPUT CONFIG>OUTPUT MATRIX: E1 = BO3
CONTROL & LOGIC>QUICK LOGIC: E1 = I1.I2.V1
If required a time delay can be added to the output using the CONTROL & LOGIC > QUICK LOGIC: E1
Pickup Delay setting.
7SR210 & 7SR220 Applications Guide
Page 36 of 48 ©2018 Siemens Protection Devices Limited
Section 5: Supervision Functions
5.1 Circuit-Breaker Fail (50BF)
Where a circuit breaker fails to operate to clear fault current the power system will remain in a hazardous state
until the fault is cleared by remote or back-up protections. To minimise any delay, CB Failure protection provides
a signal to either re-trip the local CB or back-trip ‘adjacent’ CBs.
The function is initiated by the operation of user selectable protection functions or from a binary input. Current
flow is monitored after a tripping signal has been issued if any of the 50BF current check elements have not reset
before the timers have expired an output is given. For CB trips where the fault is not current related an additional
input is provided (50BF Mech Trip) which monitors the CB closed input and provides an output if the circuit
breaker has not opened before the timers expire.
The relay incorporates a two-stage circuit breaker fail feature. For some systems, only the first will be used and
the CB Failure output will be used to back-trip the adjacent CB(s). On other systems, however, this output will be
used to re-trip the local CB to minimise potential disruption to the system; if possible via a secondary trip coil and
wiring. The second CB Failure stage will then be used to back-trip the adjacent CB(s).
If the CB is faulty and unable to open, a faulty contact can be wired to the CB faulty input of the relay and if a trip
occurs while this input is raised the CB fail delay timers may be by-passed to allow back tripping to occur without
delay.
Figure 5.1-1 Circuit Breaker Fail
5.1.1 Settings Guidelines
50BF Setting
The phase current setting must be set below the minimum protection setting current.
50BF Setting-I4
The EF or SEF current setting must be set below the minimum protection setting current.
50BF Ext Trig
Any binary input can be mapped to this input to trigger the circuit breaker fail function. Note current must be
above setting for the function to operate.
50BF Mech Trip
Any binary input can be mapped to this input to trigger the circuit breaker fail function. Note for the function to
operate the circuit breaker closed input is used to detect a failure, not the current.
50BF CB Faulty
Any binary input can be mapped to this input, if it is energised when a trip initiation is received an output will be
given immediately (the timers are by passed).
7SR210 & 7SR220 Applications Guide
© 2013 Siemens Protection Devices Limited Page 37 of 48
50BF DTL1/50BF DTL2
The time delays run concurrently within the relay. The time delay applied to the CB Fail protection must be in
excess of the longest CB operate time + relay reset time + a safety margin.
First Stage (Retrip)
Trip Relay operate time 10 ms
Reset Time 20 ms
CB Tripping time 50 ms
Safety Margin 40 ms
Overall First Stage CBF Time Delay 120 ms
Second Stage (Back Trip)
First CBF Time Delay 120 ms
Trip Relay operate time 10 ms
CB Tripping time 50 ms
Reset Time of measuring element 20 ms
Margin 60 ms
Overall Second Stage CBF Time Delay 260 ms
The safety margin is extended by 1 cycle for the second CBF stage as this will usually involve a back-trip of a
Busbar tripping scheme.
The timing sequence for each stage of the circuit breaker fail function is as below.
CB Backtrip
Sucessful
20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340
System
Fault
ms from fault
occuring
Relay
Operation
and CBF
Timer
Started
Main
Trip
Relay
Operation
Failure of
CB to trip
Reset of
CBF elements
does not occur
Backtrip
Operation
Backtrip
Trip Relay
CB Operate Time
Stage 1 CBF Timer (Backtrip) = 120ms
Figure 5.1-2 Single Stage Circuit Breaker Fail Timing
Stage 1 CBF Timer (Retrip) = 120ms
Failed CB Retrip
Operation
40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 360340
System
Fault
Relay
Operation
and CBF
Timer
Started
Main
Trip
Relay
Operation
CB's
Fails to
Trip
No Reset of
CBF elements CBF Retrip
Operation
CBF Retrip
Trip Relay
CB Operate Time
Stage 2 CBF Timer (Backtrip) = 250ms
No Reset of
CBF elements
CBF Back trip
Operation
Backtrip
Trip Relay
Operation
Operation of all
BB CB's
Reset of
CBF elements
ms from fault
occuring
Figure 5.1-3 Two Stage Circuit Breaker Fail Timing
7SR210 & 7SR220 Applications Guide
Page 38 of 48 ©2018 Siemens Protection Devices Limited
5.2 Current Transformer Supervision (60CTS)
When a CT fails, the current levels seen by the protection become unbalanced. A large level of NPS current is
therefore detected - around 0.3 x In for one or two CT failures. However this condition would also occur for a
system fault. To differentiate between the two conditions, the element uses NPS voltage to restrain the CTS
algorithm as show in the accompanying table.
NPS Current NPS Voltage Decision
> Setting > Setting System Fault
> Setting < Setting CT Failure
Table 5-2 Determination of CT Failure (1 or 2 Phases)
Following a CT Failure, there should be little or no NPS voltage. Perhaps 0.1 x Vn as a maximum.
Operation is subject to a time delay to prevent operation for transitory effects.
A 3-phase CT failure is considered so unlikely (these being independent units) that this condition is not tested for.
7SR210 & 7SR220 Applications Guide
© 2013 Siemens Protection Devices Limited Page 39 of 48
5.3 Voltage Transformer Supervision (60VTS)
Although VTs rarely fail themselves, VT Supervision presents a common application because of the failure of
protective Fuses connected in series with the VTs.
When a VT failure occurs on one or two phases, the voltage levels seen by the protection become unbalanced. A
large level of NPS voltage is therefore detected - around 0.3 x Vn for one or two VT failures. However this
condition would also occur for a system fault. To differentiate between the two conditions, the element uses NPS
current to restrain the VTS algorithm as show in the accompanying table.
NPS Voltage NPS Current Decision
> Setting > Setting System Fault
> Setting < Setting VT Failure
Table 5-3 Determination of VT Failure (1 or 2 Phases)
Following a VT Failure, the level of NPS current would be dependent solely upon load imbalance - perhaps 0.1 x
In as a maximum.
Operation is subject to a time delay to prevent operation for transitory effects.
NPS voltage and current quantities are used rather than ZPS since the latter makes it difficult to differentiate
between a VT failure and a Phase-Phase fault. Both conditions would generate little or no ZPS current. However
the element provides an option to use ZPS quantities to meet some older specifications.
There are possible problems with using NPS quantities due to load imbalances. These would also generate
significant levels of NPS current and so possibly cause a VT failure to be missed. This problem can be overcome
by careful selection of settings, however, setting the NPS current threshold above the level expected for
imbalance conditions.
If a failure occurs in all 3 Phases of a Voltage Transformer, then there will be no NPS or ZPS voltage to work with.
However the PPS Voltage will fall below expected minimum measurement levels.
This could also be due to a ‘close in’ fault and so PPS Current must remain above minimum load level BUT below
minimum fault level.
PPS Voltage PPS Current Decision
< Setting > Minimum Fault Level System Fault
< Setting Minimum Load Level <
AND
< Minimum Fault Level
VT Failure
Table 5-4 Determination of VT Failure (3 Phases)
Operation is again subject to a time delay to prevent operation for transitory effects.
Alternatively a 3 Phase VT failure can be signalled to the relay via a Binary Input taken from the Trip output of an
external MCB. This can also be reset by a Binary Input signal.
VTS would not normally be used for tripping - it is an alarm rather than fault condition. However the loss of a VT
would cause problems for protection elements that have voltage dependant functionality. For this reason, the
relay allows these protection elements - under-voltage, directional over-current, etc. - to be inhibited if a VT failure
occurs.
7SR210 & 7SR220 Applications Guide
Page 40 of 48 ©2018 Siemens Protection Devices Limited
5.4 Trip-Circuit Supervision (74TCS)
Binary Inputs may be used to monitor the integrity of the CB trip circuit wiring. A small current flows through the
B.I. and the trip circuit. This current operates the B.I. confirming the integrity of the auxiliary supply, CB trip coil,
auxiliary switch, C.B. secondary isolating contacts and associated wiring. If monitoring current flow ceases the B.I.
drops off and if it is user programmed to operate one of the output relays, this can provide a remote alarm. In
addition, an LED on the relay can be programmed to operate. A user text label can be used to define the operated
LED e.g. “Trip CCT Fail”.
The relevant Binary Input is mapped to 74TCS-n in the INPUT CONFIG>INPUT MATRIX menu. To avoid giving
spurious alarm messages while the circuit breaker is operating the input is given a 0.4 s Drop-off Delay in the
INPUT CONFIG>BINARY INPUT CONFIG menu.
To provide an alarm output a normally open binary output is mapped to 74TCS-n.
5.4.1 Trip Circuit Supervision Connections
The following circuits are derived from UK ENA S15 standard schemes H5, H6 and H7.
For compliance with this standard: -
Where more than one device is used to trip the CB then connections should be looped between the
tripping contacts. To ensure that all wiring is monitored the binary input must be at the end of the looped
wiring.
Resistors must be continuously rated and where possible should be of wire-wound construction.
Scheme 1 (Basic)
Figure 5.4-1 Trip Circuit Supervision Scheme 1 (H5)
Scheme 1 provides full Trip supervision with the circuit breaker Open or Closed.
Where a ‘Hand Reset’ Trip contact is used measures must be taken to inhibit alarm indications after a CB trip.
7SR210 & 7SR220 Applications Guide
© 2013 Siemens Protection Devices Limited Page 41 of 48
Scheme 2 (Intermediate)
Figure 5.4-2 Trip Circuit Supervision Scheme 2 (H6)
Scheme 2 provides continuous Trip Circuit Supervision of trip coil with the circuit breaker Open or Closed. It does
not provide pre-closing supervision of the connections and links between the tripping contacts and the circuit
breaker and may not therefore be suitable for some circuits which include an isolating link.
Scheme 3 (Comprehensive)
Figure 5.4-3 Trip Circuit Supervision Scheme 3 (H7)
Scheme 3 provides full Trip supervision with the circuit breaker Open or Closed.
7SR210 & 7SR220 Applications Guide
Page 42 of 48 ©2018 Siemens Protection Devices Limited
5.5 Inrush Detector (81HBL2)
This element detects the presence of high levels of 2nd Harmonic current which is indicative of transformer Inrush
current at switch-on. These currents may be above the operate level of the overcurrent elements for a short
duration and it is important that the relay does not issue an incorrect trip command for this transient network
condition.
If a magnetic inrush condition is detected operation of the overcurrent elements can be blocked.
Calculation of the magnetising inrush current level is complex. However a ratio of 20% 2nd Harmonic to
Fundamental current will meet most applications without compromising the integrity of the Overcurrent protection.
There are 3 methods of detection and blocking during the passage of magnetising inrush current.
Phase Blocking only occurs in those phases where Inrush is detected.
Large, Single Phase Transformers – Auto-transformers.
Cross All 3-phases are blocked if Inrush is detected in any phase.
Traditional application for most Transformers but can give delayed operation for Switch-
on to Earth Fault conditions.
Sum Composite 2nd Harmonic content derived for all 3-phases and then compared to
Fundamental current for each individual phase.
Provides good compromise between Inrush stability and fast fault detection.
Table 5-5 Magnetic Inrush Bias
5.6 Broken Conductor / Load Imbalance (46BC)
This feature is used to detect an open circuit condition when a conductor breaks or a mal-operation occurs in
phase segregated switchgear.
There will be little or no fault current and so overcurrent elements will not detect the condition. However the
condition can be detected because there will be a high content of NPS (unbalance) current present.
An NPS / PPS ratio > 50% will result from a Broken Conductor condition.
Operation is subject to a time delay to prevent operation for transitory effects.
5.7 Circuit-Breaker Maintenance
The Relay provides CB Total Trip Count, CB Delta Trip Count, CB Count to AR Block and CB Frequent Operation
Counters along with an I2t CB Wear Counter to estimate the amount of wear and tear experienced by a Circuit-
Breaker. Alarm can be provided once set levels have been exceeded.
Typically estimates obtained from previous circuit-breaker maintenance schedules or manufacturers data sheets
are used for setting these alarm levels. The relay instrumentation provides the current values of these counters.
5.8 Overfluxing Detector (81HBL5)
An increase in transformer or decrease in system frequency may result in the transformer becoming over-excited.
The 81HBL5 element can be used to prevent protection operation e.g. prevent differential protection operation
during acceptable over-excitation conditions.
7SR210 & 7SR220 Applications Guide
© 2013 Siemens Protection Devices Limited Page 43 of 48
5.9 Load Blinder (21)
NB: It is important to observe the convention regarding Forward and Reverse directions of current.
Load Blinders are used with directional overcurrent elements to block forward tripping during periods of high load
currents that can occur in distribution networks. The blinder is operated during user defined load conditions and is
used in conjunction with the relay protection elements.
One of the major factors contributing to high load conditions is an increase of distributed generation capacity
which can feed power back into the network contrary to the ‘normaldirection of power flow. This can result in
current levels above the relay setting and can cause tripping of overcurrent elements.
One typical example is on paralleled incoming transformer circuits, forward directional overcurrent elements are
parametised such that they detect faults on the transformer LV connections for currents flowing in the direction
contrary to the ‘normal’ load flow. These forward elements have a relatively low current setting, typically <45% of
transformer rating, as current normally only flows in this direction during fault conditions. When embedded
generation is connected into the downstream network, these relays limit the level of current that can be fed back
into the grid.
Load Blinders measure the system impedance and are set to differentiate between a fault having a relatively low
impedance and a fault having a relatively high impedance. Additional measurands are also considered to increase
the security of operation.
Figure 5.9-1 Paralleled Transformers and Feeders
7SR210 & 7SR220 Applications Guide
Page 44 of 48 ©2018 Siemens Protection Devices Limited
5.10 Load Blinder Design
5.10.1 Application view
It is important to observe the convention regarding Forward and Reverse directions of current.
Load Blinders are designed to block forward overcurrent elements from tripping during defined load conditions.
User settings 21LB-1/3P Impedance,21LB-1/3P Angle +ve and 21LB-1/3P Angle -ve (‘a’, ‘b’ and ‘c’ in Figure
5.10.1-1 Impedance Setting and Angle Setting) allow the user to define the Blinder region depending on the
network configuration - specifically the line loading and fault levels.
The measured impedance:
a. Is used to confirm the forward or reverse flow of current i.e. load blinder operated.
b. Is used to confirm that current flow is outside the defined limits of load flow i.e. load blinder not operated.
The transition between operated and non-operated is subject to a 5 degree hysteresis adjustment.
+R
+X
Phase
Fault
Block
Zone
Load
Impedance
b
a
Nominal
Impedance
Z = 1p.u. =
VL/ (√3 x I)
c
-R
-X
Vpps value Point 1
Point 2
Point 3
Point 4
0
360
Trip Level
I = Vs / Z
Operate
Zone
a = 21LB-3P Impedance
setting
b = 21LB-3P Angle +ve
setting
c = 21LB-3P Angle -ve
setting
Point 6
Point 5
Block
Zone
Load
Impedance
ba
c
Point 7
Point 10
Point 9
Point 8
Figure 5.10.1-1 Impedance Setting and Angle Setting
7SR210 & 7SR220 Applications Guide
© 2013 Siemens Protection Devices Limited Page 45 of 48
5.10.2 Design View
5.10.2.1 Load Blinder 3Ph
Figure 5.10.2.1-1 Logic Diagram 3 Phase
The 3-phase load blinder has the following setting parameters:
21LB – 3P Angle +ve
21LB – 3P Angle -ve
21LB – 3P Impedance
21LB – 3P VPPS
21LB – 3P INPS
The design of Load Blinder 3Ph takes into consideration that the protection blocking should only be issued during
definable allowable system power flow conditions i.e. an overcurrent blocking signal can only be issued when:
a. Positive Sequence Voltage Vpps is not significantly reduced i.e. is above the 21LB-3P VPPS Setting.
AND
b. Negative Sequence Current Inps is lower than 21LB-3P INPS Setting
AND
c. The impedance measured in all phases is within the operate zone.
Zpps is calculated from Vpps and Ipps. The calculated Zpps is used to determine if the impedance is in
the operate zone i.e. greater than the 21LB-3P Impedance setting and less than the 21LB-3P Angle
settings. Suitable settings can be chosen to provide overcurrent blocking in the forward or reverse
directions.
7SR210 & 7SR220 Applications Guide
Page 46 of 48 ©2018 Siemens Protection Devices Limited
5.10.2.2 Load Blinder 1Ph
The single phase Load Blinder provides phase segregated blocking outputs. The Inps level is not considered
whereas operation of the load blinder is inhibited during earth fault conditions i.e. when the Izps level exceeds the
I21LB-1P IZPS setting.
Figure 5.10.2.2-1 Logic Diagram 1 Phase
The single phase load blinder has the following setting parameters:
21LB – 1P Angle +ve
21LB – 1P Angle -ve
21LB – 1P Impedance
21LB – 1P VPPS
21LB – 1P IZPS
The design of single phase load blinder takes into consideration the following effects of a high unbalanced load
non-fault condition. The blinder is operated when:
a. Positive Sequence Voltage Vpps is not significantly changed. A high 21LB-1P VPPS setting will allow
inhibiting Load Blinders in case of larger voltage drops (representing fault situation).
AND
b. Zero Sequence Current Izps is lower than 21LB-1P IZPS Setting.,
AND
c. The impedance measured per phase is within the operate zone.
Zphase is calculated from Vphase (peak) and Iphase (peak). The calculated Zphase is used to
determine if the impedance for that phase is in the operate zone i.e. greater than 21LB-1P Impedance
setting and less than 21LB-1P Angle settings.
Suitable settings can be chosen to provide outputs in the forward or reverse directions.
7SR210 & 7SR220 Applications Guide
© 2013 Siemens Protection Devices Limited Page 47 of 48
5.10.3 Setting Example – 3 Pole Load Blinder
T2T1
90MVA
132/33kV
-10% to +20%
(Δ1%)
Z = 8%
1574A
1600/1A
Overcurrent
Fwd setting:
= 90% of 50%
=40.5MVA
= 709A @ 33kV
33000/110V
Load blinders used to block overcurrent
relay so that tripping does not occur for
load current levels with a P.F. 0.94 to
Unity.
+R
+X
Phase
Fault
Block
Zone
Load
Impedance
b
a
Nominal
Impedance
Z = 1p.u. =
VL/ (√3 x I)
c
-R
-X
Vpps value Point 1
Point 2
Point 3
Point 4
0
360
Trip Level
I = Vs / Z
Operate
Zone
a = 21LB-3P Impedance
setting
b = 21LB-3P Angle +ve
setting
c = 21LB-3P Angle -ve
setting
Point 6
Point 5
Fwd
Block
Zone
Load
Impedance
ba
c
Point 7
Point 10
Point 9
Point 8
Figure 5.10.3-1 Scheme and Impedance Illustration
7SR210 & 7SR220 Applications Guide
Page 48 of 48 ©2018 Siemens Protection Devices Limited
5.10.4 Calculating the Impedance
21LB-3P Impedance setting (‘a’)
This is the minimum system impedance that allows operation of the load blinder; it is set in secondary Ohms. To
enable blocking of the overcurrent element for values of current up to say 1.5 times the nominal load current value
(to allow for temporary reverse overload conditions) the setting is calculated from: -
Ω
1.53
110
I
V
Z
secy
Lsecy
S42=
´
==
Note: the equivalent primary impedance to the above: -
W=´´=´´= 88742 .
110
33000
1600
1
V
V
CT
CT
ZZ
Lsecy
Lprim
prim
Asecy
SP
21LB-3P Angle setting (‘b’ and ‘c’)
A setting of 20 degrees will allow blocking of the overcurrent element for system load power factors between 0.94
and Unity.
21LB-3P VPPS setting
The Blinder is only operational during normal load levels of reverse load flow. Where reverse current flow is
caused by a system fault the positive sequence voltage will reduce significantly. To facilitate Load Blinder
operation the system should be substantially balanced i.e. positive phase sequence voltage will be high.
A setting of 0.95 Vn is selected i.e. 21LB-VPPS setting = 0.95 x 63.5 = 60 V.
21LB-3P INPS setting
The Blinder is only operational during normal load levels of reverse load flow. The system should be substantially
balanced i.e negative phase sequence current will be low.
A21LB-3P INPS setting = 0.05 In is selected.
Unrestricted
Unrestricted
Siemens Protection Devices Limited
P.O. Box 8, North Farm Road
Hebburn, Tyne & Wear
NE31 1TZ
United Kingdom
Phone: +44 (0)191 401 7901
Fax: +44 (0)191 401 5575
E-mail: marketing.spdl.gb@siemens.com
For enquires please contact our Customer Support Center
Phone: +49 180/524 8437 (24hrs)
Fax: +49 180/524 2471
E-mail: support.energy@siemens.com
EMEA-T10050-00-76GB
October 2018
www. siemens.com/energy