LM3402
,
LM3402HV
www.ti.com
SNVS450F –SEPTEMBER 2006–REVISED OCTOBER 2015
8 Application and Implementation
NOTE
Information in the following applications sections is not part of the TI component
specification, and TI does not warrant its accuracy or completeness. TI’s customers are
responsible for determining suitability of components for their purposes. Customers should
validate and test their design implementation to confirm system functionality.
8.1 Application Information
8.1.1 Switching Frequency
Switching frequency is selected based on the tradeoffs between efficiency (better at low frequency), solution
size/cost (smaller at high frequency), and the range of output voltage that can be regulated (wider at lower
frequency.) Many applications place limits on switching frequency due to EMI sensitivity. The ON-time of the
LM3402/HV can be programmed for switching frequencies ranging from the 10’s of kHz to over 1 MHz. The
maximum switching frequency is limited only by the minimum ON-time requirement.
8.1.2 LED Ripple Current
Selection of the ripple current, ΔiF, through the LED array is analogous to the selection of output ripple voltage in
a standard voltage regulator. Where the output ripple in a voltage regulator is commonly ±1% to ±5% of the DC
output voltage, LED manufacturers generally recommend values for ΔiFranging from ±5% to ±20% of IF. Higher
LED ripple current allows the use of smaller inductors, smaller output capacitors, or no output capacitors at all.
The advantages of higher ripple current are reduction in the solution size and cost. Lower ripple current requires
more output inductance, higher switching frequency, or additional output capacitance. The advantages of lower
ripple current are a reduction in heating in the LED itself and greater range of the average LED current before
the current limit of the LED or the driving circuitry is reached.
8.1.3 Buck Converters Without Output Capacitors
The buck converter is unique among non-isolated topologies because of the direct connection of the inductor to
the load during the entire switching cycle. By definition an inductor will control the rate of change of current that
flows through it, and this control overcurrent ripple forms the basis for component selection in both voltage
regulators and current regulators. A current regulator such as the LED driver for which the LM3402/HV was
designed focuses on the control of the current through the load, not the voltage across it. A constant current
regulator is free of load current transients, and has no need of output capacitance to supply the load and
maintain output voltage. Referring to the Typical Application Diagram, the inductor and LED can form a single
series chain, sharing the same current. When no output capacitor is used, the same equations that govern
inductor ripple current, ΔiL, also apply to the LED ripple current, ΔiF. For a controlled ON-time converter such as
LM3402/HV the ripple current is described by the following expression:
(10)
A minimum ripple voltage of 25 mV is recommended at the CS pin to provide good signal-to-noise ratio (SNR).
The CS pin ripple voltage, ΔVSNS, is described by the following:
ΔVSNS =ΔiFx RSNS (11)
8.1.4 Buck Converters With Output Capacitors
A capacitor placed in parallel with the LED or array of LEDs can be used to reduce the LED current ripple while
keeping the same average current through both the inductor and the LED array. This technique is demonstrated
in Typical Application. With this topology the output inductance can be lowered, making the magnetics smaller
and less expensive. Alternatively, the circuit could be run at lower frequency but keep the same inductor value,
improving the efficiency and expanding the range of output voltage that can be regulated. Both the peak current
limit and the OVP/OCP comparator still monitor peak inductor current, placing a limit on how large ΔiLcan be
even if ΔiFis made very small. A parallel output capacitor is also useful in applications where the inductor or
input voltage tolerance is poor. Adding a capacitor that reduces ΔiFto well below the target provides headroom
for changes in inductance or VIN that might otherwise push the peak LED ripple current too high.
Copyright © 2006–2015, Texas Instruments Incorporated Submit Documentation Feedback 15
Product Folder Links: LM3402 LM3402HV