Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 130
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 92A
IDM Pulsed Drain Current 520
PD @TC = 25°C Power Dissipation 330 W
Linear Derating Factor 2.2 W/°C
VGS Gate-to-Source Voltage ± 20 V
EAS Single Pulse Avalanche Energy390 mJ
IAR Avalanche CurrentSee Fig.12a, 12b, 15, 16 A
EAR Repetitive Avalanche EnergymJ
dv/dt Peak Diode Recovery dv/dt 4.6 V/ns
TJOperating Junction and -55 to + 175
TSTG Storage Temperature Range
Soldering Temperature, for 10 seconds 300 (1.6mm from case )
°C
Mounting Torque, 6-32 or M3 screw 10 lbf•in (1.1N•m)
HEXFET® Power MOSFET
This Stripe Planar design of HEXFET® Power MOSFETs
utilizes the lastest processing techniques to achieve
extremely low on-resistance per silicon area. Additional
features of this HEXFET power MOSFET are a 175°C
junction operating temperature, fast switching speed and
improved repetitive avalanche rating. These benefits
combine to make this design an extremely efficient and
reliable device for use in a wide variety of applications.
S
D
G
Absolute Maximum Ratings
VDSS = 75V
RDS(on) = 0.0078
ID = 130A
Description
07/14/10
www.irf.com 1
l
Advanced Process Technology
l
Ultra Low On-Resistance
l
Dynamic dv/dt Rating
l
175°C Operating Temperature
l
Fast Switching
l
Repetitive Avalanche Allowed up to Tjmax
Benefits
TO-220AB
IRF1407PbF
Parameter Typ. Max. Units
RθJC Junction-to-Case ––– 0.45
RθCS Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/W
RθJA Junction-to-Ambient ––– 62
Thermal Resistance
PD - 95485A
Typical Applications
l
Industrial Motor Drive
IRF1407PbF
2www.irf.com
Parameter Min. Typ. Max. Units Conditions
V(BR)DSS Drain-to-Source Breakdown Voltage 75 ––– ––– V VGS = 0V, ID = 250µA
V(BR)DSS/TJBreakdown Voltage Temp. Coefficient ––– 0.09 ––– V/°C Reference to 25°C, ID = 1mA
RDS(on) Static Drain-to-Source On-Resistance ––– ––– 0.0078 VGS = 10V, ID = 78A
VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V VDS = 10V, ID = 250µA
gfs Forward Transconductance 74 ––– ––– S VDS = 25V, ID = 78A
––– ––– 20 µA VDS = 75V, VGS = 0V
––– ––– 250 VDS = 60V, VGS = 0V, TJ = 150°C
Gate-to-Source Forward Leakage ––– ––– 200 VGS = 20V
Gate-to-Source Reverse Leakage ––– ––– -200 nA VGS = -20V
QgTotal Gate Charge –– 160 250 ID = 78A
Qgs Gate-to-Source Charge ––– 35 52 nC VDS = 60V
Qgd Gate-to-Drain ("Miller") Charge ––– 54 81 VGS = 10V
td(on) Turn-On Delay Time ––– 11 ––– VDD = 38V
trRise Time ––– 150 –– ID = 78A
td(off) Turn-Off Delay Time –– 150 ––– RG = 2.5
tfFall Time ––– 140 ––– VGS = 10V
Between lead,
––– ––– 6mm (0.25in.)
from package
and center of die contact
Ciss Input Capacitance ––– 5600 ––– VGS = 0V
Coss Output Capacitance ––– 890 ––– pF VDS = 25V
Crss Reverse Transfer Capacitance ––– 190 ––– ƒ = 1.0KHz, See Fig. 5
Coss Output Capacitance ––– 5800 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0KHz
Coss Output Capacitance ––– 560 ––– VGS = 0V, VDS = 60V, ƒ = 1.0KHz
Coss eff. Effective Output Capacitance ––– 1100 ––– VGS = 0V, VDS = 0V to 60V
nH
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
LDInternal Drain Inductance
LSInternal Source Inductance ––– –––
S
D
G
IGSS
ns
4.5
7.5
IDSS Drain-to-Source Leakage Current
S
D
G
Parameter Min. Typ. Max. Units Conditions
ISContinuous Source Current MOSFET symbol
(Body Diode) ––– ––– showing the
ISM Pulsed Source Current integral reverse
(Body Diode) ––– ––– p-n junction diode.
VSD Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 78A, VGS = 0V
trr Reverse Recovery Time ––– 110 170 ns TJ = 25°C, IF = 78A
Qrr Reverse RecoveryCharge ––– 390 590 nC di/dt = 100A/µs
ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Source-Drain Ratings and Characteristics
130
520
A
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
Starting TJ = 25°C, L = 0.13mH
RG = 25, IAS = 78A. (See Figure 12).
ISD 78A, di/dt 320A/µs, VDD V(BR)DSS,
TJ 175°C
Pulse width 400µs; duty cycle 2%.
Notes:
Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
Calculated continuous current based on maximum allowable
junction temperature. Package limitation current is 75A.
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive
avalanche performance.
IRF1407PbF
www.irf.com 3
Fig 4. Normalized On-Resistance
vs. Temperature
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
0.1 110 100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current (A)
4.5V
20µs PULSE WIDTH
Tj = 25°C
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
0.1 110 100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current (A)
4.5V
20µs PULSE WIDTH
Tj = 175°C
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
3.0 5.0 7.0 9.0 11.0 13.0
VGS, Gate-to-Source Voltage (V)
10.00
100.00
1000.00
ID, Drain-to-Source Current (Α)
TJ = 25°C
TJ = 175°C
VDS = 15V
20µs PULSE WIDTH
-60 -40 -20 020 40 60 80 100 120 140 160 180
0.0
0.5
1.0
1.5
2.0
2.5
3.0
T , Junction Temperature ( C)
R , Drain-to-Source On Resistance
(Normalized)
J
DS(on)
°
V =
I =
GS
D
10V
130A
IRF1407PbF
4www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
110 100
VDS, Drain-to-Source Voltage (V)
100
1000
10000
100000
C, Capacitance(pF)
Coss
Crss
Ciss
VGS
= 0V, f = 1 MHZ
Ciss
= C
gs + C
gd, C
ds SHORTED
Crss
= C
gd
Coss
= C
ds
+ C
gd
040 80 120 160 200
0
3
6
9
12
15
Q , Total Gate Charge (nC)
V , Gate-to-Source Voltage (V)
G
GS
I =
D78A
V = 15V
DS
V = 37V
DS
V = 60V
DS
0.0 1.0 2.0 3.0
VSD, Source-toDrain Voltage (V)
0.10
1.00
10.00
100.00
1000.00
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 175°C
VGS = 0V
1 10 100 1000
VDS , Drain-toSource Voltage (V)
1
10
100
1000
10000
ID, Drain-to-Source Current (A)
Tc = 25°C
Tj = 175°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY RDS(on)
100µsec
IRF1407PbF
www.irf.com 5
Fig 9. Maximum Drain Current vs.
Case Temperature
VDS
90%
10%
VGS
t
d(on)
t
r
t
d(off)
t
f
VDS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RG
D.U.T.
10V
+
-
VDD
Fig 10a. Switching Time Test Circuit
Fig 10b. Switching Time Waveforms
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
25 50 75 100 125 150 175
0
20
40
60
80
100
120
140
T , Case Temperature ( C)
I , Drain Current (A)
°
C
D
LIMITED BY PACKAGE
0.001
0.01
0.1
1
0.00001 0.0001 0.001 0.01 0.1 1
Notes :
1. Duty factor D = t / t
2. Peak T = P x Z + T
1 2
JDM thJC C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response (Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
IRF1407PbF
6www.irf.com
QG
QGS QGD
VG
Charge
D.U.T. V
DS
I
D
I
G
3mA
V
GS
.3µF
50K
.2µF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
10 V
Fig 13b. Gate Charge Test Circuit
Fig 13a. Basic Gate Charge Waveform
Fig 12c. Maximum Avalanche Energy
vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
Fig 12a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
Fig 14. Threshold Voltage vs. Temperature
25 50 75 100 125 150 175
0
130
260
390
520
650
Starting T , Junction Temperature ( C)
E , Single Pulse Avalanche Energy (mJ)
J
AS
°
ID
TOP
BOTTOM
32A
55A
78A
-75 -50 -25 025 50 75 100 125 150 175 200
TJ , Temperature ( °C )
1.5
2.0
2.5
3.0
3.5
VGS(th) Gate threshold Voltage (V)
ID = 250µA
IRF1407PbF
www.irf.com 7
Fig 15. Typical Avalanche Current vs.Pulsewidth
Fig 16. Maximum Avalanche Energy
vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
1
10
100
1000
Avalanche Current (A)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming Tj = 25°C due to
avalanche losses
0.01
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
0
100
200
300
400
EAR , Avalanche Energy (mJ)
TOP Single Pulse
BOTTOM 10% Duty Cycle
ID = 78A
IRF1407PbF
8www.irf.com
Peak Diode Recovery dv/dt Test Circuit
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P. W .
Period
+
-
+
+
+
-
-
-
RG
VDD
dv/dt controlled by RG
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T*Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
* Reverse Polarity of D.U.T for P-Channel
VGS
[ ]
[ ]
*** VGS = 5.0V for Logic Level and 3V Drive Devices
[ ] ***
Fig 17. For N-channel HEXFET® power MOSFETs
IRF1407PbF
www.irf.com 9
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.07/2010
TO-220 package is not recommended for Surface Mount Application.
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
INT ERNAT IONAL PART NUMBER
RECTIFIER
LOT CODE
AS S E MB L Y
LOGO
YEAR 0 = 2000
DAT E CODE
WEEK 19
LINE C
LOT CODE 1789
EXAMPLE : T HIS IS AN IRF1010
Note: "P" in as sembly line position
indi cates "Lead - F r ee"
IN T HE ASS EMBLY LINE "C"
AS SEMBL ED ON WW 19, 2000
Notes:
1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/auto/
2. For the most current drawing please refer to IR website at http://www.irf.com/package/