1SP0635x2xx-5SNA1500E250300
www.IGBT-Driver.com Page 1
1SP0635x2xx-5SNA1500E250300
Preliminary Data Sheet
Compact, high-performance, plug-and-play single-channel IGBT driver based
on SCALE™-2 technology for individual and parallel-connected modules in
2-lev el, 3-lev el and multilevel converter topologies
Abstract
The SCALE™-2 plug-and-play driver 1SP0635x2xx-5SNA1500E250300 is a compact single-channel intelligent
gate driver designed for ABB’s IGBTs 5SNA1500E250300. The master dr iver 1SP 0635x2M x-5SNA1500E250300
features a fiber-optic interface with a built-in isolated DC/DC power supply. It can be used as stand-alone
driver or in conjunction with up to three 1SP0635D2Sx-5SNA1500E250300 slaves to drive up to four parallel-
connected IGBT modules of type 5SNA1500E250300.
For drivers adapted to other types of high-power and high-voltage IGBT modules, refer to:
www.IGBT-Driver.com/go/plug-and-play
Features Applications
Plug-and-pla y solution
Allows parallel connection of IGBT modules
For 2-level, 3-level and multilevel topologies
Built-in isolated DC/DC power supply (master)
Fiber-op tic links (master)
Built-in interface to 1SP0635D2Sx (slave)
Duty cycle 0...100%
Dynamic Advanced Active Clamping DA2C
Dynamic IGBT short-circ uit pr otection
Monitoring of s upply voltage
Monitoring of gat e voltage
Extremely reliable; long service life
Shortens application development time
Suitable for 5SNA1500E250300
Traction
Railroad power supplies
Light rail vehicles
HVDC
Flexible AC transmission systems (FACTS)
Medium-voltage converters
Industrial drives
Wind-power converters
Medical applications
Research
And many others
1SP0635x2xx-5SNA1500E250300
Prelim i nary Dat a Shee t
www.IGBT-Driver.com Page 2
Safety Notice!
The data contained in this data sheet is intended exclusively for technically trained staff. Handling all high-
voltage equipment involves risk to life. Strict compliance with the respective safety regulations is mandatory!
Any handling of electronic devices is subject to the general specifications for protecting electrostatic-sensitive
devices according to inte rn ational sta ndard IE C 60747-1, Chapter IX or European standard EN 1000 15 (i. e. the
workplace, tools, etc. must comply with these standards). Otherwise, this product may be damaged.
Impor tant Product Docum enta tion
This data sheet contains only product-specific data. For a detailed description, must-rea d application notes and
common data that apply to the whole series, please refer to the “Description & Application Manual for
1SP0635 SCALE-2 IGBT Drivers” on www.IGBT-Driver.com/go/1SP0635.
When applying SCALE-2 plug-and-play drivers, please note that these drivers are specifically adapted to a
particular type of IGBT module. Therefore, the type designation of SCALE-2 plug-and-play drivers also include s
the type designation of the corresponding IGBT module. These drivers are not valid for IGBT modules other
than those specified. Incorrect use may result in failure.
Mechan i ca l Dimensions
Dimensions: See the relevant “Descrip tion and Application Manual”
Mounting pri nciple: Connected to IGBT module with screws
Fiber-Optic Interfaces (1SP0635x2Mx)
Interface Remarks Part type #
Drive signal input 1SP0635V, fiber-optic receiver (Notes 1, 2) HFBR-2522ETZ
Drive signal input 1SP0635S, fiber -optic receiver ( Notes 1, 2) HFBR-2412Z
Status output 1SP0635V, fiber-optic transmitter (Notes 1, 3) HFBR-1522ETZ
Status output 1SP0635S, fiber-optic transmitter (Notes 1, 3) HFBR-1412Z
Electri cal Connectors
Interface Remarks Part type #
Power supply connector X1 1SP063 5x 2M x, on-boar d connector (Note 4) 214012
Bus connectors X2 and X3 On-board connectors (Note 5) 214013
1SP0635x2xx-5SNA1500E250300
Prelim i nary Dat a Shee t
www.IGBT-Driver.com Page 3
Absolut e Maxi mum Ra t ing s
Parameter Remarks Min Max Unit
Supply voltage VDC VDC to GND (1SP0635x2Mx) 0 16 V
Average sup ply cur rent IDC 1SP0635x2Mx only (Note 6) 400 mA
Average sup ply cur rent IDC 1SP0635x2Mx wit h three 1SP0635D2Sx (Note 6) 1130 mA
Gate output power 1SP0635x 2Mx , Ta < 70°C (Note 7) 3 W
1SP0635x2Mx, Ta = 85°C (Note 7) 2.2 W
Gate output power 1SP0635D2Sx, Ta < 7 C (Note 8) 2.6 W
1SP0635D2Sx, Ta = 85°C (Note 8) 2 W
Switching frequency F 1SP 0 63 5x 2Mx , Ta < 70°C 11 kHz
1SP063 5x 2M x, Ta = 85° C 8 kHz
Switching frequency F 1SP0635D2Sx, Ta < 70°C 9.5 kHz
1SP0635D2Sx, Ta = 85°C 7.3 kHz
Gate peak current Iout Note 9 -35 +35 A
Test voltage (50Hz/1min.) 1SP0635x2Mx, primary to secondary (Note 10) 6000 VAC(eff)
DC-link voltage Switching operation ( Not e 11) 1700 V
Off state (Note 12) 2150 V
Operating voltage Primary to secondary side 2500 Vpeak
Max. emitter-emitter voltage Between parallel connected drivers (Note 13) 200 Vpeak
|dV/dt| Between parallel connected drivers (Note 14) 50 kV/μs
Max. interface current X2 and X3, total RMS value (Note 15) 4 Arms
X2 and X3, to tal peak value (Note 15) 20 Apeak
Operating temperature -40 +85 °C
Storage temperature -40 +90 °C
Recommended Operating Conditions
Power Supply Remarks Min Typ Max Unit
Supply voltage VDC To GN D 14.5 15 15.5 V
1SP0635x2xx-5SNA1500E250300
Prelim i nary Dat a Shee t
www.IGBT-Driver.com Page 4
Electrical Characteristics
All data refer to +25°C and VDC = 15V
unless otherwise specified
Power Supply Remarks Min Typ Max Unit
Supply current IDC Without load, only 1SP0635x2Mx 120 mA
Without load, per additional 1SP0635D2Sx 35 mA
Coupling capacitance Cio 1SP0 63 5x 2Mx, DC/ DC co nv e rt er 15 pF
Power Supply Monitoring Remarks Min Typ Max Unit
Supply threshold Viso-Vee Secondary side, clear fault 12.1 12.6 13.1 V
Secondary side, set fault (N ote 16) 11.5 12.0 12.5 V
Monitoring hysteresis Secon dary si de, set/clear fault 0.35 V
Supply threshold Vee-VCOM Secondary side, clear fault 5 5.15 5.3 V
Secondary side, set fault (N ote 16) 4.7 4.85 5 V
Monitoring hysteresis Secon dary si de, set/clear fault 0.15 V
Bus to 1SP0635D2Sx Remarks Min Typ Max Unit
Supply voltage Without load 25 V
With three slaves, full load 24 V
Turn-off com ma nd To COM 0 V
Turn-on command To COM 15 V
Gate Monitoring Remarks Min Typ Max Unit
Turn-on threshold VGE,on,min Gmean to E, set fault (Note 17) 12.9 V
Turn-off threshol d VGE,off,max Gmean to E, set fault (Note 17) -7.6 V
Filter delay Note 17 28 μs
Short-circuit Protection Remarks Min Typ Max Unit
Static Vce-m onitoring threshold Between auxiliary terminals (Note 18) 99 V
Response time DC-link voltage = 1700V (Note 19) 6.4 μs
DC-link voltage = 1200V (Note 19) 6.6 μs
DC-link v oltage = 900V (Note 19) 6.9 μs
DC-link v oltage = 600V (Note 19) 9.5 μs
Delay to IGBT turn-off After the response time (Note 20) 0.3 μs
Timing Charact eristics Remarks Min Typ Max Unit
Turn-on delay td(on)
Note 21 190 ns
Turn-off delay td(off) Note 21 185 ns
1SP0635x2xx-5SNA1500E250300
Prelim i nary Dat a Shee t
www.IGBT-Driver.com Page 5
Timing Charact eristics Remarks Min Typ Max Unit
Output rise time tr(out) G to E (Note 22) 9 ns
Output fall time tf(out) G to E (Note 22) 30 ns
Timing Charact eristics Remarks Min Typ Max Unit
Transmission delay of fault state Note 23 90 ns
Delay to clear fault state After IGBT short circuit (Note 24) 9 μs
After gate-monitoring fault (Notes 24, 30) 1 μs
Acknowledge delay time Note 25 250 ns
Acknowledge pulse width On host side 400 700 1050 ns
Gate Output Remarks Min Typ Max Unit
Turn-on gate resist or Rg(on) Note 26 2.2 Ω
Turn-off gate resistor Rg(off) Note 26 2.2 Ω
Auxiliary gate capacitor Cge not assembled nF
Gate voltage at turn-on Note 27 15 V
Gate-voltage at turn-off Without load (Note 27) -10.1 V
PDC/DC = 3W (Note 27) -9.8 V
PDC/DC = 6W (Note 27) -9.5 V
PDC/DC = 12W (No te 27) -9 V
Electrical Isolation Remarks Min Typ Max Unit
Test voltage (50Hz/1s) Primary to secondary side (Note 10) 6000 6050 6100 VAC(eff)
Partial discharge extinction volt. Primary to seco ndary side (Note 28) 2750 Vpeak
Creepage distance Primary to secondary side (Note 29) 21 mm
Primary to IGBT main emitter terminal 20 mm
Clearance distance Primary to secondary side (Note 29) 21 mm
Primary to IGBT main emitter terminal 13 mm
Footnot es to the K ey D a ta
1) The transceivers required on the host controller side are not supplied with the gate driver. It is
recommended to use the same types as used in the gate driver. For product information refer
to www.IGBT-Driver.com/go/fiberoptics
2) The recommended transmitter current at the host controller is 20mA. A higher current may increase
jitter or delay at turn-off.
3) The typical transmitter current at the gate driver is 18mA. In case of supply undervoltage, the
minimum transmitter current at the gate driver is 12mA: this is suitable for adequate plastic optical
fibers with a length of more than 10 meters.
4) This refers to the manufacturer ordering number, see www.igbt-driver.com/go/ext_erni. The
customer-side connector as well as cables with different lengths can be supplied by CONCEPT. Refer
to the “Description & Application Manual for 1SP0635 SCALE-2 IGBT Drivers” for more information.
5) This refers to the manufacturer ordering number, see www.igbt-driver.com/go/ext_erni. These
connectors are to be used to connect 1SP0635x2Mx (master) or 1SP0635D2Sx (slave) to
1SP0635D2Sx (sla ve) if par allel connection of IGBT modules is required . Cables with differe nt lengths
1SP0635x2xx-5SNA1500E250300
Prelim i nary Dat a Shee t
www.IGBT-Driver.com Page 6
can be supplied by CONCEPT. Refer to the “Description & Application Manual for 1SP0635 SCALE-2
IGBT Drivers” for more info rmation.
6) If the specified value is ex c eed ed, this indicates a drive r overload. It sho uld be n oted that the driver i s
not protected against overload.
7) The given power can only be fully exploited without slaves 1SP0635D2Sx (no parallel connection of
IGBT modules). If t he specified value is excee ded, this indicates a driver overload. It should be noted
that the driver is not protected against overload. From 70°C to 85°C, the maxim um perm i s s i ble output
power can be linearly interpolated from the given data.
8) The given power can be fully exploited with slaves 1SP0635D2Sx (parallel connection of IGBT
modules). If the specified value is exceeded, this indicates a driver overload. It should be noted that
the driver is not protected against overload. From 70°C to 85°C, the maximum permissible output
power can be line arly inter polat ed from the g iven dat a. Note that the DC/DC co nverter on the master
1SP0635x2Mx is dimensi oned to supply the maste r as well as three conne cted sla ves 1SP 06 35D2 Sx at
full load.
9) The gate current is limited by the gate resistors located on the driver.
10) HiPot testing (= dielectric testing) must generally be restricted to suitable components. This gate
driver is suited for HiPot te sting. Never theless, it is strongly recommended to limi t the testing time to
1s slots. Excessive HiPot test ing m ay lead to insulation degradation.
11) This limit is due to a ctive cl amping und er swi tching co nditions . Refe r to the Description & Ap plication
Manual for 1SP0635 SCA LE-2 IGBT D rivers”.
12) Due to the Dynamic Active Advanced Clamping Function (DA2C) implemented on the driver, the DC-
link voltage ca n be increased in the off-state condition (e.g. after emergency shut-down). This value is
only vali d when t he IGBTs are in the o ff stat e (not sw itching) . The time during which the voltage can
be applied should be limited to short periods (< 60 seconds). Refer to the “Description & Application
Manual for 1SP0635 SCA LE-2 IGBT D rivers”.
13) The maximum dynamic voltage between auxiliary emitters of parallel-connected drivers due to
asymmetrical operation at turn-on and turn-off must be limited to the given value.
14) Maximum allowed rate of change of auxiliary emitter voltage of parallel connected drivers. This
specification guarantees that the drive information will be transferred reliably even with high rate of
change of auxiliary emitter voltages (asymmetrical operation).
15) Dy namic v olta ges between auxiliary emitters of para llel connecte d drivers at turn-on and t urn -off le ad
to equa lizing curr ents over the X2 or X3 bus. The pe ak and RMS values of the re sulting cur rent mus t
be limited to the given value.
16) Undervoltage monitoring of the secondary-side supply voltage (Viso to Vee and Vee to COM which
correspond with the approximate turn-on and turn-off gate-emitter voltages). If the corresponding
voltage drops below this limit on 1SP063 5x2Mx (ma sters) , all para lleled IGBTs (master a nd slaves) are
switched off and a fa ult is transmitt ed to the status output. If the corresp onding voltage drops below
this limit on 1SP0635D2Sx (slaves), the corresponding IGBT is switched off. A fault will be generated
by the gate-monitoring function on the master which will turn off all paralleled IGBTs after the
corresponding delay.
17) The mean value VGE,mean of all gate voltages (master and all slaves) is filtered and compared to the
given values at turn-on and turn-off. If the specified values are exceeded (V GE,mean<VGE,on,min at turn-
on resp. VGE,mean>VGE,off,max at turn-off) after the given filter delay, the driver turns off all parallel-
connected IGBTs and a fault is transmitted to the status output.
18) A dynamic Vce protection is implemented on the driver. The maximum allowed Vce voltage at turn-on
is dynamically adjusted in order to better fit the IGBT characteristics at turn-on. At the end of the
turn-on process, the given static value applies.
19) The r esulting pulse widt h of the dire ct output of the ga te drive unit for short-ci rcuit t ype I (excl uding
the delay of the gate resistors) is the sum of the response time plus the dela y to IGBT turn-off.
20) The turn-off event of the IGBT is delayed by the specified time after the response time.
21) Including the delay of the external fiber-optic links (cable length: 1m). Measured from the transition
of the t urn-on or turn-o ff command at the optical transmitter on the host controller side to the direct
output of the gate drive unit (excluding the delay of the gate resistors).
22) Output rise and fall times are measured between 10% and 90% of the nominal output swing. The
values are given for the driver side of the gate resistors with 2/1uF load. The time constant of the
1SP0635x2xx-5SNA1500E250300
Prelim i nary Dat a Shee t
www.IGBT-Driver.com Page 7
output load in conjunction with the present gate resistors leads to an additional delay at their load
side.
23) Delay of external fiber-optic links. Measured from the driver secondary side (ASIC output) to the
optical receiver on the host controller.
24) Measured on the host side. The fault status on the secondary side is automatically reset after the
specified time.
25) Including the delay of the external fiber-optic links. Measured from the transition of the turn-on or
turn-off command at the optical transmitter on the host controller side to the transition of the
acknowledge signal at the optica l receiver on the host controller sid e.
26) The gate resistors can be leaded or surface mounted. CONCEPT reserves the right to determine which
type will be used. Typically, higher quantit ies will be produced with SM D resistors a nd small quantities
with leaded resistors.
27) The driver secondary side voltage is split into two distinct voltages on the driver. The first one is the
turn-on voltage which is regulated at about 15V. The difference between the total secondary side
voltage and the turn-on voltage is the turn-off voltage which is not regulated and mainly dependent
on the driver input voltage VDC and the DC/DC conve rter power.
28) Partial discharge measureme nt is performed in accordance with IEC 60270.
29) Clearance and creepage distances are designed according to IE C 6007 7-1. Refer to the “De scr iptio n &
Applic ation M anual for 1SP0635 SCALE-2 IGBT Drivers” for more information.
30) The fault status is set as long as the gate monitoring fault is present. The given value applies if the
driver goes from the “off state” to the “on state” and the gate-emitter voltage of one or more parallel
connected drivers does not turn on. If the driver goes from the “on state” to the “off state” and the
gate-emitter voltage of one or more parallel connected drivers does not turn off, the fault status is
applied as long as the ga te monitoring fault is prese nt.
Legal Disclaimer
This data sheet specifies devices but cannot promise to deliver any specific characteristics. No warranty or
guarantee is given either expressly or implicitly – regarding delivery, performanc e or suitability.
CT-Concept Technologie GmbH reserves the right to make modifications to its technical data and product
specifications at any time without prior notice. The general terms and conditions of delivery of CT-Concept
Technologie GmbH apply.
1SP0635x2xx-5SNA1500E250300
Prelim i nary Dat a Shee t
www.IGBT-Driver.com Page 8
Ordering I nfo rmat io n
The general terms and conditions of delivery of CT-Concept Technologie GmbH apply.
Interface CONCEPT Driver Type # Related IGBT
Master, Fiber-Optic Interface 1) 1SP0635V2M1-5SNA1500E250300 5SNA1500E250300
Master, Fiber-Optic Interface 2) 1SP0635S2M1-5SNA1500E250300 5SNA1500E250300
Slave, Electrical Interface 1SP0635D2S1-5SNA1500E250300 5SNA1500E250300
1) Fiber-optic interface with versatile link (HFBR-2522ETZ and HFBR-1522ETZ)
2) Fiber-optic interface with ST (HFBR-2412Z and HFBR-1412Z)
See “De scri ption & App lication Manual for 1SP0635 SCALE-2 IGBT Drivers”
Product home page: www.IGBT-Driver.com/go/1SP0635
Refer to www.IGBT-Driver.com/go/nomenclature for information on driver nomencl ature
Information about Other Products
For other drivers, evaluation systems, product documentation and application support
Please click onto: www.IGBT-Driver.com
Manufacturer
CT-Concept Tec hnol ogi e GmbH
A Power Integrations Company
Johann-Renfer-Strasse 15
2504 Biel-Bienne
Switzerland
Phone +41 - 32 - 344 47 47
Fax +41 - 32 - 344 47 40
E-mail Info@IGBT-Driver.com
Internet www.IGBT-Driver.com
© 2010…2014 CT-Concept Technologie GmbH - Switzerland. All rights reserved.
We reserve the right to make any technical modifications without prior notice. Version 1.0 from 2016-05-20
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Power Integrations:
1SP0635S2M1-5SNA1500E250300 1SP0635V2M1-5SNA1500E250300 1SP0635D2S1-5SNA1500E250300