General Description
The MAX4212/MAX4213 single, MAX4216 dual,
MAX4218 triple, and MAX4220 quad op amps are
unity-gain-stable devices that combine high-speed per-
formance with Rail-to-Rail®outputs. The MAX4213/
MAX4218 have a disable feature that reduces power-
supply current to 400µA and places the outputs into a
high-impedance state. These devices operate from a
3.3V to 10V single supply or from ±1.65V to ±5V dual
supplies. The common-mode input voltage range
extends beyond the negative power-supply rail (ground
in single-supply applications).
These devices require only 5.5mA of quiescent supply
current while achieving a 300MHz -3dB bandwidth and
a 600V/µs slew rate. Input-voltage noise is only
10nV/Hz and input-current noise is only 1.3pA/Hz for
either the inverting or noninverting input. These parts
are an excellent solution in low-power/low-voltage sys-
tems that require wide bandwidth, such as video, com-
munications, and instrumentation. In addition, when
disabled, their high-output impedance makes them
ideal for multiplexing applications.
The MAX4212 comes in a miniature 5-pin SOT23 pack-
age, while the MAX4213/MAX4216 come in 8-pin µMAX
and SO packages. The MAX4218/MAX4220 are available
in space-saving 16-pin QSOP and 14-pin SO packages.
Applications
Battery-Powered Instruments
Video Line Driver
Analog-to-Digital Converter Interface
CCD Imaging Systems
Video Routing and Switching Systems
Features
High Speed:
300MHz -3dB Bandwidth (MAX4212/MAX4213)
200MHz -3dB Bandwidth
(MAX4216/MAX4218/MAX4220)
50MHz 0.1dB Gain Flatness
(MAX4212/MAX4213)
600V/µs Slew Rate
Single 3.3V/5.0V Operation
Rail-to-Rail Outputs
Input Common-Mode Range Extends Beyond VEE
Low Differential Gain/Phase: 0.02%/0.02°
Low Distortion at 5MHz:
-78dBc SFDR
-75dB Total Harmonic Distortion
High-Output Drive: ±100mA
400µA Shutdown Capability (MAX4213/MAX4218)
High-Output Impedance in Off State
(MAX4213/MAX4218)
Space-Saving SOT23, µMAX, or QSOP Packages
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
________________________________________________________________ Maxim Integrated Products 1
VEE
IN-
IN+
15VCC
OUT
MAX4212
SOT23-5
TOP VIEW
2
34
OUT
N.C.
VEE
1
2
8
7
EN
VCC
IN-
IN+
N.C.
µMAX/SO
3
4
6
5
MAX4213
Pin Configurations
RO
50
IN
VOUT
ZO = 50
UNITY-GAIN LINE DRIVER
(RL = RO + RTO)
RF
24
RTO
50
RTIN
50
MAX4212
Typical Operating Circuit
19-1178; Rev 3; 10/03
EVALUATION KIT MANUAL
AVAILABLE
Ordering Information
Ordering Information continued at end of data sheet.
Pin Configurations continued at end of data sheet.
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
PART TEMP
RANGE
PIN
PACKAGE
TOP
MARK
MAX4212EUK-T
-40°C to +85°C 5 SOT23-5
ABAF
MAX4213ESA
-40°C to +85°C
8 SO
MAX4213EUA
-40°C to +85°C
8 µMAX
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
DC ELECTRICAL CHARACTERISTICS
(VCC = 5V, VEE = 0, EN_ = 5V, RL= 2kto VCC/2, VOUT = VCC/2, TA= TMIN to TMAX, unless otherwise noted. Typical values are at
TA= +25°C.)
Supply Voltage (VCC to VEE)..................................................12V
IN_-, IN_+, OUT_, EN_ .....................(VEE - 0.3V) to (VCC + 0.3V)
Output Short-Circuit Duration to VCC or VEE ............. Continuous
Continuous Power Dissipation (TA= +70°C)
5-Pin SOT23 (derate 7.1mW/°C above +70°C) ...........571mW
8-Pin SO (derate 5.9mW/°C above +70°C) .................471mW
8-Pin µMAX (derate 4.5mW/°C above +70°C) ............221mW
14-Pin SO (derate 8.3mW/°C above +70°C) ...............667mW
16-Pin QSOP (derate 8.3mW/°C above +70°C) ..........667mW
Operating Temperature Range ...........................-40°C to +85°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or at any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure
to absolute maximum rating conditions for extended periods may affect device reliability.
VOL - VEE
VCC - VOH
VOL - VEE
VCC - VOH
VOL - VEE
VCC - VOH
VOL - VEE
VCC - VOH
0.60
0.70
RL= 50
0.30 0.50
0.30 0.50
RL= 150
0.06 0.20
0.06 0.20
RL= 2k
0.05
Output Voltage Swing VOUT V
0.05
RL= 10k
57
1.0V VOUT 4V, RL= 50
52 59
0.5V VOUT 4.5V, RL= 150
55 61
0.25V VOUT 4.75V, RL= 2k
3M
Common mode (-0.2V VCM +2.75V)
49MAX42_ _ES_, MAX42_ _EEE
PARAMETER SYMBOL MIN TYP MAX UNITS
Input Resistance RIN
70 k
Input Offset Current IOS 0.1 4.0 µA
Input Bias Current IB5.4 20 µA
Input Offset Voltage Matching ±1 mV
Common-Mode Rejection Ratio CMRR 70 100 dB
Open-Loop Gain (Note 1) AVOL dB
Input Offset Voltage (Note 1)
Input Common-Mode
Voltage Range VCM VEE -V
CC -
0.20 2.25 V
VOS
412
mV
Input Offset Voltage
Temperature Coefficient TCVOS 8µV/°C
CONDITIONS
Differential mode (-1V VIN +1V)
(Note 1)
(Note 1)
Any channels for MAX4216/MAX4218/
MAX4220
(VEE - 0.2V) VCM (VCC - 2.25V)
Guaranteed by CMRR test
MAX4212EUK, MAX421_EUA
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
_______________________________________________________________________________________ 3
DC ELECTRICAL CHARACTERISTICS (continued)
(VCC = 5V, VEE = 0, EN_ = 5V, RL= 2kto VCC/2, VOUT = VCC/2, TA= TMIN to TMAX, unless otherwise noted. Typical values are at
TA= +25°C.)
EN_ = 0
EN_ Logic Input Low Current IIL 200 400 µA
(VEE + 0.2V) EN_ VCC
Output Current IOUT mA
TA= +25°C
0.40 0.65Disabled (EN_ = 0)
Quiescent Supply Current
(per Amplifier) IS
5.5 7.0 mA
Enabled
EN_ Logic Input High Current IIH 0.5 10 µAEN_ = 5V
0.5
EN_ Logic-High Threshold VIH VCC - 1.6 V
EN_ Logic-Low Threshold VIL VCC - 2.6 V
Disabled Output Resistance ROUT (OFF) 20 35 k
EN_ = 0, 0 VOUT 5V (Note 3)
45VCC = 3.3V, VEE = 0, VCM = 0.90V
PARAMETER SYMBOL MIN TYP MAX UNITS
Operating Supply-Voltage
Range VS3.15 11.0 V
54 66
Power-Supply Rejection Ratio
(Note 2) PSRR
46 57
dB
Output Short-Circuit Current ISC ±150 mA
Open-Loop Output Resistance ROUT 8
VCC to VEE
VCC = 5V, VEE = -5V, VCM = 0
VCC = 5V, VEE = 0, VCM = 2.0V
Sinking or sourcing
TA= TMIN to TMAX ±60
±70 ±120
CONDITIONS
RL= 20to VCC or
VEE
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
4 _______________________________________________________________________________________
Note 1: Tested with VCM = 2.5V.
Note 2: PSR for single 5V supply tested with VEE = 0, VCC = 4.5V to 5.5V; for dual ±5V supply with VEE = -4.5V to -5.5V,
VCC = 4.5V to 5.5V; and for single 3.3V supply with VEE = 0, VCC = 3.15V to 3.45V.
Note 3: Does not include the external feedback networks impedance.
AC ELECTRICAL CHARACTERISTICS
(VCC = 5V, VEE = 0, VCM = 2.5V, EN_ = 5V, RF= 24, RL= 100to VCC/2, VOUT = VCC/2, AVCL = +1, TA= +25°C, unless otherwise
noted.)
MAX4216/MAX4218/MAX4220,
f = 10MHz, VOUT= 2VP-P dB-95XTALK
Amplifier Crosstalk
MAX4216/MAX4218/MAX4220,
f = 10MHz, VOUT = 20mVP-P dB0.1Amplifier Gain Matching
µs1tOFF
Amplifier Disable Time
fC= 5MHz, VOUT = 2VP-P dBc-78SFDR
Spurious-Free Dynamic
Range
Total harmonic
distortion
3rd harmonic
2nd harmonic
MAX4216/MAX4218/
MAX4220
MAX4212/MAX4213
MAX4216/MAX4218/
MAX4220
MAX4212/MAX4213
f = 10MHz
EN_ = 0
f = 10kHz
f = 10kHz
VOUT = 20mVP-P
NTSC, RL= 150
NTSC, RL= 150
fC= 10MHz, AVCL = 2
fC= 5MHz,
VOUT = 2VP-P
VOUT = 100mVP-P
f1 = 10.0MHz, f2 = 10.1MHz, VOUT = 1VP-P
VOUT = 2V step
VOUT = 2V step
VOUT = 2VP-P
VOUT = 20mVP-P
CONDITIONS
ns100tON
Amplifier Enable Time
6ZOUT
Output Impedance
pF2COUT (OFF)
Disabled Output Capacitance
pF1CIN
Input Capacitance
pA/Hz
1.3in
Input Noise-Current Density
nV/Hz
10en
Input Noise-Voltage Density
%0.02DGDifferential Gain Error
degrees0.02DPDifferential Phase Error
dBm11Input 1dB Compression Point
dBc35IP3
Two-Tone, Third-Order
Intermodulation Distortion
dB-75
-82
HDHarmonic Distortion
200 MHz
300
BWSS
Small-Signal -3dB Bandwidth
dBc
-78
ns1tR, tF
Rise/Fall Time
ns45tS
Settling Time to 0.1%
V/µs600SRSlew Rate
MHz180BWLS
Large-Signal -3dB Bandwidth
MHz
50
BW0.1dB
Bandwidth for 0.1dB Gain
Flatness 35
UNITSMIN TYP MAXSYMBOLPARAMETER
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
_______________________________________________________________________________________ 5
4
-6
100k 1M 10M 100M 1G
MAX4212/MAX4213
SMALL-SIGNAL GAIN vs. FREQUENCY
-4
MAX4212/3/6/8/20-01
FREQUENCY (Hz)
GAIN (dB)
-2
0
2
3
-5
-3
-1
1
VOUT = 20mVP-P
3
-7
100k 1M 10M 100M 1G
MAX4216/MAX4218/MAX4220
SMALL-SIGNAL GAIN vs. FREQUENCY
-5
MAX4212/3/6/8/20-02
FREQUENCY (Hz)
GAIN
(dB)
-3
-1
1
2
-6
-4
-2
0
VOUT = 20mVP-P
9
-1
100k 1M 10M 100M 1G
MAX4212/MAX4213
SMALL-SIGNAL GAIN vs. FREQUENCY
1
MAX4212/3/6/8/20-03
FREQUENCY (Hz)
GAIN (dB)
3
5
7
8
0
2
4
6
AVCL = 2
VOUT = 20mVP-P
9
-1
100k 1M 10M 100M 1G
MAX4216/MAX4218/MAX4220
SMALL-SIGNAL GAIN vs. FREQUENCY
1
MAX4212/3/6/8/20-04
FREQUENCY (Hz)
GAIN
(dB)
3
5
7
8
0
2
4
6
AVCL = 2
VOUT = 20mVP-P
0.5
-0.5
0.1M 1M 10M 100M 1G
MAX4216/MAX4218/MAX4220
GAIN FLATNESS vs. FREQUENCY
-0.3
MAX4212/3/6/8/20-07
FREQUENCY (Hz)
GAIN
(dB)
-0.1
0.1
0.3
0.4
-0.4
-0.2
0
0.2
4
-6
100k 1M 10M 100M 1G
LARGE-SIGNAL GAIN vs. FREQUENCY
-4
MAX4212/3/6/8/20-05
FREQUENCY (Hz)
GAIN (dB)
-2
0
2
3
-5
-3
-1
1
VOUT = 2VP-P
VOUT BIAS = 1.75V
0.7
-0.3
0.1M 1M 10M 100M 1G
MAX4212/MAX4213
GAIN FLATNESS vs. FREQUENCY
-0.1
MAX4212/3/6/8/20-06
FREQUENCY (Hz)
GAIN (dB)
0.1
0.3
0.5
0.6
-0.2
0
0.2
0.4
50
-150
100k 1M 10M 100M 1G
MAX4216/MAX4218/MAX4220
CROSSTALK vs. FREQUENCY
-110
MAX4212/3/6/8/20-08
FREQUENCY
(
Hz
)
CROSSTALK
(dB)
-70
-30
10
30
-130
-90
-50
-10
1000
0.1
0.1M 1M 10M 100M
CLOSED-LOOP OUTPUT IMPEDANCE
vs. FREQUENCY
MAX4212/3/6/8/20-09
FREQUENCY
(
Hz
)
IMPEDANCE ()
100
1
10
__________________________________________Typical Operating Characteristics
(VCC = 5V, VEE = 0, AVCL = 1, RF= 24, RL= 100to VCC/2, TA = +25°C, unless otherwise noted.)
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
6 _______________________________________________________________________________________
0
-100
100k 1M 10M 100M
HARMONIC DISTORTION
vs. FREQUENCY (AVCL = 1)
-80
MAX4212/3/6/8/20-10
FREQUENCY (Hz)
HARMONIC DISTORTION (dBc)
-60
-40
-20
-10
-90
-70
-50
-30
VOUT = 2VP-P
2ND HARMONIC
3RD HARMONIC
0
-100
100k 1M 10M 100M
HARMONIC DISTORTION
vs. FREQUENCY (AVCL = 2)
-80
MAX4212/3/6/8/20-11
FREQUENCY (Hz)
HARMONIC DISTORTION (dBc)
-60
-40
-20
-10
-90
-70
-50
-30
VOUT = 2VP-P
AVCL = 2
2ND HARMONIC
3RD HARMONIC
0
-100
100k 1M 10M 100M
HARMONIC DISTORTION
vs. FREQUENCY (AVCL = 5)
-80
MAX4212/3/6/8/20-12
FREQUENCY (Hz)
HARMONIC DISTORTION (dBc)
-60
-40
-20
-10
-90
-70
-50
-30
VOUT = 2VP-P
AVCL = 5
2ND HARMONIC
3RD
HARMONIC
0
-10
-20
-30
-60
-70
-90
-80
-40
-50
-100
MAX4212/3/6/8/20-13
LOAD (Ω)
0 200 400 600 800 1000
HARMONIC DISTORTION
vs. LOAD
HARMONIC DISTORTION (dBc)
f = 5MHz
VOUT = 2VP-P
3RD HARMONIC
2ND HARMONIC
0
-100
100k 1M 10M 100M
COMMON-MODE REJECTION
vs. FREQUENCY
-80
MAX4212/3/6/8/20-16
FREQUENCY (Hz)
CMR (dB)
-60
-40
-20
-10
-90
-70
-50
-30
0
-10
-20
-30
-60
-70
-90
-80
-40
-50
-100
MAX4212/3/6/8/20-14
OUTPUT SWING (VP-P)
0.5 1.0 1.5 2.0
HARMONIC DISTORTION
vs. OUTPUT SWING
HARMONIC DISTORTION (dBc)
fO = 5MHz
3RD HARMONIC
2ND HARMONIC
-0.01
0 100
0 100
DIFFERENTIAL GAIN AND PHASE
-0.01
0.00
0.00
0.01
0.01
0.02
0.02
0.03
0.03
IRE
IRE
DIFF. PHASE (deg) DIFF. GAIN (%)
MAX4212/3/6/8/20-15
VCM = 1.35V
VCM = 1.35V
20
-80
100k 1M 10M 100M
POWER-SUPPLY REJECTION
vs. FREQUENCY
-60
MAX4212/3/6/8/20-17
FREQUENCY (Hz)
POWER-SUPPLY REJECTION (dB)
-40
-20
0
10
-70
-50
-30
-10
4.5
4.0
3.5
2.5
2.0
1.5
3.0
1.0
MAX4212/3/6/8/20-18
LOAD RESISTANCE
(
)
25 50 75 100 125 150
OUTPUT SWING
vs. LOAD RESISTANCE (RL)
OUTPUT SWING (Vp-p)
AVCL = 2
____________________________Typical Operating Characteristics (continued)
(VCC = 5V, VEE = 0, AVCL = 1, RF= 24, RL= 100to VCC/2, TA = +25°C, unless otherwise noted.)
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
_______________________________________________________________________________________ 7
IN
(50mV/
div)
OUT
(25mV/
div)
VOLTAGE
SMALL-SIGNAL PULSE RESPONSE
(AVCL = 1)
MAX4212/3/6/8/20-19
20ns/div
VCM = 2.5V, RL = 100 to GROUND
IN
(25mV/
div)
OUT
(25mV/
div)
VOLTAGE
SMALL-SIGNAL PULSE RESPONSE
(AVCL = 2)
MAX4212/3/6/8/20-20
20ns/div
VCM = 1.25V, RL = 100 to GROUND
IN
(50mV/
div)
OUT
(25mV/
div)
VOLTAGE
SMALL-SIGNAL PULSE RESPONSE
(CL = 5pF, AVCL = 1)
MAX4212/3/6/8/20-21
20ns/div
VCM = 1.75V, RL = 100 to GROUND
IN
(1V/div)
OUT
(1V/div)
VOLTAGE
LARGE-SIGNAL PULSE RESPONSE
(AVCL = 1)
MAX4212/3/6/8/20-22
20ns/div
VCM = 1.75V, RL = 100 to GROUND
100
10
1
1 10 1k 10M1M
MAX4213
VOLTAGE-NOISE DENSITY
vs. FREQUENCY
MAX4212/3/6/8/20-25
FREQUENCY (Hz)
NOISE (nV/Hz)
100 10k 100k
IN
(500mV/
div)
OUT
(500mV/
div)
VOLTAGE
LARGE-SIGNAL PULSE RESPONSE
(AVCL = 2)
MAX4212/3/6/8/20-23
20ns/div
VCM = 0.9V, RL = 100 to GROUND
IN
(1V/
div)
OUT
(500mV/
div)
VOLTAGE
LARGE-SIGNAL PULSE RESPONSE
(CL = 5pF, AVCL = 2)
MAX4212/3/6/8/20-24
20ns/div
VCM = 1.75V, RL = 100 to GROUND
10
1
1 10 1k 10M1M
MAX4218
CURRENT-NOISE DENSITY
vs. FREQUENCY
MAX4212/3/6/8/20-26
FREQUENCY (Hz)
NOISE (pA/Hz)
100 10k 100k
EN_
5.0V
(ENABLE)
0
(DISABLE)
1V
0
OUT
ENABLE RESPONSE TIME
MAX4212/3/6/8/20-27
1µs/div
VIN = 1.0V
____________________________Typical Operating Characteristics (continued)
(VCC = 5V, VEE = 0, AVCL = 1, RF= 24, RL= 100to VCC/2, TA = +25°C, unless otherwise noted.)
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
8 _______________________________________________________________________________________
70
50
60
40
30
20
MAX4212/3/6/8/20-28
LOAD RESISTANCE (Ω)
0 200 400 600 800 1k
OPEN-LOOP GAIN
vs. LOAD RESISTANCE
OPEN-LOOP GAIN (dB)
400
350
300
250
150
50
100
200
0
MAX4212/3/6/8/20-29
LOAD RESISTANCE ()
1000 200 500400300 600
CLOSED-LOOP BANDWIDTH
vs. LOAD RESISTANCE
CLOSED-LOOP BANDWIDTH (MHz)
10
-90
100k 10M 100M1M
OFF-ISOLATION vs. FREQUENCY
-80
MAX4212/3/6/8/20-30
FREQUENCY (Hz)
OFF-ISOLATION (dB)
-70
-60
-50
-40
-30
-20
-10
0
7
6
4
5
3
MAX4212/3/6/8/20-31
TEMPERATURE (°C)
-25-50 0 755025 100
POWER-SUPPLY CURRENT
vs. TEMPERATURE
POWER-SUPPLY CURRENT (mA)
10
8
6
4
2
0
MAX4212/3/6/8/20-34
POWER-SUPPLY VOLTAGE (V)
43 567891011
POWER-SUPPLY CURRENT
vs. POWER-SUPPLY VOLTAGE
POWER-SUPPLY CURRENT (mA)
6.0
5.5
4.5
5.0
4.0
MAX4212/3/6/8/20-32
TEMPERATURE (°C)
-25-50 0 755025 100
INPUT BIAS CURRENT
vs. TEMPERATURE
INPUT BIAS CURRENT (µA)
0.20
0.16
0.12
0.04
0.08
0
MAX4212/3/6/8/20-33
TEMPERATURE (°C)
-25-50 0 755025 100
INPUT OFFSET CURRENT
vs. TEMPERATURE
INPUT OFFSET CURRENT (µA)
5
4
3
1
2
0
MAX4212/3/6/8/20-35
TEMPERATURE (°C)
-25-50 0 755025 100
INPUT OFFSET VOLTAGE
vs. TEMPERATURE
INPUT OFFSET VOLTAGE (mV)
5.0
4.8
4.6
4.2
4.4
4.0
MAX4212/3/6/8/20-36
TEMPERATURE (°C)
-25-50 0 755025 100
VOLTAGE SWING vs. TEMPERATURE
VOLTAGE SWING (Vp-p)
RL = 150TO VCC/2
____________________________Typical Operating Characteristics (continued)
(VCC = 5V, VEE = 0, AVCL = 1, RF= 24, RL= 100to VCC/2, TA = +25°C, unless otherwise noted.)
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
_______________________________________________________________________________________ 9
______________________________________________________________Pin Description
QSOPSOQSOPSO
MAX4218
MAX4216
SO/µMAX
MAX4220
MAX4213
SO/µMAX
MAX4212
SOT23
ENC2 2 Enable Amplifier C
ENB3 3 Enable Amplifier B
ENA1 1 Enable Amplifier A
EN 8Enable Amplifier
IND+14 12 Amplifier D Noninverting Input
IND-15 13 Amplifier D Inverting Input
OUTD16 14 Amplifier D Output
INC+1212 1410 Amplifier C Noninverting Input
INC-1113 159 Amplifier C Inverting Input
NAME
N.C.
OUT
VEE
IN+
INA-
OUTA
VCC
IN-
OUTC
INB+
INB-
OUTB
INA+
8, 9
13
2
1
4
10
5
6
7
3
11
6
7
4
14
10
9
8
5
8, 9
13
6
7
4
16
12
11
10
5
4
2
1
8
5
6
7
3
11
2
1
4
8
5
6
7
3
FUNCTION
1, 5 No Connection. Not internally connected.
Tie to ground or leave open.
1 6 Amplifier Output
PIN
2 4 Negative Power Supply or Ground (in
single-supply operation)
3 3 Noninverting Input
Amplifier A Inverting Input
Amplifier A Output
5 7 Positive Power Supply
4 2 Inverting Input
Amplifier C Output
Amplifier B Noninverting Input
Amplifier B Inverting Input
Amplifier B Output
Amplifier A Noninverting Input
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
_______________Detailed Description
The MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
are single-supply, rail-to-rail, voltage-feedback ampli-
fiers that employ current-feedback techniques to
achieve 600V/µs slew rates and 300MHz bandwidths.
Excellent harmonic distortion and differential gain/
phase performance make these amplifiers an ideal
choice for a wide variety of video and RF signal-
processing applications.
The output voltage swing comes to within 50mV of each
supply rail. Local feedback around the output stage
assures low open-loop output impedance to reduce
gain sensitivity to load variations. This feedback also
produces demand-driven current bias to the output
transistors for ±100mA drive capability, while constrain-
ing total supply current to less than 7mA. The input
stage permits common-mode voltages beyond the nega-
tive supply and to within 2.25V of the positive supply rail.
__________Applications Information
Choosing Resistor Values
Unity-Gain Configuration
The MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
are internally compensated for unity gain. When config-
ured for unity gain, the devices require a 24resistor
(RF) in series with the feedback path. This resistor
improves AC response by reducing the Q of the parallel
LC circuit formed by the parasitic feedback capaci-
tance and inductance.
Inverting and Noninverting Configurations
Select the gain-setting feedback (RF) and input (RG)
resistor values to fit your application. Large resistor val-
ues increase voltage noise and interact with the amplifi-
ers input and PC board capacitance. This can
generate undesirable poles and zeros and decrease
bandwidth or cause oscillations. For example, a nonin-
verting gain-of-two configuration (RF= RG) using 1k
resistors, combined with 1pF of amplifier input capaci-
tance and 1pF of PC board capacitance, causes a pole
at 159MHz. Since this pole is within the amplifier band-
width, it jeopardizes stability. Reducing the 1kresis-
tors to 100extends the pole frequency to 1.59GHz,
but could limit output swing by adding 200in parallel
with the amplifiers load resistor. Table 1 shows sug-
gested feedback, gain resistors, and bandwidth for
several gain values in the configurations shown in
Figures 1a and 1b.
Layout and Power-Supply Bypassing
These amplifiers operate from a single 3.3V to 11V power
supply or from dual supplies to ±5.5V. For single-supply
operation, bypass VCC to ground with a 0.1µF capacitor
as close to the pin as possible. If operating with dual sup-
plies, bypass each supply with a 0.1µF capacitor.
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
10 ______________________________________________________________________________________
IN
RG
VOUT = [1+ (RF / RG)] VIN
RF
RTO
RTIN
RO
VOUT
IN
RG
VOUT = -(RF / RG) VIN
RF
RTO
RS
RTIN
RO
VOUT
Figure 1a. Noninverting Gain Configuration Figure 1b. Inverting Gain Configuration
Maxim recommends using microstrip and stripline tech-
niques to obtain full bandwidth. To ensure that the PC
board does not degrade the amplifiers performance,
design it for a frequency greater than 1GHz. Pay care-
ful attention to inputs and outputs to avoid large para-
sitic capacitance. Whether or not you use a constant-
impedance board, observe the following guidelines
when designing the board:
Dont use wire-wrap boards because they are too
inductive.
Dont use IC sockets because they increase parasitic
capacitance and inductance.
Use surface-mount instead of through-hole compo-
nents for better high-frequency performance.
Use a PC board with at least two layers; it should be
as free from voids as possible.
Keep signal lines as short and as straight as possi-
ble. Do not make 90°turns; round all corners.
Rail-to-Rail Outputs,
Ground-Sensing Input
The input common-mode range extends from
(VEE - 200mV) to (VCC - 2.25V) with excellent common-
mode rejection. Beyond this range, the amplifier output
is a nonlinear function of the input, but does not under-
go phase reversal or latchup.
The output swings to within 50mV of either power-
supply rail with a 10kload. The input ground-sensing
and the rail-to-rail output substantially increase the
dynamic range. With a symmetric input in a single 5V
application, the input can swing 2.95VP-P, and the out-
put can swing 4.9VP-P with minimal distortion.
Enable Input and Disabled Output
The enable feature (EN_) allows the amplifier to be
placed in a low-power, high-output-impedance state.
Typically, the EN_ logic low input current (IIL) is small.
However, as the EN voltage (VIL) approaches the nega-
tive supply rail, IIL increases (Figure 2). A single resis-
tor connected as shown in Figure 3 prevents the rise in
the logic-low input current. This resistor provides a
feedback mechanism that increases VIL as the logic
input is brought to VEE. Figure 4 shows the resulting
input current (IIL).
When the MAX4213/MAX4218 are disabled, the amplifi-
ers output impedance is 35k. This high resistance
and the low 2pF output capacitance make these parts
ideal in RF/video multiplexer or switch applications. For
larger arrays, pay careful attention to capacitive load-
ing. See the Output Capacitive Loading and Stability
section for more information.
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
______________________________________________________________________________________ 11
Table 1. Recommended Component Values
Note: RL= RO+ RTO; RTIN and RTO are calculated for 50applications. For 75systems, RTO = 75; calculate RTIN from the
following equation:
R = 75
1- 75
R
TIN
G
-25
+25-10+10-5+5-2+2-1
+1
49.9
10
0
50
1200
GAIN (V/V)
49.9
6
49.9
20
500
49.9
25
0
50
500
49.9
11
49.9
56
500
49.9
33
100
0
100
500
49.9
25
49.9
124
500
49.9
60
62
0
250
500
49.9
105
49.9
500
500
49.949.9
RTO ()
90300Small-Signal -3dB Bandwidth (MHz)
5649.9
RTIN ()
0
RS()
COMPONENT
500
RG()
50024
RF()
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Output Capacitive Loading and Stability
The MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
are optimized for AC performance. They are not
designed to drive highly reactive loads, which de-
creases phase margin and may produce excessive
ringing and oscillation. Figure 5 shows a circuit that
eliminates this problem. Figure 6 is a graph of the opti-
mal isolation resistor (RS) vs. capacitive load. Figure 7
shows how a capacitive load causes excessive peak-
ing of the amplifiers frequency response if the capaci-
tor is not isolated from the amplifier by a resistor. A
small isolation resistor (usually 20to 30) placed
before the reactive load prevents ringing and oscilla-
tion. At higher capacitive loads, AC performance is
controlled by the interaction of the load capacitance
and the isolation resistor. Figure 8 shows the effect of a
27isolation resistor on closed-loop response.
Coaxial cable and other transmission lines are easily
driven when properly terminated at both ends with their
characteristic impedance. Driving back-terminated
transmission lines essentially eliminates the lines
capacitance.
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
12 ______________________________________________________________________________________
OUT
IN- EN_
IN+
10k
ENABLE
MAX42_ _
20
-160
0 50 100 150 300 350 500
-100
-120
0
mV ABOVE VEE
INPUT CURRENT (µA)
200 250 400 450
-60
-140
-20
-40
-80
0
-10
0 50 100 150 300 350 500
-7
-8
-1
mV ABOVE VEE
INPUT CURRENT (µA)
200 250 400 450
-3
-5
-9
-2
-4
-6
Figure 2. Enable Logic-Low Input Current vs. VIL
Figure 4. Enable Logic-Low Input Current vs. VIL with 10k
Series Resistor
Figure 3. Circuit to Reduce Enable Logic-Low Input Current
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
______________________________________________________________________________________ 13
RGRF
RISO
50
CL
VOUT
VIN
RTIN
MAX42_ _
Figure 5. Driving a Capacitive Load through an Isolation Resistor
30
25
20
5
10
15
0
CAPACITIVE LOAD (pF)
500 100 200150 250
ISOLATION RESISTANCE, RISO ()
Figure 6. Capacitive Load vs. Isolation Resistance
6
-4
100k 10M 100M1M 1G
-2
FREQUENCY (Hz)
GIAN (dB)
0
2
4
5
-3
-1
1
3
CL = 10pF
CL = 15pF
CL = 5pF
Figure 7. Small-Signal Gain vs. Frequency with Load
Capacitance and No Isolation Resistor
3
-7
100k 10M 100M1M 1G
-5
FREQUENCY (Hz)
GIAN (dB)
-3
-1
1
2
-6
-4
-2
0
CL = 68pF
RISO = 27
CL = 120pF
CL = 47pF
Figure 8. Small-Signal Gain vs. Frequency with Load
Capacitance and 27Isolation Resistor
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
14 ______________________________________________________________________________________
TOP VIEW
INB-
INB+
VEE
1
2
8
7
VCC
OUTB
INA-
INA+
OUTA
µMAX/SO
3
4
6
5
MAX4216
14
13
12
11
10
9
8
1
2
3
4
5
6
7
OUTC
INC-
INC+
VEE
VCC
ENB
ENC
ENA
MAX4218
INB+
INB-
OUTB
OUTA
INA-
INA+
SO
14
13
12
11
10
9
8
1
2
3
4
5
6
7
OUTD
IND-
IND+
VEE
VCC
INA+
INA-
OUTA
MAX4220
INC+
INC-
OUTC
OUTB
INB-
INB+
SO
16
15
14
13
12
11
10
9
1
2
3
4
5
6
7
8
OUTC
INC-
INC+
VEE
INB+
INB-
OUTB
N.C.
ENA
ENC
ENB
VCC
INA+
INA-
OUTA
N.C.
MAX4218
QSOP
16
15
14
13
12
11
10
9
1
2
3
4
5
6
7
8
OUTD
IND-
IND+
VEE
INC+
INC-
OUTC
N.C.
OUTA
INA-
INA+
VCC
INB+
INB-
OUTB
N.C.
MAX4220
QSOP
Pin Configurations (continued)
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
______________________________________________________________________________________ 15
Chip Information_Ordering Information (continued)
SOT-23 5L .EPS
E1
1
21-0057
PACKAGE OUTLINE, SOT-23, 5L
PART TEMP
RANGE
PIN
PACKAGE
TOP
MARK
MAX4216ESA -40°C to +85°C 8 SO
MAX4216EUA -40°C to +85°C 8 µMAX
MAX4218ESD -40°C to +85°C 14 SO
MAX4218EEE -40°C to +85°C 16 QSOP
MAX4220ESD -40°C to +85°C 14 SO
MAX4220EEE -40°C to +85°C 16 QSOP
MAX4212/MAX4213 TRANSISTOR COUNT: 95
MAX4216 TRANSISTOR COUNT: 190
MAX4218 TRANSISTOR COUNT: 299
MAX4220 TRANSISTOR COUNT: 362
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
8LUMAXD.EPS
PACKAGE OUTLINE, 8L uMAX/uSOP
1
1
21-0036 J
REV.DOCUMENT CONTROL NO.APPROVAL
PROPRIETARY INFORMATION
TITLE:
MAX
0.043
0.006
0.014
0.120
0.120
0.198
0.026
0.007
0.037
0.0207 BSC
0.0256 BSC
A2 A1
c
eb
A
L
FRONT VIEW SIDE VIEW
E H
0.6±0.1
0.6±0.1
ÿ 0.50±0.1
1
TOP VIEW
D
8
A2 0.030
BOTTOM VIEW
16∞
S
b
L
H
E
D
e
c
0∞
0.010
0.116
0.116
0.188
0.016
0.005
8
4X S
INCHES
-
A1
A
MIN
0.002
0.950.75
0.5250 BSC
0.25 0.36
2.95 3.05
2.95 3.05
4.78
0.41
0.65 BSC
5.03
0.66
6∞0∞
0.13 0.18
MAX
MIN
MILLIMETERS
-1.10
0.05 0.15
α
α
DIM
QSOP.EPS
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2003 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)