2011 Microchip Technology Inc. Preliminary DS41586A
PIC16(L)F1507
Data Sheet
20-Pin Flash, 8-Bit Microcontrollers
DS41586A-page 2 Preliminary 2011 Microchip Technology Inc.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
Trademarks
The Microchip name and logo, the Microchip logo, dsPIC,
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,
PIC32 logo, rfPIC and UNI/O are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.
Analog-for-the-Digital Age, Application Maestro, chipKIT,
chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net,
dsPICworks, dsSPEAK, ECAN, ECONOMONITOR,
FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP,
Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB,
MPLINK, mTouch, Omniscient Code Generation, PICC,
PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE,
rfLAB, Select Mode, Total Endurance, TSHARC,
UniWinDriver, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.
SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.
All other trademarks mentioned herein are property of their
respective companies.
© 2011, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.
Printed on recycled paper.
ISBN: 978-1-61341-342-5
Note the following details of the code protection feature on Microchip devices:
Microchip products meet the specification contained in their particular Microchip Data Sheet.
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
Microchip is willing to work with the customer who is concerned about the integrity of their code.
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and d sPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperiph erals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.
2011 Microchip Technology Inc. Preliminary DS41586A-page 3
High-Performance RISC CPU:
C Compiler Optimized Architecture
Only 49 Instructions
Up to 3.5 Kbytes Linear Program Memory
Addressing
Up to 128 bytes Linear Data Memory Addressing
Operating Speed:
- DC – 20 MHz clock input
- DC – 125 ns instruction cycle
Interrupt Capability with Automatic Context
Saving
16-Level Deep Hardware Stack with Optional
Overflow/Underflow Reset
Direct, Indirect and Relative Addressing modes:
- Two full 16-bit File Select Registers (FSRs)
- FSRs can read program and data memory
Flexible Oscil lator St ructure:
16 MHz Internal Oscillator Block:
- Factory calibrated to 1%, typical
- Software selectable frequency range from
16 MHz to 31 kHz
31 kHz Low-Power Internal Oscillator
Three External Clock modes up to 20 MHz
S pecial Microcontroller Features:
Operating Voltage Range:
- 1.8V to 3.6V (PIC16LF1507)
- 2.3V to 5.5V (PIC16F1507)
Self-Programmable under Software Control
Power-on Reset (POR)
Power-up Timer (PWRT)
Programmable Low-Power Brown-Out Reset
(LPBOR)
Extended Watch-Dog Timer (WDT):
- Programmable period from 1 ms to 256s
Programmable Code Protection
In-Circuit Serial Programming™ (ICSP™) via two
pins
Enhanced Low-Voltage Programming (LVP)
Power-Saving Sleep mode
Low-Power Features (PIC16LF1507):
Standby Current:
- 20 nA @ 1.8V, typical
Operating Current:
-30A per MHz @ 1.8V, typical
Low-Power Watchdog Timer Current:
- 300 nA @ 1.8V, typical
Analog Features:
Analog-to-Digital Converter (ADC):
- 10-bit resolution
- Up to 12 channels
- Auto acquisition capability
- Conversion available during Sleep
- FVR available as channel
Voltage Reference module:
- Fixed Voltage Reference (FVR) with 1.024V,
2.048V and 4.096V output levels
Peripheral Feat ures:
17 I/O Pins and 1 Input-only Pin:
- High current sink/source 25 mA/25 mA
- Individually programmable weak pull-ups
- Individually programmable
interrupt-on-change (IOC) pins
Timer0: 8-Bit Timer/Counter with 8-Bit
Programmable Prescaler
Enhanced Timer1:
- 16-bit timer/counter with prescaler
- External Gate Input mode
Timer2: 8-Bit Timer/Counter with 8-Bit Period
Register, Prescaler and Postscaler
Four 10-bit PWM modules
Two Configurable Logic Cell (CLC) modules:
- 22 individual input sources
- Four inputs and 16 selectable input sources
per module
- Software selectable logic functions including:
AND/OR/XOR/D Flop/D Latch/SR/JK
- External and internal inputs/outputs
- Operation while in Sleep
Numerically Controlled Oscillator (NCO):
- 20-bit Accumulator
- 16-bit Increment
- Linear frequency control
- High-speed clock input
- Selectable Output modes
- Fixed Duty Cycle (FDC) mode
- Pulse Frequency (PF) mode
Complementary Waveform Generator (CWG):
- 6 selectable signal sources
- Selectable falling and rising edge dead-band
control
- Polarity control
- 2 auto-shutdown sources
- Multiple input sources: PWM, CLC, NCO
20-Pin Flash, 8- Bit Micr ocontr o llers
PIC16(L)F1507
2011 Microchip Technology Inc. Preliminary DS41586A-page 4
PIC16(L)F1507
PIC16(L)F1507 Famil y Types
FIGURE 1: 20-PIN PDIP, SOIC, SSOP PACKAGE DIAGRAM FOR PIC16(L)F1507
Device Program
Memory Flash
(words)
SRAM
(bytes) I/O(1) 10-bit A/D
(ch) Timers
8/16-bit PWM CWG CLC NCO
PIC16F1507
PIC16LF1507 2048 128 18 12 2/1 4 1 2 1
Note1: One pin is input-only.
PIC16F1507
PIC16LF1507
1
2
3
4
14
13
12
11
5
6
7
10
9
8
VDD
RA5
RA4
MCLR/VPP/RA3
RC5
RC4
VSS
RA0/ICSPDAT
RA1/ICSPCLK
RA2
RC0
RC1
RC2
RC3
PDIP, SOIC, SSOP
Note: See Tabl e 1 for location of all peripheral functions.
18
17
16
15
20
19
RC6
RC7
RB7
RB4
RB5
RB6
PIC16(L)F1507
DS41586A-page 5 Preliminary 2011 Microchip Technology Inc.
FIGURE 2: 20-PIN QFN PACKAGE DIAGRAM FOR PIC16(L)F1507
PIC16F1507
PIC16LF1507
QFN 4x4
Note: See Tabl e 1 for location of all peripheral functions.
15 RA1/ICSPCLK
RA2
RC0
RC1
RC2
11
12
13
14
67
RC7
RB7
RB4
RB5
RB6
8910
2
3
1
1819
20 1617
5
4
VDD
RA5
RA4
MCLR/VPP/RA3
RC5
RC4
RC3
RC6
VSS
RA0/ICSPDAT
2011 Microchip Technology Inc. Preliminary DS41586A-page 6
PIC16(L)F1507
TABLE 1: 20-PIN ALLOCATION TABLE (PIC16(L)F1507)
I/O
20-Pin PDIP/SOIC/SSOP
20-Pin QFN
A/D
Reference
CWG
NCO
CLC
Timers
PWM
Interrupt
Pull-up
Basic
RA0 19 16 AN0 IOC YICSPDAT
RA1 18 15 AN1 VREF+ IOC YICSPCLK
RA2 17 14 AN2 CWG1FLT CLC1(1) T0CKI PWM3 INT/
IOC
Y
RA3 4 1 CLC1IN0 IOC YMCLR
VPP
RA4 320 AN3 T1G IOC YCLKOUT
RA5 219 NCO1CLK T1CKI IOC YCLKIN
RB4 13 10 AN10 IOC Y
RB5 12 9AN11 IOC Y
RB6 11 8 IOC Y
RB7 10 7 IOC Y
RC0 16 13 AN4 CLC2
RC1 15 12 AN5 NCO1(1) PWM4
RC2 14 11 AN6
RC3 7 4 AN7 CLC2IN0 PWM2
RC4 6 3 CWG1B CLC2IN1
RC5 5 2 CWG1A CLC1(2) PWM1
RC6 8 5 AN8 NCO1(2)
RC7 9 6 AN9 CLC1IN1
VDD 118 VDD
VSS 20 17 VSS
Note 1: Default location for peripheral pin function. Alternate location can be selected using the APFCON register.
2: Alternate location for peripheral pin function selected by the APFCON register.
PIC16(L)F1507
DS41586A-page 7 Preliminary 2011 Microchip Technology Inc.
Table of Contents
1.0 Device Overview ............................................................................................................................................................................. 9
2.0.Enhanced Mid-Range CPU........................................................................................................................................................... 13
3.0 Memory Organization.................................................................................................................................................................... 15
4.0 Device Configuration..................................................................................................................................................................... 39
5.0 Oscillator Module (With Fail-Safe Clock Monitor) ......................................................................................................................... 45
6.0 Resets........................................................................................................................................................................................... 53
7.0 Interrupts ....................................................................................................................................................................................... 61
8.0 Power-Down Mode (Sleep) ........................................................................................................................................................... 75
9.0 Watchdog Timer............................................................................................................................................................................ 79
10.0 Flash Program Memory Control .................................................................................................................................................. 83
11.0 I/O Ports ...................................................................................................................................................................................... 99
12.0 Interrupt-On-Change ................................................................................................................................................................. 111
13.0 Fixed Voltage Reference (FVR) ................................................................................................................................................ 117
14.0 Temperature Indicator Module.................................................................................................................................................. 119
15.0 Analog-to-Digital Converter (ADC) Module ............................................................................................................................... 121
16.0 Timer0 Module .......................................................................................................................................................................... 135
17.0 Timer1 Module with Gate Control ............................................................................................................................................. 139
18.0 Timer2 Modules ........................................................................................................................................................................ 151
19.0 PWM Modules ........................................................................................................................................................................... 155
20.0 Configurable Logic Cell (CLC) ................................................................................................................................................... 161
21.0 Numerically Controlled Oscillator (NCO) Module ...................................................................................................................... 177
22.0 Complementary Waveform Generator (CWG) Module ............................................................................................................. 187
23.0 In-Circuit Serial Programming™ (ICSP™) ................................................................................................................................ 203
24.0 Instruction Set Summary ........................................................................................................................................................... 207
25.0 Electrical Specifications ............................................................................................................................................................ 221
26.0 DC and AC Characteristics Graphs and Charts ........................................................................................................................ 239
27.0 Development Support ............................................................................................................................................................... 241
28.0 Packaging Information .............................................................................................................................................................. 245
Appendix A: Data Sheet Revision History ......................................................................................................................................... 255
Index ................................................................................................................................................................................................. 257
The Microchip Web Site .................................................................................................................................................................... 263
Customer Change Notification Service ............................................................................................................................................. 263
Customer Support ............................................................................................................................................................................. 263
Reader Response ............................................................................................................................................................................. 264
Product Identification System ............................................................................................................................................................ 265
Worldwide Sales and Service ........................................................................................................................................................... 266
2011 Microchip Technology Inc. Preliminary DS41586A-page 8
PIC16(L)F1507
NOTES:
PIC16(L)F1507
DS41586A-page 9 Preliminary 2011 Microchip Technology Inc.
1.0 DEVICE OVERVIEW
The PIC16(L)F1507 are described within this data sheet.
They are available in 20 pin packages. Figure 1-1 shows
a block diagram of the PIC16(L)F1507 devices.
Tables 1-2 shows the pinout descriptions.
Reference Table 1-1 for peripherals available per
device.
TABLE 1-1: DEVICE PERIPHERAL
SUMMARY
Peripheral
PIC16F1507
PIC16LF1507
Analog-to-Digital Converter (ADC) ●●
Complementary Wave Generator (CWG) ●●
Fixed Voltage Reference (FVR) ●●
Numerically Controlled Oscillator (NCO) ●●
Temperature Indicator ●●
Configurable Logic Cell (CLC)
CLC1 ●●
CLC2 ●●
PWM Modules
PWM1 ●●
PWM2 ●●
PWM3 ●●
PWM4 ●●
Timers
Timer0 ●●
Timer1 ●●
Timer2 ●●
2011 Microchip Technology Inc. Preliminary DS41586A-page 10
PIC16(L)F1507
FIGURE 1-1: PIC16(L )F 1507 BLOCK DIAGRAM
PORTB
PORTC
Note 1: See applicable chapters for more information on peripherals.
2: See Ta b le 1 - 1 for peripherals available on specific devices.
CPU
Program
Flash Memory
RAM
Timing
Generation
INTRC
Oscillator
MCLR
(Figure 2-1)
NCO1
PWM4
Timer2Timer1Timer0
CLC2
PWM1 PWM2 PWM3
PORTA
CWG1
CLC1
ADC
10-Bit FVR
Temp.
Indicator
CLKIN
CLKOUT
PIC16(L)F1507
DS41586A-page 11 Preliminary 2011 Microchip Technology Inc.
TABLE 1-2: PIC16(L)F1507 PINOUT DESCRIPTION
Name Function Input
Type Output
Type Description
RA0/AN0/ICSPDAT RA0 TTL CMOS General purpose I/O.
AN0 AN A/D Channel input.
ICSPDAT ST CMOS ICSP™ Data I/O.
RA1/AN1/VREF+/ICSPCLK RA1 TTL CMOS General purpose I/O.
AN1 AN A/D Channel input.
VREF+ AN A/D Positive Voltage Reference input.
ICSPCLK ST Serial Programming Clock.
RA2/AN2/T0CKI/INT/PWM3/
CLC1(1)/CWG1FLT
RA2 ST CMOS General purpose I/O.
AN2 AN A/D Channel input.
T0CKI ST Timer0 clock input.
INT ST External interrupt.
PWM3 CMOS Pulse Width Module source output.
CLC1 CMOS Configurable Logic Cell source output.
CWG1FLT ST Complementary Waveform Generator Fault input.
RA3/CLC1IN0/VPP/MCLR RA3 TTL General purpose input.
CLC1IN0 ST Configurable Logic Cell source input.
VPP HV Programming voltage.
MCLR ST Master Clear with internal pull-up.
RA4/AN3/CLKOUT/T1G RA4 TTL CMOS General purpose I/O.
AN3 AN A/D Channel input.
CLKOUT CMOS FOSC/4 output.
T1G ST Timer1 Gate input.
RA5/CLKIN/T1CKI/NCO1CLK RA5 TTL CMOS General purpose I/O.
CLKIN CMOS External clock input (EC mode).
T1CKI ST Timer1 clock input.
NCO1CLK ST Numerically Controlled Oscillator Clock source input.
RB4/AN10 RB4 TTL CMOS General purpose I/O.
AN10 AN A/D Channel input.
RB5/AN11 RB5 TTL CMOS General purpose I/O.
AN11 AN A/D Channel input.
RB6 RB6 TTL CMOS General purpose I/O.
RB7 RB7 TTL CMOS General purpose I/O.
RC0/AN4/CLC2 RC0 TTL CMOS General purpose I/O.
AN4 AN A/D Channel input.
CLC2 CMOS Configurable Logic Cell source output.
RC1/AN5/PWM4/NCO1(1) RC1 TTL CMOS General purpose I/O.
AN5 AN A/D Channel input.
PWM4 CMOS Pulse Width Module source output.
NCO1 CMOS Numerically Controlled Oscillator is source output.
RC2/AN6 RC2 TTL CMOS General purpose I/O.
AN6 AN A/D Channel input.
Legend: AN = Analog input or output CMOS= CMOS compatible input or output OD = Open Drain
TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I2C™ = Schmitt Trigger input with I2C
HV = High Voltage XTAL = Crystal levels
Note 1: Default location for peripheral pin function. Alternate location can be selected using the APFCON register.
2: Alternate location for peripheral pin function selected by the APFCON register.
2011 Microchip Technology Inc. Preliminary DS41586A-page 12
PIC16(L)F1507
RC3/AN7/PWM2/CLC2IN0 RC3 TTL CMOS General purpose I/O.
AN7 AN A/D Channel input.
PWM2 CMOS Pulse Width Module source output.
CLC2IN0 ST Configurable Logic Cell source input.
RC4/CLC2IN1/CWG1B RC4 TTL CMOS General purpose I/O.
CLC2IN1 ST Configurable Logic Cell source input.
CWG1B CMOS CWG complementary output.
RC5/PWM1/CLC1(2)/
CWG1A
RC5 TTL CMOS General purpose I/O.
PWM1 CMOS PWM output.
CLC1 CMOS Configurable Logic Cell source output.
CWG1A CMOS CWG primary output.
RC6/AN8/NCO1(2) RC6 TTL CMOS General purpose I/O.
AN8 AN A/D Channel input.
NCO1 CMOS Numerically Controlled Oscillator source output.
RC7/AN9/CLC1IN1 RC7 TTL CMOS General purpose I/O.
AN8 AN A/D Channel input.
CLC1IN1 ST Configurable Logic Cell source input.
VDD VDD Power Positive supply.
VSS VSS Power Ground reference.
TABLE 1-2: PIC16(L)F1507 PINOUT DESCRIPTION (CONTINUED)
Name Function Input
Type Output
Type Description
Legend: AN = Analog input or output CMOS= CMOS compatible input or output OD = Open Drain
TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I2C™ = Schmitt Trigger input with I2C
HV = High Voltage XTAL = Crystal levels
Note 1: Default location for peripheral pin function. Alternate location can be selected using the APFCON register.
2: Alternate location for peripheral pin function selected by the APFCON register.
PIC16(L)F1507
DS41586A-page 13 Preliminary 2011 Microchip Technology Inc.
2.0 ENHANCED MID-RANGE CPU
This family of devices contain an enhanced mid-range
8-bit CPU core. The CPU has 49 instructions. Interrupt
capability includes automatic context saving. The
hardware stack is 16 levels deep and has Overflow and
Underflow Reset capability. Direct, Indirect, and
Relative addressing modes are available. Two File
Select Registers (FSRs) provide the ability to read
program and data memory.
Automatic Interrupt Context Saving
16-level Stack with Overflow and Underflow
File Select Registers
Instruction Set
2.1 Automatic Interrupt Context
Saving
During interrupts, certain registers are automatically
saved in shadow registers and restored when returning
from the interrupt. This saves stack space and user
code. See Section 7.5 “Automatic Context Saving”,
for more information.
2.2 16-level S tack with Overflow and
Underflow
These devices have an external stack memory 15 bits
wide and 16 words deep. A Stack Overflow or Under-
flow will set the appropriate bit (STKOVF or STKUNF)
in the PCON register, and if enabled will cause a soft-
ware Reset. See section Section 3.4 “Stack” for more
details.
2.3 File Select Registers
There are two 16-bit File Select Registers (FSR). FSRs
can access all file registers and program memory,
which allows one Data Pointer for all memory. When an
FSR points to program memory, there is one additional
instruction cycle in instructions using INDF to allow the
data to be fetched. General purpose memory can now
also be addressed linearly, providing the ability to
access contiguous data larger than 80 bytes. There are
also new instructions to support the FSRs. See
Section 3.5 “Indirect Addressing” for more details.
2.4 Instruction Set
There are 49 instructions for the enhanced mid-range
CPU to support the features of the CPU. See
Section 24.0 “Instruction Set Summary” for more
details.
2011 Microchip Technology Inc. Preliminary DS41586A-page 14
PIC16(L)F1507
FIGURE 2-1: CORE BLOCK DIAGRAM
Data Bus 8
14
Program
Bus
Instruction reg
Program Counter
8 Level Stack
(13-bit)
Direct Addr 7
12
Addr MUX
FSR reg
STATUS reg
MUX
ALU
Instruction
Decode &
Control
Timing
Generation
CLKIN
CLKOUT
8
8
12
3
Internal
Oscillator
Block
Configuration Data Bus 8
14
Program
Bus
Instruction reg
Program Counter
8 Level Stack
(13-bit)
Direct Addr 7
Addr MUX
FSR reg
STATUS reg
MUX
ALU
W Reg
Instruction
Decode &
Control
Timing
Generation
8
8
3
Internal
Oscillator
Block
Configuration 15 Data Bus 8
14
Program
Bus
Instruction Reg
Program Counter
16-Level Stack
(15-bit)
Direct Addr 7
RAM Addr
Addr MUX
Indirect
Addr
FSR0 Reg
STATUS Reg
MUX
ALU
Instruction
Decode and
Control
Timing
Generation
8
8
3
Internal
Oscillator
Block
Configuration
Flash
Program
Memory RAM
FSR regFSR reg
FSR1 Reg
15
15
MUX
15
Program Memory
Read (PMR)
12
FSR regFSR reg
BSR Reg
5
Power-up
Timer
Power-on
Reset
Watchdog
Timer
VDD
Brown-out
Reset
VSSVDD VSSVDD VSS
PIC16(L)F1507
DS41586A-page 15 Preliminary 2011 Microchip Technology Inc.
3.0 MEMORY ORGANIZATION
These devices contain the following types of memory:
Program Memory
- Configuration Words
-Device ID
-User ID
- Flash Program Memory
Data Memory
- Core Registers
- Special Function Registers
- General Purpose RAM
- Common RAM
The following features are associated with access and
control of program memory and data memory:
PCL and PCLATH
•Stack
Indirect Addressing
3.1 Program Memory Organization
The enhanced mid-range core has a 15-bit program
counter capable of addressing 32K x 14 program
memory space. Table 3-1 shows the memory sizes
implemented. Accessing a location above these
boundaries will cause a wrap-around within the
implemented memory space. The Reset vector is at
0000h and the interrupt vector is at 0004h (See
Figure 3-1).
TABLE 3-1: DEVICE SIZES AND ADDRESSES
Device Program Memory Space (Words) Last Program Memory Address
PIC16F1507
PIC16LF1507 2,048 07FFh
2011 Microchip Technology Inc. Preliminary DS41586A-page 16
PIC16(L)F1507
FIGURE 3-1: PROGRAM MEMORY MAP
AND ST ACK FOR
PIC16(L)F1507
3.1.1 READING PROGRAM MEMORY AS
DATA
There are two methods of accessing constants in pro-
gram memory. The first method is to use tables of
RETLW instructions. The second method is to set an
FSR to point to the program memory.
3.1.1.1 RETLW Instruction
The RETLW instruction can be used to provide access
to tables of constants. The recommended way to create
such a table is shown in Example 3-1.
EXAMPL E 3-1: RETLW INSTRUCTION
The BRW instruction makes this type of table very sim-
ple to implement. If your code must remain portable
with previous generations of microcontrollers, then the
BRW instruction is not available so the older table read
method must be used.
PC<14:0>
15
0000h
0004h
Stack Level 0
Stack Level 15
Reset Vector
Interrupt Vector
Stack Level 1
0005h
On-chip
Program
Memory Page 0
07FFh
Wraps to Page 0
Wraps to Page 0
Wraps to Page 0
0800h
CALL, CALLW
RETURN, RETLW
Interrupt, RETFIE
Rollover to Page 0
Rollover to Page 0 7FFFh
constants
BRW ;Add Index in W to
;program counter to
;select data
RETLW DATA0 ;Index0 data
RETLW DATA1 ;Index1 data
RETLW DATA2
RETLW DATA3
my_function
;… LOTS OF CODE…
MOVLW DATA_INDEX
call constants
;… THE CONSTANT IS IN W
PIC16(L)F1507
DS41586A-page 17 Preliminary 2011 Microchip Technology Inc.
3.1.1.2 Indirect Read with FSR
The program memory can be accessed as data by set-
ting bit 7 of the FSRxH register and reading the match-
ing INDFx register. The MOVIW instruction will place the
lower 8 bits of the addressed word in the W register.
Writes to the program memory cannot be performed via
the INDF registers. Instructions that access the pro-
gram memory via the FSR require one extra instruction
cycle to complete. Example 3-2 demonstrates access-
ing the program memory via an FSR.
The HIGH directive will set bit<7> if a label points to a
location in program memory.
EXAMPLE 3-2: ACCESS ING PROGRAM
MEMORY VIA FSR
3.2 Dat a Memory Organization
The data memory is partitioned in 32 memory banks
with 128 bytes in a bank. Each bank consists of
(Figure 3-2):
12 core registers
20 Special Function Registers (SFR)
Up to 80 bytes of General Purpose RAM (GPR)
16 bytes of common RAM
The active bank is selected by writing the bank number
into the Bank Select Register (BSR). Unimplemented
memory will read as0’. All data memory can be
accessed either directly (via instructions that use the
file registers) or indirectly via the two File Select
Registers (FSR). See Section 3.5 “Indirect
Addressing for more information.
Data Memory uses a 12-bit address. The upper 7-bit of
the address define the Bank address and the lower
5-bits select the registers/RAM in that bank.
3.2.1 CORE REGISTERS
The core registers contain the registers that directly
affect the basic operation. The core registers occupy
the first 12 addresses of every data memory bank
(addresses x00h/x08h through x0Bh/x8Bh). These
registers are listed below in Tab le 3 -2. For for detailed
information, see Tab le 3 -4 .
TABLE 3-2: CORE REGISTERS
constants
RETLW DATA0 ;Index0 data
RETLW DATA1 ;Index1 data
RETLW DATA2
RETLW DATA3
my_function
;… LOTS OF CODE…
MOVLW LOW constants
MOVWF FSR1L
MOVLW HIGH constants
MOVWF FSR1H
MOVIW 0[FSR1]
;THE PROGRAM MEMORY IS IN W
Addresses BANKx
x00h or x80h INDF0
x01h or x81h INDF1
x02h or x82h PCL
x03h or x83h STATUS
x04h or x84h FSR0L
x05h or x85h FSR0H
x06h or x86h FSR1L
x07h or x87h FSR1H
x08h or x88h BSR
x09h or x89h WREG
x0Ah or x8Ah PCLATH
x0Bh or x8Bh INTCON
2011 Microchip Technology Inc. Preliminary DS41586A-page 18
PIC16(L)F1507
3.2.1.1 STATUS Register
The STATUS register, shown in Register 3-1, contains:
the arithmetic status of the ALU
the Reset status
The STATUS register can be the destination for any
instruction, like any other register. If the STATUS
register is the destination for an instruction that affects
the Z, DC or C bits, then the write to these three bits is
disabled. These bits are set or cleared according to the
device logic. Furthermore, the TO and PD bits are not
writable. Therefore, the result of an instruction with the
STATUS register as destination may be different than
intended.
For example, CLRF STATUS will clear the upper three
bits and set the Z bit. This leaves the STATUS register
as ‘000u u1uu’ (where u = unchanged).
It is recommended, therefore, that only BCF, BSF,
SWAPF and MOVWF instructions are used to alter the
STATUS register, because these instructions do not
affect any Status bits. For other instructions not
affecting any Status bits (Refer to Section 24.0
“Instruction Set Summary”).
Note 1: The C and DC bits operate as Borrow
and Digit Borrow out bits, respectively, in
subtraction.
REGISTER 3-1: STAT US : STATUS REGISTER
U-0 U-0 U-0 R-1/q R-1/q R/W-0/u R/W-0/u R/W-0/u
TO PD ZDC
(1) C(1)
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition
bit 7-5 Unimplemented: Read as ‘0
bit 4 TO: Time-Out bit
1 = After power-up, CLRWDT instruction or SLEEP instruction
0 = A WDT time-out occurred
bit 3 PD: Power-Down bit
1 = After power-up or by the CLRWDT instruction
0 = By execution of the SLEEP instruction
bit 2 Z: Zero bit
1 = The result of an arithmetic or logic operation is zero
0 = The result of an arithmetic or logic operation is not zero
bit 1 DC: Digit Carry/Digit Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions)(1)
1 = A carry-out from the 4th low-order bit of the result occurred
0 = No carry-out from the 4th low-order bit of the result
bit 0 C: Carry/Borrow bit(1) (ADDWF, ADDLW, SUBLW, SUBWF instructions)(1)
1 = A carry-out from the Most Significant bit of the result occurred
0 = No carry-out from the Most Significant bit of the result occurred
Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two’s complement of the
second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order
bit of the source register.
PIC16(L)F1507
DS41586A-page 19 Preliminary 2011 Microchip Technology Inc.
3.2.2 SPECIAL FUNCTION REGISTER
The Special Function Registers are registers used by
the application to control the desired operation of
peripheral functions in the device. The Special Function
Registers occupy the 20 bytes after the core registers of
every data memory bank (addresses x0Ch/x8Ch
through x1Fh/x9Fh). The registers associated with the
operation of the peripherals are described in the appro-
priate peripheral chapter of this data sheet.
3.2.3 GENERAL PURPOSE RAM
There are up to 80 bytes of GPR in each data memory
bank. The Special Function Registers occupy the 20
bytes after the core registers of every data memory
bank (addresses x0Ch/x8Ch through x1Fh/x9Fh).
3.2.3.1 Linear Access to GPR
The general purpose RAM can be accessed in a
non-banked method via the FSRs. This can simplify
access to large memory structures. See Section 3.5.2
“Linear Data Memory” for more information.
3.2.4 COMMON RAM
There are 16 bytes of common RAM accessible from all
banks.
FIGURE 3-2: BANKED MEMORY
PARTITIONING
3.2.5 DEVICE MEMORY MAPS
The memory maps for PIC16(L)F1507 are as shown in
Table 3-3.
0Bh
0Ch
1Fh
20h
6Fh
70h
7Fh
00h
Common RAM
(16 bytes)
General Purpose RAM
(80 bytes maximum)
Core Registers
(12 bytes)
Special Function Registers
(20 bytes maximum)
Memory Region
7-bit Bank Offset
PIC16(L)F1507
DS41586A-page 20 Preliminary 2011 Microchip Technology Inc.
TABLE 3-3: PIC16(L)F1507 MEMORY MAP
BANK 0 BANK 1 BANK 2 BANK 3 BANK 4 BANK 5 BANK 6 BANK 7
000h
Core Registers
(Table 3-2)
080h
Core Registers
(Table 3-2)
100h
Core Registers
(Table 3-2)
180h
Core Registers
(Table 3-2)
200h
Core Registers
(Table 3-2)
280h
Core Registers
(Table 3-2)
300h
Core Registers
(Table 3-2)
380h
Core Registers
(Table 3-2)
00Bh 08Bh 10Bh 18Bh 20Bh 28Bh 30Bh 38Bh
00Ch PORTA 08Ch TRISA 10Ch LATA 18Ch ANSELA 20Ch WPUA 28Ch 30Ch 38Ch
00Dh PORTB 08Dh TRISB 10Dh LATB 18Dh ANSELB 20Dh WPUB 28Dh 30Dh 38Dh
00Eh PORTC 08Eh TRISC 10Eh LATC 18Eh ANSELC 20Eh —28Eh—30Eh—38Eh
00Fh —08Fh—10Fh—18Fh—20Fh—28Fh—30Fh—38Fh
010h —090h—110h—190h—210h—290h310h 390h
011h PIR1 091h PIE1 111h 191h PMADRL 211h 291h 311h 391h IOCAP
012h PIR2 092h PIE2 112h 192h PMADRH 212h 292h 312h 392h IOCAN
013h PIR3 093h PIE3 113h 193h PMDATL 213h 293h 313h 393h IOCAF
014h —094h—114h194h PMDATH 214h 294h 314h 394h IOCBP
015h TMR0 095h OPTION_REG 115h 195h PMCON1 215h 295h 315h 395h IOCBN
016h TMR1L 096h PCON 116h BORCON 196h PMCON2 216h 296h 316h 396h IOCBF
017h TMR1H 097h WDTCON 117h FVRCON 197h VREGCON 217h 297h 317h 397h
018h T1CON 098h —118h—198h—218h298h 318h 398h
019h T1GCON 099h OSCCON 119h —199h219h —299h 319h 399h
01Ah TMR2 09Ah OSCSTAT 11Ah —19Ah21Ah —29Ah—31Ah—39Ah
01Bh PR2 09BhADRESL11Bh —19Bh21Bh —29Bh—31Bh39Bh
01Ch T2CON 09Ch ADRESH 11Ch 19Ch 21Ch 29Ch 31Ch 39Ch
01Dh 09Dh ADCON0 11Dh APFCON 19Dh 21Dh 29Dh 31Dh 39Dh
01Eh 09Eh ADCON1 11Eh 19Eh 21Eh 29Eh 31Eh 39Eh
01Fh 09Fh ADCON2 11Fh —19Fh21Fh 29Fh 31Fh 39Fh
020h
General
Purpose
Register
80 Bytes
0A0h
0BFh
General
Purpose
Register
32 Bytes
120h
Unimplemented
Read as ‘0
1A0h
Unimplemented
Read as ‘0
220h
Unimplemented
Read as ‘0
2A0h
Unimplemented
Read as ‘0
320h
Unimplemented
Read as ‘0
3A0h
Unimplemented
Read as ‘0
0C0h
0EFh
Unimplemented
Read as ‘0
06Fh 16Fh 1EFh 26Fh 2EFh 36Fh 3EFh
070h
Common RAM
0F0h Common RAM
(Accesses
70h – 7Fh)
170h Common RAM
(Accesses
70h – 7Fh)
1F0h Common RAM
(Accesses
70h – 7Fh)
270h Common RAM
(Accesses
70h – 7Fh)
2F0h Common RAM
(Accesses
70h – 7Fh)
370h Common RAM
(Accesses
70h – 7Fh)
3F0h Common RAM
(Accesses
70h – 7Fh)
07Fh 0FFh 17Fh 1FFh 27Fh 2FFh 37Fh 3FFh
Legend: = Unimplemented data memory locations, read as ‘0
2011 Microchip Technology Inc. Preliminary DS41586A-page 21
PIC16(L)F1507
TABLE 3-3: PIC16(L)F1507 MEMORY MAP (CONTINUED)
BANK 8 BANK 9 BANK 10 BANK 11 BANK 12 BANK 13 BANK 14 BANK 15
400h
40Bh
Core Registers
(Table 3-2)
480h
48Bh
Core Registers
(Table 3-2)
500h
50Bh
Core Registers
(Table 3-2)
580h
58Bh
Core Registers
(Table 3-2)
600h
60Bh
Core Registers
(Table 3-2)
680h
68Bh
Core Registers
(Table 3-2)
700h
70Bh
Core Registers
(Table 3-2)
780h
78Bh
Core Registers
(Table 3-2)
40Ch 48Ch 50Ch 58Ch 60Ch 68Ch 70Ch 78Ch
40Dh 48Dh 50Dh 58Dh 60Dh 68Dh 70Dh 78Dh
40Eh —48Eh—50Eh—58Eh—60Eh—68Eh—70Eh—78Eh
40Fh —48Fh—50Fh—58Fh—60Fh—68Fh—70Fh—78Fh
410h —490h—510h—590h—610h—690h 710h 790h
411h —491h—511h—591h 611h PWM1DCL 691h CWG1DBR 711h 791h
412h —492h—512h—592h 612h PWM1DCH 692h CWG1DBF 712h 792h
413h —493h—513h—593h 613h PWM1CON 693h CWG1CON0 713h 793h
414h —494h—514h—594h 614h PWM2DCL 694h CWG1CON1 714h 794h
415h —495h—515h—595h 615h PWM2DCH 695h CWG1CON2 715h 795h
416h —496h—516h—596h 616h PWM2CON 696h 716h 796h
417h —497h—517h—597h 617h PWM3DCL 697h 717h 797h
418h 498h NCO1ACCL 518h —598h 618h PWM3DCH 698h 718h 798h
419h 499h NCO1ACCH 519h —599h 619h PWM3CON 699h 719h 799h
41Ah 49Ah NCO1ACCU 51Ah —59Ah 61Ah PWM4DCL 69Ah —71Ah—79Ah
41Bh 49Bh NCO1INCL 51Bh —59Bh 61Bh PWM4DCH 69Bh —71Bh—79Bh
41Ch 49Ch NCO1INCH 51Ch 59Ch 61Ch PWM4CON 69Ch 71Ch 79Ch
41Dh 49Dh 51Dh 59Dh 61Dh 69Dh 71Dh 79Dh
41Eh 49Eh NCO1CON 51Eh —59Eh—61Eh—69Eh—71Eh—79Eh
41Fh 49Fh NCO1CLK 51Fh —59Fh—61Fh—69Fh—71Fh—79Fh
420h
Unimplemented
Read as ‘0
4A0h
Unimplemented
Read as ‘0
520h
Unimplemented
Read as ‘0
5A0h
Unimplemented
Read as ‘0
620h
Unimplemented
Read as ‘0
6A0h
Unimplemented
Read as ‘0
720h
Unimplemented
Read as ‘0
7A0h
Unimplemented
Read as ‘0
46Fh 4EFh 56Fh 5EFh 64Fh 6EFh 76Fh 7EFh
470h
Common RAM
(Accesses
70h – 7Fh)
4F0h
Common RAM
(Accesses
70h – 7Fh)
570h
Common RAM
(Accesses
70h – 7Fh)
5F0h
Common RAM
(Accesses
70h – 7Fh)
650h
Common RAM
(Accesses
70h – 7Fh)
6F0h
Common RAM
(Accesses
70h – 7Fh)
770h
Common RAM
(Accesses
70h – 7Fh)
7F0h
Common RAM
(Accesses
70h – 7Fh)
47Fh 4FFh 57Fh 5FFh 67Fh 6FFh 77Fh 7FFh
BANK 16 BANK 17 BANK 18 BANK 19 BANK 20 BANK 21 BANK 22 BANK 23
800h
80Bh
Core Registers
(Table 3-2)
880h
88Bh
Core Registers
(Table 3-2)
900h
90Bh
Core Registers
(Table 3-2)
980h
98Bh
Core Registers
(Table 3-2)
A00h
A0Bh
Core Registers
(Table 3-2)
A80h
A8Bh
Core Registers
(Table 3-2)
B00h
B0Bh
Core Registers
(Table 3-2)
B80h
B8Bh
Core Registers
(Table 3-2)
80Ch
Unimplemented
Read as ‘0
88Ch
Unimplemented
Read as ‘0
90Ch
Unimplemented
Read as ‘0
98Ch
Unimplemented
Read as ‘0
A0Ch
Unimplemented
Read as ‘0
A8Ch
Unimplemented
Read as ‘0
B0Ch
Unimplemented
Read as ‘0
B8Ch
Unimplemented
Read as ‘0
86Fh 8EFh 96Fh 9EFh A6Fh AEFh B6Fh BEFh
870h Common RAM
(Accesses
70h – 7Fh)
8F0h Common RAM
(Accesses
70h – 7Fh)
970h Common RAM
(Accesses
70h – 7Fh)
9F0h Common RAM
(Accesses
70h – 7Fh)
A70h Common RAM
(Accesses
70h – 7Fh)
AF0h Common RAM
(Accesses
70h – 7Fh)
B70h Common RAM
(Accesses
70h – 7Fh)
BF0h Common RAM
(Accesses
70h – 7Fh)
87Fh 8FFh 97Fh 9FFh A7Fh AFFh B7Fh BFFh
Legend: = Unimplemented data memory locations, read as ‘0
PIC16(L)F1507
DS41586A-page 22 Preliminary 2011 Microchip Technology Inc.
TABLE 3-3: PIC16(L)F1507 MEMORY MAP (CONTINUED)
Legend: = Unimplemented data memory locations, read as ‘0’.
BANK 24 BANK 25 BANK 26 BANK 27 BANK 28 BANK 29 BANK 30 BANK 31
C00h
C0Bh
Core Registers
(Ta b l e 3 -2 )
C80h
C8Bh
Core Registers
(Ta b l e 3 -2 )
D00h
D0Bh
Core Registers
(Ta b l e 3 -2 )
D80h
D8Bh
Core Registers
(Ta b l e 3 -2 )
E00h
E0Bh
Core Registers
(Ta b l e 3 -2 )
E80h
E8Bh
Core Registers
(Ta b l e 3 -2 )
F00h
F0Bh
Core Registers
(Ta b l e 3 -2 )
F80h
F8Bh
Core Registers
(Ta b l e 3 -2 )
C0Ch —C8Ch—D0Ch—D8Ch—E0Ch—E8Ch—F0Ch
See Ta b le 3 - 3 for
register mapping
details
F8Ch
See Ta b le 3 - 3 for
register mapping
details
C0Dh —C8Dh—D0Dh—D8Dh—E0Dh—E8Dh F0Dh F8Dh
C0Eh —C8Eh—D0Eh—D8Eh—E0Eh—E8Eh F0Eh F8Eh
C0Fh —C8Fh—D0Fh—D8Fh—E0Fh—E8Fh F0Fh F8Fh
C10h —C90h—D10h—D90h—E10h—E90h F10h F90h
C11h —C91h—D11h—D91h—E11h—E91h F11h F91h
C12h —C92h—D12h—D92h—E12h—E92h F12h F92h
C13h —C93h—D13h—D93h—E13h—E93h F13h F93h
C14h —C94h—D14h—D94h—E14h—E94h F14h F94h
C15h —C95h—D15h—D95h—E15h—E95h F15h F95h
C16h —C96h—D16h—D96h—E16h—E96h F16h F96h
C17h —C97h—D17h—D97h—E17h—E97h F17h F97h
C18h —C98h—D18h—D98h—E18h—E98h F18h F98h
C19h —C99h—D19h—D99h—E19h—E99h F19h F99h
C1Ah —C9Ah—D1Ah—D9Ah—E1Ah—E9Ah F1Ah F9Ah
C1Bh —C9Bh—D1Bh—D9Bh—E1Bh—E9Bh F1Bh F9Bh
C1Ch —C9Ch—D1Ch—D9Ch—E1Ch—E9Ch F1Ch F9Ch
C1Dh —C9Dh—D1Dh—D9Dh—E1Dh—E9Dh F1Dh F9Dh
C1Eh —C9Eh—D1Eh—D9Eh—E1Eh—E9Eh F1Eh F9Eh
C1Fh —C9Fh—D1Fh—D9Fh—E1Fh—E9Fh F1Fh F9Fh
C20h
Unimplemented
Read as ‘0
CA0h
Unimplemented
Read as ‘0
D20h
Unimplemented
Read as ‘0
DA0h
Unimplemented
Read as ‘0
E20h
Unimplemented
Read as ‘0
EA0h
Unimplemented
Read as ‘0
F20h FA0h
C6Fh CEFh D6Fh DEFh E6Fh EEFh F6Fh FEFh
C70h Common RAM
(Accesses
70h – 7Fh)
CF0h Common RAM
(Accesses
70h – 7Fh)
D70h Common RAM
(Accesses
70h – 7Fh)
DF0h Common RAM
(Accesses
70h – 7Fh)
E70h Common RAM
(Accesses
70h – 7Fh)
EF0h Common RAM
(Accesses
70h – 7Fh)
F70h Common RAM
(Accesses
70h – 7Fh)
FF0h Common RAM
(Accesses
70h – 7Fh)
CFFh CFFh D7Fh DFFh E7Fh EFFh F7Fh FFFh
PIC16(L)F1507
DS41586A-page 23 Preliminary 2011 Microchip Technology Inc.
TABLE 3-3: PIC16(L)F1507 MEMORY MAP (CONTINUED)
Bank 30
F0Ch
F0Dh
F0Eh
F0Fh CLCDATA
F10h CLC1CON
F11h CLC1POL
F12h CLC1SEL0
F13h CLC1SEL1
F14h CLC1GLS0
F15h CLC1GLS1
F16h CLC1GLS2
F17h CLC1GLS3
F18h CLC2CON
F19h CLC2POL
F1Ah CLC2SEL0
F1Bh CLC2SEL1
F1Ch CLC2GLS0
F1Dh CLC2GLS1
F1Eh CLC2GLS2
F1Fh CLC2GLS3
F20h Unimplemented
Read as ‘0
F6Fh
Bank 31
F8Ch
FE3h
Unimplemented
Read as0
FE4h STATUS_SHAD
FE5h WREG_SHAD
FE6h BSR_SHAD
FE7h PCLATH_SHAD
FE8h FSR0L_SHAD
FE9h FSR0H_SHAD
FEAh FSR1L_SHAD
FEBh FSR1H_SHAD
FECh
FEDh STKPTR
FEEh TOSL
FEFh TOSH
Legend: = Unimplemented data memory locations, read as ‘0’.
2011 Microchip Technology Inc. Preliminary DS41586A-page 24
PIC16(L)F1507
3.2.6 CORE FUNCTION REGISTERS
SUMMARY
The Core Function registers listed in Table 3 -4 can be
addressed from any Bank.
TABLE 3-4: CORE FUNCTION REGISTERS SUMMARY
Addr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on
POR, BOR V alue on all
othe r re sets
B a nk 0-31
x00h or
x80h INDF0 Addressing this location uses contents of FSR0H/FSR0L to address data memory
(not a physical register) xxxx xxxx uuuu uuuu
x01h or
x81h INDF1 Addressing this location uses contents of FSR1H/FSR1L to address data memory
(not a physical register) xxxx xxxx uuuu uuuu
x02h or
x82h PCL Program Counter (PC) Least Significant Byte 0000 0000 0000 0000
x03h or
x83h STATUS —TOPD ZDCC---1 1000 ---q quuu
x04h or
x84h FSR0L Indirect Data Memory Address 0 Low Pointer 0000 0000 uuuu uuuu
x05h or
x85h FSR0H Indirect Data Memory Address 0 High Pointer 0000 0000 0000 0000
x06h or
x86h FSR1L Indirect Data Memory Address 1 Low Pointer 0000 0000 uuuu uuuu
x07h or
x87h FSR1H Indirect Data Memory Address 1 High Pointer 0000 0000 0000 0000
x08h or
x88h BSR —BSR<4:0>---0 0000 ---0 0000
x09h or
x89h WREG Working Register 0000 0000 uuuu uuuu
x0Ah or
x8Ah PCLATH Write Buffer for the upper 7 bits of the Program Counter -000 0000 -000 0000
x0Bh or
x8Bh INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 0000 0000 0000 0000
Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as ‘0’, r = reserved.
Shaded locations are unimplemented, read as ‘0’.
PIC16(L)F1507
DS41586A-page 25 Preliminary 2011 Microchip Technology Inc.
TABLE 3-5: SPECIAL FUNCTION REGISTER SUMMARY
Address Nam e Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on
POR, BOR
Value on all
other
Resets
Bank 0
00Ch PORTA RA5 RA4 RA3 RA2 RA1 RA0 --xx xxxx --xx xxxx
00Dh PORTB RB7 RB6 RB5 RB4 xxxx ---- xxxx ----
00Eh PORTC RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0 xxxx xxxx xxxx xxxx
00Fh Unimplemented
010h Unimplemented
011h PIR1 TMR1GIF ADIF ——— TMR2IF TMR1IF 00-- --00 00-- --00
012h PIR2 NCO1IF ---- -0-- ---- -0--
013h PIR3 ————— CLC2IF CLC1IF ---- --00 ---- --00
014h Unimplemented
015h TMR0 Holding Register for the 8-bit Timer0 Count xxxx xxxx uuuu uuuu
016h TMR1L Holding Register for the Least Significant Byte of the 16-bit TMR1 Count xxxx xxxx uuuu uuuu
017h TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Count xxxx xxxx uuuu uuuu
018h T1CON TMR1CS<1:0> T1CKPS<1:0> T1SYNC —TMR1ON0000 -0-0 uuuu -u-u
019h T1GCON TMR1GE T1GPOL T1GTM T1GSPM T1GGO/
DONE
T1GVAL —T1GSS0000 0x-0 uuuu ux-u
01Ah TMR2 Timer2 Module Register 0000 0000 0000 0000
01Bh PR2 Timer2 Period Register 1111 1111 1111 1111
01Ch T2CON T2OUTPS<3:0> TMR2ON T2CKPS<1:0> -000 0000 -000 0000
01Dh Unimplemented
01Eh Unimplemented
01Fh Unimplemented
Bank 1
08Ch TRISA TRISA5 TRISA4 (2) TRISA2 TRISA1 TRISA0 --11 1111 --11 1111
08Dh TRISB TRISB7 TRISB6 TRISB5 TRISB4 1111 ---- 1111 ----
08Eh TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 1111 1111 1111 1111
08Fh Unimplemented
090h Unimplemented
091h PIE1 TMR1GIE ADIE ——— TMR2IE TMR1IE 00-- --00 00-- --00
092h PIE2 —NCO1IE ---- -0-- ---- -0--
093h PIE3 ————— CLC2IE CLC1IE ---- --00 ---- --00
094h Unimplemented
095h
OPTION_REG
WPUEN INTEDG TMR0CS TMR0SE PSA PS<2:0> 1111 1111 1111 1111
096h PCON STKOVF STKUNF —RWDT RMCLR RI POR BOR 00-1 11qq qq-q qquu
097h WDTCON WDTPS<4:0> SWDTEN --01 0110 --01 0110
098h Unimplemented
099h OSCCON IRCF<3:0> —SCS<1:0>-011 1-00 -011 1-00
09Ah OSCSTAT —HFIOFR LFIOFR HFIOFS 1-q0 --00 q-qq --qq
09Bh ADRESL A/D Result Register Low xxxx xxxx uuuu uuuu
09Ch ADRESH A/D Result Register High xxxx xxxx uuuu uuuu
09Dh ADCON0 CHS<4:0>
GO/DONE
ADON -000 0000 -000 0000
09Eh ADCON1 ADFM ADCS<2:0>
ADPREF<1:0>
0000 --00 0000 --00
09Fh ADCON2 TRIGSEL<3:0> 0000 ---- 0000 ----
Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved.
Shaded locations are unimplemented, read as ‘0’.
Note 1: PIC16F1507 only.
2: Unimplemented, read as ‘1’.
2011 Microchip Technology Inc. Preliminary DS41586A-page 26
PIC16(L)F1507
Bank 2
10Ch LATA —LATA5LATA4 LATA2 LATA1 LATA0 --xx -xxx --uu -uuu
10Dh LATB LATB7 LATB6 LATB5 LATB4 xxxx ---- uuuu ----
10Eh LATC LATC7 LATC6 LATC5 LATC4 LATC3 LATC2 LATC1 LATC0 xxxx xxxx uuuu uuuu
10Fh
to
115h
Unimplemented
116h BORCON SBOREN BORFS BORRDY 10-- ---q uu-- ---u
117h FVRCON FVREN FVRRDY TSEN TSRNG —ADFVR<1:0>0q00 --00 0q00 --00
118h
to
11Ch
Unimplemented
11Dh APFCON ————— CLC1SEL NCO1SEL ---- --00 ---- --00
11Eh Unimplemented
11Fh Unimplemented
Bank 3
18Ch ANSELA ANSA4 ANSA2 ANSA1 ANSA0 ---1 -111 ---1 -111
18Dh ANSELB ANSB5 ANSB4 --11 ---- --11 ----
18Eh ANSELC ANSC7 ANSC6 ANSC3 ANSC2 ANSC1 ANSC0 11-- 1111 11-- 1111
18Fh Unimplemented
190h Unimplemented
191h PMADRL Flash Program Memory Address Register Low Byte 0000 0000 0000 0000
192h PMADRH Flash Program Memory Address Register High Byte -000 0000 -000 0000
193h PMDATL Flash Program Memory Read Data Register Low Byte xxxx xxxx uuuu uuuu
194h PMDATH Flash Program Memory Read Data Register High Byte --xx xxxx --uu uuuu
195h PMCON1 (2) CFGS LWLO FREE WRERR WREN WR RD 0000 x000 0000 q000
196h PMCON2 Flash Program Memory Control Register 2 0000 0000 0000 0000
197h VREGCON(1) ——————VREGPMReserved ---- --01 ---- --01
198h
to
19Fh
Unimplemented
Bank 4
20Ch WPUA WPUA5 WPUA4 WPUA3 WPUA2 WPUA1 WPUA0 --11 1111 --11 1111
20Dh WPUB WPUB7 WPUB6 WPUB5 WPUB4 1111 ---- 1111 ----
20Eh
to
21Fh
Unimplemented
Bank 5
28Ch
to
29Fh
Unimplemented
Bank 6
30Ch
to
31Fh
Unimplemented
TABLE 3-5: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)
Address Name Bit 7 Bit 6 B it 5 Bit 4 Bit 3 Bit 2 Bit 1 B it 0 Value on
POR, BOR
Value on all
other
Resets
Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved.
Shaded locations are unimplemented, read as ‘0’.
Note 1: PIC16F1507 only.
2: Unimplemented, read as ‘1’.
PIC16(L)F1507
DS41586A-page 27 Preliminary 2011 Microchip Technology Inc.
Bank 7
38Ch
to
390h
Unimplemented
391h IOCAP IOCAP5 IOCAP4 IOCAP3
IOCAP2 IOCAP1 IOCAP0
--00 0000 --00 0000
392h IOCAN IOCAN5 IOCAN4 IOCAN3
IOCAN2 IOCAN1 IOCAN0
--00 0000 --00 0000
393h IOCAF IOCAF5 IOCAF4 IOCAF3
IOCAF2 IOCAF1 IOCAF0
--00 0000 --00 0000
394h IOCBP IOCBP7 IOCBP6 IOCBP5 IOCBP4 0000 ---- 0000 ----
395h IOCBN IOCBN7 IOCBN6 IOCBN5 IOCBN4 0000 ---- 0000 ----
396h IOCBF IOCBF7 IOCBF6 IOCBF5 IOCBF4 0000 ---- 0000 ----
397h
to
39Fh
Unimplemented
Bank 8
40Ch
to
41Fh
Unimplemented
Bank 9
48Ch
to
497h
Unimplemented
498h NCO1ACCL NCO1ACC<7:0> 0000 0000 0000 0000
499h NCO1ACCH NCO1ACC<15:8> 0000 0000 0000 0000
49Ah NCO1ACCU NCO1ACC<23:16> 0000 0000 0000 0000
49Bh NCO1INCL NCO1INC<7:0> 0000 0000 0000 0000
49Ch NCO1INCH NCO1INC<15:8> 0000 0000 0000 0000
49Dh Unimplemented
49Eh NCO1CON N1EN N1OE N1OUT N1POL —N1PFM0000 ---0 0000 ---0
49Fh NCO1CLK N1PWS<2:0> ———N1CKS<1:0>0000 --00 0000 --00
Bank 10
50Ch
to
51Fh
Unimplemented
Bank 11
58Ch
to
59Fh
Unimplemented
TABLE 3-5: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)
Address Nam e Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on
POR, BOR
Value on all
other
Resets
Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved.
Shaded locations are unimplemented, read as ‘0’.
Note 1: PIC16F1507 only.
2: Unimplemented, read as ‘1’.
2011 Microchip Technology Inc. Preliminary DS41586A-page 28
PIC16(L)F1507
Bank 12
60Ch
to
610h
Unimplemented
611h PWM1DCL PWM1DCL<7:6> 00-- ---- 00-- ----
612h PWM1DCH PWM1DCH<7:0> xxxx xxxx uuuu uuuu
613h PWM1CON0 PWM1EN PWM1OE PWM1OUT PWM1POL 0000 ---- 0000 ----
614h PWM2DCL PWM2DCL<7:6> 00-- ---- 00-- ----
615h PWM2DCH PWM2DCH<7:0> xxxx xxxx uuuu uuuu
616h PWM2CON0 PWM2EN PWM2OE PWM2OUT PWM2POL 0000 ---- 0000 ----
617h PWM3DCL PWM3DCL<7:6> 00-- ---- 00-- ----
618h PWM3DCH PWM3DCH<7:0> xxxx xxxx uuuu uuuu
619h PWM3CON0 PWM3EN PWM3OE PWM3OUT PWM3POL 0000 ---- 0000 ----
61Ah PWM4DCL PWM4DCL<7:6> 00-- ---- 00-- ----
61Bh PWM4DCH PWM4DCH<7:0> xxxx xxxx uuuu uuuu
61Ch PWM4CON0 PWM4EN PWM4OE PWM4OUT PWM4POL 0000 ---- 0000 ----
61Dh
to
61Fh
Unimplemented
Bank 13
68Ch
to
690h
Unimplemented
691h CWG1DBR —CWG1DBR<5:0>--00 0000 --00 0000
692h CWG1DBF —CWG1DBF<5:0>--xx xxxx --xx xxxx
693h CWG1CON0 G1EN G1OEB G1OEA G1POLB G1POLA —G1CS00000 0--0 0000 0--0
694h CWG1CON1 G1ASDLB<1:0> G1ASDLA<1:0> G1IS<2:0> 0000 -000 0000 -000
695h CWG1ASD G1ASE G1ARSEN ——— G1ASDSFLT G1ASDSCLC2 00-- --00 00-- --00
696h
to
69Fh
Unimplemented
TABLE 3-5: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)
Address Name Bit 7 Bit 6 B it 5 Bit 4 Bit 3 Bit 2 Bit 1 B it 0 Value on
POR, BOR
Value on all
other
Resets
Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved.
Shaded locations are unimplemented, read as ‘0’.
Note 1: PIC16F1507 only.
2: Unimplemented, read as ‘1’.
PIC16(L)F1507
DS41586A-page 29 Preliminary 2011 Microchip Technology Inc.
Banks 14-29
x0Ch/
x8Ch
x1Fh/
x9Fh
Unimplemented
Bank 30
F0Ch
to
F0Eh
Unimplemented
F0Fh CLCDATA ————— PWM1POL PWM1POL ---- --00 ---- --00
F10h CLC1CON LC1EN LC1OE LC1OUT LC1INTP LC1INTN LC1MODE<2:0> 0000 0000 0000 0000
F11h CLC1POL LC1POL LC1G4POL LC1G3POL LC1G2POL LC1G1POL 0--- xxxx 0--- uuuu
F12h CLC1SEL0 LC1D2S<2:0> LC1D1S<2:0> -xxx -xxx -uuu -uuu
F13h CLC1SEL1 LC1D4S<2:0> LC1D3S<2:0> -xxx -xxx -uuu -uuu
F14h CLC1GLS0 LC1G1D4T LC1G1D4N LC1G1D3T LC1G1D3N LC1G1D2T LC1G1D2N LC1G1D1T LC1G1D1N xxxx xxxx uuuu uuuu
F15h CLC1GLS1 LC1G2D4T LC1G2D4N LC1G2D3T LC1G2D3N LC1G2D2T LC1G2D2N LC1G2D1T LC1G2D1N xxxx xxxx uuuu uuuu
F16h CLC1GLS2 LC1G3D4T LC1G3D4N LC1G3D3T LC1G3D3N LC1G3D2T LC1G3D2N LC1G3D1T LC1G3D1N xxxx xxxx uuuu uuuu
F17h CLC1GLS3 LC1G4D4T LC1G4D4N LC1G4D3T LC1G4D3N LC1G4D2T LC1G4D2N LC1G4D1T LC1G4D1N xxxx xxxx uuuu uuuu
F18h CLC2CON LC2EN LC2OE LC2OUT LC2INTP LC2INTN LC2MODE<2:0> 0000 0000 0000 0000
F19h CLC2POL LC2POL LC2G4POL LC2G3POL LC2G2POL LC2G1POL 0--- xxxx 0--- uuuu
F1Ah CLC2SEL0 LC2D2S<2:0> LC2D1S<2:0> -xxx -xxx -uuu -uuu
F1Bh CLC2SEL1 LC2D4S<2:0> LC2D3S<2:0> -xxx -xxx -uuu -uuu
F1Ch CLC2GLS0 LC2G1D4T LC2G1D4N LC2G1D3T LC2G1D3N LC2G1D2T LC2G1D2N LC2G1D1T LC2G1D1N xxxx xxxx uuuu uuuu
F1Dh CLC2GLS1 LC2G2D4T LC2G2D4N LC2G2D3T LC2G2D3N LC2G2D2T LC2G2D2N LC2G2D1T LC2G2D1N xxxx xxxx uuuu uuuu
F1Eh CLC2GLS2 LC2G3D4T LC2G3D4N LC2G3D3T LC2G3D3N LC2G3D2T LC2G3D2N LC2G3D1T LC2G3D1N xxxx xxxx uuuu uuuu
F1Fh CLC2GLS3 LC2G4D4T LC2G4D4N LC2G4D3T LC2G4D3N LC2G4D2T LC2G4D2N LC2G4D1T LC2G4D1N xxxx xxxx uuuu uuuu
F20h
to
F6Fh
Unimplemented
TABLE 3-5: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)
Address Nam e Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on
POR, BOR
Value on all
other
Resets
Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved.
Shaded locations are unimplemented, read as ‘0’.
Note 1: PIC16F1507 only.
2: Unimplemented, read as ‘1’.
2011 Microchip Technology Inc. Preliminary DS41586A-page 30
PIC16(L)F1507
Bank 31
F8Ch
FE3h
Unimplemented
FE4h STATUS_
SHAD
Z_SHAD DC_SHAD C_SHAD ---- -xxx ---- -uuu
FE5h WREG_
SHAD
Working Register Shadow xxxx xxxx uuuu uuuu
FE6h BSR_
SHAD
Bank Select Register Shadow ---x xxxx ---u uuuu
FE7h PCLATH_
SHAD
Program Counter Latch High Register Shadow -xxx xxxx uuuu uuuu
FE8h FSR0L_
SHAD
Indirect Data Memory Address 0 Low Pointer Shadow xxxx xxxx uuuu uuuu
FE9h FSR0H_
SHAD
Indirect Data Memory Address 0 High Pointer Shadow xxxx xxxx uuuu uuuu
FEAh FSR1L_
SHAD
Indirect Data Memory Address 1 Low Pointer Shadow xxxx xxxx uuuu uuuu
FEBh FSR1H_
SHAD
Indirect Data Memory Address 1 High Pointer Shadow xxxx xxxx uuuu uuuu
FECh Unimplemented
FEDh STKPTR Current Stack pointer ---1 1111 ---1 1111
FEEh TOSL Top-of-Stack Low byte xxxx xxxx uuuu uuuu
FEFh TOSH Top-of-Stack High byte -xxx xxxx -uuu uuuu
TABLE 3-5: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)
Address Name Bit 7 Bit 6 B it 5 Bit 4 Bit 3 Bit 2 Bit 1 B it 0 Value on
POR, BOR
Value on all
other
Resets
Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved.
Shaded locations are unimplemented, read as ‘0’.
Note 1: PIC16F1507 only.
2: Unimplemented, read as ‘1’.
PIC16(L)F1507
DS41586A-page 31 Preliminary 2011 Microchip Technology Inc.
3.3 PCL and PCLATH
The Program Counter (PC) is 15 bits wide. The low byte
comes from the PCL register, which is a readable and
writable register. The high byte (PC<14:8>) is not directly
readable or writable and comes from PCLATH. On any
Reset, the PC is cleared. Figure 3-3 shows the five
situations for the loading of the PC.
FIGURE 3-3: LOADING OF PC IN
DIFFERENT SITUATIONS
3.3.1 MODIFYING PCL
Executing any instruction with the PCL register as the
destination simultaneously causes the Program Coun-
ter PC<14:8> bits (PCH) to be replaced by the contents
of the PCLATH register. This allows the entire contents
of the program counter to be changed by writing the
desired upper 7 bits to the PCLATH register. When the
lower 8 bits are written to the PCL register, all 15 bits of
the program counter will change to the values con-
tained in the PCLATH register and those being written
to the PCL register.
3.3.2 COMPUTED GOTO
A computed GOTO is accomplished by adding an offset to
the program counter (ADDWF PCL). When performing a
table read using a computed GOTO method, care should
be exercised if the table location crosses a PCL memory
boundary (each 256-byte block). Refer to the Application
Note AN556, Implementing a Table Read” (DS00556).
3.3.3 COMPUTED FUNCTION CALLS
A computed function CALL allows programs to maintain
tables of functions and provide another way to execute
state machines or look-up tables. When performing a
table read using a computed function CALL, care
should be exercised if the table location crosses a PCL
memory boundary (each 256-byte block).
If using the CALL instruction, the PCH<2:0> and PCL
registers are loaded with the operand of the CALL
instruction. PCH<6:3> is loaded with PCLATH<6:3>.
The CALLW instruction enables computed calls by com-
bining PCLATH and W to form the destination address.
A computed CALLW is accomplished by loading the W
register with the desired address and executing CALLW.
The PCL register is loaded with the value of W and
PCH is loaded with PCLATH.
3.3.4 BRANCHING
The branching instructions add an offset to the PC.
This allows relocatable code and code that crosses
page boundaries. There are two forms of branching,
BRW and BRA. The PC will have incremented to fetch
the next instruction in both cases. When using either
branching instruction, a PCL memory boundary may be
crossed.
If using BRW, load the W register with the desired
unsigned address and execute BRW. The entire PC will
be loaded with the address PC + 1 + W.
If using BRA, the entire PC will be loaded with PC + 1 +,
the signed value of the operand of the BRA instruction.
PCL
PCH 0
14
PC
PCL
PCH 0
14
PC
ALU Result
8
7
6
PCLATH
0
Instruction with
PCL as
Destination
GOTO, CALL
OPCODE <10:0>
11
4
6
PCLATH
0
PCL
PCH 0
14
PC
W
8
7
6
PCLATH
0
CALLW
PCL
PCH 0
14
PC
PC + W
15
BRW
PCLPCH 0
14
PC
PC + OPCODE <8:0>
15
BRA
2011 Microchip Technology Inc. Preliminary DS41586A-page 32
PIC16(L)F1507
3.4 Stack
All devices have a 16-level x 15-bit wide hardware
stack (refer to Figures 3-4 through 3-7). The stack
space is not part of either program or data space. The
PC is PUSHed onto the stack when CALL or CALLW
instructions are executed or an interrupt causes a
branch. The stack is POPed in the event of a RETURN,
RETLW or a RETFIE instruction execution. PCLATH is
not affected by a PUSH or POP operation.
The stack operates as a circular buffer if the STVREN
bit is programmed to0‘(Configuration Words). This
means that after the stack has been PUSHed sixteen
times, the seventeenth PUSH overwrites the value that
was stored from the first PUSH. The eighteenth PUSH
overwrites the second PUSH (and so on). The
STKOVF and STKUNF flag bits will be set on an Over-
flow/Underflow, regardless of whether the Reset is
enabled.
3.4.1 ACCESSING THE STACK
The stack is available through the TOSH, TOSL and
STKPTR registers. STKPTR is the current value of the
Stack Pointer. TOSH:TOSL register pair points to the
TOP of the stack. Both registers are read/writable. TOS
is split into TOSH and TOSL due to the 15-bit size of the
PC. To access the stack, adjust the value of STKPTR,
which will position TOSH:TOSL, then read/write to
TOSH:TOSL. STKPTR is 5 bits to allow detection of
overflow and underflow.
During normal program operation, CALL, CALLW and
Interrupts will increment STKPTR while RETLW,
RETURN, and RETFIE will decrement STKPTR. At any
time STKPTR can be inspected to see how much stack
is left. The STKPTR always points at the currently used
place on the stack. Therefore, a CALL or CALLW will
increment the STKPTR and then write the PC, and a
return will unload the PC and then decrement the
STKPTR.
Reference Figure 3-4 through Figure 3-7 for examples
of accessing the stack.
FIGURE 3-4: ACCESSING THE ST ACK EXAMPLE 1
Note 1: There are no instructions/mnemonics
called PUSH or POP. These are actions
that occur from the execution of the
CALL, CALLW, RETURN, RETLW and
RETFIE instructions or the vectoring to
an interrupt address.
Note: Care should be taken when modifying the
STKPTR while interrupts are enabled.
0x0F
0x0E
0x0D
0x0C
0x0B
0x0A
0x09
0x08
0x07
0x06
0x05
0x04
0x03
0x02
0x01
0x00
0x0000
STKPTR = 0x1F
Initial Stack Configuration:
After Reset, the stack is empty. The
empty stack is initialized so the Stack
Pointer is pointing at 0x1F. If the Stack
Overflow/Underflow Reset is enabled, the
TOSH/TOSL registers will return ‘0’. If
the Stack Overflow/Underflow Reset is
disabled, the TOSH/TOSL registers will
return the contents of stack address 0x0F.
0x1F STKPTR = 0x1F
Stack Reset Disabled
(STVREN = 0)
Stack Reset Enabled
(STVREN = 1)
TOSH:TOSL
TOSH:TOSL
PIC16(L)F1507
DS41586A-page 33 Preliminary 2011 Microchip Technology Inc.
FIGURE 3-5: ACCESSING THE ST ACK EXAMPLE 2
FIGURE 3-6: ACCESSING THE ST ACK EXAMPLE 3
0x0F
0x0E
0x0D
0x0C
0x0B
0x0A
0x09
0x08
0x07
Return Address0x06
Return Address0x05
Return Address0x04
Return Address0x03
Return Address0x02
Return Address0x01
Return Address0x00
STKPTR = 0x06
After seven CALLs or six CALLs and an
interrupt, the stack looks like the figure
on the left. A series of RETURN instructions
will repeatedly place the return addresses
into the Program Counter and pop the stack.
TOSH:TOSL
2011 Microchip Technology Inc. Preliminary DS41586A-page 34
PIC16(L)F1507
FIGURE 3-7: ACCESSING THE ST ACK EXAMPLE 4
3.4.2 OVERFLOW/UNDERFLOW RESET
If the STVREN bit in Configuration Words is
programmed to ‘1’, the device will be reset if the stack
is PUSHed beyond the sixteenth level or POPed
beyond the first level, setting the appropriate bits
(STKOVF or STKUNF, respectively) in the PCON
register.
3.5 Indirect Addressing
The INDFn registers are not physical registers. Any
instruction that accesses an INDFn register actually
accesses the register at the address specified by the
File Select Registers (FSR). If the FSRn address
specifies one of the two INDFn registers, the read will
return ‘0’ and the write will not occur (though Status bits
may be affected). The FSRn register value is created
by the pair FSRnH and FSRnL.
The FSR registers form a 16-bit address that allows an
addressing space with 65536 locations. These locations
are divided into three memory regions:
Traditional Data Memory
Linear Data Memory
Program Flash Memory
0x0F
0x0E
0x0D
0x0C
0x0B
0x0A
0x09
0x08
0x07
0x06
0x05
0x04
0x03
0x02
0x01
Return Address0x00 STKPTR = 0x10
When the stack is full, the next CALL or
an interrupt will set the Stack Pointer to
0x10. This is identical to address 0x00
so the stack will wrap and overwrite the
return address at 0x00. If the Stack
Overflow/Underflow Reset is enabled, a
Reset will occur and location 0x00 will
not be overwritten.
Return Address
Return Address
Return Address
Return Address
Return Address
Return Address
Return Address
Return Address
Return Address
Return Address
Return Address
Return Address
Return Address
Return Address
Return Address
TOSH:TOSL
PIC16(L)F1507
DS41586A-page 35 Preliminary 2011 Microchip Technology Inc.
FIGURE 3-8: INDIR ECT ADDRESSI NG
0x0000
0x0FFF
Traditional
FSR
Address
Range
Data Memory
0x1000 Reserved
Linear
Data Memory
Reserved
0x2000
0x29AF
0x29B0
0x7FFF
0x8000
0xFFFF
0x0000
0x0FFF
0x0000
0x7FFF
Program
Flash Memory
Note: Not all memory regions are completely implemented. Consult device memory tables for memory limits.
0x1FFF
2011 Microchip Technology Inc. Preliminary DS41586A-page 36
PIC16(L)F1507
3.5.1 TRADITIONAL DATA MEMORY
The traditional data memory is a region from FSR
address 0x000 to FSR address 0xFFF. The addresses
correspond to the absolute addresses of all SFR, GPR
and common registers.
FIGURE 3-9: TRAD ITIO NAL DATA MEMORY MAP
Indirect AddressingDirect Addressing
Bank Select Location Select
4BSR 6 0
From Opcode FSRxL70
Bank Select Location Select
00000 00001 00010 11111
0x00
0x7F
Bank 0 Bank 1 Bank 2 Bank 31
0FSRxH70
0000
PIC16(L)F1507
DS41586A-page 37 Preliminary 2011 Microchip Technology Inc.
3.5.2 LINEAR DATA MEMORY
The linear data memory is the region from FSR
address 0x2000 to FSR address 0x29AF. This region is
a virtual region that points back to the 80-byte blocks of
GPR memory in all the banks.
Unimplemented memory reads as 0x00. Use of the
linear data memory region allows buffers to be larger
than 80 bytes because incrementing the FSR beyond
one bank will go directly to the GPR memory of the next
bank.
The 16 bytes of common memory are not included in
the linear data memory region.
FIGURE 3-10: LINEAR DATA MEMORY
MAP
3.5.3 PROGRAM FLASH MEMORY
To make constant data access easier, the entire
program Flash memory is mapped to the upper half of
the FSR address space. When the MSB of FSRnH is
set, the lower 15 bits are the address in program
memory which will be accessed through INDF. Only the
lower 8 bits of each memory location is accessible via
INDF. Writing to the program Flash memory cannot be
accomplished via the FSR/INDF interface. All
instructions that access program Flash memory via the
FSR/INDF interface will require one additional
instruction cycle to complete.
FIGURE 3-11: PROGRAM FLASH
MEMORY MAP
7
01
7
00
Location Select 0x2000
FSRnH FSRnL
0x020
Bank 0
0x06F
0x0A0
Bank 1
0x0EF
0x120
Bank 2
0x16F
0xF20
Bank 30
0xF6F
0x29AF
0
7
1
7
00
Location Select 0x8000
FSRnH FSRnL
0x0000
0x7FFF
0xFFFF
Program
Flash
Memory
(low 8
bits)
2011 Microchip Technology Inc. Preliminary DS41586A-page 38
PIC16(L)F1507
NOTES:
PIC16(L)F1507
DS41586A-page 39 Preliminary 2011 Microchip Technology Inc.
4.0 DEVICE CONFIGURATION
Device Configuration consists of Configuration Words,
Code Protection and Device ID.
4.1 Configuration Words
There are several Configuration Word bits that allow
different oscillator and memory protection options.
These are implemented as Configuration Word 1 at
8007h and Configuration Word 2 at 8008h.
2011 Microchip Technology Inc. Preliminary DS41586A-page 40
PIC16(L)F1507
REGISTER 4-1: CONFIG1: CONFIGURATION WORD 1
U-1 U-1 R/P-1 R/P-1 R/P-1 U-1
CLKOUTEN BOREN<1:0>
bit 13 bit 8
R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 U-1 R/P-1 R/P-1
CP MCLRE PWRTE WDTE<1:0> FOSC<1:0>
bit 7 bit 0
Legend:
R = Readable bit P = Programmable bit U = Unimplemented bit, read as ‘1
‘0’ = Bit is cleared ‘1’ = Bit is set -n = Value when blank or after Bulk Erase
bit 13-12 Unimplemented: Read as ‘1
bit 11 CLKOUTEN: Clock Out Enable bit
1 = CLKOUT function is disabled. I/O function on the CLKOUT pin
0 = CLKOUT function is enabled on the CLKOUT pin
bit 10-9 BOREN<1:0>: Brown-out Reset Enable bits(1)
11 = BOR enabled
10 = BOR enabled during operation and disabled in Sleep
01 = BOR controlled by SBOREN bit of the BORCON register
00 = BOR disabled
bit 8 Unimplemented: Read as ‘1
bit 7 CP: Code Protection bit(2)
1 = Program memory code protection is disabled
0 = Program memory code protection is enabled
bit 6 MCLRE: MCLR/VPP Pin Function Select bit
If LVP bit = 1:
This bit is ignored.
If LVP bit = 0:
1 =MCLR
/VPP pin function is MCLR; Weak pull-up enabled.
0 =MCLR
/VPP pin function is digital input; MCLR internally disabled; Weak pull-up under control of
WPUE3 bit.
bit 5 PWRTE: Power-Up Timer Enable bit
1 = PWRT disabled
0 = PWRT enabled
bit 4-3 WDTE<1:0>: Watchdog Timer Enable bits
11 = WDT enabled
10 = WDT enabled while running and disabled in Sleep
01 = WDT controlled by the SWDTEN bit in the WDTCON register
00 = WDT disabled
bit 2 Unimplemented: Read as ‘1
bit 1-0 FOSC<1:0>: Oscillator Selection bits
11 = ECH: External Clock, High-Power mode: on CLKIN pin
10 = ECM: External Clock, Medium-Power mode: on CLKIN pin
01 = ECL: External Clock, Low-Power mode: on CLKIN pin
00 = INTOSC oscillator: I/O function on CLKIN pin
Note 1: Enabling Brown-out Reset does not automatically enable Power-up Timer.
2: Once enabled, code-protect can only be disabled by bulk erasing the device.
PIC16(L)F1507
DS41586A-page 41 Preliminary 2011 Microchip Technology Inc.
REGISTER 4-2: CONFIG2: CONFIGURATION WORD 2
R/P-1 U-1 R/P-1 R/P-1 R/P-1 U-1
LVP —LPBORBORV STVREN
bit 13 bit 8
U-1U-1U-1U-1U-1U-1R/P-1R/P-1
———WRT<1:0>
bit 7 bit 0
Legend:
R = Readable bit P = Programmable bit U = Unimplemented bit, read as ‘1
‘0’ = Bit is cleared ‘1’ = Bit is set -n = Value when blank or after Bulk Erase
bit 13 LVP: Low-Voltage Programming Enable bit(1)
1 = Low-voltage programming enabled
0 = High-voltage on MCLR must be used for programming
bit 12 Unimplemented: Read as ‘1
bit 11 LPBOR: Low-Power BOR Enable bit
1 = Low-Power Brown-out Reset is disabled
0 = Low-Power Brown-out Reset is enabled
bit 10 BORV: Brown-Out Reset Voltage Selection bit
1 = Brown-out Reset voltage set to:
1.9V (PIC16LF1507)
2.4V (PIC16F1507), typical
0 = Brown-out Reset voltage set to 2.7V (typical)
bit 9 STVREN: Stack Overflow/Underflow Reset Enable bit
1 = Stack Overflow or Underflow will cause a Reset
0 = Stack Overflow or Underflow will not cause a Reset
bit 8-2 Unimplemented: Read as ‘1
bit 1-0 WRT<1:0>: Flash Memory Self-Write Protection bits
2 kW Flash memory:
11 = Write protection off
10 = 000h to 1FFh write-protected, 200h to 7FFh may be modified
01 = 000h to 3FFh write-protected, 400h to 7FFh may be modified
00 = 000h to 7FFh write-protected, no addresses may be modified
Note 1: The LVP bit cannot be programmed to ‘0’ when Programming mode is entered via LVP.
2011 Microchip Technology Inc. Preliminary DS41586A-page 42
PIC16(L)F1507
4.2 Code Protection
Code protection allows the device to be protected from
unauthorized access. Internal access to the program
memory is unaffected by any code protection setting.
4.2.1 PROGRAM MEMORY PROTECTION
The entire program memory space is protected from
external reads and writes by the CP bit in Configuration
Words. When CP = 0, external reads and writes of
program memory are inhibited and a read will return all
0s. The CPU can continue to read program memory,
regardless of the protection bit settings. Writing the
program memory is dependent upon the write
protection setting. See Section 4.3 “Write
Protection” for more information.
4.3 Writ e Pr otection
Write protection allows the device to be protected from
unintended self-writes. Applications, such as
bootloader software, can be protected while allowing
other regions of the program memory to be modified.
The WRT<1:0> bits in Configuration Words define the
size of the program memory block that is protected.
4.4 User ID
Four memory locations (8000h-8003h) are designated as
ID locations where the user can store checksum or other
code identification numbers. These locations are
readable and writable during normal execution. See
Section 10.4 “User ID, Device ID and Configuration
Word Access” for more information on accessing these
memory locations. For more information on checksum
calculation, see the PIC12(L)F1501/PIC16(L)F150X
Memory Programming Specification (DS41573).
PIC16(L)F1507
DS41586A-page 43 Preliminary 2011 Microchip Technology Inc.
4.5 Device ID and Revision ID
The memory location 8006h is where the Device ID and
Revision ID are stored. The upper nine bits hold the
Device ID. The lower five bits hold the Revision ID. See
Section 10.4 “User ID, Device ID and Configuration
Word Access for more information on accessing
these memory locations.
Development tools, such as device programmers and
debuggers, may be used to read the Device ID and
Revision ID.
REGISTER 4-3: DEVICEID: DEVICE ID REGISTER
RRRRRR
DEV<8:3>
bit 13 bit 8
RRRRRRRR
DEV<2:0> REV<4:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘1’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared P = Programmable bit
bit 13-5 DEV<8:0>: Device ID bits
bit 4-0 REV<4:0>: Revision ID bits
These bits are used to identify the revision (see Table under DEV<8:0> above).
Device DEVICEID<13:0> Values
DEV<8:0> REV<4:0>
PIC16F1507 10 1101 000 x xxxx
PIC16LF1507 10 1101 110 x xxxx
2011 Microchip Technology Inc. Preliminary DS41586A-page 44
PIC16(L)F1507
NOTES:
PIC16(L)F1507
DS41586A-page 45 Preliminary 2011 Microchip Technology Inc.
5.0 OSCILLATOR MODULE
5.1 Overview
The oscillator module has a wide variety of clock
sources and selection features that allow it to be used
in a wide range of applications while maximizing perfor-
mance and minimizing power consumption. Figure 5-1
illustrates a block diagram of the oscillator module.
The oscillator module can be configured in one of the
following clock modes.
1. ECL – External Clock Low-Power mode
(0 MHz to 0.5 MHz)
2. ECM – External Clock Medium-Power mode
(0.5 MHz to 4 MHz)
3. ECH – External Clock High-Power mode
(4 MHz to 20 MHz)
4. INTOSC – Internal oscillator (31 kHz to 16 MHz).
Clock Source modes are selected by the FOSC<1:0>
bits in the Configuration Words. The FOSC bits
determine the type of oscillator that will be used when
the device is first powered.
The EC clock mode relies on an external logic level
signal as the device clock source.
The INTOSC internal oscillator block produces low and
high frequency clock sources, designated LFINTOSC
and HFINTOSC. (see Internal Oscillator Block,
Figure 5-1). A wide selection of device clock
frequencies may be derived from these clock sources.
FIGURE 5-1: SIMPLIFIED PIC® MCU CLOCK SOURCE BLOCK DIAGRAM
FOSC<1:0>
EC
CPU and
Postscaler
MUX
MUX
16 MHz
8 MHz
4 MHz
2 MHz
1 MHz
250 kHz
500 kHz
IRCF<3:0>
31 kHz
16 MHz
Source
Internal
Oscillator
Block
WDT, PWRT and other modules
16 MHz
Internal Oscillator
(HFINTOSC)
Clock
Control
SCS<1:0>
31 kHz (LFINTOSC)
31 kHz
Source
125 kHz
31.25 kHz
62.5 kHz
Peripherals
Sleep
CLKIN CLKIN EC
2011 Microchip Technology Inc. Preliminary DS41586A-page 46
PIC16(L)F1507
5.2 Clock Source Types
Clock sources can be classified as external or internal.
External clock sources rely on external circuitry for the
clock source to function. Examples are: oscillator mod-
ules (EC mode).
Internal clock sources are contained within the
oscillator module. The oscillator block has two internal
oscillators that are used to generate two system clock
sources: the 16 MHz High-Frequency Internal
Oscillator (HFINTOSC) and the 31 kHz Low-Frequency
Internal Oscillator (LFINTOSC).
The system clock can be selected between external or
internal clock sources via the System Clock Select
(SCS) bits in the OSCCON register. See Section 5.3
“Clock Switching” for additional information.
5.2.1 EXTERNAL CLOCK SOURCES
An external clock source can be used as the device
system clock by performing one of the following
actions:
Program the FOSC<1:0> bits in the Configuration
Words to select an external clock source that will
be used as the default system clock upon a
device Reset.
Clear the SCS<1:0> bits in the OSCCON register
to switch the system clock source to:
- An external clock source determined by the
value of the FOSC bits.
See Section 5.3 “Clock Switching”for more informa-
tion.
5.2.1.1 EC Mode
The External Clock (EC) mode allows an externally
generated logic level signal to be the system clock
source. When operating in this mode, an external clock
source is connected to the CLKIN input. CLKOUT is
available for general purpose I/O or CLKOUT.
Figure 5-2 shows the pin connections for EC mode.
EC mode has 3 power modes to select from through
Configuration Words:
High power, 4-20 MHz (FOSC = 11)
Medium power, 0.5-4 MHz (FOSC = 10)
Low power, 0-0.5 MHz (FOSC = 01)
When EC mode is selected, there is no delay in opera-
tion after a Power-on Reset (POR) or wake-up from
Sleep. Because the PIC® MCU design is fully static,
stopping the external clock input will have the effect of
halting the device while leaving all data intact. Upon
restarting the external clock, the device will resume
operation as if no time had elapsed.
FIGURE 5-2: EXTERNAL CLOCK (EC)
MODE OPERATION
CLKIN
CLKOUT
Clock from
Ext. System PIC® MCU
FOSC/4 or I/O(1)
Note 1: Output depends upon CLKOUTEN bit of the
Configuration Words.
PIC16(L)F1507
DS41586A-page 47 Preliminary 2011 Microchip Technology Inc.
5.2.2 INTERNAL CLOCK SOURCES
The device may be configured to use the internal oscil-
lator block as the system clock by performing one of the
following actions:
Program the FOSC<1:0> bits in Configuration
Words to select the INTOSC clock source, which
will be used as the default system clock upon a
device Reset.
Write the SCS<1:0> bits in the OSCCON register
to switch the system clock source to the internal
oscillator during run-time. See Section 5.3
“Clock Switching”for more information.
In INTOSC mode, CLKIN is available for general
purpose I/O. CLKOUT is available for general purpose
I/O or CLKOUT.
The function of the CLKOUT pin is determined by the
CLKOUTEN bit in Configuration Words.
The internal oscillator block has two independent
oscillators clock sources.
1. The HFINTOSC (High-Frequency Internal
Oscillator) is factory calibrated and operates at
16 MHz.
2. The LFINTOSC (Low-Frequency Internal
Oscillator) is uncalibrated and operates at
31 kHz.
5.2.2.1 HFINTOSC
The High-Frequency Internal Oscillator (HFINTOSC) is
a factory calibrated 16 MHz internal clock source.
The outputs of the HFINTOSC connects to a prescaler
and multiplexer (see Figure 5-1). One of multiple
frequencies derived from the HFINTOSC can be
selected via software using the IRCF<3:0> bits of the
OSCCON register. See Section 5.2.2.4 “Internal
Oscillator Clock Switch Timing” for more information.
The HFINTOSC is enabled by:
Configure the IRCF<3:0> bits of the OSCCON
register for the desired HF frequency, and
•FOSC<1:0> = 00, or
Set the System Clock Source (SCS) bits of the
OSCCON register to ‘1x’.
A fast start-up oscillator allows internal circuits to power
up and stabilize before switching to HFINTOSC.
The High-Frequency Internal Oscillator Ready bit
(HFIOFR) of the OSCSTAT register indicates when the
HFINTOSC is running.
The High-Frequency Internal Oscillator Stable bit
(HFIOFS) of the OSCSTAT register indicates when the
HFINTOSC is running within 0.5% of its final value.
5.2.2.2 LFINTOSC
The Low-Frequency Internal Oscillator (LFINTOSC) is
an uncalibrated 31 kHz internal clock source.
The output of the LFINTOSC connects to a multiplexer
(see Figure 5-1). Select 31 kHz, via software, using the
IRCF<3:0> bits of the OSCCON register. See
Section 5.2.2.4 “Internal Oscillator Clock Switch
Timing” for more information. The LFINTOSC is also
the frequency for the Power-up Timer (PWRT) and
Watchdog Timer (WDT).
The LFINTOSC is enabled by selecting 31 kHz
(IRCF<3:0> bits of the OSCCON register = 000x) as
the system clock source (SCS bits of the OSCCON
register = 1x), or when any of the following are
enabled:
Configure the IRCF<3:0> bits of the OSCCON
register for the desired LF frequency, and
•FOSC<1:0> = 00, or
Set the System Clock Source (SCS) bits of the
OSCCON register to ‘1x
Peripherals that use the LFINTOSC are:
Power-up Timer (PWRT)
Watchdog Timer (WDT)
The Low-Frequency Internal Oscillator Ready bit
(LFIOFR) of the OSCSTAT register indicates when the
LFINTOSC is running.
2011 Microchip Technology Inc. Preliminary DS41586A-page 48
PIC16(L)F1507
5.2.2.3 Internal Oscillator Frequency
Selection
The system clock speed can be selected via software
using the Internal Oscillator Frequency Select bits
IRCF<3:0> of the OSCCON register.
The outputs of the 16 MHz HFINTOSC postscaler and
the LFINTOSC connect to a multiplexer (see
Figure 5-1). The Internal Oscillator Frequency Select
bits IRCF<3:0> of the OSCCON register select the
frequency output of the internal oscillators. One of the
following frequencies can be selected via software:
•HFINTOSC
-16 MHz
-8 MHz
-4 MHz
-2 MHz
-1 MHz
- 500 kHz (Default after Reset)
- 250 kHz
- 125 kHz
- 62.5 kHz
- 31.25 kHz
•LFINTOSC
-31 kHz
The IRCF<3:0> bits of the OSCCON register allow
duplicate selections for some frequencies. These dupli-
cate choices can offer system design trade-offs. Lower
power consumption can be obtained when changing
oscillator sources for a given frequency. Faster transi-
tion times can be obtained between frequency changes
that use the same oscillator source.
5.2.2.4 Internal Oscillator Clock Switch
Timing
When switching between the HFINTOSC and the
LFINTOSC, the new oscillator may already be shut
down to save power (see Figure 5-3). If this is the case,
there is a delay after the IRCF<3:0> bits of the
OSCCON register are modified before the frequency
selection takes place. The OSCSTAT register will
reflect the current active status of the HFINTOSC and
LFINTOSC oscillators. The sequence of a frequency
selection is as follows:
1. IRCF<3:0> bits of the OSCCON register are
modified.
2. If the new clock is shut down, a clock start-up
delay is started.
3. Clock switch circuitry waits for a falling edge of
the current clock.
4. Clock switch is complete.
See Figure 5-3 for more details.
If the internal oscillator speed is switched between two
clocks of the same source, there is no start-up delay
before the new frequency is selected.
Start-up delay specifications are located in the
oscillator tables of Section 25.0 “Electrical
Specifications
Note: Following any Reset, the IRCF<3:0> bits
of the OSCCON register are set to ‘0111
and the frequency selection is set to
500 kHz. The user can modify the IRCF
bits to select a different frequency.
PIC16(L)F1507
DS41586A-page 49 Preliminary 2011 Microchip Technology Inc.
FIGURE 5-3: INTERNAL OSCILLATOR SWITCH TIMING
HFINTOSC
LFINTOSC
IRCF <3:0>
System Clock
HFINTOSC
LFINTOSC
IRCF <3:0>
System Clock
00
00
Start-up Time 2-cycle Sync Running
2-cycle Sync Running
HFINTOSC LFINTOSC (WDT disabled)
HFINTOSC LFINTOSC (WDT enabled)
LFINTOSC
HFINTOSC
IRCF <3:0>
System Clock
= 0 0
Start-up Time 2-cycle Sync Running
LFINTOSC HFINTOSC LFINTOSC turns off unless WDT is enabled
2011 Microchip Technology Inc. Preliminary DS41586A-page 50
PIC16(L)F1507
5.3 Clock Switching
The system clock source can be switched between
external and internal clock sources via software using
the System Clock Select (SCS) bits of the OSCCON
register. The following clock sources can be selected
using the SCS bits:
Default system oscillator determined by FOSC
bits in Configuration Words
Internal Oscillator Block (INTOSC)
5.3.1 SYSTEM CLOCK SELECT (SCS)
BITS
The System Clock Select (SCS) bits of the OSCCON
register selects the system clock source that is used for
the CPU and peripherals.
When the SCS bits of the OSCCON register = 00,
the system clock source is determined by value of
the FOSC<1:0> bits in the Configuration Words.
When the SCS bits of the OSCCON register = 1x,
the system clock source is chosen by the internal
oscillator frequency selected by the IRCF<3:0>
bits of the OSCCON register. After a Reset, the
SCS bits of the OSCCON register are always
cleared.
When switching between clock sources, a delay is
required to allow the new clock to stabilize. These oscil-
lator delays are shown in Table 5-2.
TABLE 5-1: OSCILLATOR SWITCHING DELAYS
Switch From Switch To Frequency Oscillator Delay
Sleep/POR LFINTOSC
HFINTOSC
31 kHz
31.25kHz-16MHz Oscillator Warm-up Delay (TWARM)
Sleep/POR EC DC – 20 MHz 2 cycles
LFINTOSC EC DC – 20 MHz 1 cycle of each
Any clock source HFINTOSC 31.25 kHz-16 MHz 2 s (typical)
Any clock source LFINTOSC 31 kHz 1 cycle of each
PIC16(L)F1507
DS41586A-page 51 Preliminary 2011 Microchip Technology Inc.
5.4 Oscillator Control Registers
REGISTER 5-1: OSCCON: OSCILLATOR CONTROL REGISTER
U-0 R/W-0/0 R/W-1/1 R/W-1/1 R/W-1/1 U-0 R/W-0/0 R/W-0/0
IRCF<3:0> SCS<1:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 Unimplemented: Read as ‘0
bit 6-3 IRCF<3:0>: Internal Oscillator Frequency Select bits
1111 =16MHz
1110 =8MHz
1101 =4MHz
1100 =2MHz
1011 =1MHz
1010 = 500 kHz(1)
1001 = 250 kHz(1)
1000 = 125 kHz(1)
0111 = 500 kHz (default upon Reset)
0110 = 250 kHz
0101 = 125 kHz
0100 = 62.5 kHz
001x = 31.25 kHz
000x = 31 kHz (LFINTOSC)
bit 2 Unimplemented: Read as ‘0
bit 1-0 SCS<1:0>: System Clock Select bits
1x = Internal oscillator block
01 = Reserved
00 = Clock determined by FOSC<1:0> in Configuration Words.
Note 1: Duplicate frequency derived from HFINTOSC.
2011 Microchip Technology Inc. Preliminary DS41586A-page 52
PIC16(L)F1507
TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES
TABLE 5-3: SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES
REGISTER 5-2: OSCSTAT: OSCILLATOR STATUS REGISTER
U-0 U-0 U-0 R-0/q U-0 U-0 R-0/q R-0/q
HFIOFR LFIOFR HFIOFS
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared q = Conditional
bit 7-5 Unimplemented: Read as ‘0
bit 4 HFIOFR: High Frequency Internal Oscillator Ready bit
1 = 16 MHz Internal Oscillator (HFINTOSC) is ready
0 = 16 MHz Internal Oscillator (HFINTOSC) is not ready
bit 3-2 Unimplemented: Read as ‘0
bit 1 LFIOFR: Low Frequency Internal Oscillator Ready bit
1 = 31 kHz Internal Oscillator (LFINTOSC) is ready
0 = 31 kHz Internal Oscillator (LFINTOSC) is not ready
bit 0 HFIOFS: High Frequency Internal Oscillator Stable bit
1 = 16 MHz Internal Oscillator (HFINTOSC) is stable
0 = 16 MHz Internal Oscillator (HFINTOSC) is not yet stable.
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
OSCCON IRCF<3:0> —SCS<1:0>51
OSCSTAT —— HFIOFR LFIOFR HFIOFS 52
Legend: = unimplemented location, read as ‘0’. Shaded cells are not used by clock sources.
Name Bits Bit -/7 Bit -/6 Bit 13/5 Bit 12/4 Bit 11/3 Bit 10/2 Bit 9/1 Bit 8/0 Register
on Pa ge
CONFIG1 13:8 —CLKOUTEN BOREN<1:0> 40
7:0 CP MCLRE PWRTE WDTE<1:0> FOSC<1:0>
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by clock sources.
PIC16(L)F1507
DS41586A-page 53 Preliminary 2011 Microchip Technology Inc.
6.0 RESETS
There are multiple ways to reset this device:
Power-on Reset (POR)
Brown-out Reset (BOR)
Low-Power Brown-out Reset (LPBOR)
•MCLR Reset
•WDT Reset
RESET instruction
Stack Overflow
Stack Underflow
Programming mode exit
To allow VDD to stabilize, an optional Power-up Timer
can be enabled to extend the Reset time after a BOR
or POR event.
A simplified block diagram of the On-Chip Reset Circuit
is shown in Figure 6-1.
FIGURE 6-1: SI MPLIFI ED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT
Note 1: See Table 6-1 for BOR active conditions.
Device
Reset
Power-on
Reset
WDT
Time-out
Brown-out
Reset
LPBOR
Reset
RESET Instruction
MCLRE
Sleep
BOR
Active(1)
PWRT
R
Done
PWRTE
LFINTOSC
VDD
ICSP™ Programming Mode Exit
Stack
Pointer
MCLR
2011 Microchip Technology Inc. Preliminary DS41586A-page 54
PIC16(L)F1507
6.1 Power-on Reset (POR)
The POR circuit holds the device in Reset until VDD has
reached an acceptable level for minimum operation.
Slow rising VDD, fast operating speeds or analog
performance may require greater than minimum VDD.
The PWRT, BOR or MCLR features can be used to
extend the start-up period until all device operation
conditions have been met.
6.1.1 POWER-UP TIMER (PWRT)
The Power-up Timer provides a nominal 64 ms time-
out on POR or Brown-out Reset.
The device is held in Reset as long as PWRT is active.
The PWRT delay allows additional time for the VDD to
rise to an acceptable level. The Power-up Timer is
enabled by clearing the PWRTE bit in Configuration
Words.
The Power-up Timer starts after the release of the POR
and BOR.
For additional information, refer to Application Note
AN607, “Power-up Trouble Shooting” (DS00607).
6.2 Brown-Out Reset (BOR)
The BOR circuit holds the device in Reset when VDD
reaches a selectable minimum level. Between the
POR and BOR, complete voltage range coverage for
execution protection can be implemented.
The Brown-out Reset module has four operating
modes controlled by the BOREN<1:0> bits in Configu-
ration Words. The four operating modes are:
BOR is always on
BOR is off when in Sleep
BOR is controlled by software
BOR is always off
Refer to Table 6 -1 for more information.
The Brown-out Reset voltage level is selectable by
configuring the BORV bit in Configuration Words.
A VDD noise rejection filter prevents the BOR from trig-
gering on small events. If VDD falls below VBOR for a
duration greater than parameter TBORDC, the device
will reset. See Figure 6-2 for more information.
TABLE 6-1: BOR OPERATING MODES
6.2.1 BOR IS ALWAYS ON
When the BOREN bits of Configuration Words are pro-
grammed to ‘11’, the BOR is always on. The device
start-up will be delayed until the BOR is ready and VDD
is higher than the BOR threshold.
BOR protection is active during Sleep. The BOR does
not delay wake-up from Sleep.
6.2.2 BOR IS OFF IN SLEEP
When the BOREN bits of Configuration Words are pro-
grammed to ‘10’, the BOR is on, except in Sleep. The
device start-up will be delayed until the BOR is ready
and VDD is higher than the BOR threshold.
BOR protection is not active during Sleep. The device
wake-up will be delayed until the BOR is ready.
6.2.3 BOR CONTROLLED BY SOFTWARE
When the BOREN bits of Configuration Words are pro-
grammed to ‘01’, the BOR is controlled by the SBO-
REN bit of the BORCON register. The device start-up
is not delayed by the BOR ready condition or the VDD
level.
BOR protection begins as soon as the BOR circuit is
ready. The status of the BOR circuit is reflected in the
BORRDY bit of the BORCON register.
BOR protection is unchanged by Sleep.
BOREN<1:0> SBOREN Device Mode BOR Mode Instruction Exection upon:
Release of POR or Wake-up from Sleep
11 X X Active Waits for BOR ready(1)
(BORRDY = 1)
10 X Awake Active Waits for BOR ready
(BORRDY = 1)
Sleep Disabled
01
1XActive Waits for BOR ready(1)
(BORRDY = 1)
0X Disabled Begins immediately
(BORRDY = x)
00 X XDisabled
Note 1: In these specific cases, “release of POR” and “wake-up from Sleep,” there is no delay in start-up. The BOR
ready flag, (BORRDY = 1), will be set before the CPU is ready to execute instructions because the BOR
circuit is forced on by the BOREN<1:0> bits.
PIC16(L)F1507
DS41586A-page 55 Preliminary 2011 Microchip Technology Inc.
FIGURE 6-2: BROWN-OUT SITUATIONS
REGISTER 6-1: BORCON: BROWN-OUT RESET CONTROL REGISTER
R/W-1/u R/W-0/u U-0 U-0 U-0 U-0 U-0 R-q/u
SBOREN BORFS —BORRDY
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set 0’ = Bit is cleared q = Value depends on condition
bit 7 SBOREN: Software Brown-out Reset Enable bit
If BOREN <1:0> in Configuration Words 01:
SBOREN is read/write, but has no effect on the BOR.
If BOREN <1:0> in Configuration Words = 01:
1 = BOR Enabled
0 = BOR Disabled
bit 6 BORFS: Brown-out Reset Fast Start bit(1)
If BOREN<1:0> = 11 (Always on) or BOREN<1:0> = 00 (Always off)
BORFS is Read/Write, but has no effect.
If BOREN <1:0> = 10 (Disabled in Sleep) or BOREN<1:0> = 01 (Under software control):
1 = Band gap is forced on always (covers sleep/wake-up/operating cases)
0 = Band gap operates normally, and may turn off
bit 5-1 Unimplemented: Read as ‘0
bit 0 BORRDY: Brown-out Reset Circuit Ready Status bit
1 = The Brown-out Reset circuit is active
0 = The Brown-out Reset circuit is inactive
Note 1: BOREN<1:0> bits are located in Configuration Words.
TPWRT(1)
VBOR
VDD
Internal
Reset
VBOR
VDD
Internal
Reset TPWRT(1)
< TPWRT
TPWRT(1)
VBOR
VDD
Internal
Reset
Note 1: TPWRT delay only if PWRTE bit is programmed to ‘0’.
2011 Microchip Technology Inc. Preliminary DS41586A-page 56
PIC16(L)F1507
6.3 Low-Power Brown-out Reset
(LPBOR)
The Low-Power Brown-Out Reset (LPBOR) is an
essential part of the Reset subsystem. Refer to
Figure 6-1 to see how the BOR interacts with other
modules.
The LPBOR is used to monitor the external VDD pin.
When too low of a voltage is detected, the device is
held in Reset. When this occurs, a register bit (BOR) is
changed to indicate that a BOR Reset has occurred.
The same bit is set for both the BOR and the LPBOR.
Refer to Register 6-2.
6.3.1 ENABLING LPBOR
The LPBOR is controlled by the LPBOR bit of
Configuration Words. When the device is erased, the
LPBOR module defaults to disabled.
6.3.1.1 LPBOR Module Output
The output of the LPBOR module is a signal indicating
whether or not a Reset is to be asserted. This signal is
OR’d together with the Reset signal of the BOR mod-
ule to provide the generic BOR signal which goes to
the PCON register and to the power control block.
6.4 MCLR
The MCLR is an optional external input that can reset
the device. The MCLR function is controlled by the
MCLRE bit of Configuration Words and the LVP bit of
Configuration Words (Table 6-2).
6.4.1 MCLR ENABLED
When MCLR is enabled and the pin is held low, the
device is held in Reset. The MCLR pin is connected to
VDD through an internal weak pull-up.
The device has a noise filter in the MCLR Reset path.
The filter will detect and ignore small pulses.
6.4.2 MCLR DISABLED
When MCLR is disabled, the pin functions as a general
purpose input and the internal weak pull-up is under
software control. See Section 11.2 “PORTA Regis-
ters” for more information.
6.5 Watchdog Timer (WDT) Reset
The Watchdog Timer generates a Reset if the firmware
does not issue a CLRWDT instruction within the time-out
period. The TO and PD bits in the STATUS register are
changed to indicate the WDT Reset. See Section 9.0
“Watchdog Timer” for more information.
6.6 RESET Instruction
A RESET instruction will cause a device Reset. The RI
bit in the PCON register will be set to ‘0. See Ta bl e 6- 4
for default conditions after a RESET instruction has
occurred.
6.7 Stack Overflow/Underflow Reset
The device can reset when the Stack Overflows or
Underflows. The STKOVF or STKUNF bits of the PCON
register indicate the Reset condition. These Resets are
enabled by setting the STVREN bit in Configuration
Words. See Section 3.4.2 “Overflow/Underflow
Reset” for more information.
6.8 Programming Mode Exit
Upon exit of Programming mode, the device will
behave as if a POR had just occurred.
6.9 Power-Up Timer
The Power-up Timer optionally delays device execution
after a BOR or POR event. This timer is typically used to
allow VDD to stabilize before allowing the device to start
running.
The Power-up Timer is controlled by the PWRTE bit of
Configuration Words.
6.10 S tart-up Sequence
Upon the release of a POR or BOR, the following must
occur before the device will begin executing:
1. Power-up Timer runs to completion (if enabled).
2. MCLR must be released (if enabled).
The total time-out will vary based on oscillator configu-
ration and Power-up Timer configuration. See
Section 5.0 “Oscillator Module for more informa-
tion.
The Power-up Timer runs independently of MCLR
Reset. If MCLR is kept low long enough, the Power-up
Timer will expire. Upon bringing MCLR high, the device
will begin execution immediately (see Figure 6-3). This
is useful for testing purposes or to synchronize more
than one device operating in parallel.
TABLE 6-2: MCLR CONFIGURATION
MCLRE LVP MCLR
00Disabled
10Enabled
x1Enabled
Note: A Reset does not drive the MCLR pin low.
PIC16(L)F1507
DS41586A-page 57 Preliminary 2011 Microchip Technology Inc.
FIGURE 6-3: RESET START-UP SEQUENCE
TMCLR
TPWRT
VDD
Internal POR
Power-Up Timer
MCLR
Internal RESET
Internal Oscillator
Oscillator
FOSC
External Clock (EC)
CLKIN
FOSC
2011 Microchip Technology Inc. Preliminary DS41586A-page 58
PIC16(L)F1507
6.11 Determining the Cause of a Reset
Upon any Reset, multiple bits in the STATUS and
PCON register are updated to indicate the cause of the
Reset. Ta ble 6 -3 and Ta b le 6- 4 show the Reset condi-
tions of these registers.
TABLE 6-3: RESET STATUS BITS AND THEIR SIGNIFICANCE
TABLE 6-4: RESET CONDITION FOR SPECIAL REGISTERS(2)
STKOVF STKUNF RWDT RMCLR RI POR BOR TO PD Condition
0 0 1 1 10 x11Power-on Reset
0 0 1 1 10 x0xIllegal, TO is set on POR
0 0 1 1 10 xx0Illegal, PD is set on POR
0 0 u 1 1u 011Brown-out Reset
u u 0 u uu u0uWDT Reset
u u u u uu u00WDT Wake-up from Sleep
u u u u uu u10Interrupt Wake-up from Sleep
u u u 0 uu uuuMCLR Reset during normal operation
u u u 0 uu u10MCLR Reset during Sleep
u u u u 0 u u u u RESET Instruction Executed
1 u u u uu uuuStack Overflow Reset (STVREN = 1)
u 1 u u uu uuuStack Underflow Reset (STVREN = 1)
Condition Program
Counter STATUS
Register PCON
Register
Power-on Reset 0000h ---1 1000 00-- 110x
MCLR Reset during normal operation 0000h ---u uuuu uu-- 0uuu
MCLR Reset during Sleep 0000h ---1 0uuu uu-- 0uuu
WDT Reset 0000h ---0 uuuu uu-- uuuu
WDT Wake-up from Sleep PC + 1 ---0 0uuu uu-- uuuu
Brown-out Reset 0000h ---1 1uuu 00-- 11u0
Interrupt Wake-up from Sleep PC + 1(1) ---1 0uuu uu-- uuuu
RESET Instruction Executed 0000h ---u uuuu uu-- u0uu
Stack Overflow Reset (STVREN = 1) 0000h ---u uuuu 1u-- uuuu
Stack Underflow Reset (STVREN = 1) 0000h ---u uuuu u1-- uuuu
Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as ‘0’.
Note1: When the wake-up is due to an interrupt and Global Interrupt Enable bit (GIE) is set, the return address is
pushed on the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.
2: If a Status bit is not implemented, that bit will be read as ‘0’.
PIC16(L)F1507
DS41586A-page 59 Preliminary 2011 Microchip Technology Inc.
6.12 Power Control (PCON) Register
The Power Control (PCON) register contains flag bits
to differentiate between a:
Power-on Reset (POR)
Brown-out Reset (BOR)
Reset Instruction Reset (RI)
•MCLR Reset (RMCLR)
Watchdog Timer Reset (RWDT)
Stack Underflow Reset (STKUNF)
Stack Overflow Reset (STKOVF)
The PCON register bits are shown in Register 6-2.
REGISTER 6-2: PCON: POWER CONTROL REGISTER
R/W/HS-0/q R/W/HS-0/q U-0 R/W/HC-1/q R/W/HC-1/q R/W/HC-1/q R/W/HC-q/u R/W/HC-q/u
STKOVF STKUNF RWDT RMCLR RI POR BOR
bit 7 bit 0
Legend:
HC = Bit is cleared by hardware HS = Bit is set by hardware
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition
bit 7 STKOVF: Stack Overflow Flag bit
1 = A Stack Overflow occurred
0 = A Stack Overflow has not occurred or cleared by firmware
bit 6 STKUNF: Stack Underflow Flag bit
1 = A Stack Underflow occurred
0 = A Stack Underflow has not occurred or cleared by firmware
bit 5 Unimplemented: Read as ‘0
bit 4 RWDT: Watchdog Timer Reset Flag bit
1 = A Watchdog Timer Reset has not occurred or set by firmware
0 = A Watchdog Timer Reset has occurred (cleared by hardware)
bit 3 RMCLR: MCLR Reset Flag bit
1 = A MCLR Reset has not occurred or set by firmware
0 = A MCLR Reset has occurred (cleared by hardware)
bit 2 RI: RESET Instruction Flag bit
1 = A RESET instruction has not been executed or set by firmware
0 = A RESET instruction has been executed (cleared by hardware)
bit 1 POR: Power-on Reset Status bit
1 = No Power-on Reset occurred
0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0 BOR: Brown-out Reset Status bit
1 = No Brown-out Reset occurred
0 = A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Reset
occurs)
2011 Microchip Technology Inc. Preliminary DS41586A-page 60
PIC16(L)F1507
TABLE 6-5: SUMMARY OF REGISTERS ASSOCIATED WITH RESETS
TABLE 6-6: SUMMARY OF CONFIGURATION WORD WITH RESETS
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Re gister
on Page
BORCON SBOREN BORFS ———— BORRDY 55
PCON STKOVF STKUNF —RWDTRMCLR RI POR BOR 59
STATUS —TOPD ZDC C18
WDTCON WDTPS<4:0> SWDTEN 81
Legend: — = unimplemented bit, reads as ‘0’. Shaded cells are not used by Resets.
Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.
Name Bits Bit -/7 Bit -/6 Bit 13/5 Bit 12/4 Bit 11/3 Bit 10/2 Bit 9/1 Bit 8/0 Register
on Page
CONFIG1 13:8 CLKOUTEN BOREN<1:0> 40
7:0 CP MCLRE PWRTE WDTE<1:0> FOSC<1:0>
CONFIG2 13:8 LVP —LPBORBORV STVREN 41
7:0 WRT<1:0>
Legend: = unimplemented location, read as 0’. Shaded cells are not used by Flash program memory.
PIC16(L)F1507
DS41586A-page 61 Preliminary 2011 Microchip Technology Inc.
7.0 INTERRUPTS
The interrupt feature allows certain events to preempt
normal program flow. Firmware is used to determine
the source of the interrupt and act accordingly. Some
interrupts can be configured to wake the MCU from
Sleep mode.
This chapter contains the following information for
Interrupts:
Operation
Interrupt Latency
Interrupts During Sleep
•INT Pin
Automatic Context Saving
Many peripherals produce Interrupts. Refer to the
corresponding chapters for details.
A block diagram of the interrupt logic is shown in
Figure 7-1.
FIGURE 7-1: INTERRUP T LOGIC
TMR0IF
TMR0IE
INTF
INTE
IOCIF
IOCIE Interrupt
to CPU
Wake-up
(If in Sleep mode)
GIE
(TMR1IF) PIR1<0>
PIRn<7>
PIEn<7>
PEIE
Peripheral Interrupts
(TMR1IF) PIR1<0>
2011 Microchip Technology Inc. Preliminary DS41586A-page 62
PIC16(L)F1507
7.1 Operation
Interrupts are disabled upon any device Reset. They
are enabled by setting the following bits:
GIE bit of the INTCON register
Interrupt Enable bit(s) for the specific interrupt
event(s)
PEIE bit of the INTCON register (if the Interrupt
Enable bit of the interrupt event is contained in the
PIE1, PIE2 and PIE3 registers)
The INTCON, PIR1, PIR2 and PIR3 registers record
individual interrupts via interrupt flag bits. Interrupt flag
bits will be set, regardless of the status of the GIE, PEIE
and individual interrupt enable bits.
The following events happen when an interrupt event
occurs while the GIE bit is set:
Current prefetched instruction is flushed
GIE bit is cleared
Current Program Counter (PC) is pushed onto the
stack
Critical registers are automatically saved to the
shadow registers (See Sec tion 7.5 “Automatic
Context Savi ng”.” )
PC is loaded with the interrupt vector 0004h
The firmware within the Interrupt Service Routine (ISR)
should determine the source of the interrupt by polling
the interrupt flag bits. The interrupt flag bits must be
cleared before exiting the ISR to avoid repeated
interrupts. Because the GIE bit is cleared, any interrupt
that occurs while executing the ISR will be recorded
through its interrupt flag, but will not cause the
processor to redirect to the interrupt vector.
The RETFIE instruction exits the ISR by popping the
previous address from the stack, restoring the saved
context from the shadow registers and setting the GIE
bit.
For additional information on a specific interrupt’s
operation, refer to its peripheral chapter.
7.2 Interrupt Latency
Interrupt latency is defined as the time from when the
interrupt event occurs to the time code execution at the
interrupt vector begins. The latency for synchronous
interrupts is 3 or 4 instruction cycles. For asynchronous
interrupts, the latency is 3 to 5 instruction cycles,
depending on when the interrupt occurs. See Figure 7-2
and Figure 7.3 for more details.
Note 1: Individual interrupt flag bits are set,
regardless of the state of any other
enable bits.
2: All interrupts will be ignored while the GIE
bit is cleared. Any interrupt occurring
while the GIE bit is clear will be serviced
when the GIE bit is set again.
PIC16(L)F1507
DS41586A-page 63 Preliminary 2011 Microchip Technology Inc.
FIGURE 7-2: INTERRUP T LATENCY
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
Fosc
CLKR
PC 0004h 0005h
PC
Inst(0004h)NOP
GIE
Q1 Q2 Q3 Q4Q1 Q2 Q3 Q4
1 Cycle Instruction at PC
PC
Inst(0004h)NOP
2 Cycle Instruction at PC
FSR ADDR PC+1 PC+2 0004h 0005h
PC
Inst(0004h)NOP
GIE
PCPC-1
3 Cycle Instruction at PC
Execute
Interrupt
Inst(PC)
Interrupt Sampled
during Q1
Inst(PC)
PC-1 PC+1
NOP
PC New PC/
PC+1 0005hPC-1 PC+1/FSR
ADDR 0004h
NOP
Interrupt
GIE
Interrupt
INST(PC) NOPNOP
FSR ADDR PC+1 PC+2 0004h 0005h
PC
Inst(0004h)NOP
GIE
PCPC-1
3 Cycle Instruction at PC
Interrupt
INST(PC) NOPNOP NOP
Inst(0005h)
Execute
Execute
Execute
2011 Microchip Technology Inc. Preliminary DS41586A-page 64
PIC16(L)F1507
FIGURE 7-3: INT PIN INTERRUPT TIMING
Q2Q1 Q3 Q4 Q2Q1 Q3 Q4 Q2Q1 Q3 Q4 Q2Q1 Q3 Q4 Q2Q1 Q3 Q4
FOSC
CLKOUT
INT pin
INTF
GIE
INSTRUCTION FLOW
PC
Instruction
Fetched
Instruction
Executed
Interrupt Latency
PC PC + 1 PC + 1 0004h 0005h
Inst (0004h) Inst (0005h)
Forced NOP
Inst (PC) Inst (PC + 1)
Inst (PC – 1) Inst (0004h)
Forced NOP
Inst (PC)
Note 1: INTF flag is sampled here (every Q1).
2: Asynchronous interrupt latency = 3-5 TCY. Synchronous latency = 3-4 TCY, where TCY = instruction cycle time.
Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.
3: For minimum width of INT pulse, refer to AC specifications in Section 25.0 “Electrical Specifications”.
4: INTF is enabled to be set any time during the Q4-Q1 cycles.
(1) (2)
(3)
(4)
(1)
PIC16(L)F1507
DS41586A-page 65 Preliminary 2011 Microchip Technology Inc.
7.3 Interrupts During Sleep
Some interrupts can be used to wake from Sleep. To
wake from Sleep, the peripheral must be able to
operate without the system clock. The interrupt source
must have the appropriate Interrupt Enable bit(s) set
prior to entering Sleep.
On waking from Sleep, if the GIE bit is also set, the
processor will branch to the interrupt vector. Otherwise,
the processor will continue executing instructions after
the SLEEP instruction. The instruction directly after the
SLEEP instruction will always be executed before
branching to the ISR. Refer to Section 8.0 “Power-
Down Mode (Sleep)” for more details.
7.4 INT Pin
The INT pin can be used to generate an asynchronous
edge-triggered interrupt. This interrupt is enabled by
setting the INTE bit of the INTCON register. The
INTEDG bit of the OPTION_REG register determines on
which edge the interrupt will occur. When the INTEDG
bit is set, the rising edge will cause the interrupt. When
the INTEDG bit is clear, the falling edge will cause the
interrupt. The INTF bit of the INTCON register will be set
when a valid edge appears on the INT pin. If the GIE and
INTE bits are also set, the processor will redirect
program execution to the interrupt vector.
7.5 Automatic Context Saving
Upon entering an interrupt, the return PC address is
saved on the stack. Additionally, the following registers
are automatically saved in the Shadow registers:
W register
STATUS register (except for TO and PD)
BSR register
FSR registers
PCLATH register
Upon exiting the Interrupt Service Routine, these regis-
ters are automatically restored. Any modifications to
these registers during the ISR will be lost. If modifica-
tions to any of these registers are desired, the corre-
sponding Shadow register should be modified and the
value will be restored when exiting the ISR. The
Shadow registers are available in Bank 31 and are
readable and writable. Depending on the user’s appli-
cation, other registers may also need to be saved.
2011 Microchip Technology Inc. Preliminary DS41586A-page 66
PIC16(L)F1507
7.6 Interrupt Control Registers
7.6.1 INTCON REGISTER
The INTCON register is a readable and writable
register, that contains the various enable and flag bits
for TMR0 register overflow, interrupt-on-change and
external INT pin interrupts.
Note: Interrupt flag bits are set when an interrupt
condition occurs, regardless of the state of
its corresponding enable bit or the Global
Interrupt Enable bit, GIE, of the INTCON
register. User software should ensure the
appropriate interrupt flag bits are clear
prior to enabling an interrupt.
REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R-0/0
GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF(1)
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 GIE: Global Interrupt Enable bit
1 = Enables all active interrupts
0 = Disables all interrupts
bit 6 PEIE: Peripheral Interrupt Enable bit
1 = Enables all active peripheral interrupts
0 = Disables all peripheral interrupts
bit 5 TMR0IE: Timer0 Overflow Interrupt Enable bit
1 = Enables the Timer0 interrupt
0 = Disables the Timer0 interrupt
bit 4 INTE: INT External Interrupt Enable bit
1 = Enables the INT external interrupt
0 = Disables the INT external interrupt
bit 3 IOCIE: Interrupt-on-Change Enable bit
1 = Enables the interrupt-on-change
0 = Disables the interrupt-on-change
bit 2 TMR0IF: Timer0 Overflow Interrupt Flag bit
1 = TMR0 register has overflowed
0 = TMR0 register did not overflow
bit 1 INTF: INT External Interrupt Flag bit
1 = The INT external interrupt occurred
0 = The INT external interrupt did not occur
bit 0 IOCIF: Interrupt-on-Change Interrupt Flag bit(1)
1 = When at least one of the interrupt-on-change pins changed state
0 = None of the interrupt-on-change pins have changed state
Note 1: The IOCIF Flag bit is read-only and cleared when all the interrupt-on-change flags in the IOCBF register
have been cleared by software.
PIC16(L)F1507
DS41586A-page 67 Preliminary 2011 Microchip Technology Inc.
7.6.2 PIE1 REGISTER
The PIE1 register contains the interrupt enable bits, as
shown in Register 7-2.
Note: Bit PEIE of the INTCON register must be
set to enable any peripheral interrupt.
REGISTER 7-2: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1
R/W-0/0 R/W-0/0 U-0 U-0 U-0 U-0 R/W-0/0 R/W-0/0
TMR1GIE ADIE TMR2IE TMR1IE
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 TMR1GIE: Timer1 Gate Interrupt Enable bit
1 = Enables the Timer1 Gate Acquisition interrupt
0 = Disables the Timer1 Gate Acquisition interrupt
bit 6 ADIE: A/D Converter (ADC) Interrupt Enable bit
1 = Enables the ADC interrupt
0 = Disables the ADC interrupt
bit 5-2 Unimplemented: Read as ‘0
bit 1 TMR2IE: TMR2 to PR2 Match Interrupt Enable bit
1 = Enables the Timer2 to PR2 match interrupt
0 = Disables the Timer2 to PR2 match interrupt
bit 0 TMR1IE: Timer1 Overflow Interrupt Enable bit
1 = Enables the Timer1 overflow interrupt
0 = Disables the Timer1 overflow interrupt
2011 Microchip Technology Inc. Preliminary DS41586A-page 68
PIC16(L)F1507
7.6.3 PIE2 REGISTER
The PIE2 register contains the interrupt enable bits, as
shown in Register 7-3.
Note: Bit PEIE of the INTCON register must be
set to enable any peripheral interrupt.
REGISTER 7-3: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2
U-0 U-0 U-0 U-0 U-0 R/W-0/0 U-0 U-0
NCO1IE
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-3 Unimplemented: Read as ‘0
bit 2 NCO1IE: Numerically Controlled Oscillator Interrupt Enable bit
1 = Enables the NCO interrupt
0 = Disables the NCO interrupt
bit 1-0 Unimplemented: Read as ‘0
PIC16(L)F1507
DS41586A-page 69 Preliminary 2011 Microchip Technology Inc.
7.6.4 PIE3 REGISTER
The PIE3 register contains the interrupt enable bits, as
shown in Register 7-4.
Note: Bit PEIE of the INTCON register must be
set to enable any peripheral interrupt.
REGISTER 7-4: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3
U-0 U-0 U-0 U-0 U-0 U-0 R/W-0/0 R/W-0/0
CLC2IE CLC1IE
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-2 Unimplemented: Read as ‘0
bit 1 CLC2IE: Configurable Logic Block 2 Interrupt Enable bit
1 = Enables the CLC 2 interrupt
0 = Disables the CLC 2 interrupt
bit 0 CLC1IE: Configurable Logic Block 1 Interrupt Enable bit
1 = Enables the CLC 1 interrupt
0 = Disables the CLC 1 interrupt
2011 Microchip Technology Inc. Preliminary DS41586A-page 70
PIC16(L)F1507
7.6.5 PIR1 REGISTER
The PIR1 register contains the interrupt flag bits, as
shown in Register 7-5.
Note: Interrupt flag bits are set when an interrupt
condition occurs, regardless of the state of
its corresponding enable bit or the Global
Interrupt Enable bit, GIE, of the INTCON
register. User software should ensure the
appropriate interrupt flag bits are clear prior
to enabling an interrupt.
REGISTER 7-5: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1
R/W-0/0 R/W-0/0 U-0 U-0 U-0 U-0 R/W-0/0 R/W-0/0
TMR1GIF ADIF TMR2IF TMR1IF
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 TMR1GIF: Timer1 Gate Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
bit 6 ADIF: A/D Converter Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
bit 5-2 Unimplemented: Read as ‘0
bit 1 TMR2IF: Timer2 to PR2 Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
bit 0 TMR1IF: Timer1 Overflow Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
PIC16(L)F1507
DS41586A-page 71 Preliminary 2011 Microchip Technology Inc.
7.6.6 PIR2 REGISTER
The PIR2 register contains the interrupt flag bits, as
shown in Register 7-6.
Note: Interrupt flag bits are set when an interrupt
condition occurs, regardless of the state of
its corresponding enable bit or the Global
Interrupt Enable bit, GIE, of the INTCON
register. User software should ensure the
appropriate interrupt flag bits are clear prior
to enabling an interrupt.
REGISTER 7-6: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2
U-0 U-0 U-0 U-0 U-0 R/W-0/0 U-0 U-0
NCO1IF
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-3 Unimplemented: Read as ‘0
bit 2 NCO1IF: Numerically Controlled Oscillator Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
bit 1-0 Unimplemented: Read as ‘0
2011 Microchip Technology Inc. Preliminary DS41586A-page 72
PIC16(L)F1507
7.6.7 PIR3 REGISTER
The PIR3 register contains the interrupt flag bits, as
shown in Register 7-7.
Note: Interrupt flag bits are set when an interrupt
condition occurs, regardless of the state of
its corresponding enable bit or the Global
Enable bit, GIE, of the INTCON register.
User software should ensure the
appropriate interrupt flag bits are clear prior
to enabling an interrupt.
REGISTER 7-7: PIR3: PERIPHERAL INTERRUPT REQUEST REGISTER 3
U-0 U-0 U-0 U-0 U-0 U-0 R/W-0/0 R/W-0/0
CLC2IF CLC1IF
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-2 Unimplemented: Read as ‘0
bit 1 CLC2IF: Configurable Logic Block 2 Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
bit 0 CLC1IF: Configurable Logic Block 1 Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
PIC16(L)F1507
DS41586A-page 73 Preliminary 2011 Microchip Technology Inc.
TABLE 7-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 66
OPTION_REG WPUEN INTEDG TMR0CS TMR0SE PSA PS<2:0> 137
PIE1 TMR1GIE ADIE ——— TMR2IE TMR1IE 67
PIE2 NCO1IE 68
PIE3 CLC2IE CLC1IE 69
PIR1 TMR1GIF ADIF ——— TMR2IF TMR1IF 70
PIR2 NCO1IF 71
PIR3 CLC2IF CLC1IF 72
Legend: = unimplemented location, read as ‘0’. Shaded cells are not used by Interrupts.
2011 Microchip Technology Inc. Preliminary DS41586A-page 74
PIC16(L)F1507
NOTES:
PIC16(L)F1507
DS41586A-page 75 Preliminary 2011 Microchip Technology Inc.
8.0 POWER-DOWN MODE (SLEEP)
The Power-Down mode is entered by executing a
SLEEP instruction.
Upon entering Sleep mode, the following conditions exist:
1. WDT will be cleared but keeps running, if
enabled for operation during Sleep.
2. PD bit of the STATUS register is cleared.
3. TO bit of the STATUS register is set.
4. CPU clock is disabled.
5. 31 kHz LFINTOSC is unaffected and peripherals
that operate from it may continue operation in
Sleep.
6. ADC is unaffected, if the dedicated FRC clock is
selected.
7. I/O ports maintain the status they had before
SLEEP was executed (driving high, low or high-
impedance).
8. Resets other than WDT are not affected by
Sleep mode.
Refer to individual chapters for more details on
peripheral operation during Sleep.
To minimize current consumption, the following
conditions should be considered:
I/O pins should not be floating
External circuitry sinking current from I/O pins
Internal circuitry sourcing current from I/O pins
Current draw from pins with internal weak pull-ups
Modules using 31 kHz LFINTOSC
CWG, NCO and CLC modules using HFINTOSC
I/O pins that are high-impedance inputs should be
pulled to VDD or VSS externally to avoid switching
currents caused by floating inputs.
Examples of internal circuitry that might be sourcing
current include the FVR module. See Section 13.0
“Fixed Voltage Reference (FVR)” for more
information on this module.
8.1 Wake-up fro m Sleep
The device can wake-up from Sleep through one of the
following events:
1. External Reset input on MCLR pin, if enabled
2. BOR Reset, if enabled
3. POR Reset
4. Watchdog Timer, if enabled
5. Any external interrupt
6. Interrupts by peripherals capable of running dur-
ing Sleep (see individual peripheral for more
information)
The first three events will cause a device Reset. The
last three events are considered a continuation of pro-
gram execution. To determine whether a device Reset
or wake-up event occurred, refer to Section 6.11
“Determining the Cause of a Reset”.
When the SLEEP instruction is being executed, the next
instruction (PC + 1) is prefetched. For the device to
wake-up through an interrupt event, the corresponding
interrupt enable bit must be enabled. Wake-up will
occur regardless of the state of the GIE bit. If the GIE
bit is disabled, the device continues execution at the
instruction after the SLEEP instruction. If the GIE bit is
enabled, the device executes the instruction after the
SLEEP instruction, the device will then call the Interrupt
Service Routine. In cases where the execution of the
instruction following SLEEP is not desirable, the user
should have a NOP after the SLEEP instruction.
The WDT is cleared when the device wakes up from
Sleep, regardless of the source of wake-up.
8.1.1 WAKE-UP USING INTERRUPTS
When global interrupts are disabled (GIE cleared) and
any interrupt source has both its interrupt enable bit
and interrupt flag bit set, one of the following will occur:
If the interrupt occurs before the execution of a
SLEEP instruction
-SLEEP instruction will execute as a NOP.
- WDT and WDT prescaler will not be cleared
-TO
bit of the STATUS register will not be set
-PD bit of the STATUS register will not be
cleared.
If the interrupt occurs during or after the execu-
tion of a SLEEP instruction
-SLEEP instruction will be completely exe-
cuted
- Device will immediately wake-up from Sleep
- WDT and WDT prescaler will be cleared
-TO
bit of the STATUS register will be set
-PD
bit of the STATUS register will be cleared
2011 Microchip Technology Inc. Preliminary DS41586A-page 76
PIC16(L)F1507
Even if the flag bits were checked before executing a
SLEEP instruction, it may be possible for flag bits to
become set before the SLEEP instruction completes. To
determine whether a SLEEP instruction executed, test
the PD bit. If the PD bit is set, the SLEEP instruction
was executed as a NOP.
FIGURE 8-1: WAKE-UP FROM SLEEP THROUGH INTERRUPT
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
CLKIN(1)
CLKOUT(2)
Interrupt flag
GIE bit
(INTCON reg.)
Instruction Flow
PC
Instruction
Fetched
Instruction
Executed
PC PC + 1 PC + 2
Inst(PC) = Sleep
Inst(PC - 1)
Inst(PC + 1)
Sleep
Processor in
Sleep
Interrupt Latency(4)
Inst(PC + 2)
Inst(PC + 1)
Inst(0004h) Inst(0005h)
Inst(0004h)
Forced NOP
PC + 2 0004h 0005h
Forced NOP
T1OSC(3)
PC + 2
Note 1: External clock. High, Medium, Low mode assumed.
2: CLKOUT is shown here for timing reference.
3: T1OSC; See Section 25.0 “Electrical Specifications.
4: GIE = 1 assumed. In this case after wake-up, the processor calls the ISR at 0004h. If GIE = 0, execution will continue in-line.
PIC16(L)F1507
DS41586A-page 77 Preliminary 2011 Microchip Technology Inc.
8.2 Low-Power Sleep Mode
The PIC16(L)F1507 device contains an internal Low
Dropout (LDO) voltage regulator, which allows the
device I/O pins to operate at voltages up to 5.5V while
the internal device logic operates at a lower voltage.
The LDO and its associated reference circuitry must
remain active when the device is in Sleep mode. The
PIC16(L)F1507 allows the user to optimize the operat-
ing current in Sleep, depending on the application
requirements.
A Low-Power Sleep mode can be selected by setting
the VREGPM bit of the VREGCON register. With this
bit set, the LDO and reference circuitry are placed in a
low-power state when the device is in Sleep.
8.2.1 SLEEP CURRENT VS. WAKE-UP
TIME
In the default operating mode, the LDO and reference
circuitry remain in the normal configuration while in
Sleep. The device is able to exit Sleep mode quickly
since all circuits remain active. In Low-Power Sleep
mode, when waking up from Sleep, an extra delay time
is required for these circuits to return to the normal con-
figuration and stabilize.
The Low-Power Sleep mode is beneficial for applica-
tions that stay in Sleep mode for long periods of time.
The Normal mode is beneficial for applications that
need to wake from Sleep quickly and frequently.
8.2.2 PERIPHERAL USAGE IN SLEEP
Some peripherals that can operate in Sleep mode will
not operate properly with the Low-Power Sleep mode
selected. The LDO will remain in the Normal Power
mode when those peripherals are enabled. The Low-
Power Sleep mode is intended for use with these
peripherals:
Brown-Out Reset (BOR)
Watchdog Timer (WDT)
External interrupt pin/Interrupt-on-change pins
Timer1 (with external clock source)
The Complementary Waveform Generator (CWG), the
Numerically Controlled Oscillator (NCO) and the Con-
figurable Logic Cell (CLC) modules can utilize the
HFINTOSC oscillator as either a clock source or as an
input source. Under certain conditions, when the HFIN-
TOSC is selected for use with the CWG, NCO or CLC
modules, the HFINTOSC will remain active during
Sleep. This will have a direct effect on the Sleep mode
current.
Please refer to sections 20.5 “Operation During
Sleep”, 21.7 “Operation In Sleep” and 22.10 “Ope r-
ation During Sleep” for more information.
Note: The PIC16LF1507 does not have a con-
figurable Low-Power Sleep mode.
PIC16LF1507 is an unregulated device
and is always in the lowest power state
when in Sleep, with no wake-up time pen-
alty. This device has a lower maximum
VDD and I/O voltage than the
PIC16(L)F1507. See Sec tion 25.0 “Elec-
trical Specifications” for more informa-
tion.
2011 Microchip Technology Inc. Preliminary DS41586A-page 78
PIC16(L)F1507
TABLE 8-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE
REGISTER 8-1: VREGCON: VOLTAGE REGULATOR CONTROL REGISTER(1)
U-0 U-0 U-0 U-0 U-0 U-0 R/W-0/0 R/W-1/1
—VREGPMReserved
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-2 Unimplemented: Read as ‘0
bit 1 VREGPM: Voltage Regulator Power Mode Selection bit
1 = Low-Power Sleep mode enabled in Sleep
Draws lowest current in Sleep, slower wake-up
0 = Normal Power mode enabled in Sleep
Draws higher current in Sleep, faster wake-up
bit 0 Reserved: Read as ‘1. Maintain this bit set.
Note 1: PIC16F1507 only.
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register on
Page
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 66
IOCAF IOCAF5 IOCAF4 IOCAF3 IOCAF2 IOCAF1 IOCAF0 113
IOCAN IOCAN5 IOCAN4 IOCAN3 IOCAN2 IOCAN1 IOCAN0 113
IOCAP IOCAP5 IOCAP4 IOCAP3 IOCAP2 IOCAP1 IOCAP0 113
IOCBF IOCBF7 IOCBF6 IOCBF5 IOCBF4 114
IOCBN IOCBN7 IOCBN6 IOCBN5 IOCBN4 114
IOCBP IOCBP7 IOCBP6 IOCBP5 IOCBP4 114
PIE1 TMR1GIE ADIE ——— TMR2IE TMR1IE 67
PIE2 ——— NCO1IE 68
PIR1 TMR1GIF ADIF ————TMR2IF TMR1IF 70
PIR2 ——— NCO1IF 71
STATUS —TOPD ZDC C18
WDTCON WDTPS<4:0> SWDTEN 81
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used in Power-down mode.
PIC16(L)F1507
DS41586A-page 79 Preliminary 2011 Microchip Technology Inc.
9.0 WATCHDOG TIMER
The Watchdog Timer is a system timer that generates
a Reset if the firmware does not issue a CLRWDT
instruction within the time-out period. The Watchdog
Timer is typically used to recover the system from
unexpected events.
The WDT has the following features:
Independent clock source
Multiple operating modes
- WDT is always on
- WDT is off when in Sleep
- WDT is controlled by software
- WDT is always off
Configurable time-out period is from 1 ms to 256
seconds (typical)
Multiple Reset conditions
Operation during Sleep
FIGURE 9-1: WATCHDOG TIMER BLOCK DIAGRAM
LFINTOSC 23-bit Programmable
Prescaler WDT WDT Time-out
WDTPS<4:0>
SWDTEN
Sleep
WDTE<1:0> = 11
WDTE<1:0> = 01
WDTE<1:0> = 10
2011 Microchip Technology Inc. Preliminary DS41586A-page 80
PIC16(L)F1507
9.1 Independent Clock Source
The WDT derives its time base from the 31 kHz
LFINTOSC internal oscillator. Time intervals in this
chapter are based on a nominal interval of 1 ms. See
Section 25.0 “Electrical Specifications” for the
LFINTOSC tolerances.
9.2 WDT Operating Modes
The Watchdog Timer module has four operating modes
controlled by the WDTE<1:0> bits in Configuration
Words. See Tabl e 9-1 .
9.2.1 WDT IS ALWAYS ON
When the WDTE bits of Configuration Words are set to
11’, the WDT is always on.
WDT protection is active during Sleep.
9.2.2 WDT IS OFF IN SLEEP
When the WDTE bits of Configuration Words are set to
10’, the WDT is on, except in Sleep.
WDT protection is not active during Sleep.
9.2.3 WDT CONTROLLED BY SOFTWARE
When the WDTE bits of Configuration Words are set to
01’, the WDT is controlled by the SWDTEN bit of the
WDTCON register.
WDT protection is unchanged by Sleep. See Table 9-1
for more details.
TABLE 9-1: WDT OPERATING MODES
9.3 Time-Out Period
The WDTPS bits of the WDTCON register set the
time-out period from 1 ms to 256 seconds (nominal).
After a Reset, the default time-out period is 2 seconds.
9.4 Clearing the WDT
The WDT is cleared when any of the following condi-
tions occur:
•Any Reset
CLRWDT instruction is executed
Device enters Sleep
Device wakes up from Sleep
Oscillator fail
WDT is disabled
See Table 9-2 for more information.
9.5 Operation During Sleep
When the device enters Sleep, the WDT is cleared. If
the WDT is enabled during Sleep, the WDT resumes
counting.
When the device exits Sleep, the WDT is cleared
again. The WDT remains clear until the OST, if
enabled, completes. See Section 5.0 “Oscillator
Module” for more information on the OST.
When a WDT time-out occurs while the device is in
Sleep, no Reset is generated. Instead, the device
wakes up and resumes operation. The TO and PD bits
in the STATUS register are changed to indicate the
event. The RWDT bit in the PCON register can also be
used. See Section 3.0 “Memory Organization for
more information.
WDTE<1:0> SWDTEN Device
Mode WDT
Mode
11 X XActive
10 X Awake Active
Sleep Disabled
01 1XActive
0Disabled
00 X X Disabled
TABLE 9-2: WDT CLEARING CONDITIONS
Conditions WDT
WDTE<1:0> = 00
Cleared
WDTE<1:0> = 01 and SWDTEN = 0
WDTE<1:0> = 10 and enter Sleep
CLRWDT Command
Oscillator Fail Detected
Exit Sleep + System Clock = INTOSC, EXTCLK
Change INTOSC divider (IRCF bits) Unaffected
PIC16(L)F1507
DS41586A-page 81 Preliminary 2011 Microchip Technology Inc.
9.6 Watchdog Control Register
REGISTER 9-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER
U-0 U-0 R/W-0/0 R/W-1/1 R/W-0/0 R/W-1/1 R/W-1/1 R/W-0/0
WDTPS<4:0> SWDTEN
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-6 Unimplemented: Read as ‘0
bit 5-1 WDTPS<4:0>: Watchdog Timer Period Select bits(1)
Bit Value = Prescale Rate
00000 = 1:32 (Interval 1 ms nominal)
00001 = 1:64 (Interval 2 ms nominal)
00010 = 1:128 (Interval 4 ms nominal)
00011 = 1:256 (Interval 8 ms nominal)
00100 = 1:512 (Interval 16 ms nominal)
00101 = 1:1024 (Interval 32 ms nominal)
00110 = 1:2048 (Interval 64 ms nominal)
00111 = 1:4096 (Interval 128 ms nominal)
01000 = 1:8192 (Interval 256 ms nominal)
01001 = 1:16384 (Interval 512 ms nominal)
01010 = 1:32768 (Interval 1s nominal)
01011 = 1:65536 (Interval 2s nominal) (Reset value)
01100 = 1:131072 (217) (Interval 4s nominal)
01101 = 1:262144 (218) (Interval 8s nominal)
01110 = 1:524288 (219) (Interval 16s nominal)
01111 = 1:1048576 (220) (Interval 32s nominal)
10000 = 1:2097152 (221) (Interval 64s nominal)
10001 = 1:4194304 (222) (Interval 128s nominal)
10010 = 1:8388608 (223) (Interval 256s nominal)
10011 = Reserved. Results in minimum interval (1:32)
11111 = Reserved. Results in minimum interval (1:32)
bit 0 SWDTEN: Software Enable/Disable for Watchdog Timer bit
If WDTE<1:0> = 00:
This bit is ignored.
If WDTE<1:0> = 01:
1 = WDT is turned on
0 = WDT is turned off
If WDTE<1:0> = 1x:
This bit is ignored.
Note 1: Times are approximate. WDT time is based on 31 kHz LFINTOSC.
2011 Microchip Technology Inc. Preliminary DS41586A-page 82
PIC16(L)F1507
TABLE 9-3: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER
TABLE 9-4: SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
OSCCON IRCF<3:0> —SCS<1:0>
51
PCON STKOVF STKUNF —RWDTRMCLR RI POR BOR 59
STATUS ———TOPD ZDC C18
WDTCON WDTPS<4:0> SWDTEN 81
Legend: x = unknown, u = unchanged, – = unimplemented locations read as 0’. Shaded cells are not used by Watchdog Timer.
Name Bits Bit -/7 Bit -/6 Bit 13/5 B it 12/4 Bit 11/3 Bit 10/2 Bit 9/1 Bit 8/0 Register
on Page
CONFIG1 13:8 CLKOUTEN BOREN<1:0> 40
7:0 CP MCLRE PWRTE WDTE<1:0> FOSC<1:0>
Legend: = unimplemented location, read as 0’. Shaded cells are not used by Watchdog Timer.
PIC16(L)F1507
DS41586A-page 83 Preliminary 2011 Microchip Technology Inc.
10.0 FLASH PROGRAM MEMORY
CONTROL
The Flash program memory is readable and writable
during normal operation over the VDD range specified
in the Electrical Specification. See Section 25.0
“Electrical Specifications”. Program memory is
indirectly addressed using Special Function Registers
(SFRs). The SFRs used to access program memory
are:
•PMCON1
•PMCON2
•PMDATL
•PMDATH
PMADRL
•PMADRH
When accessing the program memory, the
PMDATH:PMDATL register pair forms a 2-byte word
that holds the 14-bit data for read/write, and the
PMDATH:PMDATL register pair forms a 2-byte word
that holds the 15-bit address of the program memory
location being read.
The write time is controlled by an on-chip timer. The write/
erase voltages are generated by an on-chip charge
pump.
The Flash program memory can be protected in two
ways; by code protection (CP bit in Configuration Words)
and write protection (WRT<1:0> bits in Configuration
Words).
Code protection (CP = 0), disables access, reading and
writing, to the entire Flash program memory via
external device programmers. Code protection does
not affect the self-write and erase functionality. Code
protection can only be reset by a device programmer
performing a Bulk Erase to the device, clearing all
Flash program memory, Configuration bits and User
IDs.
Write protection prohibits self-write and erase to a
portion or all of the Flash program memory as defined
by the bits WRT<1:0>. Write protection does not affect
a device programmers ability to read, write or erase the
device.
10.1 PMADRL and PMADRH Registers
The PMADRH:PMADRL register pair can address up
to a maximum of 16K words of program memory. When
selecting a program address value, the MSB of the
address is written to the PMADRH register and the LSB
is written to the PMADRL register.
10.1.1 PMCON1 AND PMCON2
REGISTERS
PMCON1 is the control register for Flash program
memory accesses.
Control bits RD and WR initiate read and write,
respectively. These bits cannot be cleared, only set, in
software. They are cleared by hardware at completion
of the read or write operation. The inability to clear the
WR bit in software prevents the accidental, premature
termination of a write operation.
The WREN bit, when set, will allow a write operation to
occur. On power-up, the WREN bit is clear. The
WRERR bit is set when a write operation is interrupted
by a Reset during normal operation. In these situations,
following Reset, the user can check the WRERR bit
and execute the appropriate error handling routine.
The PMCON2 register is a write-only register. Attempting
to read the PMCON2 register will return all ‘0’s.
To enable writes to the program memory, a specific
pattern (the unlock sequence), must be written to the
PMCON2 register. The required unlock sequence
prevents inadvertent writes to the program memory
write latches and Flash program memory.
10.2 Flash Program Memory Overview
It is important to understand the Flash program memory
structure for erase and programming operations. Flash
program memory is arranged in rows. A row consists of
a fixed number of 14-bit program memory words. A row
is the minimum size that can be erased by user software.
After a row has been erased, the user can reprogram
all or a portion of this row. Data to be written into the
program memory row is written to 14-bit wide data write
latches. These write latches are not directly accessible
to the user, but may be loaded via sequential writes to
the PMDATH:PMDATL register pair.
See Table 10-1 for Erase Row size and the number of
write latches for Flash program memory.
Note: If the user wants to modify only a portion
of a previously programmed row, then the
contents of the entire row must be read
and saved in RAM prior to the erase.
Then, new data and retained data can be
written into the write latches to reprogram
the row of Flash program memory. How-
ever, any unprogrammed locations can be
written without first erasing the row. In this
case, it is not necessary to save and
rewrite the other previously programmed
locations.
TABLE 10-1: FLASH MEMORY
ORGANIZATION BY DEVICE
Device Row Erase
(words)
Write
Latches
(words)
PIC16F1507 16 16
PIC16LF1507
2011 Microchip Technology Inc. Preliminary DS41586A-page 84
PIC16(L)F1507
10.2.1 READING THE FLASH PROGRAM
MEMORY
To read a program memory location, the user must:
1. Write the desired address to the
PMADRH:PMADRL register pair.
2. Clear the CFGS bit of the PMCON1 register.
3. Then, set control bit RD of the PMCON1 register.
Once the read control bit is set, the program memory
Flash controller will use the second instruction cycle to
read the data. This causes the second instruction
immediately following theBSF PMCON1,RD” instruction
to be ignored. The data is available in the very next cycle,
in the PMDATH:PMDATL register pair; therefore, it can
be read as two bytes in the following instructions.
PMDATH:PMDATL register pair will hold this value until
another read or until it is written to by the user.
FIGURE 10-1: FLASH PROGRAM
MEMORY READ
FLOWCHART
Note: The two instructions following a program
memory read are required to be NOPs.
This prevents the user from executing a
two-cycle instruction on the next
instruction after the RD bit is set.
Start
Read Operation
Select
Program or Configuration Memory
(CFGS)
Select
Word Address
(PMADRH:PMADRL)
End
Read Operation
Instruction Fetched ignored
NOP execution forced
Instruction Fetched ignored
NOP execution forced
Initiate Read operation
(RD = 1)
Data read now in
PMDATH:PMDATL
PIC16(L)F1507
DS41586A-page 85 Preliminary 2011 Microchip Technology Inc.
FIGURE 10-2: FLASH PROGRAM MEMORY READ CYCLE EXECUTION
EXAMPLE 10-1: FLASH PROGRAM MEMORY READ
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
BSF PMCON1,RD
executed here
INSTR(PC + 1)
executed here
PC
PC + 1 PMADRH,PMADRL PC+3 PC + 5
Flash ADDR
RD bit
PMDATH,PMDATL
PC + 3 PC + 4
INSTR (PC + 1)
INSTR(PC - 1)
executed here INSTR(PC + 3)
executed here INSTR(PC + 4)
executed here
Flash Data
PMDATH
PMDATL
Register
INSTR (PC) INSTR (PC + 3) INSTR (PC + 4)
instruction ignored
Forced NOP
INSTR(PC + 2)
executed here
instruction ignored
Forced NOP
* This code block will read 1 word of program
* memory at the memory address:
PROG_ADDR_HI: PROG_ADDR_LO
* data will be returned in the variables;
* PROG_DATA_HI, PROG_DATA_LO
BANKSEL PMADRL ; Select Bank for PMCON registers
MOVLW PROG_ADDR_LO ;
MOVWF PMADRL ; Store LSB of address
MOVLW PROG_ADDR_HI ;
MOVWF PMADRH ; Store MSB of address
BCF PMCON1,CFGS ; Do not select Configuration Space
BSF PMCON1,RD ; Initiate read
NOP ; Ignored (Figure 10-2)
NOP ; Ignored (Figure 10-2)
MOVF PMDATL,W ; Get LSB of word
MOVWF PROG_DATA_LO ; Store in user location
MOVF PMDATH,W ; Get MSB of word
MOVWF PROG_DATA_HI ; Store in user location
2011 Microchip Technology Inc. Preliminary DS41586A-page 86
PIC16(L)F1507
10.2.2 FLASH MEMORY UNLOCK
SEQUENCE
The unlock sequence is a mechanism that protects the
Flash program memory from unintended self-write pro-
gramming or erasing. The sequence must be executed
and completed without interruption to successfully
complete any of the following operations:
Row Erase
Load program memory write latches
Write of program memory write latches to pro-
gram memory
Write of program memory write latches to User
IDs
The unlock sequence consists of the following steps:
1. Write 55h to PMCON2
2. Write AAh to PMCON2
3. Set the WR bit in PMCON1
4. NOP instruction
5. NOP instruction
Once the WR bit is set, the processor will always force
two NOP instructions. When an Erase Row or Program
Row operation is being performed, the processor will stall
internal operations (typical 2 ms), until the operation is
complete and then resume with the next instruction.
When the operation is loading the program memory write
latches, the processor will always force the two NOP
instructions and continue uninterrupted with the next
instruction.
Since the unlock sequence must not be interrupted,
global interrupts should be disabled prior to the unlock
sequence and re-enabled after the unlock sequence is
completed.
FIGURE 10-3: FLASH PROGRAM
MEMORY UNLOCK
SEQUENCE FLOWCHART
Write 055h to
PMCON2
Start
Unlock Sequence
Write 0AAh to
PMCON2
Initiate
Write or Erase operation
(WR = 1)
Instruction Fetched ignored
NOP execution forced
End
Unlock Sequence
Instruction Fetched ignored
NOP execution forced
PIC16(L)F1507
DS41586A-page 87 Preliminary 2011 Microchip Technology Inc.
10.2.3 ERASING FLASH PROGRAM
MEMORY
While executing code, program memory can only be
erased by rows. To erase a row:
1. Load the PMADRH:PMADRL register pair with
any address within the row to be erased.
2. Clear the CFGS bit of the PMCON1 register.
3. Set the FREE and WREN bits of the PMCON1
register.
4. Write 55h, then AAh, to PMCON2 (Flash
programming unlock sequence).
5. Set control bit WR of the PMCON1 register to
begin the erase operation.
See Example 10-2.
After theBSF PMCON1,WR” instruction, the processor
requires two cycles to set up the erase operation. The
user must place two NOP instructions immediately fol-
lowing the WR bit set instruction. The processor will
halt internal operations for the typical 2 ms erase time.
This is not Sleep mode as the clocks and peripherals
will continue to run. After the erase cycle, the processor
will resume operation with the third instruction after the
PMCON1 write instruction.
FIGURE 10-4: FLASH PROGRAM
MEMORY ERASE
FLOWCHART
Disable Interrupts
(GIE = 0)
Start
Erase Operation
Select
Program or Configuration Memory
(CFGS)
Select Row Address
(PMADRH:PMADRL)
Select Erase Operation
(FREE = 1)
Enable Write/Erase Operation
(WREN = 1)
Unlock Sequence
(FIGURE x-x)
Disable Write/Erase Operation
(WREN = 0)
Re-enable Interrupts
(GIE = 1)
End
Erase Operation
CPU stalls while
Erase operation completes
(2ms typical)
Figure 10-3
2011 Microchip Technology Inc. Preliminary DS41586A-page 88
PIC16(L)F1507
EXAMPLE 10-2: ERASING ONE ROW OF PROGRAM MEMORY
; This row erase routine assumes the following:
; 1. A valid address within the erase row is loaded in ADDRH:ADDRL
; 2. ADDRH and ADDRL are located in shared data memory 0x70 - 0x7F (common RAM)
BCF INTCON,GIE ; Disable ints so required sequences will execute properly
BANKSEL PMADRL
MOVF ADDRL,W ; Load lower 8 bits of erase address boundary
MOVWF PMADRL
MOVF ADDRH,W ; Load upper 6 bits of erase address boundary
MOVWF PMADRH
BCF PMCON1,CFGS ; Not configuration space
BSF PMCON1,FREE ; Specify an erase operation
BSF PMCON1,WREN ; Enable writes
MOVLW 55h ; Start of required sequence to initiate erase
MOVWF PMCON2 ; Write 55h
MOVLW 0AAh ;
MOVWF PMCON2 ; Write AAh
BSF PMCON1,WR ; Set WR bit to begin erase
NOP ; NOP instructions are forced as processor starts
NOP ; row erase of program memory.
;
; The processor stalls until the erase process is complete
; after erase processor continues with 3rd instruction
BCF PMCON1,WREN ; Disable writes
BSF INTCON,GIE ; Enable interrupts
Required
Sequence
PIC16(L)F1507
DS41586A-page 89 Preliminary 2011 Microchip Technology Inc.
10.2.4 WRITING TO FLASH PROGRAM
MEMORY
Program memory is programmed using the following
steps:
1. Load the address in PMADRH:PMADRL of the
row to be programmed.
2. Load each write latch with data.
3. Initiate a programming operation.
4. Repeat steps 1 through 3 until all data is written.
Before writing to program memory, the word(s) to be
written must be erased or previously unwritten. Pro-
gram memory can only be erased one row at a time. No
automatic erase occurs upon the initiation of the write.
Program memory can be written one or more words at
a time. The maximum number of words written at one
time is equal to the number of write latches. See
Figure 10-5 (row writes to program memory with 16
write latches) for more details.
The write latches are aligned to the Flash row address
boundary defined by the upper 11-bits of
PMADRH:PMADRL, (PMADRH<6:0>:PMADRL<7:4>)
with the lower 4-bits of PMADRL, (PMADRL<3:0>)
determining the write latch being loaded. Write opera-
tions do not cross these boundaries. At the completion
of a program memory write operation, the data in the
write latches is reset to contain 0x3FFF.
The following steps should be completed to load the
write latches and program a row of program memory.
These steps are divided into two parts. First, each write
latch is loaded with data from the PMDATH:PMDATL
using the unlock sequence with LWLO = 1. When the
last word to be loaded into the write latch is ready, the
LWLO bit is cleared and the unlock sequence
executed. This initiates the programming operation,
writing all the latches into Flash program memory.
1. Set the WREN bit of the PMCON1 register.
2. Clear the CFGS bit of the PMCON1 register.
3. Set the LWLO bit of the PMCON1 register.
When the LWLO bit of the PMCON1 register is
1’, the write sequence will only load the write
latches and will not initiate the write to Flash
program memory.
4. Load the PMADRH:PMADRL register pair with
the address of the location to be written.
5. Load the PMDATH:PMDATL register pair with
the program memory data to be written.
6. Execute the unlock sequence (Section 10.2.2
“Flash Memory Unlock Sequence). The write
latch is now loaded.
7. Increment the PMADRH:PMADRL register pair
to point to the next location.
8. Repeat steps 5 through 7 until all but the last
write latch has been loaded.
9. Clear the LWLO bit of the PMCON1 register.
When the LWLO bit of the PMCON1 register is
0’, the write sequence will initiate the write to
Flash program memory.
10. Load the PMDATH:PMDATL register pair with
the program memory data to be written.
11. Execute the unlock sequence (Section 10.2.2
“Flash Memory Unlock Sequence”). The
entire program memory latch content is now
written to Flash program memory.
An example of the complete write sequence is shown in
Example 10-3. The initial address is loaded into the
PMADRH:PMADRL register pair; the data is loaded
using indirect addressing.
Note: The special unlock sequence is required
to load a write latch with data or initiate a
Flash programming operation. If the
unlock sequence is interrupted, writing to
the latches or program memory will not be
initiated.
Note: The program memory write latches are
reset to the blank state (0x3FFF) at the
completion of every write or erase
operation. As a result, it is not necessary
to load all the program memory write
latches. Unloaded latches will remain in
the blank state.
PIC16(L)F1507
DS41586A-page 90 Preliminary 2011 Microchip Technology Inc.
FIGURE 10-5: BLOCK WRITES TO FLASH PROGRAM MEMORY WITH 16 WRITE LATCHES
PMDATH PMDATL
7 5 0 7 0
6 8
14
1414
Write Latch #15
0Fh
1414
PMADRH PMADRL
7 6 0 7 5 4 0
Program Memory Write Latches
14 14 14
411
PMADRH<6:0>
:PMADRL<7:4> Flash Program Memory
Row
Row
Address
Decode
Addr
Write Latch #14
0Eh
Write Latch #1
01h
Write Latch #0
00h
Addr AddrAddr
000h 001Fh000Eh0000h 0001h
001h 001Fh001Eh0010h 0011h
002h 002Fh002Eh0020h 0021h
7FEh 7FEFh7FEEh7FE0h 7FE1h
7FFh 7FFFh7FFEh7FF0h 7FF1h
14
r9 r8 r7 r6 r5 r4 r3-r1 r0 c3 c2 c1 c0r2
PMADRL<4:0>
800h 8009h - 801Fh8000h - 8003h
Configuration
Words
USER ID 0 - 3
8007h – 8008h8006h
DEVICEID
REVID
reserved
8004h - 8005h
reserved
Configuration Memory
CFGS = 0
CFGS = 1
--
r10
PIC16(L)F1507
DS41586A-page 91 Preliminary 2011 Microchip Technology Inc.
FIGURE 10-6: FLASH PROGRAM MEMORY WRITE FLOWCHART
Figure 10-3
Figure 10-3
2011 Microchip Technology Inc. Preliminary DS41586A-page 92
PIC16(L)F1507
EXAMPLE 10-3: WRITING TO FLASH PROGRAM MEMORY
; This write routine assumes the following:
; 1. 32 bytes of data are loaded, starting at the address in DATA_ADDR
; 2. Each word of data to be written is made up of two adjacent bytes in DATA_ADDR,
; stored in little endian format
; 3. A valid starting address (the least significant bits = 00000) is loaded in ADDRH:ADDRL
; 4. ADDRH and ADDRL are located in shared data memory 0x70 - 0x7F (common RAM)
;BCF INTCON,GIE ; Disable ints so required sequences will execute properly
BANKSEL PMADRH ; Bank 3
MOVF ADDRH,W ; Load initial address
MOVWF PMADRH ;
MOVF ADDRL,W ;
MOVWF PMADRL ;
MOVLW LOW DATA_ADDR ; Load initial data address
MOVWF FSR0L ;
MOVLW HIGH DATA_ADDR ; Load initial data address
MOVWF FSR0H ;
BCF PMCON1,CFGS ; Not configuration space
BSF PMCON1,WREN ; Enable writes
BSF PMCON1,LWLO ; Only Load Write Latches
LOOP MOVIW FSR0++ ; Load first data byte into lower
MOVWF PMDATL ;
MOVIW FSR0++ ; Load second data byte into upper
MOVWF PMDATH ;
MOVF PMADRL,W ; Check if lower bits of address are '00000'
XORLW 0x0F ; Check if we're on the last of 16 addresses
ANDLW 0x0F ;
BTFSC STATUS,Z ; Exit if last of 16 words,
GOTO START_WRITE ;
MOVLW 55h ; Start of required write sequence:
MOVWF PMCON2 ; Write 55h
MOVLW 0AAh ;
MOVWF PMCON2 ; Write AAh
BSF PMCON1,WR ; Set WR bit to begin write
NOP ; NOP instructions are forced as processor
; loads program memory write latches
NOP ;
INCF PMADRL,F ; Still loading latches Increment address
GOTO LOOP ; Write next latches
START_WRITE
BCF PMCON1,LWLO ; No more loading latches - Actually start Flash program
; memory write
MOVLW 55h ; Start of required write sequence:
MOVWF PMCON2 ; Write 55h
MOVLW 0AAh ;
MOVWF PMCON2 ; Write AAh
BSF PMCON1,WR ; Set WR bit to begin write
NOP ; NOP instructions are forced as processor writes
; all the program memory write latches simultaneously
NOP ; to program memory.
; After NOPs, the processor
; stalls until the self-write process in complete
; after write processor continues with 3rd instruction
BCF PMCON1,WREN ; Disable writes
BSF INTCON,GIE ; Enable interrupts
Required
Sequence
Required
Sequence
PIC16(L)F1507
DS41586A-page 93 Preliminary 2011 Microchip Technology Inc.
10.3 Modifying Flash Progr am Memory
When modifying existing data in a program memory
row, and data within that row must be preserved, it must
first be read and saved in a RAM image. Program
memory is modified using the following steps:
1. Load the starting address of the row to be
modified.
2. Read the existing data from the row into a RAM
image.
3. Modify the RAM image to contain the new data
to be written into program memory.
4. Load the starting address of the row to be
rewritten.
5. Erase the program memory row.
6. Load the write latches with data from the RAM
image.
7. Initiate a programming operation.
FIGURE 10-7: FLASH PROGRAM
MEMORY MODIFY
FLOWCHART
Start
Modify Operation
Read Operation
(Figure x.x)
Erase Operation
(Figure x.x)
Modify Image
The words to be modified are
changed in the RAM image
End
Modify Operation
Write Operation
use RAM image
(Figure x.x)
An image of the entire row read
must be stored in RAM
Figure 10-2
Figure 10-4
Figure 10-5
2011 Microchip Technology Inc. Preliminary DS41586A-page 94
PIC16(L)F1507
10.4 User ID, Device ID and
Configurati on Word Access
Instead of accessing program memory, the User ID’s,
Device ID/Revision ID and Configuration Words can be
accessed when CFGS = 1 in the PMCON1 register.
This is the region that would be pointed to by
PC<15> = 1, but not all addresses are accessible.
Different access may exist for reads and writes. Refer
to Table 1 0-2 .
When read access is initiated on an address outside
the parameters listed in Table 10- 2, the
PMDATH:PMDATL register pair is cleared, reading
back ‘0’s.
TABLE 10-2: USER ID, DEVICE ID AND CONFIGURATION WORD ACCESS (CFGS = 1)
EXAMPLE 10-4: CONF IGURATION WORD AND DEVICE ID ACCESS
Address Function Read Access Write Access
8000h-8003h User IDs Yes Yes
8006h Device ID/Revision ID Yes No
8007h-8008h Configuration Words 1 and 2 Yes No
* This code block will read 1 word of program memory at the memory address:
* PROG_ADDR_LO (must be 00h-08h) data will be returned in the variables;
* PROG_DATA_HI, PROG_DATA_LO
BANKSEL PMADRL ; Select correct Bank
MOVLW PROG_ADDR_LO ;
MOVWF PMADRL ; Store LSB of address
CLRF PMADRH ; Clear MSB of address
BSF PMCON1,CFGS ; Select Configuration Space
BCF INTCON,GIE ; Disable interrupts
BSF PMCON1,RD ; Initiate read
NOP ; Executed (See Figure 10-2)
NOP ; Ignored (See Figure 10-2)
BSF INTCON,GIE ; Restore interrupts
MOVF PMDATL,W ; Get LSB of word
MOVWF PROG_DATA_LO ; Store in user location
MOVF PMDATH,W ; Get MSB of word
MOVWF PROG_DATA_HI ; Store in user location
PIC16(L)F1507
DS41586A-page 95 Preliminary 2011 Microchip Technology Inc.
10.5 Write Verify
It is considered good programming practice to verify that
program memory writes agree with the intended value.
Since program memory is stored as a full page then the
stored program memory contents are compared with the
intended data stored in RAM after the last write is
complete.
FIGURE 10-8: FLASH PROGRAM
MEMORY VERIFY
FLOWCHART
Start
Verify Operation
Read Operation
(Figure x.x)
End
Verify Operation
This routine assumes that the last row
of data written was from an image
saved in RAM. This image will be used
to verify the data currently stored in
Flash Program Memory.
PMDAT =
RAM image
?
Last
Word ?
Fail
Verify Operation
No
Yes
Yes
No
Figure 10-2
2011 Microchip Technology Inc. Preliminary DS41586A-page 96
PIC16(L)F1507
10.6 Flash Program Memory Control Registers
REGISTER 10-1: PMDATL: PROGRAM MEMORY DATA LOW BYTE REGISTER
R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u
PMDAT<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 PMDAT<7:0>: Read/write value for Least Significant bits of program memory
REGISTER 10-2: PMDATH: PROGRAM MEMORY DATA HIGH BYTE REGISTER
U-0 U-0 R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u
PMDAT<13:8>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-6 Unimplemented: Read as ‘0
bit 5-0 PMDAT<13:8>: Read/write value for Most Significant bits of program memory
REGISTER 10-3: PMADRL: PROGRAM MEMORY ADDRESS LOW BYTE REGISTER
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
PMADR<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 PMADR<7:0>: Specifies the Least Significant bits for program memory address
REGISTER 10-4: PMADRH: PROGRAM MEMORY ADDRESS HIGH BYTE REGISTER
U-1 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
PMADR<14:8>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 Unimplemented: Read as ‘1
bit 6-0 PMADR<14:8>: Specifies the Most Significant bits for program memory address
PIC16(L)F1507
DS41586A-page 97 Preliminary 2011 Microchip Technology Inc.
REGISTER 10-5: PMCON1: PROGRAM MEMORY CONTROL 1 REGISTER
U-1(1) R/W-0/0 R/W-0/0 R/W/HC-0/0 R/W/HC-x/q R/W-0/0 R/S/HC-0/0 R/S/HC-0/0
CFGS LWLO FREE WRERR WREN WR RD
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
S = Bit can only be set x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared HC = Bit is cleared by hardware
bit 7 Unimplem ent ed: Read as ‘1
bit 6 CFGS: Configuration Select bit
1 = Access Configuration, User ID and Device ID Registers
0 = Access Flash program memory
bit 5 LWLO: Load Write Latches Only bit(3)
1 = Only the addressed program memory write latch is loaded/updated on the next WR command
0 = The addressed program memory write latch is loaded/updated and a write of all program memory write latches
will be initiated on the next WR command
bit 4 FREE: Program Flash Erase Enable bit
1 = Performs an erase operation on the next WR command (hardware cleared upon completion)
0 = Performs an write operation on the next WR command
bit 3 WRERR: Program/Erase Error Flag bit(2)
1 = Condition indicates an improper program or erase sequence attempt or termination (bit is set automatically
on any set attempt (write 1’) of the WR bit).
0 = The program or erase operation completed normally
bit 2 WREN: Program/Erase Enable bit
1 = Allows program/erase cycles
0 = Inhibits programming/erasing of program Flash
bit 1 WR: Write Control bit
1 = Initiates a program Flash program/erase operation.
The operation is self-timed and the bit is cleared by hardware once operation is complete.
The WR bit can only be set (not cleared) in software.
0 = Program/erase operation to the Flash is complete and inactive
bit 0 RD: Read Control bit
1 = Initiates a program Flash read. Read takes one cycle. RD is cleared in hardware. The RD bit can only be set
(not cleared) in software.
0 = Does not initiate a program Flash read
Note 1: Unimplemented bit, read as ‘1’.
2: The WRERR bit is automatically set by hardware when a program memory write or erase operation is started (WR = 1).
3: The LWLO bit is ignored during a program memory erase operation (FREE = 1).
2011 Microchip Technology Inc. Preliminary DS41586A-page 98
PIC16(L)F1507
TABLE 10-3: SUMMARY OF REGISTERS ASSOCIATED WITH FLASH PROGRAM MEMORY
TABLE 10-4: SUMMARY OF CONFIGURATION WORD WITH FLASH PROGRAM MEMORY
REGISTER 10-6: PMCON2: PROGRAM MEMORY CONTROL 2 REGISTER
W-0/0 W-0/0 W-0/0 W-0/0 W-0/0 W-0/0 W-0/0 W-0/0
Program Memory Control Register 2
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
S = Bit can only be set x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 Flash memory Unlock Pattern bits
To unlock writes, a 55h must be written first, followed by an AAh, before setting the WR bit of the
PMCON1 register. The value written to this register is used to unlock the writes. There are specific
timing requirements on these writes.
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 B it 0 Register on
Page
PMCON1 CFGS LWLO FREE WRERR WREN WR RD 97
PMCON2 Program Memory Control Register 2 98
PMADRL PMADRL<7:0> 96
PMADRH PMADRH<6:0> 96
PMDATL PMDATL<7:0> 96
PMDATH PMDATH<5:0> 96
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 66
Legend: = unimplemented location, read as ‘0’. Shaded cells are not used by Flash program memory module.
Name Bits Bit -/7 Bit -/6 Bit 13/5 Bit 12/4 Bit 11/3 Bit 10/2 Bit 9/1 Bit 8/0 Register
on Pa ge
CONFIG1 13:8 CLKOUTEN BOREN<1:0> 40
7:0 CP MCLRE PWRTE WDTE<1:0> FOSC<1:0>
CONFIG2 13:8 LVP LPBOR BORV STVREN 41
7:0 —WRT<1:0>
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by Flash program memory.
PIC16(L)F1507
DS41586A-page 99 Preliminary 2011 Microchip Technology Inc.
11.0 I/O PORTS
Each port has three standard registers for its operation.
These registers are:
TRISx registers (data direction)
PORTx registers (reads the levels on the pins of
the device)
LATx registers (output latch)
Some ports may have one or more of the following
additional registers. These registers are:
ANSELx (analog select)
WPUx (weak pull-up)
In general, when a peripheral is enabled on a port pin,
that pin cannot be used as a general purpose output.
However, the pin can still be read.
The Data Latch (LATx registers) is useful for
read-modify-write operations on the value that the I/O
pins are driving.
A write operation to the LATx register has the same
effect as a write to the corresponding PORTx register.
A read of the LATx register reads of the values held in
the I/O PORT latches, while a read of the PORTx
register reads the actual I/O pin value.
Ports that support analog inputs have an associated
ANSELx register. When an ANSEL bit is set, the digital
input buffer associated with that bit is disabled.
Disabling the input buffer prevents analog signal levels
on the pin between a logic high and low from causing
excessive current in the logic input circuitry. A
simplified model of a generic I/O port, without the
interfaces to other peripherals, is shown in Figure 11-1.
FIGURE 11-1: GENERIC I/O PORT
OPERATION
TABLE 11-1: PORT AVAILABILITY PER
DEVICE
Device
PORT A
PORTB
PORTC
PIC16(L)F1507 ●●●
QD
CK
Write LATx
Data Register
I/O pin
Read PORTx
Write PORTx
TRISx
Read LATx
Data Bus
To peripherals
ANSELx
VDD
VSS
2011 Microchip Technology Inc. Preliminary DS41586A-page 100
PIC16(L)F1507
11.1 Alternate Pin Function
The Alternate Pin Function Control register is used to
steer specific peripheral input and output functions
between different pins. The APFCON register is shown
in Register 11-1. For this device family, the following
functions can be moved between different pins.
•CLC1
NCO1
These bits have no effect on the values of any TRIS
register. PORT and TRIS overrides will be routed to the
correct pin. The unselected pin will be unaffected.
REGISTER 11-1: APFCON: ALTERNATE PIN FUNCTION CONTROL REGISTER
U-0 U-0 U-0 U-0 U-0 U-0 R/W-0/0 R/W-0/0
CLC1SEL NCO1SEL
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-2 Unimplemented: Read as0
bit 1 CLC1SEL: Pin Selection bit
1 = CLC1 function is on RC5
0 = CLC1 function is on RA2
bit 0 NCO1SEL: Pin Selection bit
1 = NCO1 function is on RC6
0 = NCO1 function is on RC1
PIC16(L)F1507
DS41586A-page 101 Preliminary 2011 Microchip Technology Inc.
11.2 PORTA Registers
PORTA is a 6-bit wide, bidirectional port. The
corresponding data direction register is TRISA
(Register 11-3). Setting a TRISA bit (= 1) will make the
corresponding PORTA pin an input (i.e., disable the
output driver). Clearing a TRISA bit (= 0) will make the
corresponding PORTA pin an output (i.e., enables
output driver and puts the contents of the output latch
on the selected pin). The exception is RA3, which is
input only and its TRIS bit will always read as ‘1’.
Example 11-1 shows how to initialize an I/O port.
Reading the PORTA register (Register 11-2) reads the
status of the pins, whereas writing to it will write to the
PORT latch. All write operations are read-modify-write
operations. Therefore, a write to a port implies that the
port pins are read, this value is modified and then
written to the PORT data latch (LATA).
The TRISA register (Register 11-3) controls the
PORTA pin output drivers, even when they are being
used as analog inputs. The user should ensure the bits
in the TRISA register are maintained set when using
them as analog inputs. I/O pins configured as analog
input always read ‘0’.
11.2.1 ANSELA REGISTER
The ANSELA register (Register 11-5) is used to
configure the Input mode of an I/O pin to analog.
Setting the appropriate ANSELA bit high will cause all
digital reads on the pin to be read as ‘0’ and allow
analog functions on the pin to operate correctly.
The state of the ANSELA bits has no effect on digital
output functions. A pin with TRIS clear and ANSEL set
will still operate as a digital output, but the Input mode
will be analog. This can cause unexpected behavior
when executing read-modify-write instructions on the
affected port.
EXAMPLE 11 -1: INITIALIZING PORTA
11.2.2 PORTA FUNCTIONS AND OUTPUT
PRIORITIES
Each PORTA pin is multiplexed with other functions. The
pins, their combined functions and their output priorities
are shown in Table 11-2.
When multiple outputs are enabled, the actual pin
control goes to the peripheral with the highest priority.
Analog input functions, such as ADC and comparator
inputs, are not shown in the priority lists. These inputs
are active when the I/O pin is set for Analog mode using
the ANSELx registers. Digital output functions may
control the pin when it is in Analog mode with the
priority shown below in Table 11-2.
Note: The ANSELA bits default to the Analog
mode after Reset. To use any pins as
digital general purpose or peripheral
inputs, the corresponding ANSEL bits
must be initialized to ‘0’ by user software.
BANKSEL PORTA ;
CLRF PORTA ;Init PORTA
BANKSEL LATA ;Data Latch
CLRF LATA ;
BANKSEL ANSELA ;
CLRF ANSELA ;digital I/O
BANKSEL TRISA ;
MOVLW B'00111000' ;Set RA<5:3> as inputs
MOVWF TRISA ;and set RA<2:0> as
;outputs
TABLE 11-2: PORTA OUTPUT PRIORITY
Pin Name Func tion Prio r ity(1)
RA0 ICSPDAT
RA0
RA1 RA1
RA2 CLC1(2)
PWM3
RA2
RA3 None
RA4 CLKOUT
RA4
RA5 RA5
Note 1: Priority listed from highest to lowest.
2: Default pin (see APFCON register).
2011 Microchip Technology Inc. Preliminary DS41586A-page 102
PIC16(L)F1507
REGISTER 11-2: PORTA: PORTA REGISTER
U-0 U-0 R/W-x/x R/W-x/x R-x/x R/W-x/x R/W-x/x R/W-x/x
RA5 RA4 RA3 RA2 RA1 RA0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-6 Unimplemented: Read as ‘0
bit 5-0 RA<5:0>: PORTA I/O Value bits(1)
1 = Port pin is > VIH
0 = Port pin is < VIL
Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return
of actual I/O pin values.
REGISTER 11-3: TRISA: PORTA TRI-STATE REGISTER
U-0 U-0 R/W-1/1 R/W-1/1 U-1 R/W-1/1 R/W-1/1 R/W-1/1
TRISA5 TRISA4 (1) TRISA2 TRISA1 TRISA0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-6 Unimplemented: Read as ‘0
bit 5-4 TRISA<5:4>: PORTA Tri-State Control bit
1 = PORTA pin configured as an input (tri-stated)
0 = PORTA pin configured as an output
bit 3 Unimplemented: Read as ‘1
bit 2-0 TRISA<2:0>: PORTA Tri-State Control bit
1 = PORTA pin configured as an input (tri-stated)
0 = PORTA pin configured as an output
Note 1: Unimplemented, read as1’.
PIC16(L)F1507
DS41586A-page 103 Preliminary 2011 Microchip Technology Inc.
REGISTER 11-4: LATA: PORTA DATA LATCH REGISTER
U-0 U-0 R/W-x/u R/W-x/u U-0 R/W-x/u R/W-x/u R/W-x/u
—LATA5LATA4 LATA2 LATA1 LATA0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-6 Unimplemented: Read as ‘0
bit 5-4 LATA<5:4>: RA<5:4> Output Latch Value bits(1)
bit 3 Unimplemented: Read as ‘0
bit 2-0 LATA<2:0>: RA<2:0> Output Latch Value bits(1)
Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return
of actual I/O pin values.
REGISTER 11-5: ANSELA: PORTA ANALOG SELECT REGISTER
U-0 U-0 U-0 R/W-1/1 U-0 R/W-1/1 R/W-1/1 R/W-1/1
ANSA4 ANSA2 ANSA1 ANSA0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-5 Unimplemented: Read as ‘0
bit 4 ANSA4: Analog Select between Analog or Digital Function on pins RA4, respectively
1 = Analog input. Pin is assigned as analog input(1). Digital input buffer disabled.
0 = Digital I/O. Pin is assigned to port or digital special function.
bit 3 Unimplemented: Read as ‘0
bit 2-0 ANSA<2:0>: Analog Select between Analog or Digital Function on pins RA<2:0>, respectively
1 = Analog input. Pin is assigned as analog input(1). Digital input buffer disabled.
0 = Digital I/O. Pin is assigned to port or digital special function.
Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to
allow external control of the voltage on the pin.
2011 Microchip Technology Inc. Preliminary DS41586A-page 104
PIC16(L)F1507
TABLE 11-3: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA
TABLE 11-4: SUMMARY OF CONFIGURATION WORD WITH PORTA
REGISTER 11-6: WPUA: WEAK PULL-UP PORTA REGISTER
U-0 U-0 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1
WPUA5 WPUA4 WPUA3 WPUA2 WPUA1 WPUA0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-6 Unimplemented: Read as ‘0
bit 5-0 WPUA<5:0>: Weak Pull-up Register bits(3)
1 = Pull-up enabled
0 = Pull-up disabled
Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.
2: The weak pull-up device is automatically disabled if the pin is in configured as an output.
3: For the WPUA3 bit, when MCLRE = 1, weak pull-up is internally enabled, but not reported here.
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
ANSELA —ANSA4 ANSA2 ANSA1 ANSA0 103
APFCON ——— CLC1SEL NCO1SEL 100
LATA —LATA5LATA4—LATA2LATA1LATA0103
OPTION_REG WPUEN INTEDG TMR0CS TMR0SE PSA PS<2:0> 137
PORTA RA5 RA4 RA3 RA2 RA1 RA0 102
TRISA TRISA5 TRISA4 (1) TRISA2 TRISA1 TRISA0 102
WPUA WPUA5 WPUA4 WPUA3 WPUA2 WPUA1 WPUA0 104
Legend: x = unknown, u = unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by PORTA.
Note 1: Unimplemented, read as ‘1’.
Name Bits Bit -/7 Bit -/6 Bit 13/5 Bit 12/4 Bit 11/3 Bit 10/2 Bit 9/1 Bit 8/0 Register
on Pa ge
CONFIG1 13:8 —CLKOUTEN BOREN<1:0> 40
7:0 CP MCLRE PWRTE WDTE<1:0> FOSC<1:0>
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by PORTA.
PIC16(L)F1507
DS41586A-page 105 Preliminary 2011 Microchip Technology Inc.
11.3 PORTB Registers
PORTB is a 4-bit wide, bidirectional port. The
corresponding data direction register is TRISB
(Register 11-8). Setting a TRISB bit (= 1) will make the
corresponding PORTB pin an input (i.e., put the
corresponding output driver in a High-Impedance mode).
Clearing a TRISB bit (= 0) will make the corresponding
PORTB pin an output (i.e., enable the output driver and
put the contents of the output latch on the selected pin).
Example 11-1 shows how to initialize an I/O port.
Reading the PORTB register (Register 11-7) reads the
status of the pins, whereas writing to it will write to the
PORT latch. All write operations are read-modify-write
operations. Therefore, a write to a port implies that the
port pins are read, this value is modified and then written
to the PORT data latch (LATB).
The TRISB register (Register 11-8) controls the PORTB
pin output drivers, even when they are being used as
analog inputs. The user should ensure the bits in the
TRISB register are maintained set when using them as
analog inputs. I/O pins configured as analog input always
read ‘0’.
11.3.1 ANSELB REGISTER
The ANSELB register (Register 11-10) is used to
configure the Input mode of an I/O pin to analog.
Setting the appropriate ANSELB bit high will cause all
digital reads on the pin to be read as ‘0’ and allow
analog functions on the pin to operate correctly.
The state of the ANSELB bits has no effect on digital out-
put functions. A pin with TRIS clear and ANSELB set will
still operate as a digital output, but the Input mode will be
analog. This can cause unexpected behavior when exe-
cuting read-modify-write instructions on the affected
port.
11.3.2 PORTB FUNCTIONS AND OUTPUT
PRIORITIES
Each PORTB pin is multiplexed with other functions. The
pins, their combined functions and their output priorities
are shown in Table 11-5.
When multiple outputs are enabled, the actual pin
control goes to the peripheral with the highest priority.
Analog input and some digital input functions are not
included in the output priority list. These input functions
can remain active when the pin is configured as an
output. Certain digital input functions override other
port functions and are included in the output priority list.
Note: The ANSELB bits default to the Analog
mode after Reset. To use any pins as
digital general purpose or peripheral
inputs, the corresponding ANSEL bits
must be initialized to ‘0’ by user software.
TABLE 11-5: PORTB OUTPUT PRIORITY
Pin Name Func tion Prio r ity(1)
RB4 RB4
RB5 RB5
RB6 RB6
RB7 RB7
Note 1: Priority listed from highest to lowest.
2: Default pin (see APFCON register).
2011 Microchip Technology Inc. Preliminary DS41586A-page 106
PIC16(L)F1507
REGISTER 11-7: PORTB: PORTB REGISTER
R/W-x/u R/W-x/u R/W-x/u R/W-x/u U-0 U-0 U-0 U-0
RB7 RB6 RB5 RB4
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-4 RB<7:4>: PORTB General Purpose I/O Pin bits
1 = Port pin is > VIH
0 = Port pin is < VIL
bit 3-0 Unimplemented: Read as ‘0
REGISTER 11-8: TRISB: PORTB TRI-STATE REGISTER
R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 U-0 U-0 U-0 U-0
TRISB7 TRISB6 TRISB5 TRISB4
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-4 TRISB<7:4>: PORTB Tri-State Control bits
1 = PORTB pin configured as an input (tri-stated)
0 = PORTB pin configured as an output
bit 3-0 Unimplemented: Read as ‘0
REGISTER 11-9: LATB: PORTB DATA LATCH REGISTER
R/W-x/u R/W-x/u R/W-x/u R/W-x/u U-0 U-0 U-0 U-0
LATB7 LATB6 LATB5 LATB4
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-4 LATB<7:4>: PORTB Output Latch Value bits(1)
bit 3-0 Unimplemented: Read as ‘0
Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is
return of actual I/O pin values.
PIC16(L)F1507
DS41586A-page 107 Preliminary 2011 Microchip Technology Inc.
TABLE 11-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB
REGISTER 11-10: ANSELB: PORTB ANALOG SELECT REGISTER
U-0 U-0 R/W-1/1 R/W-1/1 U-0 U-0 U-0 U-0
ANSB5 ANSB4
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-6 Unimplemented: Read as ‘0
bit 5-4 ANSB<5:4>: Analog Select between Analog or Digital Function on pins RB<5:4>, respectively
1 = Analog input. Pin is assigned as analog input(1). Digital input buffer disabled.
0 = Digital I/O. Pin is assigned to port or digital special function.
bit 3-0 Unimplemented: Read as ‘0
Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to
allow external control of the voltage on the pin.
REGISTER 11-11: WPUB: WEAK PULL-UP PORTB REGISTER
R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 U-0 U-0 U-0 U-0
WPUB7 WPUB6 WPUB5 WPUB4
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-4 WPUB<7:4>: Weak Pull-up Register bits
1 = Pull-up enabled
0 = Pull-up disabled
bit 3-0 Unimplemented: Read as ‘0
Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.
2: The weak pull-up device is automatically disabled if the pin is in configured as an output.
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
ANSELB ANSB5 ANSB4 107
LATB LATB7 LATB6 LATB5 LATB4 106
PORTB RB7 RB6 RB5 RB4 106
TRISB TRISB7 TRISB6 TRISB5 TRISB4 106
WPUB WPUB7 WPUB6 WPUB5 WPUB4 107
Legend: x = unknown, u = unchanged, - = unimplemented locations read as 0’. Shaded cells are not used by
PORTB.
2011 Microchip Technology Inc. Preliminary DS41586A-page 108
PIC16(L)F1507
11.4 PORTC Registers
PORTC is an 8-bit wide, bidirectional port. The
corresponding data direction register is TRISC
(Register 11-8). Setting a TRISC bit (= 1) will make the
corresponding PORTC pin an input (i.e., put the
corresponding output driver in a High-Impedance
mode). Clearing a TRISC bit (= 0) will make the
corresponding PORTC pin an output (i.e., enable the
output driver and put the contents of the output latch
on the selected pin). Example 11-1 shows how to
initialize an I/O port.
Reading the PORTC register (Register 11-7) reads the
status of the pins, whereas writing to it will write to the
PORT latch. All write operations are read-modify-write
operations. Therefore, a write to a port implies that the
port pins are read, this value is modified and then written
to the PORT data latch (LATC).
The TRISC register (Register 11-8) controls the PORTC
pin output drivers, even when they are being used as
analog inputs. The user should ensure the bits in the
TRISC register are maintained set when using them as
analog inputs. I/O pins configured as analog input always
read ‘0’.
11.4.1 ANSELC REGISTER
The ANSELC register (Register 11-10) is used to
configure the Input mode of an I/O pin to analog.
Setting the appropriate ANSELC bit high will cause all
digital reads on the pin to be read as ‘0’ and allow
analog functions on the pin to operate correctly.
The state of the ANSELC bits has no effect on digital out-
put functions. A pin with TRIS clear and ANSELC set will
still operate as a digital output, but the Input mode will be
analog. This can cause unexpected behavior when exe-
cuting read-modify-write instructions on the affected
port.
11.4.2 PORTC FUNCTIONS AND OUTPUT
PRIORITIES
Each PORTC pin is multiplexed with other functions. The
pins, their combined functions and their output priorities
are shown in Table 11-7.
When multiple outputs are enabled, the actual pin
control goes to the peripheral with the highest priority.
Analog input and some digital input functions are not
included in the output priority list. These input functions
can remain active when the pin is configured as an
output. Certain digital input functions override other
port functions and are included in the output priority list.
Note: The ANSELC bits default to the Analog
mode after Reset. To use any pins as
digital general purpose or peripheral
inputs, the corresponding ANSEL bits
must be initialized to ‘0’ by user software.
TABLE 11-7: PORTC OUTPUT PRIORITY
Pin Name Function Priority(1)
RC0 CLC2
RC0
RC1 NCO1(2)
PWM4
RC1
RC2 RC2
RC3 PWM2
RC3
RC4 CWG1B
RC4
RC5 CWG1A
CLC1(3)
PWM1
RC5
RC6 NCO1(3)
RC6
RC7 RC7
Note 1: Priority listed from highest to lowest.
2: Default pin (see APFCON register).
3: Alternate pin (see APFCON register).
PIC16(L)F1507
DS41586A-page 109 Preliminary 2011 Microchip Technology Inc.
REGISTER 11-12: PORTC: PORTC REGISTER
R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u
RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 RC<7:0>: PORTC General Purpose I/O Pin bits
1 = Port pin is > VIH
0 = Port pin is < VIL
REGISTER 11-13: TRISC: PORTC TRI-STATE REGISTER
R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1
TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 TRISC<7:0>: PORTC Tri-State Control bits
1 = PORTC pin configured as an input (tri-stated)
0 = PORTC pin configured as an output
REGISTER 11-14: LATC: PORTC DATA LATCH REGISTER
R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u
LATC7 LATC6 LATC5 LATC4 LATC3 LATC2 LATC1 LATC0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 LATC<7:0>: PORTC Output Latch Value bits(1)
Note 1: Writes to PORTC are actually written to corresponding LATC register. Reads from PORTC register is
return of actual I/O pin values.
2011 Microchip Technology Inc. Preliminary DS41586A-page 110
PIC16(L)F1507
TABLE 11-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC
REGISTER 11-15: ANSELC: PORTC ANALOG SELECT REGISTER
R/W-1/1 R/W-1/1 U-0 U-0 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1
ANSC7 ANSC6 ANSC3 ANSC2 ANSC1 ANSC0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-6 ANSC<7:6>: Analog Select between Analog or Digital Function on pins RC<3:0>, respectively
1 = Analog input. Pin is assigned as analog input(1). Digital input buffer disabled.
0 = Digital I/O. Pin is assigned to port or digital special function.
bit 5-4 Unimplemented: Read as ‘0
bit 3-0 ANSC<3:0>: Analog Select between Analog or Digital Function on pins RC<3:0>, respectively
1 = Analog input. Pin is assigned as analog input(1). Digital input buffer disabled.
0 = Digital I/O. Pin is assigned to port or digital special function.
Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to
allow external control of the voltage on the pin.
REGISTER 11-16: WPUC: WEAK PULL-UP PORTC REGISTER
R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1
WPUC7 WPUC6 WPUC5 WPUC4 WPUC3 WPUC2 WPUC1 WPUC0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 WPUC<7:0>: Weak Pull-Up Register bits(1, 2)
1 = Pull-up enabled
0 = Pull-up disabled
Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.
2: The weak pull-up device is automatically disabled if the pin is in configured as an output.
Na me B it 7 Bit 6 Bi t 5 Bit 4 B it 3 Bit 2 Bit 1 B it 0 Register
on Page
ANSELC ANSC7 ANSC6 ANSC3 ANSC2 ANSC1 ANSC0 107
LATC LATC7 LATC6 LATC5 LATC4 LATC3 LATC2 LATC1 LATC0 106
PORTC RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0 106
TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 106
WPUC WPUC7 WPUC6 WPUC5 WPUC4 WPUC3 WPUC2 WPUC1 WPUC0 107
Legend: x = unknown, u = unchanged, - = unimplemented locations read as 0’. Shaded cells are not used by PORTC.
PIC16(L)F1507
DS41586A-page 111 Preliminary 2011 Microchip Technology Inc.
12.0 INTERRUPT-ON-CHANGE
The PORTA and PORTB pins can be configured to
operate as Interrupt-On-Change (IOC) pins. An interrupt
can be generated by detecting a signal that has either a
rising edge or a falling edge. Any individual port pin, or
combination of port pins, can be configured to generate
an interrupt. The interrupt-on-change module has the
following features:
Interrupt-on-Change enable (Master Switch)
Individual pin configuration
Rising and falling edge detection
Individual pin interrupt flags
Figure 12-1 is a block diagram of the IOC module.
12.1 Enabling the Module
To allow individual port pins to generate an interrupt, the
IOCIE bit of the INTCON register must be set. If the
IOCIE bit is disabled, the edge detection on the pin will
still occur, but an interrupt will not be generated.
12.2 Individual Pin Configuration
For each port pin, a rising edge detector and a falling
edge detector are present. To enable a pin to detect a
rising edge, the associated bit of the IOCxP register is
set. To enable a pin to detect a falling edge, the
associated bit of the IOCxN register is set.
A pin can be configured to detect rising and falling
edges simultaneously by setting both associated bits of
the IOCxP and IOCxN registers, respectively.
12.3 Interrupt Flags
The IOCAFx and IOCBFx bits located in the IOCAF and
IOCBF registers, respectively, are status flags that
correspond to the interrupt-on-change pins of the
associated port. If an expected edge is detected on an
appropriately enabled pin, then the status flag for that pin
will be set, and an interrupt will be generated if the IOCIE
bit is set. The IOCIF bit of the INTCON register reflects
the status of all IOCAFx and IOCBFx bits.
12.4 Clearing Interrupt Flags
The individual status flags, (IOCAFx and IOCBFx bits),
can be cleared by resetting them to zero. If another edge
is detected during this clearing operation, the associated
status flag will be set at the end of the sequence,
regardless of the value actually being written.
In order to ensure that no detected edge is lost while
clearing flags, only AND operations masking out known
changed bits should be performed. The following
sequence is an example of what should be performed.
EXAMPLE 12-1: CLEA RING INTERRUPT
FLAGS
(PORTA EXAMPLE)
12.5 Operation in Sleep
The interrupt-on-change interrupt sequence will wake
the device from Sleep mode, if the IOCIE bit is set.
If an edge is detected while in Sleep mode, the IOCxF
register will be updated prior to the first instruction
executed out of Sleep.
MOVLW 0xff
XORWF IOCAF, W
ANDWF IOCAF, F
2011 Microchip Technology Inc. Preliminary DS41586A-page 112
PIC16(L)F1507
FIGURE 12-1: INTERRUPT-ON-CHANGE BLOCK DIAGRAM (PORTB EXAMPLE)
D
CK
R
Q
D
CK
R
Q
RBx
IOCBNx
IOCBPx
Q2
D
CK
SQ
Q4Q1
Data Bus =
0 or 1
Write IOCBFx
IOCIE
To Data Bus
IOCBFx
Edge
Detect
IOC interrupt
to CPU core
From all other
IOCBFx individual
Pin Detectors
Q1
Q2
Q3
Q4
Q4Q1
Q1
Q2
Q3
Q4
Q1
Q2
Q3
Q4
Q4
Q4Q1 Q4Q1 Q4Q1
PIC16(L)F1507
DS41586A-page 113 Preliminary 2011 Microchip Technology Inc.
12.6 Interrupt-On-Change Registers
REGISTER 12-1: IOCAP: INTERRUPT-ON-CHANGE PORTA POSITIVE EDGE REGISTER
U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
IOCAP5 IOCAP4 IOCAP3 IOCAP2 IOCAP1 IOCAP0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-6 Unimplemented: Read as ‘0
bit 5-0 IOCAP<5:0>: Interrupt-on-Change PORTA Positive Edge Enable bits
1 = Interrupt-on-Change enabled on the pin for a positive going edge. IOCAFx bit and IOCIF flag will be set
upon detecting an edge.
0 = Interrupt-on-Change disabled for the associated pin.
REGISTER 12-2: IOCAN: INTERRUPT-ON-CHANGE PORTA NEGATIVE EDGE REGISTER
U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
IOCAN5 IOCAN4 IOCAN3 IOCAN2 IOCAN1 IOCAN0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-6 Unimplemented: Read as ‘0
bit 5-0 IOCAN<5:0>: Interrupt-on-Change PORTA Negative Edge Enable bits
1 = Interrupt-on-Change enabled on the pin for a negative going edge. IOCAFx bit and IOCIF flag will be set
upon detecting an edge.
0 = Interrupt-on-Change disabled for the associated pin.
REGISTER 12-3: IOCAF: INTERRUPT-ON-CHANGE PORTA FLAG REGISTER
U-0 U-0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0
IOCAF5 IOCAF4 IOCAF3 IOCAF2 IOCAF1 IOCAF0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared HS - Bit is set in hardware
bit 7-6 Unimplemented: Read as ‘0
bit 5-0 IOCAF<5:0>: Interrupt-on-Change PORTA Flag bits
1 = An enabled change was detected on the associated pin.
Set when IOCAPx = 1 and a rising edge was detected on RAx, or when IOCANx = 1 and a falling edge was
detected on RAx.
0 = No change was detected, or the user cleared the detected change.
2011 Microchip Technology Inc. Preliminary DS41586A-page 114
PIC16(L)F1507
REGISTER 12-4: IOCBP: INTERRUPT-ON-CHANGE PORTB POSITIV E EDGE REGISTER
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 U-0 U-0 U-0 U-0
IOCBP7 IOCBP6 IOCBP5 IOCBP4
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-4 IOCBP<7:4>: Interrupt-on-Change PORTB Positive Edge Enable bits
1 = Interrupt-on-Change enabled on the pin for a positive going edge. IOCBFx bit and IOCIF flag will be
set upon detecting an edge.
0 = Interrupt-on-Change disabled for the associated pin.
bit 3-0 Unimplemented: Read as0
REGISTER 12-5: IOCBN: INTERRUPT-ON-CHANGE PORTB NEGATIVE EDGE REGISTER
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 U-0 U-0 U-0 U-0
IOCBN7 IOCBN6 IOCBN5 IOCBN4
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-4 IOCBN<7:4>: Interrupt-on-Change PORTB Negative Edge Enable bits
1 = Interrupt-on-Change enabled on the pin for a negative going edge. IOCBFx bit and IOCIF flag will be
set upon detecting an edge.
0 = Interrupt-on-Change disabled for the associated pin.
bit 5-0 Unimplemented: Read as0
REGISTER 12-6: IOCBF: INTERRUPT-ON-CHANGE PORTB FLAG REGISTER
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 U-0 U-0 U-0 U-0
IOCBF7 IOCBF6 IOCBF5 IOCBF4
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared HS - Bit is set in hardware
bit 7-4 IOCBF<7:4>: Interrupt-on-Change PORTB Flag bits
1 = An enabled change was detected on the associated pin.
Set when IOCBPx = 1 and a rising edge was detected on RAx, or when IOCANx = 1 and a falling edge
was detected on RBx.
0 = No change was detected, or the user cleared the detected change.
bit 5-0 Unimplemented: Read as0
PIC16(L)F1507
DS41586A-page 115 Preliminary 2011 Microchip Technology Inc.
TABLE 12-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPT-ON-CHANGE
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
ANSELA ———ANSA4 ANSA2 ANSA1 ANSA0 103
ANSELB ANSB5 ANSB4 ————107
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 66
IOCAF IOCAF5 IOCAF4 IOCAF3 IOCAF2 IOCAF1 IOCAF0 113
IOCAN IOCAN5 IOCAN4 IOCAN3 IOCAN2 IOCAN1 IOCAN0 113
IOCAP IOCAP5 IOCAP4 IOCAP3 IOCAP2 IOCAP1 IOCAP0 113
IOCBF IOCBF7 IOCBF6 IOCBF5 IOCBF4 ————114
IOCBN IOCBN7 IOCBN6 IOCBN5 IOCBN4 ————114
IOCBP IOCBP7 IOCBP6 IOCBP5 IOCBP4 ————114
TRISA TRISA5 TRISA4 —(1) TRISA2 TRISA1 TRISA0 102
TRISB TRISB7 TRISB6 TRISB5 TRISB4 ————106
Legend: = unimplemented location, read as ‘0’. Shaded cells are not used by interrupt-on-change.
Note 1: Unimplemented, read as ‘1’.
2011 Microchip Technology Inc. Preliminary DS41586A-page 116
PIC16(L)F1507
NOTES:
PIC16(L)F1507
DS41586A-page 117 Preliminary 2011 Microchip Technology Inc.
13.0 FIXED VOLTAGE REFERENCE
(FVR)
The Fixed Voltage Reference, or FVR, is a stable
voltage reference, independent of VDD, with 1.024V,
2.048V or 4.096V selectable output levels. The output
of the FVR can be configured to supply a reference
voltage to the following:
ADC input channel
The FVR can be enabled by setting the FVREN bit of
the FVRCON register.
13.1 Independent Gain Amplifier
The output of the FVR supplied to the ADC is routed
through a programmable gain amplifier. The amplifier
can be programmed for a gain of 1x, 2x or 4x, to
produce the three possible voltage levels.
The ADFVR<1:0> bits of the FVRCON register are
used to enable and configure the gain amplifier settings
for the reference supplied to the ADC module. Refer-
ence Section 15.0 “Analog-to-Digital Converter
(ADC) Module” for additional information.
13.2 FVR Stabilization Period
When the Fixed Voltage Reference module is enabled, it
requires time for the reference and amplifier circuits to
stabilize. Once the circuits stabilize and are ready for use,
the FVRRDY bit of the FVRCON register will be set. See
Section 25.0 “Electrical Specifications” for the
minimum delay requirement.
FIGURE 13-1: VOLTAGE REFERENCE BLOCK DIAGRAM
FVR BUFFER1
(To ADC Module)
x1
x2
x4
+
-
1.024V F ixed
Reference
FVREN
FVRRDY
2
ADFVR<1:0>
Any peripheral requiring
the Fixed Reference
(See Table 13-1)
TABLE 13-1: PERIPHERALS REQUIRING THE FIXED VOLTAGE REFERENCE (FVR)
Peripheral Conditions Description
HFINTOSC FOSC<1:0> = 00 and
IRCF<3:0> = 000x INTOSC is active and device is not in Sleep.
BOR
BOREN<1:0> = 11 BOR always enabled.
BOREN<1:0> = 10 and BORFS = 1BOR disabled in Sleep mode, BOR Fast Start enabled.
BOREN<1:0> = 01 and BORFS = 1BOR under software control, BOR Fast Start enabled.
LDO All PIC16F1507 devices, when
VREGPM = 1 and not in Sleep
The device runs off of the Low-Power Regulator when in
Sleep mode.
2011 Microchip Technology Inc. Preliminary DS41586A-page 118
PIC16(L)F1507
13.3 FVR Control Registers
TABLE 13-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE FIXED VOLTAGE REFERENCE
REGISTER 13-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER
R/W-0/0 R-q/q R/W-0/0 R/W-0/0 U-0 U-0 R/W-0/0 R/W-0/0
FVREN FVRRDY(1) TSEN TSRNG —ADFVR<1:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition
bit 7 FVREN: Fixed Voltage Reference Enable bit
1 = Fixed Voltage Reference is enabled
0 = Fixed Voltage Reference is disabled
bit 6 FVRRDY: Fixed Voltage Reference Ready Flag bit(1)
1 = Fixed Voltage Reference output is ready for use
0 = Fixed Voltage Reference output is not ready or not enabled
bit 5 TSEN: Temperature Indicator Enable bit
1 = Temperature Indicator is enabled
0 = Temperature Indicator is disabled
bit 4 TSRNG: Temperature Indicator Range Selection bit
1 =V
OUT = VDD - 4VT (High Range)
0 =V
OUT = VDD - 2VT (Low Range)
bit 3-2 Unimplemented: Read as ‘0
bit 1-0 ADFVR<1:0>: ADC Fixed Voltage Reference Selection bit
11 = ADC Fixed Voltage Reference Peripheral output is 4x (4.096V)(2)
10 = ADC Fixed Voltage Reference Peripheral output is 2x (2.048V)(2)
01 = ADC Fixed Voltage Reference Peripheral output is 1x (1.024V)
00 = ADC Fixed Voltage Reference Peripheral output is off
Note 1: FVRRDY is always ‘1’ for the PIC16F1507 devices.
2: Fixed Voltage Reference output cannot exceed VDD.
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on page
FVRCON FVREN FVRRDY TSEN TSRNG —ADFVR<1:0>118
Legend: Shaded cells are unused by the Fixed Voltage Reference module.
PIC16(L)F1507
DS41586A-page 119 Preliminary 2011 Microchip Technology Inc.
14.0 TEMPE RATURE INDICATOR
MODULE
This family of devices is equipped with a temperature
circuit designed to measure the operating temperature
of the silicon die. The circuit’s range of operating
temperature falls between -40°C and +85°C. The
output is a voltage that is proportional to the device
temperature. The output of the temperature indicator is
internally connected to the device ADC.
The circuit may be used as a temperature threshold
detector or a more accurate temperature indicator,
depending on the level of calibration performed. A one-
point calibration allows the circuit to indicate a
temperature closely surrounding that point. A two-point
calibration allows the circuit to sense the entire range
of temperature more accurately. Reference Application
Note AN1333, “Use and Calibration of the Internal
Temperature Indicator” (DS01333) for more details
regarding the calibration process.
14.1 Circuit Operation
Figure 14-1 shows a simplified block diagram of the
temperature circuit. The proportional voltage output is
achieved by measuring the forward voltage drop across
multiple silicon junctions.
Equation 14-1 describes the output characteristics of
the temperature indicator.
EQUATION 14-1: VOUT RANGES
The temperature sense circuit is integrated with the
Fixed Voltage Reference (FVR) module. See
Section 13.0 “Fixed Voltage Reference (FVR)” for
more information.
The circuit is enabled by setting the TSEN bit of the
FVRCON register. When disabled, the circuit draws no
current.
The circuit operates in either high or low range. The high
range, selected by setting the TSRNG bit of the
FVRCON register, provides a wider output voltage. This
provides more resolution over the temperature range,
but may be less consistent from part to part. This range
requires a higher bias voltage to operate and thus, a
higher VDD is needed.
The low range is selected by clearing the TSRNG bit of
the FVRCON register. The low range generates a lower
voltage drop and thus, a lower bias voltage is needed to
operate the circuit. The low range is provided for low
voltage operation.
FIGURE 14-1: TEMPERATURE CIRCUIT
DIAGRAM
14.2 Minimum Operating VDD
When the temperature circuit is operated in low range,
the device may be operated at any operating voltage
that is within specifications.
When the temperature circuit is operated in high range,
the device operating voltage, VDD, must be high
enough to ensure that the temperature circuit is cor-
rectly biased.
Table 14-1 shows the recommended minimum VDD vs.
range setting.
TABLE 14-1: RECOMMENDED VDD VS.
RANGE
14.3 Temperature Output
The output of the circuit is measured using the internal
Analog-to-Digital Converter. A channel is reserved for
the temperature circuit output. Refer to Section 15.0
“Analog-to-Digital Converter (ADC) Module” for
detailed information.
14.4 ADC Acquisition Time
To ensure accurate temperature measurements, the
user must wait at least 200 s after the ADC input
multiplexer is connected to the temperature indicator
output before the conversion is performed. In addition,
the user must wait 200 s between sequential
conversions of the temperature indicator output.
High Range: VOUT = VDD - 4VT
Low Range: VOUT = VDD - 2VT
Min. VDD, TSRNG = 1Min. VDD, TSRNG = 0
3.6V 1.8V
TSEN
TSRNG
VDD
VOUT To A D C
2011 Microchip Technology Inc. Preliminary DS41586A-page 120
PIC16(L)F1507
TABLE 14-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE TEMPERATURE INDICATOR
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on page
FVRCON FVREN FVRRDY TSEN TSRNG ADFVR<1:0> 118
Legend: Shaded cells are unused by the temperature indicator module.
PIC16(L)F1507
DS41586A-page 121 Preliminary 2011 Microchip Technology Inc.
15.0 ANALOG-TO-DIGITAL
CONVERTER (ADC) MODULE
The Analog-to-Digital Converter (ADC) allows
conversion of an analog input signal to a 10-bit binary
representation of that signal. This device uses analog
inputs, which are multiplexed into a single sample and
hold circuit. The output of the sample and hold is
connected to the input of the converter. The converter
generates a 10-bit binary result via successive
approximation and stores the conversion result into the
ADC result registers (ADRESH:ADRESL register pair).
Figure 15-1 shows the block diagram of the ADC.
The ADC voltage reference is software selectable to be
either internally generated or externally supplied.
The ADC can generate an interrupt upon completion of
a conversion. This interrupt can be used to wake-up the
device from Sleep.
FIGURE 15-1: ADC BLOCK DIAGRAM
VDD
VREF+ADPREF = 10
ADPREF = 00
FVR Buffer1
Note 1: When ADON = 0, all multiplexer inputs are disconnected.
ADON
GO/DONE
VSS
ADC
00000
00001
00010
00011
00100
00101
00111
00110
01000
01001
01010
01011
CHS<4:0>
AN0
VREF+/AN1
AN2
AN4
AN5
AN6
AN7
AN3
AN8
AN9
AN10
AN11
11111
ADRESH ADRESL
10
16
ADFM 0 = Left Justify
1 = Right Justify
Reserved 11110
VREF- = VSS
VREF+
11101
Temp Indicator
2011 Microchip Technology Inc. Preliminary DS41586A-page 122
PIC16(L)F1507
15.1 ADC Configuration
When configuring and using the ADC the following
functions must be considered:
Port configuration
Channel selection
ADC voltage reference selection
ADC conversion clock source
Interrupt control
Result formatting
15.1.1 PORT CONFIGURATION
The ADC can be used to convert both analog and
digital signals. When converting analog signals, the I/O
pin should be configured for analog by setting the
associated TRIS and ANSEL bits. Refer to
Section 11.0 “I/O Ports” for more information.
15.1.2 CHANNEL SELECTION
There are 14 channel selections available:
•AN<11:0> pins
Temperature Indicator
FVR (Fixed Voltage Reference) Output
Refer to Section 13.0 “Fixed V oltage Reference (FVR)”
and Section 14.0 “Temperatur e Indicator Module” for
more information on these channel selections.
The CHS bits of the ADCON0 register determine which
channel is connected to the sample and hold circuit.
When changing channels, a delay is required before
starting the next conversion. Refer to Section 15.2
“ADC Operation” for more information.
15.1.3 ADC VOLTAGE REFERENCE
The ADPREF bits of the ADCON1 register provides
control of the positive voltage reference. The positive
voltage reference can be:
•V
REF+ pin
•V
DD
FVR 2.048V
FVR 4.096V (Not available on LF devices)
See Section 13.0 “Fixed Voltage Reference (FVR)”
for more details on the Fixed Voltage Reference.
15.1.4 CONVERSION CLOCK
The source of the conversion clock is software select-
able via the ADCS bits of the ADCON1 register. There
are seven possible clock options:
•F
OSC/2
•FOSC/4
•FOSC/8
•F
OSC/16
•FOSC/32
•FOSC/64
•F
RC (dedicated internal oscillator)
The time to complete one bit conversion is defined as
TAD. One full 10-bit conversion requires 11.5 TAD peri-
ods as shown in Figure 15-2.
For correct conversion, the appropriate TAD specifica-
tion must be met. Refer to the A/D conversion require-
ments in Section 25.0 “E lectri cal Specification s” for
more information. Table 15-1 gives examples of appro-
priate ADC clock selections.
Note: Analog voltages on any pin that is defined
as a digital input may cause the input buf-
fer to conduct excess current.
Note: Unless using the FRC, any changes in the
system clock frequency will change the
ADC clock frequency, which may
adversely affect the ADC result.
PIC16(L)F1507
DS41586A-page 123 Preliminary 2011 Microchip Technology Inc.
TABLE 15-1: ADC CLOCK PERIOD (TAD) VS. DEVICE OPERATING FREQUENCIES
FIGURE 15-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES
ADC Clock Period (TAD) Device Frequency (FOSC)
ADC
Clock Source ADCS<2:0> 20 MHz 16 MHz 8 MHz 4 MHz 1 MHz
Fosc/2 000 100 ns(2) 125 ns(2) 250 ns(2) 500 ns(2) 2.0 s
Fosc/4 100 200 ns(2) 250 ns(2) 500 ns(2) 1.0 s4.0 s
Fosc/8 001 400 ns(2) 0.5 s(2) 1.0 s2.0 s8.0 s(3)
Fosc/16 101 800 ns 1.0 s2.0 s4.0 s16.0 s(3)
Fosc/32 010 1.6 s2.0 s4.0 s8.0 s(3) 32.0 s(3)
Fosc/64 110 3.2 s4.0 s8.0 s(3) 16.0 s(3) 64.0 s(3)
FRC x11 1.0-6.0 s(1,4) 1.0-6.0 s(1,4) 1.0-6.0 s(1,4) 1.0-6.0 s(1,4) 1.0-6.0 s(1,4)
Legend: Shaded cells are outside of recommended range.
Note 1: The FRC source has a typical TAD time of 1.6 s for VDD.
2: These values violate the minimum required TAD time.
3: For faster conversion times, the selection of another clock source is recommended.
4: The ADC clock period (TAD) and total ADC conversion time can be minimized when the ADC clock is derived from the
system clock FOSC. However, the FRC clock source must be used when conversions are to be performed with the
device in Sleep mode.
TAD1 TAD2TAD3TAD4 TAD5TAD6 TAD7TAD8TAD11
Set GO bit
Holding capacitor is disconnected from analog input (typically 100 ns)
TAD9 TAD10
TCY - TAD
ADRESH:ADRESL is loaded, GO bit is cleared,
ADIF bit is set, holding capacitor is connected to analog input.
Conversion starts
b0
b9 b6 b5 b4 b3 b2 b1
b8 b7
On the following cycle:
2011 Microchip Technology Inc. Preliminary DS41586A-page 124
PIC16(L)F1507
15.1.5 INTERRUPTS
The ADC module allows for the ability to generate an
interrupt upon completion of an Analog-to-Digital
conversion. The ADC Interrupt Flag is the ADIF bit in
the PIR1 register. The ADC Interrupt Enable is the
ADIE bit in the PIE1 register. The ADIF bit must be
cleared in software.
This interrupt can be generated while the device is
operating or while in Sleep. If the device is in Sleep, the
interrupt will wake-up the device. Upon waking from
Sleep, the next instruction following the SLEEP instruc-
tion is always executed. If the user is attempting to
wake-up from Sleep and resume in-line code execu-
tion, the GIE and PEIE bits of the INTCON register
must be disabled. If the GIE and PEIE bits of the
INTCON register are enabled, execution will switch to
the Interrupt Service Routine.
15.1.6 RESULT FORMATTING
The 10-bit A/D conversion result can be supplied in two
formats, left justified or right justified. The ADFM bit of
the ADCON1 register controls the output format.
Figure 15-3 shows the two output formats.
FIGURE 15-3: 10-BIT A/D CONVERSION RESULT FORMAT
Note 1: The ADIF bit is set at the completion of
every conversion, regardless of whether
or not the ADC interrupt is enabled.
2: The ADC operates during Sleep only
when the FRC oscillator is selected.
ADRESH ADRESL
(ADFM = 0)MSB LSB
bit 7 bit 0 bit 7 bit 0
10-bit A/D Result Unimplemented: Read as ‘0
(ADFM = 1)MSB LSB
bit 7 bit 0 bit 7 bit 0
Unimplemented: Read as ‘0 10-bit A/D Result
PIC16(L)F1507
DS41586A-page 125 Preliminary 2011 Microchip Technology Inc.
15.2 ADC Operation
15.2.1 STARTING A CONVERSION
To enable the ADC module, the ADON bit of the
ADCON0 register must be set to a1’. Setting the GO/
DONE bit of the ADCON0 register to a ‘1’ will start the
Analog-to-Digital conversion.
15.2.2 COMPLETION OF A CONVERSION
When the conversion is complete, the ADC module will:
Clear the GO/DONE bit
Set the ADIF Interrupt Flag bit
Update the ADRESH and ADRESL registers with
new conversion result
15.2.3 TERMINATING A CONVERSION
If a conversion must be terminated before completion,
the GO/DONE bit can be cleared in software. The
ADRESH and ADRESL registers will be updated with
the partially complete Analog-to-Digital conversion
sample. Incomplete bits will match the last bit
converted.
15.2.4 ADC OPERATION DURING SLEEP
The ADC module can operate during Sleep. This
requires the ADC clock source to be set to the FRC
option. When the FRC clock source is selected, the
ADC waits one additional instruction before starting the
conversion. This allows the SLEEP instruction to be
executed, which can reduce system noise during the
conversion. If the ADC interrupt is enabled, the device
will wake-up from Sleep when the conversion
completes. If the ADC interrupt is disabled, the ADC
module is turned off after the conversion completes,
although the ADON bit remains set.
When the ADC clock source is something other than
FRC, a SLEEP instruction causes the present conver-
sion to be aborted and the ADC module is turned off,
although the ADON bit remains set.
15.2.5 AUTO-CONVERSION TRIGGER
The auto-conversion trigger allows periodic ADC mea-
surements without software intervention. When a rising
edge of the selected source occurs, the GO/DONE bit
is set by hardware.
The auto-conversion trigger source is selected with the
TRIGSEL<3:0> bits of the ADCON2 register.
Using the auto-conversion trigger does not assure
proper ADC timing. It is the user’s responsibility to
ensure that the ADC timing requirements are met.
Auto-Conversion sources are:
•TMR0
•TMR1
•TMR2
•CLC1
•CLC2
Note: The GO/DONE bit should not be set in the
same instruction that turns on the ADC.
Refer to Section 15.2.6 “A/D Conver-
sion Procedure”.
Note: A device Reset forces all registers to their
Reset state. Thus, the ADC module is
turned off and any pending conversion is
terminated.
2011 Microchip Technology Inc. Preliminary DS41586A-page 126
PIC16(L)F1507
15.2.6 A/D CONVERSION PROCEDURE
This is an example procedure for using the ADC to
perform an Analog-to-Digital conversion:
1. Configure Port:
Disable pin output driver (Refer to the TRIS
register)
Configure pin as analog (Refer to the ANSEL
register)
2. Configure the ADC module:
Select ADC conversion clock
Configure voltage reference
Select ADC input channel
Turn on ADC module
3. Configure ADC interrupt (optional):
Clear ADC interrupt flag
Enable ADC interrupt
Enable peripheral interrupt
Enable global interrupt(1)
4. Wait the required acquisition time(2).
5. Start conversion by setting the GO/DONE bit.
6. Wait for ADC conversion to complete by one of
the following:
Polling the GO/DONE bit
Waiting for the ADC interrupt (interrupts
enabled)
7. Read ADC Result.
8. Clear the ADC interrupt flag (required if interrupt
is enabled).
EXAMPLE 15-1: A/D C ON VERSI ON
Note 1: The global interrupt can be disabled if the
user is attempting to wake-up from Sleep
and resume in-line code execution.
2: Refer to Section 15.3 “A/D Acquisition
Requirements”.
;This code block configures the ADC
;for polling, Vdd and Vss references, Frc
;clock and AN0 input.
;
;Conversion start & polling for completion
; are included.
;
BANKSEL ADCON1 ;
MOVLW B’11110000’ ;Right justify, Frc
;clock
MOVWF ADCON1 ;Vdd and Vss Vref+
BANKSEL TRISA ;
BSF TRISA,0 ;Set RA0 to input
BANKSEL ANSEL ;
BSF ANSEL,0 ;Set RA0 to analog
BANKSEL ADCON0 ;
MOVLW B’00000001’ ;Select channel AN0
MOVWF ADCON0 ;Turn ADC On
CALL SampleTime ;Acquisiton delay
BSF ADCON0,ADGO ;Start conversion
BTFSC ADCON0,ADGO ;Is conversion done?
GOTO $-1 ;No, test again
BANKSEL ADRESH ;
MOVF ADRESH,W ;Read upper 2 bits
MOVWF RESULTHI ;store in GPR space
BANKSEL ADRESL ;
MOVF ADRESL,W ;Read lower 8 bits
MOVWF RESULTLO ;Store in GPR space
PIC16(L)F1507
DS41586A-page 127 Preliminary 2011 Microchip Technology Inc.
15.2.7 ADC REGISTER DEFINITIONS
The following registers are used to control the
operation of the ADC.
REGISTER 15-1: ADCON0: A/D CONTROL REGISTER 0
U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
CHS<4:0> GO/DONE ADON
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 Unimplemented: Read as ‘0
bit 6-2 CHS<4:0>: Analog Channel Select bits
00000 =AN0
00001 =AN1
00010 =AN2
00011 =AN3
00100 =AN4
00101 =AN5
00110 =AN6
00111 =AN7
01000 =AN8
01001 =AN9
01010 =AN10
01011 =AN11
01100 = Reserved. No channel connected.
11101 = Temperature Indicator(2)
11110 = Reserved. No channel connected
11111 = FVR (Fixed Voltage Reference) Buffer 1 Output(1)
bit 1 GO/DONE: A/D Conversion Status bit
1 = A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle.
This bit is automatically cleared by hardware when the A/D conversion has completed.
0 = A/D conversion completed/not in progress
bit 0 ADON: ADC Enable bit
1 = ADC is enabled
0 = ADC is disabled and consumes no operating current
Note 1: See Section 13.0 “Fixed Voltage Reference (FVR)” for more information.
2: See Section 14.0 “Temperature Indicator Module for more information.
2011 Microchip Technology Inc. Preliminary DS41586A-page 128
PIC16(L)F1507
REGISTER 15-2: ADCON1: A/D CONTROL REGISTER 1
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 U-0 U-0 R/W-0/0 R/W-0/0
ADFM ADCS<2:0> ADPREF<1:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 ADFM: A/D Result Format Select bit
1 = Right justified. Six Most Significant bits of ADRESH are set to ‘0’ when the conversion result is
loaded.
0 = Left justified. Six Least Significant bits of ADRESL are set to ‘0 when the conversion result is
loaded.
bit 6-4 ADCS<2:0>: A/D Conversion Clock Select bits
000 =F
OSC/2
001 =F
OSC/8
010 =F
OSC/32
011 =F
RC (clock supplied from a dedicated RC oscillator)
100 =F
OSC/4
101 =F
OSC/16
110 =F
OSC/64
111 =F
RC (clock supplied from a dedicated RC oscillator)
bit 3-2 Unimplemented: Read as0
bit 1-0 ADPREF<1:0>: A/D Positive Voltage Reference Configuration bits
00 =VREF+ is connected to VDD
01 = Reserved
10 =V
REF+ is connected to external VREF+ pin(1)
11 = Reserved
Note 1: When selecting the VREF+ pin as the source of the positive reference, be aware that a minimum voltage
specification exists. See Section 25.0 “Electrical Specifications” for details.
PIC16(L)F1507
DS41586A-page 129 Preliminary 2011 Microchip Technology Inc.
REGISTER 15-3: ADCON2: A/D CONTROL REGISTER 2
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 U-0 U-0 U-0 U-0
TRIGSEL<3:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-4 TRIGSEL<3:0>: Auto-conversion Trigger Selection bits(1)
0000 = No auto-conversion trigger selected
0001 =Reserved
0010 =Reserved
0011 = TMR0 Overflow(2)
0100 = TMR1 Overflow(2)
0101 = TMR2 Match to PR2(2)
0110 =Reserved
0111 =Reserved
1000 =CLC1
1001 =CLC2
1010 =Reserved
1011 =Reserved
1100 =Reserved
1101 =Reserved
1110 =Reserved
1111 = Reserved
bit 3-0 Unimplemented: Read as ‘0
Note 1: This is a rising edge sensitive input for all sources.
2: Signal also sets its corresponding interrupt flag.
2011 Microchip Technology Inc. Preliminary DS41586A-page 130
PIC16(L)F1507
REGISTER 15-4: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0
R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u
ADRES<9:2>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 ADRES<9:2>: ADC Result Register bits
Upper 8 bits of 10-bit conversion result
REGISTER 15-5: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0
R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u
ADRES<1:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-6 ADRES<1:0>: ADC Result Register bits
Lower 2 bits of 10-bit conversion result
bit 5-0 Reserved: Do not use.
PIC16(L)F1507
DS41586A-page 131 Preliminary 2011 Microchip Technology Inc.
REGISTER 15-6: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1
R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u
ADRES<9:8>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-2 Reserved: Do not use.
bit 1-0 ADRES<9:8>: ADC Result Register bits
Upper 2 bits of 10-bit conversion result
REGISTER 15-7: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1
R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u
ADRES<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 ADRES<7:0>: ADC Result Register bits
Lower 8 bits of 10-bit conversion result
2011 Microchip Technology Inc. Preliminary DS41586A-page 132
PIC16(L)F1507
15.3 A/D Acquisition Requirements
For the ADC to meet its specified accuracy, the charge
holding capacitor (CHOLD) must be allowed to fully
charge to the input channel voltage level. The Analog
Input model is shown in Figure 15-4. The source
impedance (RS) and the internal sampling switch (RSS)
impedance directly affect the time required to charge
the capacitor CHOLD. The sampling switch (RSS)
impedance varies over the device voltage (VDD), refer
to Figure 15-4. The maximum recommended
impedance for analog sources is 10 k. As the
source impedance is decreased, the acquisition time
may be decreased. After the analog input channel is
selected (or changed), an A/D acquisition must be
done before the conversion can be started. To calculate
the minimum acquisition time, Equation 15-1 may be
used. This equation assumes that 1/2 LSb error is used
(1,024 steps for the ADC). The 1/2 LSb error is the
maximum error allowed for the ADC to meet its
specified resolution.
EQUATION 15-1: ACQUISITION TIME EXAMPLE
TACQ Amplifier Settling Time Hold Capa citor Charging Time Temp erature Coefficient++=
TAMP TCTCOFF++=
2µs TCTemperature - 25°C0.05µs/°C++=
TCCHOLD RIC RSS RS++ ln(1/2047)=
12.5pF 1k
7k
10k
++ ln(0.0004885)=
1.12=µs
VAPPLIED 1e
Tc
RC
---------



VAPPLIED 11
2n1+
1
--------------------------


=
VAPPLIED 11
2n1+
1
--------------------------


VCHOLD=
VAPPLIED 1e
TC
RC
----------



VCHOLD=
;[1] VCHOLD charged to within 1/2 lsb
;[2] VCHOLD char ge response to VAPPLIED
;combining [1] and [2]
The value for TC can be approximated with the following equations:
Solving for TC:
Therefore:
Temperature 50°C and external impedance of 10k
5.0V V DD=
Assumptions:
Note: Where n = number of bits of the ADC.
TACQ s 1.12µs 50°C- 25°C0.05µs/°C++=
7.37µs=
Note 1: The reference voltage (VREF+) has no effect on the equation, since it cancels itself out.
2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
3: The maximum recommended impedance for analog sources is 10 k. This is required to meet the pin
leakage specification.
PIC16(L)F1507
DS41586A-page 133 Preliminary 2011 Microchip Technology Inc.
FIGURE 15-4: ANALOG INPUT MODEL
FIGURE 15-5: ADC TRANSFER FUNCTION
CPIN
VA
Rs
Analog
5 pF
VDD
VT 0.6V
VT 0.6V I LEAKAGE(1)
RIC 1k
Sampling
Switch
SS Rss
CHOLD = 10 pF
VREF-
6V
Sampling Switch
5V
4V
3V
2V
567891011
(k)
VDD
Legend:
CPIN
VT
I LEAKAGE
RIC
SS
CHOLD
= Input Capacitance
= Threshold Voltage
= Leakage current at the pin due to
= Interconnect Resistance
= Sampling Switch
= Sample/Hold Capacitance
various junctions
RSS
Note 1: Refer to Section 25.0 “Electrical Specifications”.
RSS = Resistance of Sampling Switch
Input
pin
3FFh
3FEh
ADC Output Code
3FDh
3FCh
03h
02h
01h
00h
Full-Scale
3FBh
0.5 LSB
VREF-Zero-Scale
Transition VREF+
Transition
1.5 LSB
Full-Scale Range
Analog Input Voltage
2011 Microchip Technology Inc. Preliminary DS41586A-page 134
PIC16(L)F1507
TABLE 15-2: SUMMARY OF REGISTERS ASSOCIATED WITH ADC
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 B it 0 Register
on Page
ADCON0 CHS<4:0> GO/DONE ADON 127
ADCON1 ADFM ADCS<2:0> ADPREF<1:0> 128
ADCON2 TRIGSEL<3:0> 129
ADRESH A/D Result Register High 130, 131
ADRESL A/D Result Register Low 130, 131
ANSELA ———ANSA4 ANSA2 ANSA1 ANSA0 103
ANSELB ANSB5 ANSB4 107
ANSELC ANSC7 ANSC6 ANSC3 ANSC2 ANSC1 ANSC0 110
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 66
PIE1 TMR1GIE ADIE ————TMR2IE TMR1IE 67
PIR1 TMR1GIF ADIF ————TMR2IF TMR1IF 70
TRISA TRISA5 TRISA4 —(1) TRISA2 TRISA1 TRISA0 102
TRISB TRISB7 TRISB6 TRISB5 TRISB4 106
TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 109
FVRCON FVREN FVRRDY TSEN TSRNG —ADFVR<1:0>
118
Legend: x = unknown, u = unchanged, = unimplemented read as ‘0’, q = value depends on condition. Shaded cells are not
used for ADC module.
Note 1: Unimplemented, read as ‘1’.
PIC16(L)F1507
DS41586A-page 135 Preliminary 2011 Microchip Technology Inc.
16.0 TIMER0 MODULE
The Timer0 module is an 8-bit timer/counter with the
following features:
8-bit timer/counter register (TMR0)
8-bit prescaler (independent of Watchdog Timer)
Programmable internal or external clock source
Programmable external clock edge selection
Interrupt on overflow
TMR0 can be used to gate Timer1
Figure 16-1 is a block diagram of the Timer0 module.
16.1 Timer0 Operation
The Timer0 module can be used as either an 8-bit timer
or an 8-bit counter.
16.1.1 8-BIT TIMER MODE
The Timer0 module will increment every instruction
cycle, if used without a prescaler. 8-Bit Timer mode is
selected by clearing the TMR0CS bit of the
OPTION_REG register.
When TMR0 is written, the increment is inhibited for
two instruction cycles immediately following the write.
16.1.2 8-BIT COUNTER MODE
In 8-Bit Counter mode, the Timer0 module will increment
on every rising or falling edge of the T0CKI pin.
8-Bit Counter mode using the T0CKI pin is selected by
setting the TMR0CS bit in the OPTION_REG register to
1’.
The rising or falling transition of the incrementing edge
for either input source is determined by the TMR0SE bit
in the OPTION_REG register.
FIGURE 16-1: BLOCK DIAGRAM OF THE TIMER0
Note: The value written to the TMR0 register
can be adjusted, in order to account for
the two instruction cycle delay when
TMR0 is written.
T0CKI
TMR0SE
TMR0
PS<2:0>
Data Bus
Set Flag bit TMR0IF
on Overflow
TMR0CS
0
1
0
18
8
8-bit
Prescaler
FOSC/4
PSA
Sync
2 TCY
Overflow to Timer1
2011 Microchip Technology Inc. Preliminary DS41586A-page 136
PIC16(L)F1507
16.1.3 SOFTWARE PROGRAMMABLE
PRESCALER
A software programmable prescaler is available for
exclusive use with Timer0. The prescaler is enabled by
clearing the PSA bit of the OPTION_REG register.
There are 8 prescaler options for the Timer0 module
ranging from 1:2 to 1:256. The prescale values are
selectable via the PS<2:0> bits of the OPTION_REG
register. In order to have a 1:1 prescaler value for the
Timer0 module, the prescaler must be disabled by set-
ting the PSA bit of the OPTION_REG register.
The prescaler is not readable or writable. All instructions
writing to the TMR0 register will clear the prescaler.
16.1.4 TIMER0 INTERRUPT
Timer0 will generate an interrupt when the TMR0
register overflows from FFh to 00h. The TMR0IF
interrupt flag bit of the INTCON register is set every
time the TMR0 register overflows, regardless of
whether or not the Timer0 interrupt is enabled. The
TMR0IF bit can only be cleared in software. The Timer0
interrupt enable is the TMR0IE bit of the INTCON
register.
16.1.5 8-BIT COUNTER MODE
SYNCHRONIZATION
When in 8-Bit Counter mode, the incrementing edge on
the T0CKI pin must be synchronized to the instruction
clock. Synchronization can be accomplished by
sampling the prescaler output on the Q2 and Q4 cycles
of the instruction clock. The high and low periods of the
external clocking source must meet the timing
requirements as shown in Section 25.0 “Electrical
Specifications.
16.1.6 OPERATION DURING SLEEP
Timer0 cannot operate while the processor is in Sleep
mode. The contents of the TMR0 register will remain
unchanged while the processor is in Sleep mode.
Note: The Watchdog Timer (WDT) uses its own
independent prescaler.
Note: The Timer0 interrupt cannot wake the
processor from Sleep since the timer is
frozen during Sleep.
PIC16(L)F1507
DS41586A-page 137 Preliminary 2011 Microchip Technology Inc.
16.2 Option and T imer0 Control Register
TABLE 16-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0
REGISTER 16-1: OPTION_REG: OPTION REGISTER
R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1
WPUEN INTEDG TMR0CS TMR0SE PSA PS<2:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 WPUEN: Weak Pull-Up Enable bit
1 = All weak pull-ups are disabled (except MCLR, if it is enabled)
0 = Weak pull-ups are enabled by individual WPUx latch values
bit 6 INTEDG: Interrupt Edge Select bit
1 = Interrupt on rising edge of INT pin
0 = Interrupt on falling edge of INT pin
bit 5 TMR0CS: Timer0 Clock Source Select bit
1 = Transition on T0CKI pin
0 = Internal instruction cycle clock (FOSC/4)
bit 4 TMR0SE: Timer0 Source Edge Select bit
1 = Increment on high-to-low transition on T0CKI pin
0 = Increment on low-to-high transition on T0CKI pin
bit 3 PSA: Prescaler Assignment bit
1 = Prescaler is not assigned to the Timer0 module
0 = Prescaler is assigned to the Timer0 module
bit 2-0 PS<2:0>: Prescaler Rate Select bits
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
ADCON2 TRIGSEL<3:0> 129
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 66
OPTION_REG WPUEN INTEDG TMR0CS TMR0SE PSA PS<2:0> 137
TMR0 Holding Register for the 8-bit Timer0 Count 135*
TRISA TRISA5 TRISA4 (1) TRISA2 TRISA1 TRISA0 102
Legend: — = Unimplemented location, read as ‘0’. Shaded cells are not used by the Timer0 module.
* Page provides register information.
Note 1: Unimplemented, read as ‘1’.
000
001
010
011
100
101
110
111
1 : 2
1 : 4
1 : 8
1 : 16
1 : 32
1 : 64
1 : 128
1 : 256
Bit Value Timer0 Rate
2011 Microchip Technology Inc. Preliminary DS41586A-page 138
PIC16(L)F1507
NOTES:
PIC16(L)F1507
DS41586A-page 139 Preliminary 2011 Microchip Technology Inc.
17.0 TIMER1 MODULE WITH GATE
CONTROL
The Timer1 module is a 16-bit timer/counter with the
following features:
16-bit timer/counter register pair (TMR1H:TMR1L)
Programmable internal or external clock source
2-bit prescaler
Optionally synchronized comparator out
Multiple Timer1 gate (count enable) sources
Interrupt on overflow
Wake-up on overflow (external clock,
Asynchronous mode only)
Special Event Trigger
Selectable Gate Source Polarity
Gate Toggle mode
Gate Single-Pulse mode
Gate Value Status
Gate Event Interrupt
Figure 17-1 is a block diagram of the Timer1 module.
FIGURE 17-1: TIMER1 BLOCK DIAGRAM
TMR1H TMR1L
T1SYNC
T1CKPS<1:0>
Prescaler
1, 2, 4, 8
0
1
Synchronized
Clock Input
2
Set flag bit
TMR1IF on
Overflow TMR1(2)
TMR1ON
Note 1: ST Buffer is high speed type when using T1CKI.
2: Timer1 register increments on rising edge.
3: Synchronize does not operate while in Sleep.
T1G
FOSC/4
Internal
Clock
T1CKI
TMR1CS<1:0>
(1)
Synchronize(3)
det
Sleep input
TMR1GE
0
1
0
1
T1GPOL
D
Q
CK
Q
0
1
T1GVAL
T1GTM
Single Pulse
Acq. Control
T1GSPM
T1GGO/DONE
T1GSS
10
11
00
01
FOSC
Internal
Clock
LFINTOSC
R
D
EN
Q
Q1
RD
T1GCON
Data Bus
det
Interrupt
TMR1GIF
Set
T1CLK
FOSC/2
Internal
Clock
D
EN
Q
t1g_in
TMR1ON
From Timer0
Overflow
To ADC Auto-Conversion
2011 Microchip Technology Inc. Preliminary DS41586A-page 140
PIC16(L)F1507
17.1 Timer1 Operation
The Timer1 module is a 16-bit incrementing counter
which is accessed through the TMR1H:TMR1L register
pair. Writes to TMR1H or TMR1L directly update the
counter.
When used with an internal clock source, the module is
a timer and increments on every instruction cycle.
When used with an external clock source, the module
can be used as either a timer or counter and incre-
ments on every selected edge of the external source.
Timer1 is enabled by configuring the TMR1ON and
TMR1GE bits in the T1CON and T1GCON registers,
respectively. Table 17-1 displays the Timer1 enable
selections.
17.2 Clock Source Selection
The TMR1CS<1:0> bits of the T1CON register are used
to select the clock source for Timer1. Table 17- 2
displays the clock source selections.
17.2.1 INTERNAL CLOCK SOURCE
When the internal clock source is selected the
TMR1H:TMR1L register pair will increment on multiples
of FOSC as determined by the Timer1 prescaler.
When the FOSC internal clock source is selected, the
Timer1 register value will increment by four counts every
instruction clock cycle. Due to this condition, a 2 LSB
error in resolution will occur when reading the Timer1
value. To utilize the full resolution of Timer1, an
asynchronous input signal must be used to gate the
Timer1 clock input.
The following asynchronous sources may be used:
Asynchronous event on the T1G pin to Timer1
gate
17.2.2 EXTERNAL CLOCK SOURCE
When the external clock source is selected, the Timer1
module may work as a timer or a counter.
When enabled to count, Timer1 is incremented on the
rising edge of the external clock input T1CKI. The
external clock source can be synchronized to the
microcontroller system clock or it can run
asynchronously.
TABLE 17-1: TIMER1 ENABLE
SELECTIONS
TMR1ON TMR1GE Timer1
Operation
00Off
01Off
10Always On
11Count Enabled
Note: In Counter mode, a falling edge must be
registered by the counter prior to the first
incrementing rising edge after any one or
more of the following conditions:
Timer1 enabled after POR
Write to TMR1H or TMR1L
Timer1 is disabled
Timer1 is disabled (TMR1ON = 0)
when T1CKI is high then Timer1 is
enabled (TMR1ON=1) when T1CKI is
low.
TABLE 17-2: CLOCK SOURCE SELECTIONS
TMR1CS<1:0> T1OSCEN Clock Source
11xLFINTOSC
100External Clocking on T1CKI Pin
01xSystem Clock (FOSC)
00xInstruction Clock (FOSC/4)
PIC16(L)F1507
DS41586A-page 141 Preliminary 2011 Microchip Technology Inc.
17.3 Timer1 Prescaler
Timer1 has four prescaler options allowing 1, 2, 4 or 8
divisions of the clock input. The T1CKPS bits of the
T1CON register control the prescale counter. The
prescale counter is not directly readable or writable;
however, the prescaler counter is cleared upon a write to
TMR1H or TMR1L.
17.4 Timer1 Operation in
Asynchronous Counter Mode
If control bit T1SYNC of the T1CON register is set, the
external clock input is not synchronized. The timer
increments asynchronously to the internal phase
clocks. If the external clock source is selected then the
timer will continue to run during Sleep and can
generate an interrupt on overflow, which will wake-up
the processor. However, special precautions in
software are needed to read/write the timer (see
Section 17.4.1 “Reading and Writing Timer1 in
Asynchronous Counter Mode”).
17.4.1 READING AND WRITING TIMER1 IN
ASYNCHRONOUS COUNTER
MODE
Reading TMR1H or TMR1L while the timer is running
from an external asynchronous clock will ensure a valid
read (taken care of in hardware). However, the user
should keep in mind that reading the 16-bit timer in two
8-bit values itself, poses certain problems, since the
timer may overflow between the reads.
For writes, it is recommended that the user simply stop
the timer and write the desired values. A write
contention may occur by writing to the timer registers,
while the register is incrementing. This may produce an
unpredictable value in the TMR1H:TMR1L register pair.
17.5 Timer1 Gate
Timer1 can be configured to count freely or the count
can be enabled and disabled using Timer1 gate
circuitry. This is also referred to as Timer1 Gate Enable.
Timer1 gate can also be driven by multiple selectable
sources.
17.5.1 TIMER1 GATE ENABLE
The Timer1 Gate Enable mode is enabled by setting
the TMR1GE bit of the T1GCON register. The polarity
of the Timer1 Gate Enable mode is configured using
the T1GPOL bit of the T1GCON register.
When Timer1 Gate Enable mode is enabled, Timer1
will increment on the rising edge of the Timer1 clock
source. When Timer1 Gate Enable mode is disabled,
no incrementing will occur and Timer1 will hold the
current count. See Figure 17-3 for timing details.
17.5.2 TIMER1 GATE SOURCE
SELECTION
Timer1 gate source selections are shown in Table 17-4.
Source selection is controlled by the T1GSS bit of the
T1GCON register. The polarity for each available source
is also selectable. Polarity selection is controlled by the
T1GPOL bit of the T1GCON register.
TABLE 17-4: TIMER1 GATE SOURCES
Note: When switching from synchronous to
asynchronous operation, it is possible to
skip an increment. When switching from
asynchronous to synchronous operation,
it is possible to produce an additional
increment.
TABLE 17-3: TIMER1 GATE ENABLE
SELECTIONS
T1CLK T1GPOL T1G Timer1 Operation
00Counts
01Holds Count
10Holds Count
11Counts
T1GSS Timer1 Ga te Sour ce
0Timer1 Gate Pin
1Overflow of Timer0
(TMR0 increments from FFh to 00h)
2011 Microchip Technology Inc. Preliminary DS41586A-page 142
PIC16(L)F1507
17.5.2.1 T1G Pin Gate Operation
The T1G pin is one source for Timer1 Gate Control. It
can be used to supply an external source to the Timer1
gate circuitry.
17.5.2.2 Timer0 Overflow Gate Operation
When Timer0 increments from FFh to 00h, a
low-to-high pulse will automatically be generated and
internally supplied to the Timer1 gate circuitry.
17.5.3 TIMER1 GATE TOGGLE MODE
When Timer1 Gate Toggle mode is enabled, it is possi-
ble to measure the full-cycle length of a Timer1 gate
signal, as opposed to the duration of a single level
pulse.
The Timer1 gate source is routed through a flip-flop that
changes state on every incrementing edge of the sig-
nal. See Figure 17-4 for timing details.
Timer1 Gate Toggle mode is enabled by setting the
T1GTM bit of the T1GCON register. When the T1GTM
bit is cleared, the flip-flop is cleared and held clear. This
is necessary in order to control which edge is
measured.
17.5.4 TIMER1 GATE SINGLE-PULSE
MODE
When Timer1 Gate Single-Pulse mode is enabled, it is
possible to capture a single pulse gate event. Timer1
Gate Single-Pulse mode is first enabled by setting the
T1GSPM bit in the T1GCON register. Next, the
T1GGO/DONE bit in the T1GCON register must be set.
The Timer1 will be fully enabled on the next incrementing
edge. On the next trailing edge of the pulse, the
T1GGO/DONE bit will automatically be cleared. No other
gate events will be allowed to increment Timer1 until the
T1GGO/DONE bit is once again set in software. See
Figure 17-5 for timing details.
If the Single Pulse Gate mode is disabled by clearing the
T1GSPM bit in the T1GCON register, the T1GGO/DONE
bit should also be cleared.
Enabling the Toggle mode and the Single-Pulse mode
simultaneously will permit both sections to work
together. This allows the cycle times on the Timer1 gate
source to be measured. See Figure 17-6 for timing
details.
17.5.5 TIMER1 GATE VALUE STATUS
When Timer1 Gate Value Status is utilized, it is possible
to read the most current level of the gate control value.
The value is stored in the T1GVAL bit in the T1GCON
register. The T1GVAL bit is valid even when the Timer1
gate is not enabled (TMR1GE bit is cleared).
17.5.6 TIMER1 GATE EVENT INTERRUPT
When Timer1 Gate Event Interrupt is enabled, it is pos-
sible to generate an interrupt upon the completion of a
gate event. When the falling edge of T1GVAL occurs,
the TMR1GIF flag bit in the PIR1 register will be set. If
the TMR1GIE bit in the PIE1 register is set, then an
interrupt will be recognized.
The TMR1GIF flag bit operates even when the Timer1
gate is not enabled (TMR1GE bit is cleared).
Note: Enabling Toggle mode at the same time
as changing the gate polarity may result in
indeterminate operation.
PIC16(L)F1507
DS41586A-page 143 Preliminary 2011 Microchip Technology Inc.
17.6 Timer1 Interrupt
The Timer1 register pair (TMR1H:TMR1L) increments
to FFFFh and rolls over to 0000h. When Timer1 rolls
over, the Timer1 interrupt flag bit of the PIR1 register is
set. To enable the interrupt on rollover, you must set
these bits:
TMR1ON bit of the T1CON register
TMR1IE bit of the PIE1 register
PEIE bit of the INTCON register
GIE bit of the INTCON register
The interrupt is cleared by clearing the TMR1IF bit in
the Interrupt Service Routine.
17.7 Timer1 Operation During Sleep
Timer1 can only operate during Sleep when setup in
Asynchronous Counter mode. In this mode, an external
crystal or clock source can be used to increment the
counter. To set up the timer to wake the device:
TMR1ON bit of the T1CON register must be set
TMR1IE bit of the PIE1 register must be set
PEIE bit of the INTCON register must be set
T1SYNC bit of the T1CON register must be set
TMR1CS bits of the T1CON register must be
configured
The device will wake-up on an overflow and execute
the next instructions. If the GIE bit of the INTCON
register is set, the device will call the Interrupt Service
Routine.
Timer1 oscillator will continue to operate in Sleep
regardless of the T1SYNC bit setting.
FIGURE 17-2: TIMER1 INCREMENTING EDGE
Note: The TMR1H:TMR1L register pair and the
TMR1IF bit should be cleared before
enabling interrupts.
T1CKI = 1
when TMR1
Enabled
T1CKI = 0
when TMR1
Enabled
Note 1: Arrows indicate counter increments.
2: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge of the clock.
2011 Microchip Technology Inc. Preliminary DS41586A-page 144
PIC16(L)F1507
FIGURE 17-3: TIMER1 GATE ENABLE MODE
FIGURE 17-4: TIMER1 GATE TOGGLE MODE
TMR1GE
T1GPOL
t1g_in
T1CKI
T1GVAL
Timer1 N N + 1 N + 2 N + 3 N + 4
TMR1GE
T1GPOL
T1GTM
t1g_in
T1CKI
T1GVAL
Timer1 N N + 1 N + 2 N + 3 N + 4 N + 5 N + 6 N + 7 N + 8
PIC16(L)F1507
DS41586A-page 145 Preliminary 2011 Microchip Technology Inc.
FIGURE 17-5: TIMER1 GATE SINGLE-PULSE MODE
TMR1GE
T1GPOL
t1g_in
T1CKI
T1GVAL
Timer1 N N + 1 N + 2
T1GSPM
T1GGO/
DONE
Set by software
Cleared by hardware on
falling edge of T1GVAL
Set by hardware on
falling edge of T1GVAL
Cleared by software
Cleared by
software
TMR1GIF
Counting enabled on
rising edge of T1G
2011 Microchip Technology Inc. Preliminary DS41586A-page 146
PIC16(L)F1507
FIGURE 17-6: TIMER1 GATE SINGLE-PULS E AND TOGGLE COMBINED MODE
TMR1GE
T1GPOL
t1g_in
T1CKI
T1GVAL
Timer1 NN + 1
N + 2
T1GSPM
T1GGO/
DONE
Set by software
Cleared by hardware on
falling edge of T1GVAL
Set by hardware on
falling edge of T1GVAL
Cleared by software
Cleared by
software
TMR1GIF
T1GTM
Counting enabled on
rising edge of T1G
N + 4
N + 3
PIC16(L)F1507
DS41586A-page 147 Preliminary 2011 Microchip Technology Inc.
17.8 Timer1 Control Registers
REGISTER 17-1: T1CON: TIMER1 CONTROL REGISTER
R/W-0/u R/W-0/u R/W-0/u R/W-0/u U-0 R/W-0/u U-0 R/W-0/u
TMR1CS<1:0> T1CKPS<1:0> T1SYNC —TMR1ON
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-6 TMR1CS<1:0>: Timer1 Clock Source Select bits
11 = Timer1 clock source is LFINTOSC
10 = Timer1 clock source is T1CKI pin (on rising edge)
01 = Timer1 clock source is system clock (FOSC)
00 = Timer1 clock source is instruction clock (FOSC/4)
bit 5-4 T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits
11 = 1:8 Prescale value
10 = 1:4 Prescale value
01 = 1:2 Prescale value
00 = 1:1 Prescale value
bit 3 Unimplemented: Read as ‘0
bit 2 T1SYNC: Timer1 Synchronization Control bit
1 = Do not synchronize asynchronous clock input
0 = Synchronize asynchronous clock input with system clock (FOSC)
bit 1 Unimplemented: Read as ‘0
bit 0 TMR1ON: Timer1 On bit
1 = Enables Timer1
0 = Stops Timer1 and clears Timer1 gate flip-flop
2011 Microchip Technology Inc. Preliminary DS41586A-page 148
PIC16(L)F1507
REGISTER 17-2: T1GCON: TIMER1 GATE CONTROL REGISTER
R/W-0/u R/W-0/u R/W-0/u R/W-0/u R/W/HC-0/u R-x/x U-0 R/W-0/u
TMR1GE T1GPOL T1GTM T1GSPM T1GGO/
DONE
T1GVAL —T1GSS
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared HC = Bit is cleared by hardware
bit 7 TMR1GE: Timer1 Gate Enable bit
If TMR1ON = 0:
This bit is ignored
If TMR1ON = 1:
1 = Timer1 counting is controlled by the Timer1 gate function
0 = Timer1 counts regardless of Timer1 gate function
bit 6 T1GPOL: Timer1 Gate Polarity bit
1 = Timer1 gate is active-high (Timer1 counts when gate is high)
0 = Timer1 gate is active-low (Timer1 counts when gate is low)
bit 5 T1GTM: Timer1 Gate Toggle Mode bit
1 = Timer1 Gate Toggle mode is enabled
0 = Timer1 Gate Toggle mode is disabled and toggle flip-flop is cleared
Timer1 gate flip-flop toggles on every rising edge.
bit 4 T1GSPM: Timer1 Gate Single-Pulse Mode bit
1 = Timer1 gate Single-Pulse mode is enabled and is controlling Timer1 gate
0 = Timer1 gate Single-Pulse mode is disabled
bit 3 T1GGO/DONE: Timer1 Gate Single-Pulse Acquisition Status bit
1 = Timer1 gate single-pulse acquisition is ready, waiting for an edge
0 = Timer1 gate single-pulse acquisition has completed or has not been started
bit 2 T1GVAL: Timer1 Gate Current State bit
Indicates the current state of the Timer1 gate that could be provided to TMR1H:TMR1L.
Unaffected by Timer1 Gate Enable (TMR1GE).
bit 1 Unimplemented: Read as ‘0
bit 0 T1GSS: Timer1 Gate Source Select bit
0 = Timer1 gate pin
1 = Timer0 overflow output
PIC16(L)F1507
DS41586A-page 149 Preliminary 2011 Microchip Technology Inc.
TABLE 17-5: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
ANSELA —ANSA4 ANSA2 ANSA1 ANSA0 103
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 66
PIE1 TMR1GIE ADIE TMR2IE TMR1IE 67
PIR1 TMR1GIF ADIF TMR2IF TMR1IF 70
TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Count 143*
TMR1L Holding Register for the Least Significant Byte of the 16-bit TMR1 Count 143*
TRISA TRISA5 TRISA4 (1) TRISA2 TRISA1 TRISA0 102
T1CON TMR1CS<1:0> T1CKPS<1:0> —T1SYNC—TMR1ON147
T1GCON TMR1GE T1GPOL T1GTM T1GSPM T1GGO/
DONE
T1GVAL —T1GSS148
Legend: = unimplemented location, read as ‘0’. Shaded cells are not used by the Timer1 module.
* Page provides register information.
Note 1: Unimplemented, read as ‘1’.
2011 Microchip Technology Inc. Preliminary DS41586A-page 150
PIC16(L)F1507
NOTES:
PIC16(L)F1507
DS41586A-page 151 Preliminary 2011 Microchip Technology Inc.
18.0 TIMER2 MODULE
The Timer2 module incorporates the following features:
8-bit Timer and Period registers (TMR2 and PR2,
respectively)
Readable and writable (both registers)
Software programmable prescaler (1:1, 1:4, 1:16,
and 1:64)
Software programmable postscaler (1:1 to 1:16)
Interrupt on TMR2 match with PR2, respectively
Optional use as the shift clock for the MSSP
modules
See Figure 18-1 for a block diagram of Timer2.
FIGURE 18-1: TIMER2 BLOCK DIAGRAM
Comparator
TMR2 Sets Flag
TMR2
Output
Reset
Postscaler
Prescaler
PR2
2
FOSC/4
1:1 to 1:16
1:1, 1:4, 1:16, 1:64
EQ
4
bit TMR2IF
T2OUTPS<3:0>
T2CKPS<1:0>
2011 Microchip Technology Inc. Preliminary DS41586A-page 152
PIC16(L)F1507
18.1 Timer2 Operation
The clock input to the Timer2 module is the system
instruction clock (FOSC/4).
TMR2 increments from 00h on each clock edge.
A 4-bit counter/prescaler on the clock input allows direct
input, divide-by-4 and divide-by-16 prescale options.
These options are selected by the prescaler control bits,
T2CKPS<1:0> of the T2CON register. The value of
TMR2 is compared to that of the Period register, PR2, on
each clock cycle. When the two values match, the
comparator generates a match signal as the timer
output. This signal also resets the value of TMR2 to 00h
on the next cycle and drives the output
counter/postscaler (see Section 18.2 “Timer2
Interrupt”).
The TMR2 and PR2 registers are both directly readable
and writable. The TMR2 register is cleared on any
device Reset, whereas the PR2 register initializes to
FFh. Both the prescaler and postscaler counters are
cleared on the following events:
a write to the TMR2 register
a write to the T2CON register
Power-on Reset (POR)
Brown-out Reset (BOR)
•MCLR
Reset
Watchdog Timer (WDT) Reset
Stack Overflow Reset
Stack Underflow Reset
RESET Instruction
18.2 Timer2 Interrupt
Timer2 can also generate an optional device interrupt.
The Timer2 output signal (TMR2-to-PR2 match)
provides the input for the 4-bit counter/postscaler. This
counter generates the TMR2 match interrupt flag which
is latched in TMR2IF of the PIR1 register. The interrupt
is enabled by setting the TMR2 Match Interrupt Enable
bit, TMR2IE of the PIE1 register.
A range of 16 postscale options (from 1:1 through 1:16
inclusive) can be selected with the postscaler control
bits, T2OUTPS<3:0>, of the T2CON register.
18.3 Timer2 Output
The unscaled output of TMR2 is available primarily to
the PWMx module, where it is used as a time base for
operation.
18.4 Timer2 Operation During Sleep
Timer2 cannot be operated while the processor is in
Sleep mode. The contents of the TMR2 and PR2
registers will remain unchanged while the processor is
in Sleep mode.
Note: TMR2 is not cleared when T2CON is
written.
PIC16(L)F1507
DS41586A-page 153 Preliminary 2011 Microchip Technology Inc.
REGISTER 18-1: T2CON: TIMER2 CONTROL REGISTER
U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
T2OUTPS<3:0> TMR2ON T2CKPS<1:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 Unimplemented: Read as ‘0
bit 6-3 T2OUTPS<3:0>: Timer2 Output Postscaler Select bits
0000 = 1:1 Postscaler
0001 = 1:2 Postscaler
0010 = 1:3 Postscaler
0011 = 1:4 Postscaler
0100 = 1:5 Postscaler
0101 = 1:6 Postscaler
0110 = 1:7 Postscaler
0111 = 1:8 Postscaler
1000 = 1:9 Postscaler
1001 = 1:10 Postscaler
1010 = 1:11 Postscaler
1011 = 1:12 Postscaler
1100 = 1:13 Postscaler
1101 = 1:14 Postscaler
1110 = 1:15 Postscaler
1111 = 1:16 Postscaler
bit 2 TMR2ON: Timer2 On bit
1 = Timer2 is on
0 = Timer2 is off
bit 1-0 T2CKPS<1:0>: Timer2 Clock Prescale Select bits
00 =Prescaler is 1
01 =Prescaler is 4
10 = Prescaler is 16
11 = Prescaler is 64
2011 Microchip Technology Inc. Preliminary DS41586A-page 154
PIC16(L)F1507
TABLE 18-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 B it 0 Register
on Page
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 66
PIE1 TMR1GIE ADIE ————TMR2IETMR1IE 67
PIR1 TMR1GIF ADIF ————TMR2IFTMR1IF 70
PR2 Timer2 Module Period Register 151*
PWM1CON PWM1EN PWM1OE PWM1OUT PWM1POL 159
PWM2CON PWM2EN PWM2OE PWM2OUT PWM2POL 159
PWM3CON PWM3EN PWM3OE PWM3OUT PWM3POL 159
PWM4CON PWM4EN PWM4OE PWM4OUT PWM4POL 159
T2CON T2OUTPS<3:0> TMR2ON T2CKPS<1:0> 153
TMR2 Holding Register for the 8-bit TMR2 Count 151*
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used for Timer2/4/6 module.
* Page provides register information.
PIC16(L)F1507
DS41586A-page 155 Preliminary 2011 Microchip Technology Inc.
19.0 PULSE WIDTH MODULATION
(PW M ) MODULE
The PWM module generates a Pulse-Width Modulated
signal determined by the duty cycle, period, and reso-
lution that are configured by the following registers:
•PR2
•T2CON
PWMxDCH
PWMxDCL
•PWMxCON
Figure 19-2 shows a simplified block diagram of PWM
operation.
Figure 19-1 shows a typical waveform of the PWM
signal.
For a step-by-step procedure on how to set up this
module for PWM operation, refer to Section 19.1.9
“Setup for PWM Operation using PWMx Pins”.
FIGURE 19-1: PWM OUTPUT
FIGURE 19-2: SIMPLIFIED PWM BLOCK DIAGRAM
Period
Pulse Width
TMR2 = 0
TMR2 =
TMR2 = PR2
PWMxDCH<7:0>:PWMxDCL<7:6>
PWMxDCH
Comparator
TMR2
Comparator
PR2
(1)
RQ
S
Duty Cycle registers PWMxDCL<7:6>
Clear Timer,
PWMx pin and
latch Duty Cycle
Note 1: 8-bit timer is concatenated with the two Least Significant bits of 1/FOSC adjusted by
the Timer2 prescaler to create a 10-bit time base.
Latched
(Not visible to user)
Q
Output Polarity (PWMxPOL)
TMR2 Module
0
1
PWMxOUT
to other peripherals: CLC and CWG
PWMx
Output Enable (PWMxOE)
TRIS Control
2011 Microchip Technology Inc. Preliminary DS41586A-page 156
PIC16(L)F1507
19.1 PWMx Pin Configuration
All PWM outputs are multiplexed with the PORT data
latch. The user must configure the pins as outputs by
clearing the associated TRIS bits.
19.1.1 FUNDAMENTAL OPERATION
The PWM module produces a 10-bit resolution output.
Timer2 and PR2 set the period of the PWM. The
PWMxDCL and PWMxDCH registers configure the
duty cycle. The period is common to all PWM modules,
whereas the duty cycle is independently controlled.
All PWM outputs associated with Timer2 are set when
TMR2 is cleared. Each PWMx is cleared when TMR2
is equal to the value specified in the corresponding
PWMxDCH (8 MSb) and PWMxDCL<7:6> (2 LSb) reg-
isters. When the value is greater than or equal to PR2,
the PWM output is never cleared (100% duty cycle).
19.1.2 PWM OUTPUT POLARITY
The output polarity is inverted by setting the PWMxPOL
bit of the PWMxCON register.
19.1.3 PWM PERIOD
The PWM period is specified by the PR2 register of
Timer2. The PWM period can be calculated using the
formula of Equation 19-1.
EQUATION 19-1: PWM PERIOD
When TMR2 is equal to PR2, the following three events
occur on the next increment cycle:
•TMR2 is cleared
The PWM output is active. (Exception: When the
PWM duty cycle = 0%, the PWM output will
remain inactive.)
The PWMxDCH and PWMxDCL register values
are latched into the buffers.
19.1.4 PWM DUTY CYCLE
The PWM duty cycle is specified by writing a 10-bit
value to the PWMxDCH and PWMxDCL register pair.
The PWMxDCH register contains the eight MSbs and
the PWMxDCL<7:6>, the two LSbs. The PWMxDCH
and PWMxDCL registers can be written to at any time.
Equation 19-2 is used to calculate the PWM pulse
width.
Equation 19-3 is used to calculate the PWM duty cycle
ratio.
EQUATION 19-2: PULSE WIDTH
EQUATION 19-3: DUTY CYCLE RATIO
The 8-bit timer TMR2 register is concatenated with the
two Least Significant bits of 1/FOSC, adjusted by the
Timer2 prescaler to create the 10-bit time base. The
system clock is used if the Timer2 prescaler is set to
1:1.
Note: Clearing the PWMxOE bit will relinquish
control of the PWMx pin.
Note: The Timer2 postscaler is not used in the
determination of the PWM frequency. The
postscaler could be used to have a servo
update rate at a different frequency than
the PWM output.
Note: The PWMxDCH and PWMxDCL registers
are double buffered. The buffers are
updated when Timer2 matches PR2. Care
should be taken to update both registers
before the timer match occurs.
PWM Period PR21+4TOSC =
(TM R2 Prescale Value)
Note: TOSC = 1/FOSC
Note: The Timer2 postscaler has no effect on
the PWM operation.
Pulse Width PWMxDCH:PWMxDCL<7:6>
=
TOSC
(TMR2 Prescale Value)
Note: TOSC = 1/FOSC
Duty Cycle Ratio PWMxDCH:PWMxDCL<7:6>
4 PR2 1+
-----------------------------------------------------------------------------------=
PIC16(L)F1507
DS41586A-page 157 Preliminary 2011 Microchip Technology Inc.
19.1.5 PWM RESOLUTION
The resolution determines the number of available duty
cycles for a given period. For example, a 10-bit resolu-
tion will result in 1024 discrete duty cycles, whereas an
8-bit resolution will result in 256 discrete duty cycles.
The maximum PWM resolution is 10 bits when PR2 is
255. The resolution is a function of the PR2 register
value as shown by Equation 19-4.
EQUATION 19-4: PWM RESOLUTION
19.1.6 OPERATION IN SLEEP MODE
In Sleep mode, the TMR2 register will not increment
and the state of the module will not change. If the
PWMx pin is driving a value, it will continue to drive that
value. When the device wakes up, TMR2 will continue
from its previous state.
19.1.7 CHANGES IN SYSTEM CLOCK
FREQUENCY
The PWM frequency is derived from the system clock
frequency (FOSC). Any changes in the system clock fre-
quency will result in changes to the PWM frequency.
Refer to Section 5.0 “Oscillator Module for addi-
tional details.
19.1.8 EFFECTS OF RESET
Any Reset will force all ports to Input mode and the
PWM registers to their Reset states.
Note: If the pulse width value is greater than the
period the assigned PWM pin(s) will
remain unchanged.
Resolution 4PR2 1+log 2log
------------------------------------------ bits=
TABLE 19-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 20 MHz)
PWM Frequency 0.31 kHz 4.88 kHz 19.53 kHz 78.12 kHz 156.3 kHz 208.3 kHz
Timer Prescale (1, 4, 64) 64 4 1 1 1 1
PR2 Value 0xFF 0xFF 0xFF 0x3F 0x1F 0x17
Maximum Resolution (bits) 10 10 10 8 7 6.6
TABLE 19-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 8 MHz)
PWM Frequency 0.31 kHz 4.90 kHz 19.61 kHz 76.92 kHz 153.85 kHz 200.0 kHz
Timer Prescale (1, 4, 64) 64 4 1 1 1 1
PR2 Value 0x65 0x65 0x65 0x19 0x0C 0x09
Maximum Resolution (bits) 8 8 8 6 5 5
2011 Microchip Technology Inc. Preliminary DS41586A-page 158
PIC16(L)F1507
19.1.9 SETUP FOR PWM OPERATION
USING PWMx PINS
The following steps should be taken when configuring
the module for PWM operation using the PWMx pins:
1. Disable the PWMx pin output driver(s) by setting
the associated TRIS bit(s).
2. Clear the PWMxCON register.
3. Load the PR2 register with the PWM period
value.
4. Clear the PWMxDCH register and bits <7:6> of
the PWMxDCL register.
5. Configure and start Timer2:
Clear the TMR2IF interrupt flag bit of the PIR1
register. See Note below.
Configure the T2CKPS bits of the T2CON register
with the Timer2 prescale value.
Enable Timer2 by setting the TMR2ON bit of the
T2CON register.
6. Enable PWM output pin and wait until Timer2
overflows, TMR2IF bit of the PIR1 register is set.
See note below.
7. Enable the PWMx pin output driver(s) by clear-
ing the associated TRIS bit(s) and setting the
PWMxOE bit of the PWMxCON register.
8. Configure the PWM module by loading the
PWMxCON register with the appropriate values.
Note 1: In order to send a complete duty cycle
and period on the first PWM output, the
above steps must be followed in the order
given. If it is not critical to start with a
complete PWM signal, then move Step 8
to replace Step 4.
2: For operation with other peripherals only,
disable PWMx pin outputs.
PIC16(L)F1507
DS41586A-page 159 Preliminary 2011 Microchip Technology Inc.
19.2 PWM Register Definitions
REGISTER 19-1: PWMxCON: PWM CONTROL REGISTER
R/W-0/0 R/W-0/0 R-0/0 R/W-0/0 U-0 U-0 U-0 U-0
PWMxEN PWMxOE PWMxOUT PWMxPOL
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 PWMxEN: PWM Module Enable bit
1 = PWM module is enabled
0 = PWM module is disabled
bit 6 PWMxOE: PWM Module Output Enable bit
1 = Output to PWMx pin is enabled
0 = Output to PWMx pin is disabled
bit 5 PWMxOUT: PWM Module Output Value bit
bit 4 PWMxPOL: PWMx Output Polarity Select bit
1 = PWM output is active low
0 = PWM output is active high
bit 3-0 Unimplemented: Read as ‘0
2011 Microchip Technology Inc. Preliminary DS41586A-page 160
PIC16(L)F1507
REGISTER 19-2: PWMxDCH: PWM DUTY CYCLE HIGH BITS
R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u
PWMxDCH<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 PWMxDCH<7:0>: PWM Duty Cycle Most Significant bits
These bits are the MSbs of the PWM duty cycle. The two LSbs are found in the PWMxDCL register.
REGISTER 19-3: PWMxDCL: PWM DUTY CYCLE LOW BITS
R/W-x/u R/W-x/u U-0 U-0 U-0 U-0 U-0 U-0
PWMxDCL<7:6>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-6 PWMxDCL<7:6>: PWM Duty Cycle Least Significant bits
These bits are the LSbs of the PWM duty cycle. The MSbs are found in the PWMxDCH register.
bit 5-0 Unimplemented: Read as0
TABLE 19-3: SUMMARY OF REGISTERS ASSOCIATED WITH PWM
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
PR2 Timer2 module Period Register 151*
PWM1CON PWM1EN PWM1OE PWM1OUT PWM1POL 159
PWM1DCH PWM1DCH<7:0> 160
PWM1DCL PWM1DCL<7:6> 160
PWM2CON PWM2EN PWM2OE PWM2OUT PWM2POL 160
PWM2DCH PWM2DCH<7:0> 160
PWM2DCL PWM2DCL<7:6> 160
PWM3CON PWM3EN PWM3OE PWM3OUT PWM3POL 159
PWM3DCH PWM3DCH<7:0> 160
PWM3DCL PWM3DCL<7:6> 160
PWM4CON PWM4EN PWM4OE PWM4OUT PWM4POL 159
PWM4DCH PWM4DCH<7:0> 160
PWM4DCL PWM4DCL<7:6> 160
T2CON T2OUTPS<3:0> TMR2ON T2CKPS<1:0> 153
TMR2 Timer2 module Register 151*
TRISA TRISA5 TRISA4 —(1) TRISA2 TRISA1 TRISA0 102
TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 109
Legend: - = Unimplemented locations, read as ‘0’, u = unchanged, x = unknown. Shaded cells are not used by the PWM.
* Page provides register information.
Note 1: Unimplemented, read as ‘1’.
PIC16(L)F1507
DS41586A-page 161 Preliminary 2011 Microchip Technology Inc.
20.0 CONFIGURABLE LOGIC CELL
(CLC)
The Configurable Logic Cell (CLCx) provides program-
mable logic that operates outside the speed limitations
of software execution. The logic cell takes up to 16
input signals and through the use of configurable gates
reduces the 16 inputs to four logic lines that drive one
of eight selectable single-output logic functions.
Input sources are a combination of the following:
I/O pins
Internal clocks
Peripherals
•Register bits
The output can be directed internally to peripherals and
to an output pin.
Refer to Figure 20-1 for a simplified diagram showing
signal flow through the CLCx.
Possible configurations include:
Combinatorial Logic
-AND
-NAND
- AND-OR
- AND-OR-INVERT
-OR-XOR
-OR-XNOR
Latches
-S-R
- Clocked D with Set and Reset
- Transparent D with Set and Reset
- Clocked J-K with Reset
FIGURE 20-1: CLCx SIMPLIFIED BLOCK DIAGRAM
lcxg1
lcxg2
lcxg3
lcxg4
Interrupt
det
Logic
Function
Input Data Selection Gates
CLCx
LCxOE
lcxq
LCxPOL
LCxOUT
DQ
LE
Q1
LCxMODE<2:0>
lcx_out
CLCxIN[0]
CLCxIN[1]
CLCxIN[2]
CLCxIN[3]
CLCxIN[4]
CLCxIN[5]
CLCxIN[6]
CLCxIN[7]
CLCxIN[8]
CLCxIN[9]
CLCxIN[10]
CLCxIN[11]
CLCxIN[12]
CLCxIN[13]
CLCxIN[14]
CLCxIN[15]
TRIS Control
Interrupt
det
LCxINTP
LCxINTN
MLCxOUT
LCxEN
CLCxIF
sets
flag
See Figure 20-3
See Figure 20-2
2011 Microchip Technology Inc. Preliminary DS41586A-page 162
PIC16(L)F1507
20.1 CLCx Setup
Programming the CLCx module is performed by config-
uring the 4 stages in the logic signal flow. The 4 stages
are:
Data selection
Data gating
Logic function selection
Output polarity
Each stage is setup at run time by writing to the corre-
sponding CLCx Special Function Registers. This has
the added advantage of permitting logic reconfiguration
on-the-fly during program execution.
20.1.1 DATA SELECTION
There are 16 signals available as inputs to the configu-
rable logic. Four 8-input multiplexers are used to select
the inputs to pass on to the next stage. The 16 inputs to
the multiplexers are arranged in groups of four. Each
group is available to two of the four multiplexers, in
each case, paired with a different group. This arrange-
ment makes possible selection of up to two from a
group without precluding a selection from another
group.
Data inputs are selected with the CLCxSEL0 and
CLCxSEL1 registers (Register 20-3 and Register 20-4,
respectively).
Data inputs are selected with CLCxSEL0 and
CLCxSEL1 registers (Register 20-3 and Register 20-4,
respectively).
Data selection is through four multiplexers as indicated
on the left side of Figure 20-2. Data inputs in the figure
are identified by a generic numbered input name.
Table 20-1 correlates the generic input name to the
actual signal for each CLC module. The columns labeled
lcxd1 through lcxd4 indicate the MUX output for the
selected data input. D1S through D4S are abbreviations
for the MUX select input codes: LCxD1S<2:0> through
LCxD4S<2:0>, respectively. Selecting a data input in a
column excludes all other inputs in that column.
Note: Data selections are undefined at power-up.
TABLE 20-1: CLCx DATA INPUT SELECTION
Data Input lcxd1
D1S lcxd2
D2S lcxd3
D3S lcxd4
D4S CLC 1 CLC 2
CLCxIN[0] 000 100 CLC1IN0 CLC2IN0
CLCxIN[1] 001 101 CLC1IN1 CLC2IN1
CLCxIN[2] 010 110 Reserved Reserved
CLCxIN[3] 011 111 Reserved Reserved
CLCxIN[4] 100 000 —FOSC FOSC
CLCxIN[5] 101 001 TMR0IF TMR0IF
CLCxIN[6] 110 010 TMR1IF TMR1IF
CLCxIN[7] 111 011 TMR2 = PR2 TMR2 = PR2
CLCxIN[8] 100 000 lcx1_out lcx1_out
CLCxIN[9] 101 001 lcx2_out lcx2_out
CLCxIN[10] 110 010 lcx3_out lcx3_out
CLCxIN[11] 111 011 lcx4_out lcx4_out
CLCxIN[12] 100 000 NCO1OUT LFINTOSC
CLCxIN[13] 101 001 HFINTOSC ADCFRC
CLCxIN[14] 110 010 PWM3OUT PWM1OUT
CLCxIN[15] 111 011 PWM4OUT PWM2OUT
PIC16(L)F1507
DS41586A-page 163 Preliminary 2011 Microchip Technology Inc.
20.1.2 DATA GATING
Outputs from the input multiplexers are directed to the
desired logic function input through the data gating
stage. Each data gate can direct any combination of the
four selected inputs.
The gate stage is more than just signal direction. The
gate can be configured to direct each input signal as
inverted or non-inverted data. Directed signals are
ANDed together in each gate. The output of each gate
can be inverted before going on to the logic function
stage.
The gating is in essence a 1-to-4 input
AND/NAND/OR/NOR gate. When every input is
inverted and the output is inverted, the gate is an OR of
all enabled data inputs. When the inputs and output are
not inverted, the gate is an AND or all enabled inputs.
Table 20-2 summarizes the basic logic that can be
obtained in gate 1 by using the gate logic select bits.
The table shows the logic of four input variables, but
each gate can be configured to use less than four. If
no inputs are selected, the output will be zero or one,
depending on the gate output polarity bit.
It is possible (but not recommended) to select both the
true and negated values of an input. When this is done,
the gate output is zero, regardless of the other inputs,
but may emit logic glitches (transient-induced pulses).
If the output of the channel must be zero or one, the
recommended method is to set all gate bits to zero and
use the gate polarity bit to set the desired level.
Data gating is configured with the logic gate select reg-
isters as follows:
Gate 1: CLCxGLS0 (Register 20-5)
Gate 2: CLCxGLS1 (Register 20-6)
Gate 3: CLCxGLS2 (Register 20-7)
Gate 4: CLCxGLS3 (Register 20-8)
Register number suffixes are different than the gate
numbers because other variations of this module have
multiple gate selections in the same register.
Data gating is indicated in the right side of Figure 20-2.
Only one gate is shown in detail. The remaining three
gates are configured identically with the exception that
the data enables correspond to the enables for that
gate.
20.1.3 LOGIC FUNCTION
There are 8 available logic functions including:
AND-OR
•OR-XOR
•AND
S-R Latch
D Flip-Flop with Set and Reset
D Flip-Flop with Reset
J-K Flip-Flop with Reset
Transparent Latch with Set and Reset
Logic functions are shown in Figure 20-3. Each logic
function has four inputs and one output. The four inputs
are the four data gate outputs of the previous stage.
The output is fed to the inversion stage and from there
to other peripherals, an output pin, and back to the
CLCx itself.
20.1.4 OUTPUT POLARITY
The last stage in the configurable logic cell is the output
polarity. Setting the LCxPOL bit of the CLCxCON reg-
ister inverts the output signal from the logic stage.
Changing the polarity while the interrupts are enabled
will cause an interrupt for the resulting output transition.
Note: Data gating is undefined at power-up.
TABLE 20-2: DATA GATING LOGIC
CLCxGLS0 LCxG1POL Gate Logic
0x55 1AND
0x55 0NAND
0xAA 1NOR
0xAA 0OR
0x00 0Logic 0
0x00 1Logic 1
2011 Microchip Technology Inc. Preliminary DS41586A-page 164
PIC16(L)F1507
20.1.5 CLCx SETUP STEPS
The following steps should be followed when setting up
the CLCx:
Disable CLCx by clearing the LCxEN bit.
Select desired inputs using CLCxSEL0 and
CLCxSEL1 registers (See Table 20-1).
Clear any associated ANSEL bits.
Set all TRIS bits associated with inputs.
Clear all TRIS bits associated with outputs.
Enable the chosen inputs through the four gates
using CLCxGLS0, CLCxGLS1, CLCxGLS2, and
CLCxGLS3 registers.
Select the gate output polarities with the LCx-
POLy bits of the CLCxPOL register.
Select the desired logic function with the
LCxMODE<2:0> bits of the CLCxCON register.
Select the desired polarity of the logic output with
the LCxPOL bit of the CLCxPOL register. (This
step may be combined with the previous gate out-
put polarity step).
If driving the CLCx pin, set the LCxOE bit of the
CLCxCON register and also clear the TRIS bit
corresponding to that output.
If interrupts are desired, configure the following
bits:
- Set the LCxINTP bit in the CLCxCON register
for rising event.
- Set the LCxINTN bit in the CLCxCON
register or falling event.
- Set the CLCxIE bit of the associated PIE
registers.
- Set the GIE and PEIE bits of the INTCON
register.
Enable the CLCx by setting the LCxEN bit of the
CLCxCON register.
20.2 CLCx Interrupts
An interrupt will be generated upon a change in the
output value of the CLCx when the appropriate interrupt
enables are set. A rising edge detector and a falling
edge detector are present in each CLC for this purpose.
The LCxIF bit of the associated PIR registers will be set
when either edge detector is triggered and its associ-
ated enable bit is set. The LCxINTP enables rising
edge interrupts and the LCxINTN bit enables falling
edge interrupts. Both are located in the CLCxCON reg-
ister.
To fully enable the interrupt, set the following bits:
LCxON bit of the CLCxCON register
LCxIE bit of the associated PIE registers
LCxINTP bit of the CLCxCON register (for a rising
edge detection)
LCxINTN bit of the CLCxCON register (for a fall-
ing edge detection)
PEIE and GIE bits of the INTCON register
The LCxIF bit of the associated PIR registers, must be
cleared in software as part of the interrupt service. If
another edge is detected while this flag is being
cleared, the flag will still be set at the end of the
sequence.
20.3 Output Mirror Copies
Mirror copies of all LCxCON output bits are contained
in the CLCxDATA register. Reading this register reads
the outputs of all CLCs simultaneously. This prevents
any reading skew introduced by testing or reading the
CLCxOUT bits in the individual CLCxCON registers.
20.4 Effects of a Reset
The CLCxCON register is cleared to zero as the result
of a Reset. All other selection and gating values remain
unchanged.
20.5 Operation During Sleep
The CLC module operates independently from the
system clock and will continue to run during Sleep,
provided that the input sources selected remain active.
The HFINTOSC remains active during Sleep when the
CLC module is enabled and the HFINTOSC is
selected as an input source, regardless of the system
clock source selected.
In other words, if the HFINTOSC is simultaneously
selected as the system clock and as a CLC input
source, when the CLC is enabled, the CPU will go idle
during Sleep, but the CLC will continue to operate and
the HFINTOSC will remain active.
This will have a direct effect on the Sleep mode current.
PIC16(L)F1507
DS41586A-page 165 Preliminary 2011 Microchip Technology Inc.
FIGURE 20-2: INPUT DATA SELECTION AND GATING
lcxg1
LCxG1POL
Data GATE 1
LCxD1G1T
lcxg2
lcxg3
lcxg4
Data GATE 2
Data GATE 3
Data GATE 4
LCxD1G1N
LCxD2G1T
LCxD2G1N
LCxD3G1T
LCxD3G1N
LCxD4G1T
LCxD4G1N
LCxD1S<2:0>
LCxD2S<2:0>
LCxD3S<2:0>
LCxD4S<2:0>
CLCxIN[0]
CLCxIN[1]
CLCxIN[2]
CLCxIN[3]
CLCxIN[4]
CLCxIN[5]
CLCxIN[6]
CLCxIN[7]
000
111
000
111
000
111
000
111
CLCxIN[4]
CLCxIN[5]
CLCxIN[6]
CLCxIN[7]
CLCxIN[8]
CLCxIN[9]
CLCxIN[10]
CLCxIN[11]
CLCxIN[8]
CLCxIN[9]
CLCxIN[10]
CLCxIN[11]
CLCxIN[12]
CLCxIN[13]
CLCxIN[14]
CLCxIN[15]
CLCxIN[12]
CLCxIN[13]
CLCxIN[14]
CLCxIN[15]
CLCxIN[0]
CLCxIN[1]
CLCxIN[2]
CLCxIN[3]
Data Selection
Note: All controls are undefined at power-up.
lcxd1T
lcxd1N
lcxd2T
lcxd2N
lcxd3T
lcxd3N
lcxd4T
lcxd4N
(Same as Data GATE 1)
(Same as Data GATE 1)
(Same as Data GATE 1)
2011 Microchip Technology Inc. Preliminary DS41586A-page 166
PIC16(L)F1507
FIGURE 20-3: PROGRAMMABLE LOGIC FUNCTIONS
lcxg1
lcxg2
lcxg3
lcxg4
lcxq
lcxg1
lcxg2
lcxg3
lcxg4
lcxq
lcxg1
lcxg2
lcxg3
lcxg4
lcxq
S
R
Q
lcxg1
lcxg2
lcxg3
lcxg4
lcxq
DQ
lcxg1
lcxg2
lcxg3
lcxg4
lcxq
S
R
JQ
lcxg2
lcxg3
lcxg4
lcxq
R
lcxg1
K
DQ
lcxg1
lcxg2
lcxg3
lcxg4
lcxq
S
R
DQ
lcxg1
lcxg3
lcxq
R
lcxg4
lcxg2
LCxMODE<2:0>= 000
LCxMODE<2:0>= 010
LCxMODE<2:0>= 001
LCxMODE<2:0>= 011
LCxMODE<2:0>= 100
LCxMODE<2:0>= 110
LCxMODE<2:0>= 101
LCxMODE<2:0>= 111
LE
AND - OR OR - XOR
4-Input AND S-R Latch
1-Input D Flip-Flop with S and R 2-Input D Flip-Flop with R
1-Input Transparent Latch with S and R
J-K Flip-Flop with R
PIC16(L)F1507
DS41586A-page 167 Preliminary 2011 Microchip Technology Inc.
20.6 CLCx Control Regist ers
REGISTER 20-1: CLCxCON: CONFIGURABLE LOGIC CELL CONTROL REGISTER
R/W-0/0 R/W-0/0 R-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
LCxEN LCxOE LCxOUT LCxINTP LCxINTN LCxMODE<2:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 LCxEN: Configurable Logic Cell Enable bit
1 = Configurable logic cell is enabled and mixing input signals
0 = Configurable logic cell is disabled and has logic zero output
bit 6 LCxOE: Configurable Logic Cell Output Enable bit
1 = Configurable logic cell port pin output enabled
0 = Configurable logic cell port pin output disabled
bit 5 LCxOUT: Configurable Logic Cell Data Output bit
Read-only: logic cell output data, after LCxPOL; sampled from lcx_out wire.
bit 4 LCxINTP: Configurable Logic Cell Positive Edge Going Interrupt Enable bit
1 = LCxIF will be set when a rising edge occurs on lcx_out
0 = LCxIF will not be set
bit 3 LCxINTN: Configurable Logic Cell Negative Edge Going Interrupt Enable bit
1 = LCxIF will be set when a falling edge occurs on lcx_out
0 = LCxIF will not be set
bit 2-0 LCxMODE<2:0>: Configurable Logic Cell Functional Mode bits
111 = Cell is 1-input transparent latch with S and R
110 = Cell is J-K Flip-Flop with R
101 = Cell is 2-input D Flip-Flop with R
100 = Cell is 1-input D Flip-Flop with S and R
011 = Cell is S-R latch
010 = Cell is 4-input AND
001 = Cell is OR-XOR
000 = Cell is AND-OR
2011 Microchip Technology Inc. Preliminary DS41586A-page 168
PIC16(L)F1507
REGISTER 20-2: CLCxPOL: SIGNAL POLARITY CONTROL REGISTER
R/W-0/0 U-0 U-0 U-0 R/W-x/u R/W-x/u R/W-x/u R/W-x/u
LCxPOL LCxG4POL LCxG3POL LCxG2POL LCxG1POL
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 LCxPOL: LCOUT Polarity Control bit
1 = The output of the logic cell is inverted
0 = The output of the logic cell is not inverted
bit 6-4 Unimplemented: Read as ‘0
bit 3 LCxG4POL: Gate 4 Output Polarity Control bit
1 = The output of gate 4 is inverted when applied to the logic cell
0 = The output of gate 4 is not inverted
bit 2 LCxG3POL: Gate 3 Output Polarity Control bit
1 = The output of gate 3 is inverted when applied to the logic cell
0 = The output of gate 3 is not inverted
bit 1 LCxG2POL: Gate 2 Output Polarity Control bit
1 = The output of gate 2 is inverted when applied to the logic cell
0 = The output of gate 2 is not inverted
bit 0 LCxG1POL: Gate 1 Output Polarity Control bit
1 = The output of gate 1 is inverted when applied to the logic cell
0 = The output of gate 1 is not inverted
PIC16(L)F1507
DS41586A-page 169 Preliminary 2011 Microchip Technology Inc.
REGISTER 20-3: CLCxSEL0: MULTIPLEXER DATA 1 AND 2 SELECT REGISTER
U-0 R/W-x/u R/W-x/u R/W-x/u U-0 R/W-x/u R/W-x/u R/W-x/u
LCxD2S<2:0> LCxD1S<2:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 Unimplemented: Read as ‘0
bit 6-4 LCxD2S<2:0>: Input Data 2 Selection Control bits(1)
111 = CLCxIN[11] is selected for lcxd2
110 = CLCxIN[10] is selected for lcxd2
101 = CLCxIN[9] is selected for lcxd2
100 = CLCxIN[8] is selected for lcxd2
011 = CLCxIN[7] is selected for lcxd2
010 = CLCxIN[6] is selected for lcxd2
001 = CLCxIN[5] is selected for lcxd2
000 = CLCxIN[4] is selected for lcxd2
bit 3 Unimplemented: Read as ‘0
bit 2-0 LCxD1S<2:0>: Input Data 1 Selection Control bits(1)
111 = CLCxIN[7] is selected for lcxd1
110 = CLCxIN[6] is selected for lcxd1
101 = CLCxIN[5] is selected for lcxd1
100 = CLCxIN[4] is selected for lcxd1
011 = CLCxIN[3] is selected for lcxd1
010 = CLCxIN[2] is selected for lcxd1
001 = CLCxIN[1] is selected for lcxd1
000 = CLCxIN[0] is selected for lcxd1
Note 1: See Table 20-1 for signal names associated with inputs.
2011 Microchip Technology Inc. Preliminary DS41586A-page 170
PIC16(L)F1507
REGISTER 20-4: CLCxSEL1: MULTIPLEXER DATA 3 AND 4 SELECT REGISTER
U-0 R/W-x/u R/W-x/u R/W-x/u U-0 R/W-x/u R/W-x/u R/W-x/u
LCxD4S<2:0> LCxD3S<2:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 Unimplemented: Read as ‘0
bit 6-4 LCxD4S<2:0>: Input Data 4 Selection Control bits(1)
111 = CLCxIN[3] is selected for lcxd4
110 = CLCxIN[2] is selected for lcxd4
101 = CLCxIN[1] is selected for lcxd4
100 = CLCxIN[0] is selected for lcxd4
011 = CLCxIN[15] is selected for lcxd4
010 = CLCxIN[14] is selected for lcxd4
001 = CLCxIN[13] is selected for lcxd4
000 = CLCxIN[12] is selected for lcxd4
bit 3 Unimplemented: Read as ‘0
bit 2-0 LCxD3S<2:0>: Input Data 3 Selection Control bits(1)
111 = CLCxIN[15] is selected for lcxd3
110 = CLCxIN[14] is selected for lcxd3
101 = CLCxIN[13] is selected for lcxd3
100 = CLCxIN[12] is selected for lcxd3
011 = CLCxIN[11] is selected for lcxd3
010 = CLCxIN[10] is selected for lcxd3
001 = CLCxIN[9] is selected for lcxd3
000 = CLCxIN[8] is selected for lcxd3
Note 1: See Table 20-1 for signal names associated with inputs.
PIC16(L)F1507
DS41586A-page 171 Preliminary 2011 Microchip Technology Inc.
REGISTER 20-5: CLCxGLS0: GATE 1 LOGIC SELECT REGISTER
R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u
LCxG1D4T LCxG1D4N LCxG1D3T LCxG1D3N LCxG1D2T LCxG1D2N LCxG1D1T LCxG1D1N
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 LCxG1D4T: Gate 1 Data 4 True (non-inverted) bit
1 = lcxd4T is gated into lcxg1
0 = lcxd4T is not gated into lcxg1
bit 6 LCxG1D4N: Gate 1 Data 4 Negated (inverted) bit
1 = lcxd4N is gated into lcxg1
0 = lcxd4N is not gated into lcxg1
bit 5 LCxG1D3T: Gate 1 Data 3 True (non-inverted) bit
1 = lcxd3T is gated into lcxg1
0 = lcxd3T is not gated into lcxg1
bit 4 LCxG1D3N: Gate 1 Data 3 Negated (inverted) bit
1 = lcxd3N is gated into lcxg1
0 = lcxd3N is not gated into lcxg1
bit 3 LCxG1D2T: Gate 1 Data 2 True (non-inverted) bit
1 = lcxd2T is gated into lcxg1
0 = lcxd2T is not gated into lcxg1
bit 2 LCxG1D2N: Gate 1 Data 2 Negated (inverted) bit
1 = lcxd2N is gated into lcxg1
0 = lcxd2N is not gated into lcxg1
bit 1 LCxG1D1T: Gate 1 Data 1 True (non-inverted) bit
1 = lcxd1T is gated into lcxg1
0 = lcxd1T is not gated into lcxg1
bit 0 LCxG1D1N: Gate 1 Data 1 Negated (inverted) bit
1 = lcxd1N is gated into lcxg1
0 = lcxd1N is not gated into lcxg1
2011 Microchip Technology Inc. Preliminary DS41586A-page 172
PIC16(L)F1507
REGISTER 20-6: CLCxGLS1: GATE 2 LOGIC SELECT REGISTER
R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u
LCxG2D4T LCxG2D4N LCxG2D3T LCxG2D3N LCxG2D2T LCxG2D2N LCxG2D1T LCxG2D1N
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 LCxG2D4T: Gate 2 Data 4 True (non-inverted) bit
1 = lcxd4T is gated into lcxg2
0 = lcxd4T is not gated into lcxg2
bit 6 LCxG2D4N: Gate 2 Data 4 Negated (inverted) bit
1 = lcxd4N is gated into lcxg2
0 = lcxd4N is not gated into lcxg2
bit 5 LCxG2D3T: Gate 2 Data 3 True (non-inverted) bit
1 = lcxd3T is gated into lcxg2
0 = lcxd3T is not gated into lcxg2
bit 4 LCxG2D3N: Gate 2 Data 3 Negated (inverted) bit
1 = lcxd3N is gated into lcxg2
0 = lcxd3N is not gated into lcxg2
bit 3 LCxG2D2T: Gate 2 Data 2 True (non-inverted) bit
1 = lcxd2T is gated into lcxg2
0 = lcxd2T is not gated into lcxg2
bit 2 LCxG2D2N: Gate 2 Data 2 Negated (inverted) bit
1 = lcxd2N is gated into lcxg2
0 = lcxd2N is not gated into lcxg2
bit 1 LCxG2D1T: Gate 2 Data 1 True (non-inverted) bit
1 = lcxd1T is gated into lcxg2
0 = lcxd1T is not gated into lcxg2
bit 0 LCxG2D1N: Gate 2 Data 1 Negated (inverted) bit
1 = lcxd1N is gated into lcxg2
0 = lcxd1N is not gated into lcxg2
PIC16(L)F1507
DS41586A-page 173 Preliminary 2011 Microchip Technology Inc.
REGISTER 20-7: CLCxGLS2: GATE 3 LOGIC SELECT REGISTER
R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u
LCxG3D4T LCxG3D4N LCxG3D3T LCxG3D3N LCxG3D2T LCxG3D2N LCxG3D1T LCxG3D1N
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 LCxG3D4T: Gate 3 Data 4 True (non-inverted) bit
1 = lcxd4T is gated into lcxg3
0 = lcxd4T is not gated into lcxg3
bit 6 LCxG3D4N: Gate 3 Data 4 Negated (inverted) bit
1 = lcxd4N is gated into lcxg3
0 = lcxd4N is not gated into lcxg3
bit 5 LCxG3D3T: Gate 3 Data 3 True (non-inverted) bit
1 = lcxd3T is gated into lcxg3
0 = lcxd3T is not gated into lcxg3
bit 4 LCxG3D3N: Gate 3 Data 3 Negated (inverted) bit
1 = lcxd3N is gated into lcxg3
0 = lcxd3N is not gated into lcxg3
bit 3 LCxG3D2T: Gate 3 Data 2 True (non-inverted) bit
1 = lcxd2T is gated into lcxg3
0 = lcxd2T is not gated into lcxg3
bit 2 LCxG3D2N: Gate 3 Data 2 Negated (inverted) bit
1 = lcxd2N is gated into lcxg3
0 = lcxd2N is not gated into lcxg3
bit 1 LCxG3D1T: Gate 3 Data 1 True (non-inverted) bit
1 = lcxd1T is gated into lcxg3
0 = lcxd1T is not gated into lcxg3
bit 0 LCxG3D1N: Gate 3 Data 1 Negated (inverted) bit
1 = lcxd1N is gated into lcxg3
0 = lcxd1N is not gated into lcxg3
2011 Microchip Technology Inc. Preliminary DS41586A-page 174
PIC16(L)F1507
REGISTER 20-8: CLCxGLS3: GATE 4 LOGIC SELECT REGISTER
R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u
LCxG4D4T LCxG4D4N LCxG4D3T LCxG4D3N LCxG4D2T LCxG4D2N LCxG4D1T LCxG4D1N
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 LCxG4D4T: Gate 4 Data 4 True (non-inverted) bit
1 = lcxd4T is gated into lcxg4
0 = lcxd4T is not gated into lcxg4
bit 6 LCxG4D4N: Gate 4 Data 4 Negated (inverted) bit
1 = lcxd4N is gated into lcxg4
0 = lcxd4N is not gated into lcxg4
bit 5 LCxG4D3T: Gate 4 Data 3 True (non-inverted) bit
1 = lcxd3T is gated into lcxg4
0 = lcxd3T is not gated into lcxg4
bit 4 LCxG4D3N: Gate 4 Data 3 Negated (inverted) bit
1 = lcxd3N is gated into lcxg4
0 = lcxd3N is not gated into lcxg4
bit 3 LCxG4D2T: Gate 4 Data 2 True (non-inverted) bit
1 = lcxd2T is gated into lcxg4
0 = lcxd2T is not gated into lcxg4
bit 2 LCxG4D2N: Gate 4 Data 2 Negated (inverted) bit
1 = lcxd2N is gated into lcxg4
0 = lcxd2N is not gated into lcxg4
bit 1 LCxG4D1T: Gate 4 Data 1 True (non-inverted) bit
1 = lcxd1T is gated into lcxg4
0 = lcxd1T is not gated into lcxg4
bit 0 LCxG4D1N: Gate 4 Data 1 Negated (inverted) bit
1 = lcxd1N is gated into lcxg4
0 = lcxd1N is not gated into lcxg4
PIC16(L)F1507
DS41586A-page 175 Preliminary 2011 Microchip Technology Inc.
REGISTER 20-9: CLCDATA: CLC DATA OUTPUT
U-0 U-0 U-0 U-0 U-0 U-0 R-0 R-0
MLC2OUT MLC1OUT
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-2 Unimplemented: Read as ‘0
bit 1 MLC2OUT: Mirror copy of LC2OUT bit
bit 0 MLC1OUT: Mirror copy of LC1OUT bit
2011 Microchip Technology Inc. Preliminary DS41586A-page 176
PIC16(L)F1507
TABLE 20-3: SUMMARY OF REGISTERS ASSOCIATED WITH CLCx
Name Bit7 Bit6 Bit5 Bit4 BIt3 Bit2 Bit1 Bit0 Register
on Page
ANSELB —ANSB5ANSB4 107
ANSELC ANSC7 ANSC6 ANSC3 ANSC2 ANSC1 ANSC0 110
CLC1CON LC1EN LC1OE LC1OUT LC1INTP LC1INTN LC1MODE<2:0> 167
CLC2CON LC2EN LC2OE LC2OUT LC2INTP LC2INTN LC2MODE<2:0> 167
CLCDATA MLC2OUT MLC1OUT 171
CLC1GLS0 LC1G1D4T LC1G1D4N LC1G1D3T LC1G1D3N LC1G1D2T LC1G1D2N LC1G1D1T LC1G1D1N 171
CLC1GLS1 LC1G2D4T LC1G2D4N LC1G2D3T LC1G2D3N LC1G2D2T LC1G2D2N LC1G2D1T LC1G2D1N 172
CLC1GLS2 LC1G3D4T LC1G3D4N LC1G3D3T LC1G3D3N LC1G3D2T LC1G3D2N LC1G3D1T LC1G3D1N 173
CLC1GLS3 LC1G4D4T LC1G4D4N LC1G4D3T LC1G4D3N LC1G4D2T LC1G4D2N LC1G4D1T LC1G4D1N 174
CLC1POL LC1POL LC1G4POL LC1G3POL LC1G2POL LC1G1POL 168
CLC1SEL0 LC1D2S<2:0> LC1D1S<2:0> 169
CLC1SEL1 LC1D4S<2:0> LC1D3S<2:0> 170
CLC2GLS0 LC2G1D4T LC2G1D4N LC2G1D3T LC2G1D3N LC2G1D2T LC2G1D2N LC2G1D1T LC2G1D1N 171
CLC2GLS1 LC2G2D4T LC2G2D4N LC2G2D3T LC2G2D3N LC2G2D2T LC2G2D2N LC2G2D1T LC2G2D1N 172
CLC2GLS2 LC2G3D4T LC2G3D4N LC2G3D3T LC2G3D3N LC2G3D2T LC2G3D2N LC2G3D1T LC2G3D1N 173
CLC2GLS3 LC2G4D4T LC2G4D4N LC2G4D3T LC2G4D3N LC2G4D2T LC2G4D2N LC2G4D1T LC2G4D1N 174
CLC2POL LC2POL LC2G4POL LC2G3POL LC2G2POL LC2G1POL 168
CLC2SEL0 LC2D2S<2:0> LC2D1S<2:0> 169
CLC2SEL1 LC2D4S<2:0> LC2D3S<2:0> 170
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 66
PIE3 CLC2IE CLC1IE 69
PIR3 CLC2IF CLC1IF 72
TRISA TRISA5 TRISA4 (1) TRISA2 TRISA1 TRISA0 102
TRISB TRISB7 TRISB6 TRISB5 TRISB4 106
TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 109
Legend: — = unimplemented read as ‘0’,. Shaded cells are not used for CLC module.
Note 1: Unimplemented, read as ‘1’.
PIC16(L)F1507
DS41586A-page 177 Preliminary 2011 Microchip Technology Inc.
21.0 NUMERICALLY CONTROLLED
OSCILLATOR (NCO) MODULE
The Numerically Controlled Oscillator (NCOx) module
is a timer that uses the overflow from the addition of an
increment value to divide the input frequency. The
advantage of the addition method over simple counter
driven timer is that the resolution of division does not
vary with the divider value. The NCOx is most useful for
applications that require frequency accuracy and fine
resolution at a fixed duty cycle.
Features of the NCOx include:
16-bit increment function
Fixed Duty Cycle (FDC) mode
Pulse Frequency (PF) mode
Output pulse width control
Multiple clock input sources
Output polarity control
Interrupt capability
Figure 21-1 is a simplified block diagram of the NCOx
module.
PIC16(L)F1507
DS41586A-page 178 Preliminary 2011 Microchip Technology Inc.
FIGURE 21-1: NUMERICALLY CONTROLLED OSCILLATOR (NCOx) MODULE SIMPLIFIED BLOCK DIAGRAM
N
xEN
LC1OUT
HFINTOSC
NCO1CLK
2
N
xCKS<1:0>
Note 1: The increment registers are double-buffered to allow for value changes to be made without first disabling the NCOx
module. They are shown here for reference. The buffers are not user-accessible.
(1)
FOSC
10
00
01
11
Increment
Buffer
Accumulator
Overflow
NCOx Clock
DQ
Q
SQ
Q
Overflow
R
To
N
xOUT bit
16
20
20
Interrupt event Set NCOxIF flag
NxPOL
NCOx Clock
0
1
NxPFM
To CLC and
CWG
modules
Ripple Counter Reset
N
x
PWS<2:0>
3
16
NCOx
NxOE
TRIS Control
PIC16(L)F1507
DS41586A-page 179 Preliminary 2011 Microchip Technology Inc.
21.1 NCOx OPERATION
The NCOx operates by repeatedly adding a fixed value
to an accumulator. Additions occur at the input clock
rate. The accumulator will overflow with a carry
periodically, which is the raw NCOx output. This
effectively reduces the input clock by the ratio of the
addition value to the maximum accumulator value. See
Equation 21-1.
The NCOx output can be further modified by stretching
the pulse or toggling a flip-flop. The modified NCOx
output is then distributed internally to other peripherals
and optionally output to a pin. The accumulator overflow
also generates an interrupt.
The NCOx period changes in discrete steps to create an
average frequency. This output depends on the ability of
the receiving circuit (i.e., CWG or external resonant
converter circuitry) to average the NCOx output to
reduce uncertainty.
21.1.1 NCOx CLOCK SOURCES
Clock sources available to the NCOx include:
•HFINTOSC
•FOSC
•LCxOUT
CLKIN pin
The NCOx clock source is selected by configuring the
NxCKS<2:0> bits in the NCOxCLK register.
21.1.2 ACCUMULATOR
The accumulator is a 20-bit register. Read and write
access to the Accumulator is available through three
registers:
NCOxACCL
NCOxACCH
NCOxACCU
21.1.3 ADDER
The NCOx Adder is a full adder, which operates
independently from the system clock. The addition of
the previous result and the increment value replaces
the accumulator value on the rising edge of each input
clock.
21.1.4 INCREMENT REGISTERS
The Increment value is stored in two 8-bit registers
making up a 16-bit increment. In order of LSB to MSB
they are:
NCOxINCL
NCOxINCH
Both of the registers are readable and writeable. The
Increment registers are double-buffered to allow for
value changes to be made without first disabling the
NCOx module.
The buffer loads are immediate when the module is dis-
abled. Writing to the NCOxINCH register first is neces-
sary because then the buffer is loaded synchronously
with the NCOx operation after the write is executed on
the NCOxINCL register.
EQUATION 21-1:
Note: The increment buffer registers are not
user-accessible.
FOVERFLOW NCO Clock Frequency Increment Value
2n
----------------------------------------------------------------------------------------------------------------=
n = Accumulator width in bits
2011 Microchip Technology Inc. Preliminary DS41586A-page 180
PIC16(L)F1507
21.2 FIXED DUTY CYCLE (FDC) MODE
In Fixed Duty Cycle (FDC) mode, every time the
accumulator overflows, the output is toggled. This
provides a 50% duty cycle, provided that the increment
value remains constant. For more information, see
Figure 21-2.
The FDC mode is selected by clearing the NxPFM bit
in the NCOxCON register.
21.3 PULSE FREQUENCY (PF) MODE
In Pulse Frequency (PF) mode, every time the accumu-
lator overflows, the output becomes active for one or
more clock periods. Once the clock period expires, the
output returns to an inactive state. This provides a
pulsed output.
The output becomes active on the rising clock edge
immediately following the overflow event. For more
information, see Figure 21-2.
The value of the active and inactive states depends on
the polarity bit, NxPOL in the NCOxCON register.
The PF mode is selected by setting the NxPFM bit in
the NCOxCON register.
21.3.1 OUTPUT PULSE WIDTH CONTROL
When operating in PF mode, the active state of the out-
put can vary in width by multiple clock periods. Various
pulse widths are selected with the NxPWS<2:0> bits in
the NCOxCLK register.
When the selected pulse width is greater than the
accumulator overflow time frame, the output of the
NCOx operation is indeterminate.
21.4 OUTPUT POLARITY CONTROL
The last stage in the NCOx module is the output polar-
ity. The NxPOL bit in the NCOxCON register selects the
output polarity. Changing the polarity while the inter-
rupts are enabled will cause an interrupt for the result-
ing output transition.
The NCOx output can be used internally by source
code or other peripherals. Accomplish this by reading
the NxOUT (read-only) bit of the NCOxCON register.
PIC16(L)F1507
DS41586A-page 181 Preliminary 2011 Microchip Technology Inc.
FIGURE 21-2: FDC OUTPUT MODE OPERATION DIAGRAM
2000h
02000h 04000h 06000h 08000h 0A000h 0C000h 0E000h 10000h 02000h 04000h 06000h 08000h 0A000h 0C000h 0E000h 10000h 02000h 04000h
0000h 2000h 4000h 6000h 8000h A000h C000h E000h 0000h 2000h 4000h 6000h 8000h A000h C000h E000h 0000h 2000h
TadderTadder
Tadder_
Overflow is the
Clock Source
NCOx
NCOx
Accumulator Input Overflow
NCOx
Overflow
Interrupt
NCOx Output
NCOx Output PF mode
NCOx Output PF mode
MSB of the accumulator
Tadder
Increment
Value
Input
Value
Accumulator
Accumulator
Event
FDC mode
NCOX PWS = 000
NCOx PWS = 010
PWS = 000
2011 Microchip Technology Inc. Preliminary DS41586A-page 182
PIC16(L)F1507
21.5 Interrupts
When the accumulator overflows, the NCOx Interrupt
Flag bit, NCOxIF, of the PIRx register is set. To enable
the interrupt event, the following bits must be set:
NxEN bit of the NCOxCON register
NCOxIE bit of the PIEx register
PEIE bit of the INTCON register
GIE bit of the INTCON register
The interrupt must be cleared by software by clearing
the NCOxIF bit in the Interrupt Service Routine.
21.6 Effects of a Reset
All of the NCOx registers are cleared to zero as the
result of a Reset.
21.7 Operation In Sleep
The NCO module operates independently from the
system clock and will continue to run during Sleep,
provided that the clock source selected remains
active.
The HFINTOSC remains active during Sleep when the
NCO module is enabled and the HFINTOSC is
selected as the clock source, regardless of the system
clock source selected.
In other words, if the HFINTOSC is simultaneously
selected as the system clock and the NCO clock
source, when the NCO is enabled, the CPU will go idle
during Sleep, but the NCO will continue to operate and
the HFINTOSC will remain active.
This will have a direct effect on the Sleep mode current.
21.8 Alternate Pin Locations
This module incorporates I/O pins that can be moved to
other locations with the use of the alternate pin function
register, APFCON. To determine which pins can be
moved and what their default locations are upon a
Reset, see Section 11 .1 “Alternat e Pin Function” for
more information.
PIC16(L)F1507
DS41586A-page 183 Preliminary 2011 Microchip Technology Inc.
21.9 NCOx Control Registers
REGISTER 21-2: NCOxCLK: NCOx INPUT CLOCK CONTROL REGISTER
REGISTER 21-1: NCOxCON: NCOx CONTROL REGISTER
R/W-0/0 R/W-0/0 R-0/0 R/W-0/0 U-0 U-0 U-0 R/W-0/0
NxEN NxOE NxOUT NxPOL —NxPFM
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 NxEN: NCOx Enable bit
1 = NCOx module is enabled
0 = NCOx module is disabled
bit 6 NxOE: NCOx Output Enable bit
1 = NCOx output pin is enabled
0 = NCOx output pin is disabled
bit 5 NxOUT: NCOx Output bit
1 = NCOx output is high
0 = NCOx output is low
bit 4 NxPOL: NCOx Polarity bit
1 = NCOx output signal is active high
0 = NCOx output signal is active low
bit 3-1 Unimplemented: Read as0’.
bit 0 NxPFM: NCOx Pulse Frequency Mode bit
1 = NCOx operates in Pulse Frequency mode
0 = NCOx operates in Fixed Duty Cycle mode
R/W-0/0 R/W-0/0 R/W-0/0 U-0 U-0 U-0 R/W-0/0 R/W-0/0
NxPWS<2:0> ———NxCKS<1:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-5 NxPWS<2:0>: NCOx Output Pulse Width Select bits(1, 2)
111 = 128 NCOx clock periods
110 = 64 NCOx clock periods
101 = 32 NCOx clock periods
100 = 16 NCOx clock periods
011 = 8 NCOx clock periods
010 = 4 NCOx clock periods
001 = 2 NCOx clock periods
000 = 1 NCOx clock periods
bit 4-2 Unimplemented: Read as ‘0
bit 1-0 NxCKS<1:0>: NCOx Clock Source Select bits
11 = NCO1CLK
10 = LC1OUT
01 = FOSC
00 = HFINTOSC (16 MHz)
Note 1: NxPWS applies only when operating in Pulse Frequency mode.
2: If NCOx pulse width is greater than NCOx overflow period, operation is undeterminate.
2011 Microchip Technology Inc. Preliminary DS41586A-page 184
PIC16(L)F1507
REGISTER 21-3: NCOxACCL: NCOx ACCUMULATOR REGISTER – LOW BYTE
REGISTER 21-4: NCOxACCH: NCOx ACCUMULATOR REGISTER – HIGH BYTE
REGISTER 21-5: NCOxACCU: NCOx ACCUMULATOR REGISTER – UPPER BYTE
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
NCOxACC<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 NCOxACC<7:0>: NCOx Accumulator, low byte
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
NCOxACC<15:8>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 NCOxACC<15:8>: NCOx Accumulator, high byte
U-0 U-0 U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
NCOxACC<19:16>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-4 Unimplemented: Read as0
bit 3-0 NCOxACC<19:16>: NCOx Accumulator, upper byte
PIC16(L)F1507
DS41586A-page 185 Preliminary 2011 Microchip Technology Inc.
REGISTER 21-6: NCOxINCL: NCOx INCREMENT REGISTER – LOW BYTE
REGISTER 21-7: NCOxINCH: NCOx INCREMENT REGISTER – HIGH BYTE
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-1/1
NCOxINC<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 NCOxINC<7:0>: NCOx Increment, low byte
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
NCOxINC<15:8>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 NCOxINC<15:8>: NCOx Increment, high byte
2011 Microchip Technology Inc. Preliminary DS41586A-page 186
PIC16(L)F1507
TABLE 21-1: SUMMARY OF REGISTERS ASSOCIATED WITH NCOx
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 B it 0 Register
on Page
APFCON ——————CLC1SEL NCO1SEL 100
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 66
NCO1ACCH NCO1ACC<15:8> 184
NCO1ACCL NCO1ACC<7:0> 184
NCO1ACCU NCO1ACC<19:16> 184
NCO1CLK N1PWS<2:0> ———N1CKS<1:0>183
NCO1CON N1EN N1OE N1OUT N1POL ———N1PFM183
NCO1INCH NCO1INC<15:8> 185
NCO1INCL NCO1INC<7:0> 185
PIE2 ———— NCO1IE 68
PIR2 ———— NCO1IF 71
TRISA —TRISA5TRISA4 (1) TRISA2 TRISA1 TRISA0 102
TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 109
Legend: x = unknown, u = unchanged, = unimplemented read as ‘0’, q = value depends on condition. Shaded cells are not
used for ADC module.
Note 1: Unimplemented, read as ‘1’.
PIC16(L)F1507
DS41586A-page 187 Preliminary 2011 Microchip Technology Inc.
22.0 COMPLEMENTARY WAVEFORM
GENERATOR (CWG) MODULE
The Complementary Waveform Generator (CWG) pro-
duces a complementary waveform with dead-band
delay from a selection of input sources.
The CWG module has the following features:
Selectable dead-band clock source control
Selectable input sources
Output enable control
Output polarity control
Dead-band control with independent 6-bit rising
and falling edge dead-band counters
Auto-shutdown control with:
- Selectable shutdown sources
- Auto-restart enable
- Auto-shutdown pin override control
2011 Microchip Technology Inc. Preliminary DS41586A-page 188
PIC16(L)F1507
FIGURE 22-1: CWG BLOCK DIAGRAM
cwg_clock
GxCS
Input Source
PWM1OUT
PWM2OUT
NCO1OUT
CWG1FLT (INT pin)
GxASDS1
LC2OUT
GxASDS0
FOSC
HFINTOSC
GxIS
LC1OUT
Auto-Shutdown
Source
G
x
POLA
1
1
3
QS
RQ
EN
R
GxARSEN
CWGxDBR
G
x
POLB
6
CWGxDBF
0
1
0
1
00
10
11
0
1
00
10
11
0
1
G
x
ASDLB
2
GxASDLA
2
CWGxA
CWGxB
GxASDLA = 01
GxASDLB = 01
GxASE
GxOEA
GxOEB
=
EN
R
6
=TRISx
TRISx
x = CWG module number
PWM3OUT
PWM4OUT
QS
RQ
QD
S
WRITE
GxASE Data Bit
shutdown
set dominate
PIC16(L)F1507
DS41586A-page 189 Preliminary 2011 Microchip Technology Inc.
FIGURE 22-2: TYPICAL CWG OPERATION WITH PWM1 (NO AUTO-SHUTDOWN)
Rising Edge D
Falling Edge Dead Band
Rising Edge Dead Band
Falling Edge Dead Band
cwg_clock
PWM1
CWGxA
CWGxB
Rising Edge
Dead Band
2011 Microchip Technology Inc. Preliminary DS41586A-page 190
PIC16(L)F1507
22.1 Fundamental Operation
The CWG generates a two output complementary
waveform from one of four selectable input sources.
The off-to-on transition of each output can be delayed
from the on-to-off transition of the other output, thereby,
creating a time delay immediately where neither output
is driven. This is referred to as dead time and is covered
in Section 22.5 “Dead-Band Control. A typical
operating waveform, with dead band, generated from a
single input signal is shown in Figure 22-2.
It may be necessary to guard against the possibility of
circuit faults or a feedback event arriving too late or not
at all. In this case, the active drive must be terminated
before the Fault condition causes damage. This is
referred to as auto-shutdown and is covered in
Section 22.9 “Auto-shutdown Control”.
22.2 Clock Source
The CWG module allows for up to 2 different clock
sources to be selected:
Fosc (system clock)
HFINTOSC (16 MHz only)
The clock sources are selected using the G1CS0 bit of
the CWGxCON0 register (Register 22-1).
22.3 Selectable Input Sources
The CWG uses four different input sources to gener-
ate the complementary waveform:
•PWM1
•PWM2
•PWM3
•PWM4
•N1OUT
•LC1OUT
The input sources are selected using the GxIS<2:0>
bits in the CWGxCON1 register (Register 22-2).
22.4 Output Contr ol
Immediately after the CWG module is enabled, the
complementary drive is configured with both CWGxA
and CWGxB drives cleared.
22.4.1 OUTPUT ENABLES
Each CWG output pin has individual output enable
control. Output enables are selected with the GxOEA
and GxOEB bits of the CWGxCON0 register. When an
output enable control is cleared, the module asserts no
control over the pin. When an output enable is set, the
override value or active PWM waveform is applied to
the pin per the port priority selection. The output pin
enables are dependent on the module enable bit,
GxEN. When GxEN is cleared, CWG output enables
and CWG drive levels have no effect.
22.4.2 POLARITY CONTROL
The polarity of each CWG output can be selected
independently. When the output polarity bit is set, the
corresponding output is active high. Clearing the output
polarity bit configures the corresponding output as
active low. However, polarity does not affect the
override levels. Output polarity is selected with the
GxPOLA and GxPOLB bits of the CWGxCON0 register.
22.5 Dead-Band Control
Dead-band control provides for non-overlapping output
signals to prevent shoot through current in power
switches. The CWG contains two 6-bit dead-band
counters. One dead-band counter is used for the rising
edge of the input source control. The other is used for
the falling edge of the input source control.
Dead band is timed by counting CWG clock periods
from zero up to the value in the rising or falling dead-
band counter registers. See CWGxDBR and
CWGxDBF registers (Register 22-4 and Register 22-5,
respectively).
22.6 Rising Edge Dead Band
The rising edge dead-band delays the turn-on of the
CWGxA output from when the CWGxB output is turned
off. The rising edge dead-band time starts when the
rising edge of the input source signal goes true. When
this happens, the CWGxB output is immediately turned
off and the rising edge dead-band delay time starts.
When the rising edge dead-band delay time is reached,
the CWGxA output is turned on.
The CWGxDBR register sets the duration of the dead-
band interval on the rising edge of the input source
signal. This duration is from 0 to 64 counts of dead band.
Dead band is always counted off the edge on the input
source signal. A count of 0 (zero), indicates that no
dead band is present.
If the input source signal is not present for enough time
for the count to be completed, no output will be seen on
the respective output.
PIC16(L)F1507
DS41586A-page 191 Preliminary 2011 Microchip Technology Inc.
22.7 Falling Edge Dead Band
The falling edge dead band delays the turn-on of the
CWGxB output from when the CWGxA output is turned
off. The falling edge dead-band time starts when the
falling edge of the input source goes true. When this
happens, the CWGxA output is immediately turned off
and the falling edge dead-band delay time starts. When
the falling edge dead-band delay time is reached, the
CWGxB output is turned on.
The CWGxDBF register sets the duration of the dead-
band interval on the falling edge of the input source sig-
nal. This duration is from 0 to 64 counts of dead band.
Dead band is always counted off the edge on the input
source signal. A count of 0 (zero), indicates that no
dead band is present.
If the input source signal is not present for enough time
for the count to be completed, no output will be seen on
the respective output.
Refer to Figure 22-3 and Figure 22-4 for examples.
22.8 Dead-Band Uncertainty
When the rising and falling edges of the input source
triggers the dead-band counters, the input may be asyn-
chronous. This will create some uncertainty in the dead-
band time delay. The maximum uncertainty is equal to
one CWG clock period. Refer to Equation 22-1 for more
detail.
2011 Microchip Technology Inc. Preliminary DS41586A-page 192
PIC16(L)F1507
FIGURE 22-3: DEAD-BAND OPERATION, CWGxDBR = 01H, CWGxDBF = 02H
FIGURE 22-4: DEAD-BAND OPERATION, CWGxDBR = 03H, CWGxDBF = 04H, SOURCE SHORTER THAN DEAD BAND
Input Source
CWGxA
CWGxB
cwg_clock
source shorter than dead band
Input Source
CWGxA
CWGxB
cwg_clock
PIC16(L)F1507
DS41586A-page 193 Preliminary 2011 Microchip Technology Inc.
EQUATION 22-1: DEAD-BAND
UNCERTAINTY
TDEADBAND_UNCERTAINTY 1
Fcwg_clock
-----------------------------=
Therefore:
Fcwg_clock 16 MHz=
1
16 MHz
-------------------=
625ns=
TDEADBAND_UNCERTAINTY 1
Fcwg_clock
-----------------------------=
Example:
2011 Microchip Technology Inc. Preliminary DS41586A-page 194
PIC16(L)F1507
22.9 Auto-shutdown Control
Auto-shutdown is a method to immediately override the
CWG output levels with specific overrides that allow for
safe shutdown of the circuit. The shutdown state can be
either cleared automatically or held until cleared by
software.
22.9.1 SHUTDOWN
The shutdown state can be entered by either of the fol-
lowing two methods:
Software generated
External Input
22.9.1.1 Software Generated Shutdown
Setting the GxASE bit of the CWGxCON2 register will
force the CWG into the shutdown state.
When auto-restart is disabled, the shutdown state will
persist as long as the GxASE bit is set.
When auto-restart is enabled, the GxASE bit will clear
automatically and resume operation on the next rising
edge event. See Figure 22-6.
22.9.1.2 External Input Source
External shutdown inputs provide the fastest way to
safely suspend CWG operation in the event of a Fault
condition. When any of the selected shutdown inputs
goes active, the CWG outputs will immediately go to
the selected override levels without software delay. Any
combination of two input sources can be selected to
cause a shutdown condition. The two sources are:
•LC2OUT
•CWG1FLT
Shutdown inputs are selected using the GxASDS0 and
GxASDS1 bits of the CWGxCON2 register.
(Register 22-3).
22.10 Operation During Sleep
The CWG module operates independently from the
system clock and will continue to run during Sleep,
provided that the clock and input sources selected
remain active.
The HFINTOSC remains active during Sleep, provided
that the CWG module is enabled, the input source is
active, and the HFINTOSC is selected as the clock
source, regardless of the system clock source
selected.
In other words, if the HFINTOSC is simultaneously
selected as the system clock and the CWG clock
source, when the CWG is enabled and the input
source is active, the CPU will go idle during Sleep, but
the CWG will continue to operate and the HFINTOSC
will remain active.
This will have a direct effect on the Sleep mode current.
Note: Shutdown inputs are level sensitive, not
edge sensitive. The shutdown state can-
not be cleared, except by disabling auto-
shutdown, as long as the shutdown input
level persists.
PIC16(L)F1507
DS41586A-page 195 Preliminary 2011 Microchip Technology Inc.
22.11 Configuring the CWG
The following steps illustrate how to properly configure
the CWG to ensure a synchronous start:
1. Ensure that the TRIS control bits corresponding
to CWGxA and CWGxB are set so that both are
configured as inputs.
2. Clear the GxEN bit, if not already cleared.
3. Set desired dead-band times with the CWGxDBR
and CWGxDBF registers.
4. Setup the following controls in CWGxCON2
auto-shutdown register:
Select desired shutdown source.
Select both output overrides to the desired
levels (this is necessary even if not using
auto-shutdown because start-up will be from
a shutdown state).
Set the GxASE bit and clear the GxARSEN
bit.
5. Select the desired input source using the
CWGxCON1 register.
6. Configure the following controls in CWGxCON0
register:
Select desired clock source.
Select the desired output polarities.
Set the output enables for the outputs to be
used.
7. Set the GxEN bit.
8. Clear TRIS control bits corresponding to
CWGxA and CWGxB to be used to configure
those pins as outputs.
9. If auto-restart is to be used, set the GxARSEN
bit and the GxASE bit will be cleared automati-
cally. Otherwise, clear the GxASE bit to start the
CWG.
22.11.1 PIN OVERRIDE LEVELS
The levels driven to the output pins, while the shutdown
input is true, are controlled by the GxASDLA and
GxASDLB bits of the CWGxCON2 register
(Register 22-3). GxASDLA controls the CWG1A
override level and GxASDLB controls the CWG1B
override level. The control bit logic level corresponds to
the output logic drive level while in the shutdown state.
The polarity control does not apply to the override level.
22.11.2 AUTO-SHUTDOWN RESTART
After an auto-shutdown event has occurred, there are
two ways to have resume operation:
Software controlled
Auto-restart
The restart method is selected with the GxARSEN bit
of the CWGxCON2 register. Waveforms of software
controlled and automatic restarts are shown in
Figure 22-5 and Figure 22-6.
22.11.2.1 Software controlled restart
When the GxARSEN bit of the CWGxCON2 register is
cleared, the CWG must be restarted after an auto-shut-
down event by software.
Clearing the shutdown state requires all selected shut-
down inputs to be low, otherwise the GxASE bit will
remain set. The overrides will remain in effect until the
first rising edge event after the GxASE bit is cleared.
The CWG will then resume operation.
22.11.2.2 Auto-Restart
When the GxARSEN bit of the CWGxCON2 register is
set, the CWG will restart from the auto-shutdown state
automatically.
The GxASE bit will clear automatically when all shut-
down sources go low. The overrides will remain in
effect until the first rising edge event after the GxASE
bit is cleared. The CWG will then resume operation.
2011 Microchip Technology Inc. Preliminary DS41586A-page 196
PIC16(L)F1507
FIGU RE 22-5: S HUTD OWN F UNCT ION ALI TY, AUTO -RE ST A RT DI SABL ED ( GxAR SEN = 0,GxASDL A = 01, GxASDLB = 01)
FIGURE 22-6: SHUTDOWN FUNCTIONALITY, AUTO-RESTART ENABLED (GxARSEN = 1,GxAS DL A = 01, GxASDLB = 01)
Shutdown
GxASE Cleared by Software
Output Resumes
No Shutdown
CWG Input
GxASE
CWG1A
Source
Shutdown Source
Shutdown Event Ceases
Tri-State (No Pulse)
CWG1B Tri-State (No Pulse)
Shutdown
Tri-State (No Pulse)
GxASE auto-cleared by hardware
Output Resumes
No Shutdown
CWG Input
GxASE
CWG1A
Source
Shutdown Source
Shutdown Event Ceases
CWG1B
Tri-State (No Pulse)
PIC16(L)F1507
DS41586A-page 197 Preliminary 2011 Microchip Technology Inc.
22.12 CWG Control Registers
REGISTER 22-1: CWGxCON0: CWG CONTROL REGISTER 0
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 U-0 U-0 R/W-0/0
GxEN GxOEB GxOEA GxPOLB GxPOLA —GxCS0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition
bit 7 GxEN: CWGx Enable bit
1 = Module is enabled
0 = Module is disabled
bit 6 GxOEB: CWGxB Output Enable bit
1 = CWGxB is available on appropriate I/O pin
0 = CWGxB is not available on appropriate I/O pin
bit 5 GxOEA: CWGxA Output Enable bit
1 = CWGxA is available on appropriate I/O pin
0 = CWGxA is not available on appropriate I/O pin
bit 4 GxPOLB: CWGxB Output Polarity bit
1 = Output is inverted polarity
0 = Output is normal polarity
bit 3 GxPOLA: CWGxA Output Polarity bit
1 = Output is inverted polarity
0 = Output is normal polarity
bit 2-1 Unimplemented: Read as ‘0
bit 0 GxCS0: CWGx Clock Source bit
1 =HFINTOSC
0 =FOSC
2011 Microchip Technology Inc. Preliminary DS41586A-page 198
PIC16(L)F1507
REGISTER 22-2: CWGxCON1: CWG CONTROL REGISTER 1
R/W-x/u R/W-x/u R/W-x/u R/W-x/u U-0 R/W-0/0 R/W-0/0 R/W-0/0
GxASDLB<1:0> GxASDLA<1:0> GxIS<2:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition
bit 7-6 GxASDLB<1:0>: CWGx Shutdown State for CWGxB
When an auto shutdown event is present (GxASE = 1):
11 = CWGxB pin is driven to ‘1’, regardless of the setting of the GxPOLB bit.
10 = CWGxB pin is driven to ‘0’, regardless of the setting of the GxPOLB bit.
01 = CWGxB pin is tri-stated
00 = CWGxB pin is driven to it’s inactive state after the selected dead-band interval. GxPOLB still will
control the polarity of the output.
bit 5-4 GxASDLA<1:0>: CWGx Shutdown State for CWGxA
When an auto shutdown event is present (GxASE = 1):
11 = CWGxA pin is driven to ‘1’, regardless of the setting of the GxPOLA bit.
10 = CWGxA pin is driven to ‘0’, regardless of the setting of the GxPOLA bit.
01 = CWGxA pin is tri-stated
00 = CWGxA pin is driven to it’s inactive state after the selected dead-band interval. GxPOLA still will
control the polarity of the output.
bit 3 Unimplemented: Read as ‘0
bit 2-0 GxIS<2:0>: CWGx Dead-Band Source Select bits
111 =LC1OUT
110 =N1OUT
101 =PWM4OUT
100 =PWM3OUT
011 =PWM2OUT
010 =PWM1OUT
001 =Reserved
000 =Reserved
PIC16(L)F1507
DS41586A-page 199 Preliminary 2011 Microchip Technology Inc.
REGISTER 22-3: CWGxCON2: CWG CONTROL REGISTER 2
R/W-0/0 R/W-0/0 U-0 U-0 U-0 U-0 R/W-0/0 R/W-0/0
GxASE GxARSEN GxASDFLT GxASDCLC2
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition
bit 7 GxASE: Auto-Shutdown Event Status bit
1 = An auto-shutdown event has occurred
0 = No auto-shutdown event has occurred
bit 6 GxARSEN: Auto-Restart Enable bit
1 = Auto-restart is enabled
0 = Auto-restart is disabled
bit 5-2 Unimplemented: Read as ‘0
bit 1 GxASDFLT: CWG Auto-shutdown on FLT Enable bit
1 = Shutdown when CWG1FLT in put is low
0 =CWG1FLT
input has no effect on shutdown
bit 0 GxASDCLC2: CWG Auto-shutdown on CLC2 Enable bit
1 = Shutdown when LC2OUT is high
0 = LC2OUT has no effect on shutdown
2011 Microchip Technology Inc. Preliminary DS41586A-page 200
PIC16(L)F1507
REGISTER 22-4: CWGxDBR: COMPLEMENTARY WAVEFORM GENERATOR (CWGx) RISING
DEAD-BAND COUNT REGISTER
REGISTER 22-5: CWGxDBF: COMPLEMENTARY WAVEFORM GENERATOR (CWGx) FALLING
DEAD-BAND COUNT REGISTER
U-0 U-0 R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u
CWGxDBR<5:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition
bit 7-6 Unimplemented: Read as ‘0
bit 5-0 CWGxDBR<5:0>: Complementary Waveform Generator (CWGx) Rising counts
11 1111 = 63-64 counts of dead band
11 1110 = 62-63 counts of dead band


00 0010 = 2-3 counts of dead band
00 0001 = 1-2 counts of dead band
00 0000 = 0 counts of dead band
U-0 U-0 R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u
CWGxDBF<5:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition
bit 7-6 Unimplemented: Read as ‘0
bit 5-0 CWGxDBF<5:0>: Complementary Waveform Generator (CWGx) Falling counts
11 1111 = 63-64 counts of dead band
11 1110 = 62-63 counts of dead band


00 0010 = 2-3 counts of dead band
00 0001 = 1-2 counts of dead band
00 0000 = 0 counts of dead band. Dead-band generation is bypassed.
PIC16(L)F1507
DS41586A-page 201 Preliminary 2011 Microchip Technology Inc.
TABLE 22-1: SUMMARY OF REGISTERS ASSOCIATED WITH CWG
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Pag e
ANSELA ANSA4 ANSA2 ANSA1 ANSA0 103
CWG1CON0 G1EN G1OEB G1OEA G1POLB G1POLA —G1CS0197
CWG1CON1 G1ASDLB<1:0> G1ASDLA<1:0> G1IS<1:0> 198
CWG1CON2 G1ASE G1ARSEN G1ASDS1 G1ASDS0 199
CWG1DBF CWG1DBF<5:0> 200
CWG1DBR CWG1DBR<5:0> 200
TRISA TRISA5 TRISA4 (1) TRISA2 TRISA1 TRISA0 102
TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 109
Legend: x = unknown, u = unchanged, = unimplemented locations read as ‘0’. Shaded cells are not used by CWG.
Note 1: Unimplemented, read as ‘1’.
2011 Microchip Technology Inc. Preliminary DS41586A-page 202
PIC16(L)F1507
NOTES:
PIC16(L)F1507
DS41586A-page 203 Preliminary 2011 Microchip Technology Inc.
23.0 IN-CIRCUIT SERIAL
PROGRAMMING™ (ICSP™)
ICSP™ programming allows customers to manufacture
circuit boards with unprogrammed devices. Programming
can be done after the assembly process allowing the
device to be programmed with the most recent firmware
or a custom firmware. Five pins are needed for ICSP™
programming:
ICSPCLK
ICSPDAT
•MCLR
/VPP
•VDD
•VSS
In Program/Verify mode the Program Memory, User IDs
and the Configuration Words are programmed through
serial communications. The ICSPDAT pin is a bidirec-
tional I/O used for transferring the serial data and the
ICSPCLK pin is the clock input. For more information on
ICSP™ refer to the “PIC12(L)F1501/PIC16(L)F150X
Memory Programming Specification” (DS41573).
23.1 High-Voltage Programming Entry
Mode
The device is placed into High-Voltage Programming
Entry mode by holding the ICSPCLK and ICSPDAT
pins low then raising the voltage on MCLR/VPP to VIHH.
Some programmers produce VPP greater than VIHH
(9.0V), an external circuit is required to limit the VPP
voltage. See Figure 23-1 for example circuit.
FIGURE 23-1: VPP LIMITER EXAMPLE CIRCUIT
VREF
VPP
VDD
VSS
ICSP_DATA
ICSP_CLOCK
NC
RJ11-6PIN
RJ11-6PIN
R1
270 Ohm
To MP L AB ® ICD 2 To Target B oar d
1
2
3
4
5
61
2
3
4
5
6
R2 R3
10k 1% 24k 1%
U1
LM431BCMX
A
2
3
6
7
8
A
A
A
K
NC
NC
1
4
5
Note: The MPLAB® ICD 2 produces a VPP volt-
age greater than the maximum VPP spec-
ification of the PIC16(L)F1507.
2011 Microchip Technology Inc. Preliminary DS41586A-page 204
PIC16(L)F1507
23.2 Low-Volt age Programming Entry
Mode
The Low-Voltage Programming Entry mode allows the
PIC16(L)F1507 devices to be programmed using VDD
only, without high voltage. When the LVP bit of
Configuration Words is set to ‘1’, the low-voltage ICSP
programming entry is enabled. To disable the
Low-Voltage ICSP mode, the LVP bit must be
programmed to0’.
Entry into the Low-Voltage Programming Entry mode
requires the following steps:
1. MCLR is brought to VIL.
2. A 32-bit key sequence is presented on
ICSPDAT, while clocking ICSPCLK.
Once the key sequence is complete, MCLR must be
held at VIL for as long as Program/Verify mode is to be
maintained.
If low-voltage programming is enabled (LVP = 1), the
MCLR Reset function is automatically enabled and
cannot be disabled. See Section 6.4 “MCLR” for more
information.
The LVP bit can only be reprogrammed to ‘0’ by using
the High-Voltage Programming mode.
23.3 Common Programming Interfaces
Connection to a target device is typically done through
an ICSP™ header. A commonly found connector on
development tools is the RJ-11 in the 6P6C (6 pin, 6
connector) configuration. See Figure 23-2.
FIGURE 23-2: ICD RJ-11 STYLE
CONNECTOR INTERFACE
Another connector often found in use with the PICkit™
programmers is a standard 6-pin header with 0.1 inch
spacing. Refer to Figure 23-3.
FIGURE 23-3: PICkit™ PROGRAMMER STYLE CONNECTOR INTERFACE
1
2
3
4
5
6
Target
Bottom Side
PC Board
VPP/MCLR VSS
ICSPCLK
VDD
ICSPDAT
NC
Pin Description*
1 = VPP/MCLR
2 = VDD Target
3 = VSS (ground)
4 = ICSPDAT
5 = ICSPCLK
6 = No Connect
1
2
3
4
5
6
* The 6-pin header (0.100" spacing) accepts 0.025" square pins.
Pin Description*
1 = VPP/MCLR
2 = VDD Target
3 = VSS (ground)
4 = ICSPDAT
5 = ICSPCLK
6 = No Connect
Pin 1 Indicator
PIC16(L)F1507
DS41586A-page 205 Preliminary 2011 Microchip Technology Inc.
For additional interface recommendations, refer to your
specific device programmer manual prior to PCB
design.
It is recommended that isolation devices be used to
separate the programming pins from other circuitry.
The type of isolation is highly dependent on the specific
application and may include devices such as resistors,
diodes, or even jumpers. See Figure 23-4 for more
information.
FIGURE 23-4: TYPICAL CONNECTION FOR ICSP™ PROGRAMMING
VDD
VPP
VSS
External
Device to be
Data
Clock
VDD
MCLR/VPP
VSS
ICSPDAT
ICSPCLK
**
*
To Normal Connections
*Isolation devices (as required).
Programming
Signals Programmed
VDD
2011 Microchip Technology Inc. Preliminary DS41586A-page 206
PIC16(L)F1507
NOTES:
PIC16(L)F1507
DS41586A-page 207 Preliminary 2011 Microchip Technology Inc.
24.0 INSTRUCTION SET SUMMARY
Each PIC16 instruction is a 14-bit word containing the
operation code (opcode) and all required operands.
The op codes are broken into three broad categories.
Byte Oriented
Bit Oriented
Literal and Control
The literal and control category contains the most var-
ied instruction word format.
Table 24-3 lists the instructions recognized by the
MPASMTM assembler.
All instructions are executed within a single instruction
cycle, with the following exceptions, which may take
two or three cycles:
Subroutine takes two cycles (CALL, CALLW)
Returns from interrupts or subroutines take two
cycles (RETURN, RETLW, RETFIE)
Program branching takes two cycles (GOTO, BRA,
BRW, BTFSS, BTFSC, DECFSZ, INCSFZ)
One additional instruction cycle will be used when
any instruction references an indirect file register
and the file select register is pointing to program
memory.
One instruction cycle consists of 4 oscillator cycles; for
an oscillator frequency of 4 MHz, this gives a nominal
instruction execution rate of 1 MHz.
All instruction examples use the format0xhh’ to
represent a hexadecimal number, where ‘h’ signifies a
hexadecimal digit.
24.1 Read-Modify-Write Operations
Any instruction that specifies a file register as part of
the instruction performs a Read-Modify-Write (R-M-W)
operation. The register is read, the data is modified,
and the result is stored according to either the instruc-
tion, or the destination designator ‘d’. A read operation
is performed on a register even if the instruction writes
to that register.
TABLE 24-1: OPCODE FIELD
DESCRIPTIONS
TABLE 24-2: ABBREVIATION
DESCRIPTIONS
Field Description
fRegister file address (0x00 to 0x7F)
WWorking register (accumulator)
bBit address within an 8-bit file register
kLiteral field, constant data or label
xDon’t care location (= 0 or 1).
The assembler will generate code with x = 0.
It is the recommended form of use for
compatibility with all Microchip software tools.
dDestination select; d = 0: store result in W,
d = 1: store result in file register f.
Default is d = 1.
nFSR or INDF number. (0-1)
mm Pre-post increment-decrement mode
selection
Field Description
PC Program Counter
TO Time-out bit
CCarry bit
DC Digit carry bit
ZZero bit
PD Power-down bit
2011 Microchip Technology Inc. Preliminary DS41586A-page 208
PIC16(L)F1507
FIGURE 24-1: GENERAL FORMAT FOR
INSTRUCTIONS
Byte-oriented file r e gister operati ons
13 8 7 6 0
d = 0 for destination W
OPCODE d f (FILE #)
d = 1 for destination f
f = 7-bit file register address
Bit-oriente d file register operations
13 10 9 7 6 0
OPCODE b (BIT #) f (FILE #)
b = 3-bit bit address
f = 7-bit file register address
Literal and control operations
13 8 7 0
OPCODE k (literal)
k = 8-bit immediate value
13 11 10 0
OPCODE k (literal)
k = 11-bit immediate value
General
CALL and GOTO instructions only
MOVLP instruction only
13 5 4 0
OPCODE k (literal)
k = 5-bit immediate value
MOVLB instruction only
13 9 8 0
OPCODE k (literal)
k = 9-bit immediate value
BRA instruction only
FSR Offset instructions
13 7 6 5 0
OPCODE n k (literal)
n = appropriate FSR
FSR Increment instructions
13 7 6 0
OPCODE k (literal)
k = 7-bit immediate value
13 3 2 1 0
OPCODE n m (mode)
n = appropriate FSR
m = 2-bit mode value
k = 6-bit immediate value
13 0
OPCODE
OPCODE only
PIC16(L)F1507
DS41586A-page 209 Preliminary 2011 Microchip Technology Inc.
TABLE 24-3: PIC16(L)F1507 ENHANCED INSTRUCTION SET
Mnemonic,
Operands Description Cycles 14-Bit Opcode Status
Affected Notes
MSb LSb
BYTE-ORIENTED FILE REGISTER OPERATIONS
ADDWF
ADDWFC
ANDWF
ASRF
LSLF
LSRF
CLRF
CLRW
COMF
DECF
INCF
IORWF
MOVF
MOVWF
RLF
RRF
SUBWF
SUBWFB
SWAPF
XORWF
f, d
f, d
f, d
f, d
f, d
f, d
f
f, d
f, d
f, d
f, d
f, d
f
f, d
f, d
f, d
f, d
f, d
f, d
Add W and f
Add with Carry W and f
AND W with f
Arithmetic Right Shift
Logical Left Shift
Logical Right Shift
Clear f
Clear W
Complement f
Decrement f
Increment f
Inclusive OR W with f
Move f
Move W to f
Rotate Left f through Carry
Rotate Right f through Carry
Subtract W from f
Subtract with Borrow W from f
Swap nibbles in f
Exclusive OR W with f
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
00
11
00
11
11
11
00
00
00
00
00
00
00
00
00
00
00
11
00
00
0111
1101
0101
0111
0101
0110
0001
0001
1001
0011
1010
0100
1000
0000
1101
1100
0010
1011
1110
0110
dfff
dfff
dfff
dfff
dfff
dfff
lfff
0000
dfff
dfff
dfff
dfff
dfff
1fff
dfff
dfff
dfff
dfff
dfff
dfff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
00xx
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
C, DC, Z
C, DC, Z
Z
C, Z
C, Z
C, Z
Z
Z
Z
Z
Z
Z
Z
C
C
C, DC, Z
C, DC, Z
Z
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
BYTE ORIENTED SKIP OPERATIONS
DECFSZ
INCFSZ
f, d
f, d
Decrement f, Skip if 0
Increment f, Skip if 0
1(2)
1(2)
00
00 1011
1111 dfff
dfff ffff
ffff
1, 2
1, 2
BIT-ORIENTED FILE REGISTER OPERATIONS
BCF
BSF
f, b
f, b
Bit Clear f
Bit Set f
1
1
01
01 00bb
01bb bfff
bfff ffff
ffff
2
2
BIT-ORIENTED SKIP OPERATIONS
BTFSC
BTFSS
f, b
f, b
Bit Test f, Skip if Clear
Bit Test f, Skip if Set
1 (2)
1 (2)
01
01 10bb
11bb bfff
bfff ffff
ffff
1, 2
1, 2
LITERAL OPERATIONS
ADDLW
ANDLW
IORLW
MOVLB
MOVLP
MOVLW
SUBLW
XORLW
k
k
k
k
k
k
k
k
Add literal and W
AND literal with W
Inclusive OR literal with W
Move literal to BSR
Move literal to PCLATH
Move literal to W
Subtract W from literal
Exclusive OR literal with W
1
1
1
1
1
1
1
1
11
11
11
00
11
11
11
11
1110
1001
1000
0000
0001
0000
1100
1010
kkkk
kkkk
kkkk
001k
1kkk
kkkk
kkkk
kkkk
kkkk
kkkk
kkkk
kkkk
kkkk
kkkk
kkkk
kkkk
C, DC, Z
Z
Z
C, DC, Z
Z
Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle
is executed as a NOP.
2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one
additional instruction cycle.
2011 Microchip Technology Inc. Preliminary DS41586A-page 210
PIC16(L)F1507
TABLE 24-3: PIC16(L)F1507 ENHANCED INSTRUCTION SET (CONTINUED)
Mnemonic,
Operands Description Cycles 14-Bit Opcode Status
Affected Notes
MSb LSb
CONTROL OPERATIONS
BRA
BRW
CALL
CALLW
GOTO
RETFIE
RETLW
RETURN
k
k
k
k
k
Relative Branch
Relative Branch with W
Call Subroutine
Call Subroutine with W
Go to address
Return from interrupt
Return with literal in W
Return from Subroutine
2
2
2
2
2
2
2
2
11
00
10
00
10
00
11
00
001k
0000
0kkk
0000
1kkk
0000
0100
0000
kkkk
0000
kkkk
0000
kkkk
0000
kkkk
0000
kkkk
1011
kkkk
1010
kkkk
1001
kkkk
1000
INHERENT OPERATIONS
CLRWDT
NOP
OPTION
RESET
SLEEP
TRIS
f
Clear Watchdog Timer
No Operation
Load OPTION_REG register with W
Software device Reset
Go into Standby mode
Load TRIS register with W
1
1
1
1
1
1
00
00
00
00
00
00
0000
0000
0000
0000
0000
0000
0110
0000
0110
0000
0110
0110
0100
0000
0010
0001
0011
0fff
TO, PD
TO, PD
C-COMPILER OPTIMIZED
ADDFSR
MOVIW
MOVWI
n, k
n mm
k[n]
n mm
k[n]
Add Literal k to FSRn
Move Indirect FSRn to W with pre/post inc/dec
modifier, mm
Move INDFn to W, Indexed Indirect.
Move W to Indirect FSRn with pre/post inc/dec
modifier, mm
Move W to INDFn, Indexed Indirect.
1
1
1
1
1
11
00
11
00
11
0001
0000
1111
0000
1111
0nkk
0001
0nkk
0001
1nkk
kkkk
0nmm
kkkk
1nmm
kkkk
Z
Z
2, 3
2
2, 3
2
Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle
is executed as a NOP.
2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require
one additional instruction cycle.
3: See Table in the MOVIW and MOVWI instruction descriptions.
PIC16(L)F1507
DS41586A-page 211 Preliminary 2011 Microchip Technology Inc.
24.2 Instruction Descripti ons
ADDFSR Add Literal to FSRn
Syntax: [ label ] ADDFSR FSRn, k
Operands: -32 k 31
n [ 0, 1]
Operation: FSR(n) + k FSR(n)
Status Affected: None
Description: The signed 6-bit literal ‘k’ is added to
the contents of the FSRnH:FSRnL
register pair.
FSRn is limited to the range 0000h -
FFFFh. Moving beyond these bounds
will cause the FSR to wrap around.
ADDLW Add literal and W
Syntax: [ label ] ADDLW k
Operands: 0 k 255
Operation: (W) + k (W)
Status Affected: C, DC, Z
Description: The contents of the W register are
added to the eight-bit literal ‘k’ and the
result is placed in the W register.
ADDWF Add W and f
Syntax: [ label ] ADDWF f,d
Operands: 0 f 127
d 0,1
Operation: (W) + (f) (destination)
Status Affected: C, DC, Z
Description: Add the contents of the W register
with register ‘f’. If ‘d’ is ‘0’, the result is
stored in the W register. If ‘d’ is1’, the
result is stored back in register ‘f’.
ADDWFC ADD W and CARRY bit to f
Syntax: [ label ] ADDWFC f {,d}
Operands: 0 f 127
d [0,1]
Operation: (W) + (f) + (C) dest
Status Affected: C, DC, Z
Description: Add W, the Carry flag and data mem-
ory location ‘f’. If ‘d’ is ‘0’, the result is
placed in W. If ‘d’ is ‘1’, the result is
placed in data memory location ‘f’.
ANDLW AND literal with W
Syntax: [ label ] ANDLW k
Operands: 0 k 255
Operation: (W) .AND. (k) (W)
Status Affected: Z
Description: The contents of W register are
AND’ed with the eight-bit literal ‘k’.
The result is placed in the W register.
ANDWF AND W with f
Syntax: [ label ] ANDWF f,d
Operands: 0 f 127
d 0,1
Operation: (W) .AND. (f) (destination)
Status Affected: Z
Description: AND the W register with register ‘f’. If
‘d’ is ‘0’, the result is stored in the W
register. If ‘d’ is ‘1’, the result is stored
back in register ‘f’.
ASRF Arithmetic Right Shift
Syntax: [ label ] ASRF f {,d}
Operands: 0 f 127
d [0,1]
Operation: (f<7>) dest<7>
(f<7:1>) dest<6:0>,
(f<0>) C,
Status Affected: C, Z
Description: The contents of register ‘f’ are shifted
one bit to the right through the Carry
flag. The MSb remains unchanged. If
‘d’ is ‘0’, the result is placed in W. If ‘d’
is ‘1’, the result is stored back in reg-
ister ‘f’.
register f C
2011 Microchip Technology Inc. Preliminary DS41586A-page 212
PIC16(L)F1507
BCF Bit Clear f
Syntax: [ label ] BCF f,b
Operands: 0 f 127
0 b 7
Operation: 0 (f<b>)
Status Affected: None
Description: Bit ‘b’ in register ‘f’ is cleared.
BRA Relative Branch
Syntax: [ label ] BRA label
[ label ] BRA $+k
Operands: -256 label - PC + 1 255
-256 k 255
Operation: (PC) + 1 + k PC
Status Affected: None
Description: Add the signed 9-bit literal ‘k’ to the
PC. Since the PC will have incre-
mented to fetch the next instruction,
the new address will be PC + 1 + k.
This instruction is a two-cycle instruc-
tion. This branch has a limited range.
BRW Relative Branch with W
Syntax: [ label ] BRW
Operands: None
Operation: (PC) + (W) PC
Status Affected: None
Description: Add the contents of W (unsigned) to
the PC. Since the PC will have incre-
mented to fetch the next instruction,
the new address will be PC + 1 + (W).
This instruction is a two-cycle instruc-
tion.
BSF B it Set f
Syntax: [ label ] BSF f,b
Operands: 0 f 127
0 b 7
Operation: 1 (f<b>)
Status Affected: None
Description: Bit ‘b’ in register ‘f’ is set.
BTFSC Bit Test f, Skip if Clear
Syntax: [ label ] BTFSC f,b
Operands: 0 f 127
0 b 7
Operation: skip if (f<b>) = 0
Status Affected: None
Description: If bit ‘b’ in register ‘f’ is ‘1’, the next
instruction is executed.
If bit ‘b’, in register ‘f’, is ‘0’, the next
instruction is discarded, and a NOP is
executed instead, making this a
2-cycle instruction.
BTFSS Bit Test f, Skip if Set
Syntax: [ label ] BTFSS f,b
Operands: 0 f 127
0 b < 7
Operation: skip if (f<b>) = 1
Status Affected: None
Description: If bit ‘b’ in register ‘f’ is ‘0’, the next
instruction is executed.
If bit ‘b’ is ‘1’, then the next
instruction is discarded and a NOP is
executed instead, making this a
2-cycle instruction.
PIC16(L)F1507
DS41586A-page 213 Preliminary 2011 Microchip Technology Inc.
CALL Call Subroutine
Syntax: [ label ] CALL k
Operands: 0 k 2047
Operation: (PC)+ 1 TOS,
k PC<10:0>,
(PCLATH<4:3>) PC<12:11>
Status Affected: None
Description: Call Subroutine. First, return address
(PC + 1) is pushed onto the stack.
The eleven-bit immediate address is
loaded into PC bits <10:0>. The upper
bits of the PC are loaded from
PCLATH. CALL is a two-cycle instruc-
tion.
CALLW Subroutine Call With W
Syntax: [ label ] CALLW
Operands: None
Operation: (PC) +1 TOS,
(W) PC<7:0>,
(PCLATH<6:0>) PC<14:8>
Status Affected: None
Description: Subroutine call with W. First, the
return address (PC + 1) is pushed
onto the return stack. Then, the con-
tents of W is loaded into PC<7:0>,
and the contents of PCLATH into
PC<14:8>. CALLW is a two-cycle
instruction.
CLRF Clear f
Syntax: [ label ] CLRF f
Operands: 0 f 127
Operation: 00h (f)
1 Z
Status Affected: Z
Description: The contents of register ‘f’ are cleared
and the Z bit is set.
CLRW Clear W
Syntax: [ label ] CLRW
Operands: None
Operation: 00h (W)
1 Z
Status Affected: Z
Description: W register is cleared. Zero bit (Z) is
set.
CLRWDT Clear Watchdog Timer
Syntax: [ label ] CLRWDT
Operands: None
Operation: 00h WDT
0 WDT prescaler,
1 TO
1 PD
Status Affected: TO, PD
Description: CLRWDT instruction resets the Watch-
dog Timer. It also resets the prescaler
of the WDT.
Status bits TO and PD are set.
COMF Complement f
Syntax: [ label ] COMF f,d
Operands: 0 f 127
d [0,1]
Operation: (f) (destination)
Status Affected: Z
Description: The contents of register ‘f’ are com-
plemented. If ‘d’ is 0’, the result is
stored in W. If ‘d’ is ‘1’, the result is
stored back in register ‘f’.
DECF Decrement f
Syntax: [ label ] DECF f,d
Operands: 0 f 127
d [0,1]
Operation: (f) - 1 (destination)
Status Affected: Z
Description: Decrement register ‘f’. If ‘d’ is ‘0’, the
result is stored in the W
register. If ‘d’ is ‘1’, the result is stored
back in register ‘f’.
2011 Microchip Technology Inc. Preliminary DS41586A-page 214
PIC16(L)F1507
DECFSZ Decrement f, Skip if 0
Syntax: [ label ] DECFSZ f,d
Operands: 0 f 127
d [0,1]
Operation: (f) - 1 (destination);
skip if result = 0
Status Affected: None
Description: The contents of register ‘f’ are decre-
mented. If ‘d’ is ‘0’, the result is placed
in the W register. If ‘d’ is ‘1’, the result
is placed back in register ‘f’.
If the result is ‘1’, the next instruction is
executed. If the result is ‘0’, then a
NOP is executed instead, making it a
2-cycle instruction.
GOTO Unconditional Branch
Syntax: [ label ] GOTO k
Operands: 0 k 2047
Operation: k PC<10:0>
PCLATH<4:3> PC<12:11>
Status Affected: None
Description: GOTO is an unconditional branch. The
eleven-bit immediate value is loaded
into PC bits <10:0>. The upper bits of
PC are loaded from PCLATH<4:3>.
GOTO is a two-cycle instruction.
INCF Increment f
Syntax: [ label ] INCF f,d
Operands: 0 f 127
d [0,1]
Operation: (f) + 1 (destination)
Status Affected: Z
Description: The contents of register ‘f’ are incre-
mented. If ‘d’ is ‘0’, the result is placed
in the W register. If ‘d’ is 1’, the result
is placed back in register ‘f’.
INCFSZ Increment f, Skip if 0
Syntax: [ label ] INCFSZ f,d
Operands: 0 f 127
d [0,1]
Operation: (f) + 1 (destination),
skip if result = 0
Status Affected: None
Description: The contents of register ‘f’ are incre-
mented. If ‘d’ is ‘0’, the result is placed
in the W register. If ‘d’ is ‘1’, the result
is placed back in register ‘f’.
If the result is1’, the next instruction is
executed. If the result is ‘0’, a NOP is
executed instead, making it a 2-cycle
instruction.
IORLW Inclusive OR literal with W
Syntax: [ label ] IORLW k
Operands: 0 k 255
Operation: (W) .OR. k (W)
Status Affected: Z
Description: The contents of the W register are
OR’ed with the eight-bit literal ‘k’. The
result is placed in the W register.
IORWF Inclusive OR W with f
Syntax: [ label ] IORWF f,d
Operands: 0 f 127
d [0,1]
Operation: (W) .OR. (f) (destination)
Status Affected: Z
Description: Inclusive OR the W register with regis-
ter ‘f’. If ‘d’ is ‘0’, the result is placed in
the W register. If ‘d’ is ‘1’, the result is
placed back in register ‘f’.
PIC16(L)F1507
DS41586A-page 215 Preliminary 2011 Microchip Technology Inc.
LSLF Logical Left Shift
Syntax: [ label ] LSLF f {,d}
Operands: 0 f 127
d [0,1]
Operation: (f<7>) C
(f<6:0>) dest<7:1>
0 dest<0>
Status Affected: C, Z
Description: The contents of register ‘f’ are shifted
one bit to the left through the Carry flag.
A ‘0’ is shifted into the LSb. If ‘d’ is ‘0’,
the result is placed in W. If ‘d’ is ‘1’, the
result is stored back in register ‘f’.
LSRF Logical Right Shift
Syntax: [ label ] LSLF f {,d}
Operands: 0 f 127
d [0,1]
Operation: 0 dest<7>
(f<7:1>) dest<6:0>,
(f<0>) C,
Status Affected: C, Z
Description: The contents of register ‘f’ are shifted
one bit to the right through the Carry
flag. A ‘0’ is shifted into the MSb. If ‘d’ is
0’, the result is placed in W. If ‘d’ is ‘1’,
the result is stored back in register ‘f’.
register f 0
C
register f C0
MOVF Move f
Syntax: [ label ] MOVF f,d
Operands: 0 f 127
d [0,1]
Operation: (f) (dest)
Status Affected: Z
Description: The contents of register f is moved to
a destination dependent upon the
status of d. If d = 0,
destination is W register. If d = 1, the
destination is file register f itself. d = 1
is useful to test a file register since
status flag Z is affected.
Words: 1
Cycles: 1
Example: MOVF FSR, 0
After Instruction
W = value in FSR register
Z=
1
2011 Microchip Technology Inc. Preliminary DS41586A-page 216
PIC16(L)F1507
MOVIW Move INDFn to W
Syntax: [ label ] MOVIW ++FSRn
[ label ] MOVIW --FSRn
[ label ] MOVIW FSRn++
[ label ] MOVIW FSRn--
[ label ] MOVIW k[FSRn]
Operands: n [0,1]
mm [00,01, 10, 11]
-32 k 31
Operation: INDFn W
Effective address is determined by
FSR + 1 (preincrement)
FSR - 1 (predecrement)
FSR + k (relative offset)
After the Move, the FSR value will be
either:
FSR + 1 (all increments)
FSR - 1 (all decrements)
Unchanged
Status Affected: Z
Mode Syntax mm
Preincrement ++FSRn 00
Predecrement --FSRn 01
Postincrement FSRn++ 10
Postdecrement FSRn-- 11
Description: This instruction is used to move data
between W and one of the indirect
registers (INDFn). Before/after this
move, the pointer (FSRn) is updated by
pre/post incrementing/decrementing it.
Note: The INDFn registers are not
physical registers. Any instruction that
accesses an INDFn register actually
accesses the register at the address
specified by the FSRn.
FSRn is limited to the range 0000h -
FFFFh. Incrementing/decrementing it
beyond these bounds will cause it to wrap
around.
MOVLB Move literal to BSR
Syntax: [ label ] MOVLB k
Operands: 0 k 15
Operation: k BSR
Status Affected: None
Description: The five-bit literal ‘k’ is loaded into the
Bank Select Register (BSR).
MOVLP Move literal to PCLATH
Syntax: [ label ] MOVLP k
Operands: 0 k 127
Operation: k PCLATH
Status Affected: None
Description: The seven-bit literal ‘k’ is loaded into the
PCLATH register.
MOVLW Move literal t o W
Syntax: [ label ] MOVLW k
Operands: 0 k 255
Operation: k (W)
Status Affected: None
Description: The eight-bit literal ‘k’ is loaded into W
register. The “don’t cares” will assem-
ble as ‘0’s.
Words: 1
Cycles: 1
Example: MOVLW 0x5A
After Instruction
W = 0x5A
MOVWF Move W to f
Syntax: [ label ] MOVWF f
Operands: 0 f 127
Operation: (W) (f)
Status Affected: None
Description: Move data from W register to register
‘f’.
Words: 1
Cycles: 1
Example: MOVWF OPTION_REG
Before Instruction
OPTION_REG = 0xFF
W=0x4F
After Instruction
OPTION_REG = 0x4F
W=0x4F
PIC16(L)F1507
DS41586A-page 217 Preliminary 2011 Microchip Technology Inc.
MOVWI Move W to INDFn
Syntax: [ label ] MOVWI ++FSRn
[ label ] MOVWI --FSRn
[ label ] MOVWI FSRn++
[ label ] MOVWI FSRn--
[ label ] MOVWI k[FSRn]
Operands: n [0,1]
mm [00,01, 10, 11]
-32 k 31
Operation: W INDFn
Effective address is determined by
FSR + 1 (preincrement)
FSR - 1 (predecrement)
FSR + k (relative offset)
After the Move, the FSR value will be
either:
FSR + 1 (all increments)
FSR - 1 (all decrements)
Unchanged
Status Affected: None
Mode Syntax mm
Preincrement ++FSRn 00
Predecrement --FSRn 01
Postincrement FSRn++ 10
Postdecrement FSRn-- 11
Description: This instruction is used to move data
between W and one of the indirect
registers (INDFn). Before/after this
move, the pointer (FSRn) is updated by
pre/post incrementing/decrementing it.
Note: The INDFn registers are not
physical registers. Any instruction that
accesses an INDFn register actually
accesses the register at the address
specified by the FSRn.
FSRn is limited to the range 0000h -
FFFFh. Incrementing/decrementing it
beyond these bounds will cause it to wrap
around.
The increment/decrement operation on
FSRn WILL NOT affect any Status bits.
NOP No Operation
Syntax: [ label ] NOP
Operands: None
Operation: No operation
Status Affected: None
Description: No operation.
Words: 1
Cycles: 1
Example: NOP
OPTION Load OPTION_REG Register
with W
Syntax: [ label ] OPTION
Operands: None
Operation: (W) OPTION_REG
Status Affected: None
Description: Move data from W register to
OPTION_REG register.
RESET Software Reset
Syntax: [ label ] RESET
Operands: None
Operation: Execute a device Reset. Resets the
nRI flag of the PCON register.
Status Affected: None
Description: This instruction provides a way to
execute a hardware Reset by soft-
ware.
2011 Microchip Technology Inc. Preliminary DS41586A-page 218
PIC16(L)F1507
RETFIE Return from Interrupt
Syntax: [ label ] RETFIE
Operands: None
Operation: TOS PC,
1 GIE
Status Affected: None
Description: Return from Interrupt. Stack is POPed
and Top-of-Stack (TOS) is loaded in
the PC. Interrupts are enabled by
setting Global
Interrupt Enable bit, GIE
(INTCON<7>). This is a two-cycle
instruction.
Words: 1
Cycles: 2
Example: RETFIE
After Interrupt
PC = TOS
GIE = 1
RETLW Return with literal in W
Syntax: [ label ] RETLW k
Operands: 0 k 255
Operation: k (W);
TOS PC
Status Affected: None
Description: The W register is loaded with the eight
bit literal ‘k’. The program counter is
loaded from the top of the stack (the
return address). This is a two-cycle
instruction.
Words: 1
Cycles: 2
Example:
TABLE
CALL TABLE;W contains table
;offset value
;W now has table value
ADDWF PC ;W = offset
RETLW k1 ;Begin table
RETLW k2 ;
RETLW kn ; End of table
Before Instruction
W = 0x07
After Instruction
W = value of k8
RETURN Return from Subroutine
Syntax: [ label ] RETURN
Operands: None
Operation: TOS PC
Status Affected: None
Description: Return from subroutine. The stack is
POPed and the top of the stack (TOS)
is loaded into the program counter.
This is a two-cycle instruction.
RLF Rotate Left f through Carry
Syntax: [ label ] RLF f,d
Operands: 0 f 127
d [0,1]
Operation: See description below
Status Affected: C
Description: The contents of register ‘f’ are rotated
one bit to the left through the Carry
flag. If ‘d’ is ‘0’, the result is placed in
the W register. If ‘d’ is ‘1’, the result is
stored back in register ‘f’.
Words: 1
Cycles: 1
Example: RLF REG1,0
Before Instruction
REG1 = 1110 0110
C=0
After Instruction
REG1 = 1110 0110
W = 1100 1100
C=1
Register fC
PIC16(L)F1507
DS41586A-page 219 Preliminary 2011 Microchip Technology Inc.
RRF Rotate Right f through Carry
Syntax: [ label ] RRF f,d
Operands: 0 f 127
d [0,1]
Operation: See description below
Status Affected: C
Description: The contents of register ‘f’ are rotated
one bit to the right through the Carry
flag. If ‘d’ is0’, the result is placed in
the W register. If ‘d’ is ‘1’, the result is
placed back in register ‘f’.
SLEEP Enter Sleep mode
Syntax: [ label ]SLEEP
Operands: None
Operation: 00h WDT,
0 WDT prescaler,
1 TO,
0 PD
Status Affected: TO, PD
Description: The power-down Status bit, PD is
cleared. Time-out Status bit, TO is
set. Watchdog Timer and its pres-
caler are cleared.
The processor is put into Sleep mode
with the oscillator stopped.
Register fC
SUBLW Subtract W from literal
Syntax: [ label ]SUBLW k
Operands: 0 k 255
Operation: k - (W) W)
Status Affected: C, DC, Z
Description: The W register is subtracted (2’s com-
plement method) from the eight-bit
literal ‘k’. The result is placed in the W
register.
SUBWF Subtract W from f
Syntax: [ label ] SUBWF f,d
Operands: 0 f 127
d [0,1]
Operation: (f) - (W) destination)
Status Affected: C, DC, Z
Description: Subtract (2’s complement method) W
register from register ‘f’. If ‘d’ is ‘0’, the
result is stored in the W
register. If ‘d’ is ‘1’, the result is stored
back in register ‘f.
SUBWFB Subtract W from f with Borrow
Syntax: SUBWFB f {,d}
Operands: 0 f 127
d [0,1]
Operation: (f) – (W) – (B) dest
Status Affected: C, DC, Z
Description: Subtract W and the BORROW flag
(CARRY) from register ‘f’ (2’s comple-
ment method). If ‘d’ is ‘0’, the result is
stored in W. If ‘d’ is ‘1’, the result is
stored back in register ‘f’.
C = 0W k
C = 1W k
DC = 0W<3:0> k<3:0>
DC = 1W<3:0> k<3:0>
C = 0W f
C = 1W f
DC = 0W<3:0> f<3:0>
DC = 1W<3:0> f<3:0>
2011 Microchip Technology Inc. Preliminary DS41586A-page 220
PIC16(L)F1507
SWAPF Swap Nibbles in f
Syntax: [ label ] SWAPF f,d
Operands: 0 f 127
d [0,1]
Operation: (f<3:0>) (destination<7:4>),
(f<7:4>) (destination<3:0>)
Status Affected: None
Description: The upper and lower nibbles of regis-
ter ‘f’ are exchanged. If ‘d’ is ‘0’, the
result is placed in the W register. If ‘d’
is ‘1’, the result is placed in register ‘f’.
TRIS Load TRIS Register with W
Syntax: [ label ] TRIS f
Operands: 5 f 7
Operation: (W) TRIS register ‘f’
Status Affected: None
Description: Move data from W register to TRIS
register.
When ‘f’ = 5, TRISA is loaded.
When ‘f’ = 6, TRISB is loaded.
When ‘f’ = 7, TRISC is loaded.
XORLW Exclusive OR literal with W
Syntax: [ label ]XORLW k
Operands: 0 k 255
Operation: (W) .XOR. k W)
Status Affected: Z
Description: The contents of the W register are
XOR’ed with the eight-bit
literal ‘k’. The result is placed in the
W register.
XORWF Exclusive OR W with f
Syntax: [ label ] XORWF f,d
Operands: 0 f 127
d [0,1]
Operation: (W) .XOR. (f) destination)
Status Affected: Z
Description: Exclusive OR the contents of the W
register with register ‘f’. If ‘d’ is ‘0’, the
result is stored in the W register. If ‘d’
is ‘1’, the result is stored back in regis-
ter ‘f’.
PIC16(L)F1507
DS41586A-page 221 Preliminary 2011 Microchip Technology Inc.
25.0 ELECTRICAL SPECIFICATIONS
Absolute Maximum Ratings(†)
Ambient temperature under bias.......................................................................................................-40°C to +125°C
Storage temperature ........................................................................................................................ -65°C to +150°C
Voltage on VDD with respect to VSS, PIC16F1507 ............................................................................. -0.3V to +6.5V
Voltage on VDD with respect to VSS, PIC16LF1507 ........................................................................... -0.3V to +4.0V
Voltage on MCLR with respect to Vss ................................................................................................. -0.3V to +9.0V
Voltage on all other pins with respect to VSS ............................................................................ -0.3V to (VDD + 0.3V)
Total power dissipation(1) ...............................................................................................................................800 mW
Maximum current out of VSS pin, -40°C TA +85°C for industrial............................................................... 396 mA
Maximum current out of VSS pin, -40°C TA +125°C for extended ............................................................ 114 mA
Maximum current into VDD pin, -40°C TA +85°C for industrial.................................................................. 292 mA
Maximum current into VDD pin, -40°C TA +125°C for extended ............................................................... 107 mA
Clamp current, IK (VPIN < 0 or VPIN > VDD)20 mA
Maximum output current sunk by any I/O pin....................................................................................................25 mA
Maximum output current sourced by any I/O pin...............................................................................................25 mA
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD IOH} + {(VDD – VOH) x IOH} + (VOl x IOL).
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at those or any other conditions above those
indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for
extended periods may affect device reliability.
2011 Microchip Technology Inc. Preliminary DS41586A-page 222
PIC16(L)F1507
FIGURE 25-1: PI C16F15 07 VOLTAGE FREQUENCY GRAPH, -40°C TA +125°C
FIGURE 25-2: PI C16LF 15 07 VOLTAGE FREQUENCY GRAPH, -40°C TA +125°C
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.
2: Refer to Table 25-1 for each Oscillator mode’s supported frequencies.
2.3
0
2.5
Frequency (MHz)
VDD (V)
42010 16
5.5
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.
2: Refer to Table 25-1 for each Oscillator mode’s supported frequencies.
1.8
0
2.5
Frequency (MHz )
VDD (V)
420
10 16
3.6
PIC16(L)F1507
DS41586A-page 223 Preliminary 2011 Microchip Technology Inc.
25.1 DC Characteristics: PIC16(L)F1507-I/E (Industrial, Extended)
PIC16LF1507 Standard Operating Condition s (unless otherwise stated)
Operating temperature -40°C TA +85°C for industrial
-40°C TA +125°C for extended
PIC16F1507 Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +85°C for industrial
-40°C TA +125°C for extended
Param.
No. Sym. Characteristic Min. Typ† Max. Units Conditions
D001 VDD Supply Voltage
PIC16LF1507 1.8
2.5
3.6
3.6
V
V
FOSC 16 MHz:
FOSC 20 MHz
D001 PIC16F1507 2.3
2.5
5.5
5.5
V
V
FOSC 16 MHz:
FOSC 20 MHz
D002* VDR RAM Data Retention Voltage(1)
PIC16LF1507 1.5 V Device in Sleep mode
D002* PIC16F1507 1.7 V Device in Sleep mode
VPOR*Power-on Reset Release Voltage —1.6— V
VPORR*Power-on Reset Rearm Voltage
PIC16LF1507 0.8 V Device in Sleep mode
PIC16F1507 1.7 V Device in Sleep mode
D003 VADFVR Fixed Voltage Reference Voltage for
ADC, Initial Accuracy
1
1
1
1
1
1
% 1.024V, VDD 2.5V, 85°C (NOTE 2)
1.024V, VDD 2.5V, 125°C (NOTE 2)
2.048V, VDD 2.5V, 85°C
2.048V, VDD 2.5V, 125°C
4.096V, VDD 4.75V, 85°C
4.096V, VDD 4.75V, 125°C
D003C* TCVFVR Temperature Coefficient, Fixed
Voltage Reference -130 ppm/°C
D003D* VFVR/
VIN
Line Regulation, Fixed Voltage
Reference 0.270 %/V
D004* SVDD VDD Rise Rate to ensure internal
Power-on Reset signal
0.05 V/ms See Section 6.1 “Power-on Reset
(POR)” for details.
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.
2: For proper operation, the minimum value of the ADC positive voltage reference must be 1.8V or greater. When selecting
the FVR or the VREF+ pin as the source of the ADC positive voltage reference, be aware that the voltage must be 1.8V or
greater.
2011 Microchip Technology Inc. Preliminary DS41586A-page 224
PIC16(L)F1507
FIGURE 25-3: POR AND POR REARM WITH SLOW RISING VDD
VDD
VPOR
VPORR
VSS
VSS
NPOR
TPOR(3)
POR REARM
Note 1: When NPOR is low, the device is held in Reset.
2: TPOR 1 s typical.
3: TVLOW 2.7 s typical.
TVLOW(2)
PIC16(L)F1507
DS41586A-page 225 Preliminary 2011 Microchip Technology Inc.
25.2 DC Characteristics: PIC16(L)F1507-I/E (Industrial, Extended)
PIC16LF1507 Standard Ope r a ting Conditions (unles s otherwise s tated)
Operating temperature -40°C TA +85°C for industrial
-40°C TA +125°C for extended
PIC16F1507 Standard Operati ng C ondition s (unless otherwise s tated)
Operating temperature -40°C TA +85°C for industrial
-40°C TA +125°C for extended
Param
No. Device
Characteristics Min. Typ† Max. Units Conditions
VDD Note
Supply Current (IDD)(1, 2)
D013 40 A1.8FOSC = 1 MHz
EC Oscillator mode, Medium-power mode
—70 A3.0
D013 60 A2.3 FOSC = 1 MHz
EC Oscillator mode
Medium-power mode
80 A3.0
93 A5.0
D014 260 A2.3FOSC = 4 MHz
EC Oscillator mode,
Medium-power mode
550 A3.0
D014 375 A2.3 FOSC = 4 MHz
EC Oscillator mode
Medium-power mode
600 A3.0
650 A5.0
D015 3.6 A1.8FOSC = 31 kHz
LFINTOSC mode
—7.0 A3.0
D015 21 A2.3 FOSC = 31 kHz
LFINTOSC mode
27 A3.0
28 A5.0
D017* 0.8 mA 1.8 FOSC = 8 MHz
HFINTOSC mode
—1.3 mA 3.0
D017* 1.0 mA 2.3 FOSC = 8 MHz
HFINTOSC mode
1.5 mA 3.0
1.7 mA 5.0
D018 1.2 mA 1.8 FOSC = 16 MHz
HFINTOSC mode
—2.5 mA 3.0
D018 1.7 mA 2.3 FOSC = 16 MHz
HFINTOSC mode
2.7 mA 3.0
3.0 mA 5.0
D019A 1.15 mA 3.0 FOSC = 20 MHz
ECH mode
D019A 1.15 mA 3.0 FOSC = 20 MHz
ECH mode
1.3 mA 5.0
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
Note 1: The test conditions for all IDD measurements in active operation mode are: CLKIN = external square wave, from
rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current
consumption.
2011 Microchip Technology Inc. Preliminary DS41586A-page 226
PIC16(L)F1507
D019B 8 A1.8FOSC = 32 kHz
ECL mode
—10 A3.0
D019B 10 A3.0 FOSC = 32 kHz
ECL mode
11 A5.0
D019C 25 A1.8FOSC = 500 kHz
ECM mode
—35 A3.0
D019C 35 A3.0 FOSC = 500 kHz
ECM mode
40 A5.0
25.2 DC Characteristics: PIC16(L) F1507-I/E (Industrial, Extended) (Continued)
PIC16LF1507 Standard Operating Condi tions (unless otherwise st ated)
Operating temperature -40°C TA +85°C for industrial
-40°C TA +125°C for extended
PIC16F1507 Standard Operati ng Conditions (unless otherwise stated)
Operating temperature -40°C TA +85°C for industrial
-40°C TA +125°C for extended
Param
No. Device
Characteristics Min. Typ† Max. Units Conditions
VDD Note
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
Note 1: The test conditions for all IDD measurements in active operation mode are: CLKIN = external square wave, from
rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current
consumption.
PIC16(L)F1507
DS41586A-page 227 Preliminary 2011 Microchip Technology Inc.
25.3 DC Characteristics: PIC16(L)F1507-I/E (Power-Down)
PIC16LF1507 Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +85°C for industrial
-40°C TA +125°C for extended
PIC16F1507 Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +85°C for industrial
-40°C TA +125°C for extended
Param
No. Device Characteristics M in. Typ† Max.
+85°C Max.
+125°C Units Conditions
VDD Note
Power-down Base Current (IPD)(2)
D022 0.02 A 1.8 WDT, BOR, FVR, and T1OSC
disabled, all Peripherals Inactive
—0.03 A3.0
D022 300 nA 3.0 WDT, BOR, FVR, and T1OSC
disabled, all Peripherals Inactive
470 nA 5.0
D023 0.5 A 1.8 LPWDT Current (Note 1)
—0.8 A3.0
D023 500 nA 2.3 LPWDT Current (Note 1)
770 nA 3.0
850 nA 5.0
D023A 8.5 A 1.8 FVR current (Note 1)
—8.5 A3.0
D023A 18 A2.3 FVR current (Note 1)
18.5 A3.0
19 mA 5.0
D024 8.1 A 3.0 BOR Current (Note 1)
D024 7 A3.0 BOR Current (Note 1)
9 A5.0
D24A 300 nA 3.0 LPBOR Current
D026 0.1 A 1.8 A/D Current (Note 1, Note 3), no
conversion in progress
—0.1 A3.0
D026 160 nA 2.3 A/D Current (Note 1, Note 3), no
conversion in progress
400 nA 3.0
500 nA 5.0
D026A* 250 A 1.8 A/D Current (Note 1, Note 3),
conversion in progress
—250 A3.0
D026A* 280 A2.3 A/D Current (Note 1, Note 3),
conversion in progress
280 A3.0
280 A5.0
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are
not tested.
Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is
enabled. The peripheral current can be determined by subtracting the base IDD or IPD current from this limit. Max
values should be used when calculating total current consumption.
2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.
3: A/D oscillator source is FRC.
2011 Microchip Technology Inc. Preliminary DS41586A-page 228
PIC16(L)F1507
25.4 DC Characteristics: PIC16(L)F1507-I/E
DC CHARACTERISTICS Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +85°C for industrial
-40°C TA +125°C for extended
Param
No. Sym. Characteristic Min. Typ† Max. Units Conditions
VIL Input L ow Voltage
I/O PORT:
D030 with TTL buffer 0.8 V 4.5V VDD 5.5V
D030A 0.15 VDD V1.8V VDD 4.5V
D031 with Schmitt Trigger buffer 0.2 VDD V2.0V VDD 5.5V
D032 MCLR ——0.2VDD V
VIH Input High Voltage
I/O ports:
D040 with TTL buffer 2.0 V 4.5V VDD 5.5V
D040A 0.25 VDD +
0.8
——V1.8V VDD 4.5V
D041 with Schmitt Trigger buffer 0.8 VDD ——V2.0V VDD 5.5V
D042 MCLR 0.8 VDD ——V
IIL Input Leakage Current(1)
D060 I/O ports ± 5
± 5
± 125
± 1000
nA
nA
VSS VPIN VDD, Pin at high-
impedance at 85°C
125°C
D061 MCLR(2) —± 50± 200nAVSS VPIN VDD at 85°C
IPUR Weak Pull-up Current
D070* 25
25
100
140
200
300 A
VDD = 3.3V, VPIN = VSS
VDD = 5.0V, VPIN = VSS
VOL Output Low Voltage(3)
D080 I/O ports
——0.6V
IOL = 8mA, VDD = 5V
IOL = 6mA, VDD = 3.3V
IOL = 1.8mA, VDD = 1.8V
VOH Output High Voltage(3)
D090 I/O ports
VDD - 0.7 V
IOH = 3.5mA, VDD = 5V
IOH = 3mA, VDD = 3.3V
IOH = 1mA, VDD = 1.8V
Capacitive Loading Specs on Output Pins
D101A* CIO All I/O pins 50 pF
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are
not tested.
Note 1: Negative current is defined as current sourced by the pin.
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent
normal operating conditions. Higher leakage current may be measured at different input voltages.
3: Including OSC2 in CLKOUT mode.
PIC16(L)F1507
DS41586A-page 229 Preliminary 2011 Microchip Technology Inc.
25.5 Memory Programming Requirements
DC CHARACTERISTICS Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +125°C
Param
No. Sym. Characteristic Min. Typ† Max. Units Conditions
Program Memory
Program m in g Speci fic at ion s
D110 VIHH Voltage on MCLR/VPP pin 8.0 9.0 V (Note 2, Note 3)
D111 IDDP Supply Current during
Programming
——10mA
D112 VDD for Bulk Erase 2.7 VDD max. V
D113 VPEW VDD for Write or Row Erase VDD min. VDD max. V
D114 IPPPGM Current on MCLR/VPP during Erase/
Write
——1.0mA
D115 IDDPGM Current on VDD during Erase/Write 5.0 mA
Program Flash Memory
D121 EPCell Endurance 10K —E/W-40C to +85C (Note 1)
D122 VPR VDD for Read VDD min. VDD max. V
D123 TIW Self-timed Write Cycle Time 2 2.5 ms
D124 TRETD Characteristic Retention 40 Year Provided no other
specifications are violated
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance
only and are not tested.
Note 1: Self-write and Block Erase.
2: Required only if single-supply programming is disabled.
3: The MPLAB® ICD 2 does not support variable VPP output. Circuitry to limit the MPLAB ICD 2 VPP voltage
must be placed between the MPLAB ICD 2 and target system when programming or debugging with the
MPLAB ICD 2.
2011 Microchip Technology Inc. Preliminary DS41586A-page 230
PIC16(L)F1507
25.6 Thermal Consider ations
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +125°C
Param
No. Sym. Characteristic Typ. Units Conditions
TH01 JA Thermal Resistance Junction to Ambient TBD C/W 20-pin PDIP package
TBD C/W 20-pin SOIC package
89.3 C/W 20-pin SSOP package
TBD C/W 20-pin QFN 4X4mm package
TH02 JC Thermal Resistance Junction to Case TBD C/W 20-pin PDIP package
TBD C/W 20-pin SOIC package
31.1 C/W 20-pin SSOP package
TBD C/W 20-pin QFN 4X4mm package
TH03 TJMAX Maximum Junction Temperature 150 C
TH04 PD Power Dissipation W PD = PINTERNAL + PI/O
TH05 PINTERNAL Internal Power Dissipation W PINTERNAL = IDD x VDD(1)
TH06 PI/OI/O Power Dissipation W PI/O = (IOL * VOL) + (IOH * (VDD - VOH))
TH07 PDER Derated Power W PDER = PDMAX (TJ - TA)/JA(2)
Legend: TBD = To Be Determined
Note 1: IDD is current to run the chip alone without driving any load on the output pins.
2: TA = Ambient Temperature
3: TJ = Junction Temperature
PIC16(L)F1507
DS41586A-page 231 Preliminary 2011 Microchip Technology Inc.
25.7 Timing Parameter Symbology
The timing parameter symbols have been created with
one of the following formats:
FIGURE 25-4: LOAD CONDITIONS
1. TppS2ppS
2. TppS
T
F Frequency T Time
Lowercase letters (pp) and their meanings:
pp
cc CCP1 osc CLKIN
ck CLKOUT rd RD
cs CS rw RD or WR
di SDIx sc SCKx
do SDO ss SS
dt Data in t0 T0CKI
io I/O PORT t1 T1CKI
mc MCLR wr WR
Uppercase letters and their meanings:
S
FFall PPeriod
HHigh RRise
I Invalid (High-impedance) V Valid
L Low Z High-impedance
V
SS
C
L
Legend: CL = 50 pF for all pins
Load Condition
Pin
2011 Microchip Technology Inc. Preliminary DS41586A-page 232
PIC16(L)F1507
25.8 AC Characteristics: PIC16(L)F1507-I/E
FIGURE 25-5: CLOCK TI MING
TABLE 25-1: CLOCK OSCILLATOR TIMING REQUIREMENTS
TABLE 25-2: OSCILLATOR PARAMETERS
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +125°C
Param
No. Sym. Characteristic Min. Typ† Max. Units Conditions
OS01 FOSC External CLKIN Frequency(1) DC 0.5 MHz EC Oscillator mode (low)
DC 4 MHz EC Oscillator mode (medium)
DC 20 MHz EC Oscillator mode (high)
OS02 TOSC External CLKIN Period(1) 31.25 ns EC mode
OS03 TCY Instruction Cycle Time(1) 125 DC ns TCY = FOSC/4
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on
characterization data for that particular oscillator type under standard operating conditions with the device executing code.
Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current con-
sumption. All devices are tested to operate at “min” values with an external clock applied to CLKIN pin. When an external
clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.
Standard Operating Conditions (unless otherwise stated)
Operating Temperature -40°C TA +125°C
Param
No. Sym. Characteristic Freq.
Tolerance Min. Typ† Max. Units Conditions
OS08 HFOSC Internal Calibrated HFINTOSC
Frequency(1) 10% 16.0 MHz 0°C TA +85°C
OS09 LFOSC Internal LFINTOSC Frequency 31 kHz -40°C TA +125°C
OS10* TIOSC ST HFINTOSC
Wake-up from Sleep Start-up Time
——58s
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are
not tested.
Note 1: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the device as
possible. 0.1 F and 0.01 F values in parallel are recommended.
CLKIN
CLKOUT
Q4 Q1 Q2 Q3 Q4 Q1
OS02
OS03
(CLKOUT Mode)
Note 1: See Table 25-3.
OS11
OS12
PIC16(L)F1507
DS41586A-page 233 Preliminary 2011 Microchip Technology Inc.
FIGURE 25-6: CLKOUT AND I/O TIMING
TABLE 25-3: CLKOUT AND I/O TIMING PARAMETERS
S tandard Operating Conditions (unless othe rwis e stated)
Operating Temperature -40°C TA +125°C
Param
No. Sym. Characteristic Min. Typ† Max. Units Conditions
OS11 TosH2ckL FOSC to CLKOUT (1) ——70nsVDD = 3.3-5.0V
OS12 TosH2ckH FOSC to CLKOUT (1) ——72nsVDD = 3.3-5.0V
OS13 TckL2ioV CLKOUT to Port out valid(1) ——20ns
OS14 TioV2ckH Port input valid before CLKOUT(1) TOSC + 200 ns ns
OS15 TosH2ioV Fosc (Q1 cycle) to Port out valid 50 70* ns VDD = 3.3-5.0V
OS16 TosH2ioI Fosc (Q2 cycle) to Port input invalid
(I/O in hold time)
50 ns VDD = 3.3-5.0V
OS17 TioV2osH Port input valid to Fosc(Q2 cycle)
(I/O in setup time)
20 ns
OS18* TioR Port output rise time(2)
15
40
32
72
ns VDD = 2.0V
VDD = 5.0V
OS19* TioF Port output fall time(2)
28
15
55
30
ns VDD = 2.0V
VDD = 5.0V
OS20* Tinp INT pin input high or low time 25 ns
OS21* Tioc Interrupt-on-change new input level
time
25 ns
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25C unless otherwise stated.
Note1: Measurements are taken in EC mode where CLKOUT output is 4 x TOSC.
FOSC
CLKOUT
I/O pin
(Input)
I/O pin
(Output)
Q4 Q1 Q2 Q3
OS11
OS19
OS13
OS15
OS18, OS19
OS20
OS21
OS17
OS16
OS14
OS12
OS18
Old Value New Value
Write Fetch Read ExecuteCycle
2011 Microchip Technology Inc. Preliminary DS41586A-page 234
PIC16(L)F1507
FIGURE 25-7: RESET, WATC HDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER TIMI NG
FIGURE 25-8: BROWN-OUT RESET TIMING AND CHARACTERISTICS
VDD
MCLR
Internal
POR
PWRT
Time-out
Internal Reset(1)
Watchdog Timer
33
30
31
34
I/O pins
34
Note 1: Asserted low.
Reset(1)
VBOR
VDD
(Device in Brown-out Reset) (Device not in Brown-out Reset)
33(1)
Note 1: 64 ms delay only if PWRTE bit in the Configuration Words is programmed to ‘0’.
2 ms delay if PWRTE = 0 and VREGEN = 1.
Reset
(due to BOR)
VBOR and VHYST
37
PIC16(L)F1507
DS41586A-page 235 Preliminary 2011 Microchip Technology Inc.
TABLE 25-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET PARAMETERS
FIGURE 25-9: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS
Standard Operating Conditions (unless otherwise stated)
Operating Temperature -40°C TA +125°C
Param
No. Sym. Characteristic Min. Typ† Max. Units Conditions
30 TMCLMCLR Pulse Width (low) 2
5
s
s
VDD = 3.3-5V, -40°C to +85°C
VDD = 3.3-5V
31 TWDTLP Low-Power Watchdog Timer
Time-out Period
10 16 27 ms VDD = 3.3V-5V,
1:16 Prescaler used
33* TPWRT Power-up Timer Period, PWRTE =040 65 140 ms
34* TIOZ I/O high-impedance from MCLR Low
or Watchdog Timer Reset
——2.0s
35 VBOR Brown-out Reset Voltage 2.50
2.30
1.8
2.70
2.40
1.90
2.80
2.50
2.00
V
V
V
BORV = 2.7V
BORV = 2.4V (PIC16F1507)
BORV = 1.9V (PIC16LF1507)
36* VHYST Brown-out Reset Hysteresis 0 25 50 mV -40°C to +85°C
37* TBORDC Brown-out Reset DC Response
Time
135sVDD VBOR
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance
only and are not tested.
Note 1: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as
possible. 0.1 F and 0.01 F values in parallel are recommended.
T0CKI
T1CKI
40 41
42
45 46
47 49
TMR0 or
TMR1
2011 Microchip Technology Inc. Preliminary DS41586A-page 236
PIC16(L)F1507
TABLE 25-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
TABLE 25-6: PIC16(L)F1507 A/D CONVERTER (ADC) CHARACTERISTICS:
Standard Operating Conditions (unless otherwise stated)
Operating Temperature -40°C TA +125°C
Param
No. Sym. Characteristic Min. Typ† Max. Units Conditions
40* TT0H T0CKI High Pulse Width No Prescaler 0.5 TCY + 20 ns
With Prescaler 10 ns
41* TT0L T0CKI Low Pulse Width No Prescaler 0.5 TCY + 20 ns
With Prescaler 10 ns
42* TT0P T0CKI Period Greater of:
20 or TCY + 40
N
ns N = prescale value
(2, 4, ..., 256)
45* TT1H T1CKI High
Time
Synchronous, No Prescaler 0.5 TCY + 20 ns
Synchronous,
with Prescaler
15 ns
Asynchronous 30 ns
46* TT1L T1CKI Low
Time
Synchronous, No Prescaler 0.5 TCY + 20 ns
Synchronous, with Prescaler 15 ns
Asynchronous 30 ns
47* TT1P T1CKI Input
Period
Synchronous Greater of:
30 or TCY + 40
N
ns N = prescale value
(1, 2, 4, 8)
Asynchronous 60 ns
49* TCKEZTMR1 Delay from External Clock Edge to Timer
Increment
2 TOSC —7 TOSC Timers in Sync
mode
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
Note 1: For proper operation, the minimum value of the ADC positive voltage reference must be 1.8V or greater. When selecting
the FVR or the VREF+ pin as the source of the ADC positive voltage reference, be aware that the voltage must be 1.8V
or greater.
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +125°C
Param
No. Sym. Characteristic Min. Typ† Max. Units Conditions
AD01 NRResolution 10 bit
AD02 EIL Integral Error ±1.7 LSb VREF = 5.0V
AD03 EDL Differential Error ±1 LSb No missing codes
VREF = 5.0V
AD04 EOFF Offset Error ±2.5 LSb VREF = 5.0V
AD05 EGN Gain Error ±2.0 LSb VREF = 5.0V
AD06 VREF Reference Voltage(3) 1.8 VDD VVREF = (VREF+ minus VREF-) (NOTE 5)
AD07 VAIN Full-Scale Range VSS —VREF V
AD08 ZAIN Recommended Impedance of
Analog Voltage Source
—— 10kCan go higher if external 0.01F capacitor is
present on input pin.
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
Note 1: Total Absolute Error includes integral, differential, offset and gain errors.
2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.
3: ADC VREF is from external VREF+ pin, VDD pin, whichever is selected as reference input.
4: When ADC is off, it will not consume any current other than leakage current. The power-down current specification
includes any such leakage from the ADC module.
5: FVR voltage selected must be 2.048V or 4.096V.
PIC16(L)F1507
DS41586A-page 237 Preliminary 2011 Microchip Technology Inc.
TABLE 25-7: PIC16(L)F1507 A/D CONVERSION REQUIREMENTS
FIGURE 25-10: PIC16(L)F1507 A/D CONVERSION TIMING (NORMAL MODE)
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +125°C
Param
No. Sym. Characteristic Min. Typ† Max. Units Conditions
AD130* TAD A/D Clock Period 1.0 9.0 sTOSC-based
A/D Internal FRC Oscillator
Period
1.0 1.6 6.0 s ADCS<1:0> = 11 (ADFRC mode)
AD131 TCNV Conversion Time (not including
Acquisition Time)(1) —11—TAD Set GO/DONE bit to conversion
complete
AD132* TACQ Acquisition Time 5.0 s
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
Note 1: The ADRES register may be read on the following TCY cycle.
AD131
AD130
BSF ADCON0, GO
Q4
A/D CLK
A/D Data
ADRES
ADIF
GO
Sample
OLD_DATA
Sampling Stopped
DONE
NEW_DATA
987 3210
Note 1: If the A/D clock source is selected as FRC, a time of TCY is added before the A/D clock starts. This allows the
SLEEP instruction to be executed.
1 TCY
6
AD134 (TOSC/2(1))
1 TCY
AD132
2011 Microchip Technology Inc. Preliminary DS41586A-page 238
PIC16(L)F1507
FIGURE 25-11: PIC16(L)F1507 A/D CON VERSION TIMING (SLEEP MODE )
AD132
AD131
AD130
BSF ADCON0, GO
Q4
A/D CLK
A/D Data
ADRES
ADIF
GO
Sample
OLD_DATA
Sampling Stopped
DONE
NEW_DATA
9 7 3210
Note 1: If the A/D clock source is selected as FRC, a time of TCY is added before the A/D clock starts. This allows the
SLEEP instruction to be executed.
AD134
6
8
1 TCY
(TOSC/2 + TCY(1))
1 TCY
PIC16(L)F1507
DS41586A-page 239 Preliminary 2011 Microchip Technology Inc.
26.0 DC AND AC
CHARACTERISTICS GRAPHS
AND CHARTS
Graphs and charts are not available at this time.
2011 Microchip Technology Inc. Preliminary DS41586A-page 240
PIC16(L)F1507
NOTES:
PIC16(L)F1507
DS41586A-page 241 Preliminary 2011 Microchip Technology Inc.
27.0 DEVELOPMENT SUPPORT
The PIC® microcontrollers and dsPIC® digital signal
controllers are supported with a full range of software
and hardware development tools:
Integrated Development Environment
- MPLAB® IDE Software
Compilers/Assemblers/Linkers
- MPLAB C Compiler for Various Device
Families
- HI-TECH C for Various Device Families
-MPASM
TM Assembler
-MPLINK
TM Object Linker/
MPLIBTM Object Librarian
- MPLAB Assembler/Linker/Librarian for
Various Device Families
Simulators
- MPLAB SIM Software Simulator
•Emulators
- MPLAB REAL ICE™ In-Circuit Emulator
In-Circuit Debuggers
- MPLAB ICD 3
- PICkit™ 3 Debug Express
Device Programmers
- PICkit™ 2 Programmer
- MPLAB PM3 Device Programmer
Low-Cost Demonstration/Development Boards,
Evaluation Kits, and Starter Kits
27.1 MPLAB Integrated Development
Environment Software
The MPLAB IDE software brings an ease of software
development previously unseen in the 8/16/32-bit
microcontroller market. The MPLAB IDE is a Windows®
operating system-based application that contains:
A single graphical interface to all debugging tools
- Simulator
- Programmer (sold separately)
- In-Circuit Emulator (sold separately)
- In-Circuit Debugger (sold separately)
A full-featured editor with color-coded context
A multiple project manager
Customizable data windows with direct edit of
contents
High-level source code debugging
Mouse over variable inspection
Drag and drop variables from source to watch
windows
Extensive on-line help
Integration of select third party tools, such as
IAR C Compilers
The MPLAB IDE allows you to:
Edit your source files (either C or assembly)
One-touch compile or assemble, and download to
emulator and simulator tools (automatically
updates all project information)
Debug using:
- Source files (C or assembly)
- Mixed C and assembly
- Machine code
MPLAB IDE supports multiple debugging tools in a
single development paradigm, from the cost-effective
simulators, through low-cost in-circuit debuggers, to
full-featured emulators. This eliminates the learning
curve when upgrading to tools with increased flexibility
and power.
2011 Microchip Technology Inc. Preliminary DS41586A-page 242
PIC16(L)F1507
27.2 MPLAB C Compilers for Various
Device Families
The MPLAB C Compiler code development systems
are complete ANSI C compilers for Microchip’s PIC18,
PIC24 and PIC32 families of microcontrollers and the
dsPIC30 and dsPIC33 families of digital signal control-
lers. These compilers provide powerful integration
capabilities, superior code optimization and ease of
use.
For easy source level debugging, the compilers provide
symbol information that is optimized to the MPLAB IDE
debugger.
27.3 HI-TECH C for Various Device
Families
The HI-TECH C Compiler code development systems
are complete ANSI C compilers for Microchip’s PIC
family of microcontrollers and the dsPIC family of digital
signal controllers. These compilers provide powerful
integration capabilities, omniscient code generation
and ease of use.
For easy source level debugging, the compilers provide
symbol information that is optimized to the MPLAB IDE
debugger.
The compilers include a macro assembler, linker, pre-
processor, and one-step driver, and can run on multiple
platforms.
27.4 MPASM Assembler
The MPASM Assembler is a full-featured, universal
macro assembler for PIC10/12/16/18 MCUs.
The MPASM Assembler generates relocatable object
files for the MPLINK Object Linker, Intel® standard HEX
files, MAP files to detail memory usage and symbol
reference, absolute LST files that contain source lines
and generated machine code and COFF files for
debugging.
The MPASM Assembler features include:
Integration into MPLAB IDE projects
User-defined macros to streamline
assembly code
Conditional assembly for multi-purpose
source files
Directives that allow complete control over the
assembly process
27.5 MPLINK Object Linker/
MPLIB Object Librarian
The MPLINK Object Linker combines relocatable
objects created by the MPASM Assembler and the
MPLAB C18 C Compiler. It can link relocatable objects
from precompiled libraries, using directives from a
linker script.
The MPLIB Object Librarian manages the creation and
modification of library files of precompiled code. When
a routine from a library is called from a source file, only
the modules that contain that routine will be linked in
with the application. This allows large libraries to be
used efficiently in many different applications.
The object linker/library features include:
Efficient linking of single libraries instead of many
smaller files
Enhanced code maintainability by grouping
related modules together
Flexible creation of libraries with easy module
listing, replacement, deletion and extraction
27.6 MPLAB Assembler, Linker and
Librarian for Various Device
Families
MPLAB Assembler produces relocatable machine
code from symbolic assembly language for PIC24,
PIC32 and dsPIC devices. MPLAB C Compiler uses
the assembler to produce its object file. The assembler
generates relocatable object files that can then be
archived or linked with other relocatable object files and
archives to create an executable file. Notable features
of the assembler include:
Support for the entire device instruction set
Support for fixed-point and floating-point data
Command line interface
Rich directive set
Flexible macro language
MPLAB IDE compatibility
PIC16(L)F1507
DS41586A-page 243 Preliminary 2011 Microchip Technology Inc.
27.7 MPLAB SIM Software Simulator
The MPLAB SIM Software Simulator allows code
development in a PC-hosted environment by simulat-
ing the PIC MCUs and dsPIC® DSCs on an instruction
level. On any given instruction, the data areas can be
examined or modified and stimuli can be applied from
a comprehensive stimulus controller. Registers can be
logged to files for further run-time analysis. The trace
buffer and logic analyzer display extend the power of
the simulator to record and track program execution,
actions on I/O, most peripherals and internal registers.
The MPLAB SIM Software Simulator fully supports
symbolic debugging using the MPLAB C Compilers,
and the MPASM and MPLAB Assemblers. The soft-
ware simulator offers the flexibility to develop and
debug code outside of the hardware laboratory envi-
ronment, making it an excellent, economical software
development tool.
27.8 MPLAB REAL ICE In-Circuit
Emulator System
MPLAB REAL ICE In-Circuit Emulator System is
Microchip’s next generation high-speed emulator for
Microchip Flash DSC and MCU devices. It debugs and
programs PIC® Flash MCUs and dsPIC® Flash DSCs
with the easy-to-use, powerful graphical user interface of
the MPLAB Integrated Development Environment (IDE),
included with each kit.
The emulator is connected to the design engineer’s PC
using a high-speed USB 2.0 interface and is connected
to the target with either a connector compatible with in-
circuit debugger systems (RJ11) or with the new high-
speed, noise tolerant, Low-Voltage Differential Signal
(LVDS) interconnection (CAT5).
The emulator is field upgradable through future firmware
downloads in MPLAB IDE. In upcoming releases of
MPLAB IDE, new devices will be supported, and new
features will be added. MPLAB REAL ICE offers
significant advantages over competitive emulators
including low-cost, full-speed emulation, run-time
variable watches, trace analysis, complex breakpoints, a
ruggedized probe interface and long (up to three meters)
interconnection cables.
27.9 MPLAB ICD 3 In-Circuit Debugger
System
MPLAB ICD 3 In-Circuit Debugger System is Micro-
chip's most cost effective high-speed hardware
debugger/programmer for Microchip Flash Digital Sig-
nal Controller (DSC) and microcontroller (MCU)
devices. It debugs and programs PIC® Flash microcon-
trollers and dsPIC® DSCs with the powerful, yet easy-
to-use graphical user interface of MPLAB Integrated
Development Environment (IDE).
The MPLAB ICD 3 In-Circuit Debugger probe is con-
nected to the design engineer's PC using a high-speed
USB 2.0 interface and is connected to the target with a
connector compatible with the MPLAB ICD 2 or MPLAB
REAL ICE systems (RJ-11). MPLAB ICD 3 supports all
MPLAB ICD 2 headers.
27.10 PI Ckit 3 In-Circuit De bugger/
Programmer and
PICkit 3 Debug Express
The MPLAB PICkit 3 allows debugging and program-
ming of PIC® and dsPIC® Flash microcontrollers at a
most affordable price point using the powerful graphical
user interface of the MPLAB Integrated Development
Environment (IDE). The MPLAB PICkit 3 is connected
to the design engineer's PC using a full speed USB
interface and can be connected to the target via an
Microchip debug (RJ-11) connector (compatible with
MPLAB ICD 3 and MPLAB REAL ICE). The connector
uses two device I/O pins and the reset line to imple-
ment in-circuit debugging and In-Circuit Serial Pro-
gramming™.
The PICkit 3 Debug Express include the PICkit 3, demo
board and microcontroller, hookup cables and CDROM
with user’s guide, lessons, tutorial, compiler and
MPLAB IDE software.
2011 Microchip Technology Inc. Preliminary DS41586A-page 244
PIC16(L)F1507
27.11 PICkit 2 Development
Programmer/Debugger and
PICkit 2 Debug Express
The PICkit™ 2 Development Programmer/Debugger is
a low-cost development tool with an easy to use inter-
face for programming and debugging Microchip’s Flash
families of microcontrollers. The full featured
Windows® programming interface supports baseline
(PIC10F, PIC12F5xx, PIC16F5xx), midrange
(PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30,
dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit
microcontrollers, and many Microchip Serial EEPROM
products. With Microchip’s powerful MPLAB Integrated
Development Environment (IDE) the PICkit™ 2
enables in-circuit debugging on most PIC® microcon-
trollers. In-Circuit-Debugging runs, halts and single
steps the program while the PIC microcontroller is
embedded in the application. When halted at a break-
point, the file registers can be examined and modified.
The PICkit 2 Debug Express include the PICkit 2, demo
board and microcontroller, hookup cables and CDROM
with user’s guide, lessons, tutorial, compiler and
MPLAB IDE software.
27.12 MPLAB PM3 Device Programmer
The MPLAB PM3 Device Programmer is a universal,
CE compliant device programmer with programmable
voltage verification at VDDMIN and VDDMAX for
maximum reliability. It features a large LCD display
(128 x 64) for menus and error messages and a modu-
lar, detachable socket assembly to support various
package types. The ICSP™ cable assembly is included
as a standard item. In Stand-Alone mode, the MPLAB
PM3 Device Programmer can read, verify and program
PIC devices without a PC connection. It can also set
code protection in this mode. The MPLAB PM3
connects to the host PC via an RS-232 or USB cable.
The MPLAB PM3 has high-speed communications and
optimized algorithms for quick programming of large
memory devices and incorporates an MMC card for file
storage and data applications.
27.13 Demonstration/Development
Boards, Evaluation Kits, and
Starter Kits
A wide variety of demonstration, development and
evaluation boards for various PIC MCUs and dsPIC
DSCs allows quick application development on fully func-
tional systems. Most boards include prototyping areas for
adding custom circuitry and provide application firmware
and source code for examination and modification.
The boards support a variety of features, including LEDs,
temperature sensors, switches, speakers, RS-232
interfaces, LCD displays, potentiometers and additional
EEPROM memory.
The demonstration and development boards can be
used in teaching environments, for prototyping custom
circuits and for learning about various microcontroller
applications.
In addition to the PICDEM™ and dsPICDEM™ demon-
stration/development board series of circuits, Microchip
has a line of evaluation kits and demonstration software
for analog filter design, KEELOQ® security ICs, CAN,
IrDA®, PowerSmart battery management, SEEVAL®
evaluation system, Sigma-Delta ADC, flow rate
sensing, plus many more.
Also available are starter kits that contain everything
needed to experience the specified device. This usually
includes a single application and debug capability, all
on one board.
Check the Microchip web page (www.microchip.com)
for the complete list of demonstration, development
and evaluation kits.
PIC16(L)F1507
DS41586A-page 245 Preliminary 2011 Microchip Technology Inc.
28.0 PACKAGING INFORMATION
28.1 Package Marking Information
*Standard PICmicro® device marking consists of Microchip part number, year code, week code and
traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check
with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP
price.
Legend: XX...X Customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ‘01’)
NNN Alphanumeric traceability code
Pb-free JEDEC designator for Matte Tin (Sn)
*This package is Pb-free. The Pb-free JEDEC designator ( )
can be found on the outer packaging for this package.
Note: In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.
3
e
3
e
20-Lead PDIP (300 mil) Example
XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX
YYWWNNN
20-Lead SOIC (7.50 mm) Example
XXXXXXXXXXXX
YYWWNNN
XXXXXXXXXXXX
XXXXXXXXXXXX
PIC16F1507
-I/P
3
e
1120123
PIC16F1507
-I/SO
3
e
1120123
2011 Microchip Technology Inc. Preliminary DS41586A-page 246
PIC16(L)F1507
28.2 Package Marking Information
*Standard PICmicro® device marking consists of Microchip part number, year code, week code and
traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check
with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP
price.
Legend: XX...X Customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ‘01’)
NNN Alphanumeric traceability code
Pb-free JEDEC designator for Matte Tin (Sn)
*This package is Pb-free. The Pb-free JEDEC designator ( )
can be found on the outer packaging for this package.
Note: In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.
3
e
3
e
20-Lead SSOP (5.30 mm) Example
20-Lead QFN (4x4x0.9 mm) Example
PIN 1 PIN 1
-I/SS
3
e
1120123
PIC16F1507
PIC16
F1507
I/ML
120123
3
e
PIC16(L)F1507
DS41586A-page 247 Preliminary 2011 Microchip Technology Inc.
28.3 Package Details
The following sections give the technical details of the packages.
/HDG3ODVWLF'XDO,Q/LQH3±PLO%RG\>3',3@
1RWHV
 3LQYLVXDOLQGH[IHDWXUHPD\YDU\EXWPXVWEHORFDWHGZLWKLQWKHKDWFKHGDUHD
 6LJQLILFDQW&KDUDFWHULVWLF
 'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGSHUVLGH
 'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0
%6& %DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV
1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW
KWWSZZZPLFURFKLSFRPSDFNDJLQJ
8QLWV ,1&+(6
'LPHQVLRQ/LPLWV 0,1 120 0$;
1XPEHURI3LQV 1 
3LWFK H %6&
7RSWR6HDWLQJ3ODQH $ ± ± 
0ROGHG3DFNDJH7KLFNQHVV $   
%DVHWR6HDWLQJ3ODQH $  ± ±
6KRXOGHUWR6KRXOGHU:LGWK (   
0ROGHG3DFNDJH:LGWK (   
2YHUDOO/HQJWK '   
7LSWR6HDWLQJ3ODQH /   
/HDG7KLFNQHVV F   
8SSHU/HDG:LGWK E   
/RZHU/HDG:LGWK E   
2YHUDOO5RZ6SDFLQJ H% ± ± 
N
E1
NOTE 1
D
123
A
A1
A2
L
e
b1
b
E
c
eB
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &%
2011 Microchip Technology Inc. Preliminary DS41586A-page 248
PIC16(L)F1507
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
PIC16(L)F1507
DS41586A-page 249 Preliminary 2011 Microchip Technology Inc.
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
2011 Microchip Technology Inc. Preliminary DS41586A-page 250
PIC16(L)F1507
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
PIC16(L)F1507
DS41586A-page 251 Preliminary 2011 Microchip Technology Inc.
/HDG3ODVWLF6KULQN6PDOO2XWOLQH66±PP%RG\>6623@
1RWHV
 3LQYLVXDOLQGH[IHDWXUHPD\YDU\EXWPXVWEHORFDWHGZLWKLQWKHKDWFKHGDUHD
 'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH
 'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0
%6& %DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV
5() 5HIHUHQFH'LPHQVLRQXVXDOO\ZLWKRXWWROHUDQFHIRULQIRUPDWLRQSXUSRVHVRQO\
1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW
KWWSZZZPLFURFKLSFRPSDFNDJLQJ
8QLWV 0,//,0(7(56
'LPHQVLRQ/LPLWV 0,1 120 0$;
1XPEHURI3LQV 1 
3LWFK H %6&
2YHUDOO+HLJKW $ ± ± 
0ROGHG3DFNDJH7KLFNQHVV $   
6WDQGRII $  ± ±
2YHUDOO:LGWK (   
0ROGHG3DFNDJH:LGWK (   
2YHUDOO/HQJWK '   
)RRW/HQJWK /   
)RRWSULQW / 5()
/HDG7KLFNQHVV F  ± 
)RRW$QJOH   
/HDG:LGWK E  ± 
φ
L
L1
A2 c
e
b
A1
A
12
NOTE 1
E1
E
D
N
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &%
2011 Microchip Technology Inc. Preliminary DS41586A-page 252
PIC16(L)F1507
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
PIC16(L)F1507
DS41586A-page 253 Preliminary 2011 Microchip Technology Inc.
/HDG3ODVWLF4XDG)ODW1R/HDG3DFNDJH0/±[[PP%RG\>4)1@
1RWHV
 3LQYLVXDOLQGH[IHDWXUHPD\YDU\EXWPXVWEHORFDWHGZLWKLQWKHKDWFKHGDUHD
 3DFNDJHLVVDZVLQJXODWHG
 'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0
%6& %DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV
5() 5HIHUHQFH'LPHQVLRQXVXDOO\ZLWKRXWWROHUDQFHIRULQIRUPDWLRQSXUSRVHVRQO\
1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW
KWWSZZZPLFURFKLSFRPSDFNDJLQJ
8QLWV 0,//,0(7(56
'LPHQVLRQ/LPLWV 0,1 120 0$;
1XPEHURI3LQV 1 
3LWFK H %6&
2YHUDOO+HLJKW $   
6WDQGRII $   
&RQWDFW7KLFNQHVV $ 5()
2YHUDOO:LGWK ( %6&
([SRVHG3DG:LGWK (   
2YHUDOO/HQJWK ' %6&
([SRVHG3DG/HQJWK '   
&RQWDFW:LGWK E   
&RQWDFW/HQJWK /   
&RQWDFWWR([SRVHG3DG .  ± ±
D
EXPOSED
PAD
E
E2
2
1
N
TOP VIEW NOTE 1
N
L
K
b
e
D2
2
1
A
A1
A3
BOTTOM VIEW
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &%
2011 Microchip Technology Inc. Preliminary DS41586A-page 254
PIC16(L)F1507
1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW
KWWSZZZPLFURFKLSFRPSDFNDJLQJ
PIC16(L)F1507
DS41586A-page 255 Preliminary 2011 Microchip Technology Inc.
APPENDIX A: DATA SHEET
REVISION HISTORY
Revision A
Original release (06/2011).
2011 Microchip Technology Inc. Preliminary DS41586A-page 256
PIC16(L)F1507
NOTES:
PIC16(L)F1507
DS41586A-page 257 Preliminary 2011 Microchip Technology Inc.
INDEX
A
A/D
Specifications.................................................... 236, 237
Absolute Maximum Ratings ..............................................221
AC Characteristics
Industrial and Extended ............................................ 232
Load Conditions ........................................................ 231
ADC................................................................................... 121
Acquisition Requirements ......................................... 132
Associated registers..................................................134
Block Diagram...........................................................121
Calculating Acquisition Time.....................................132
Channel Selection..................................................... 122
Configuration............................................................. 122
Configuring Interrupt .................................................126
Conversion Clock......................................................122
Conversion Procedure .............................................. 126
Internal Sampling Switch (RSS) Impedance.............. 132
Interrupts................................................................... 124
Operation .................................................................. 125
Operation During Sleep ............................................ 125
Port Configuration ..................................................... 122
Reference Voltage (VREF)......................................... 122
Source Impedance .................................................... 132
Starting an A/D Conversion ...................................... 124
ADCON0 Register....................................................... 25, 127
ADCON1 Register....................................................... 25, 128
ADCON2 Register.............................................................129
ADDFSR ........................................................................... 211
ADDWFC .......................................................................... 211
ADRESH Register...............................................................25
ADRESH Register (ADFM = 0) .........................................130
ADRESH Register (ADFM = 1) .........................................131
ADRESL Register (ADFM = 0).......................................... 130
ADRESL Register (ADFM = 1).......................................... 131
Alternate Pin Function....................................................... 100
Analog-to-Digital Converter. See ADC
ANSELA Register..............................................................103
ANSELB Register..............................................................107
ANSELC Register .............................................................110
APFCON Register.............................................................100
Assembler
MPASM Assembler...................................................242
Automatic Context Saving...................................................65
B
Bank 10............................................................................... 27
Bank 11............................................................................... 27
Bank 12............................................................................... 28
Bank 13............................................................................... 28
Bank 2.................................................................................26
Bank 3.................................................................................26
Bank 30............................................................................... 29
Bank 4.................................................................................26
Bank 5.................................................................................26
Bank 6.................................................................................26
Bank 7.................................................................................27
Bank 8.................................................................................27
Bank 9.................................................................................27
Block Diagrams
ADC .......................................................................... 121
ADC Transfer Function .............................................133
Analog Input Model ................................................... 133
Clock Source .............................................................. 45
Generic I/O Port.......................................................... 99
Interrupt Logic............................................................. 61
NCO.......................................................................... 178
On-Chip Reset Circuit................................................. 53
PIC16(L)F1507 ....................................................... 4, 10
PWM......................................................................... 155
Timer0 ...................................................................... 135
Timer1 ...................................................................... 139
Timer1 Gate.............................................. 144, 145, 146
Timer2 ...................................................................... 151
Voltage Reference.................................................... 117
BORCON Register.............................................................. 55
BRA .................................................................................. 212
Brown-out Reset (BOR)...................................................... 55
Specifications ........................................................... 235
Timing and Characteristics ....................................... 234
C
C Compilers
MPLAB C18.............................................................. 242
CALL................................................................................. 213
CALLW ............................................................................. 213
CLCDATA Register........................................................... 175
CLCxCON Register .......................................................... 167
CLCxGLS0 Register ......................................................... 171
CLCxGLS1 Register ......................................................... 172
CLCxGLS2 Register ......................................................... 173
CLCxGLS3 Register ......................................................... 174
CLCxPOL Register ........................................................... 168
CLCxSEL0 Register.......................................................... 169
Clock Sources
External Modes........................................................... 46
EC....................................................................... 46
Internal Modes............................................................ 47
HFINTOSC ......................................................... 47
Internal Oscillator Clock Switch Timing .............. 48
LFINTOSC.......................................................... 47
Clock Switching .................................................................. 50
Code Examples
A/D Conversion......................................................... 126
Initializing PORTA..................................................... 101
Writing to Flash Program Memory .............................. 92
Comparators
C2OUT as T1 Gate................................................... 141
Complementary Waveform Generator (CWG).................. 187
CONFIG1 Register ............................................................. 40
CONFIG2 Register ............................................................. 41
Core Function Register....................................................... 24
Customer Change Notification Service............................. 262
Customer Notification Service .......................................... 262
Customer Support............................................................. 262
CWG
Auto-shutdown Control ............................................. 194
Clock Source ............................................................ 190
Output Control .......................................................... 190
Selectable Input Sources.......................................... 190
CWGxCON0 Register....................................................... 197
CWGxCON1 Register....................................................... 198
CWGxCON2 Register....................................................... 199
CWGxDBF Register.......................................................... 200
CWGxDBR Register ......................................................... 200
2011 Microchip Technology Inc. Preliminary DS41586A-page 258
PIC16(L)F1507
D
Data Memory ...................................................................... 17
DC and AC Characteristics ............................................... 239
DC Characteristics
Extended and Industrial ............................................ 228
Industrial and Extended ............................................ 223
Development Support ....................................................... 241
Device Configuration........................................................... 39
Code Protection .......................................................... 42
Configuration Word..................................................... 39
User ID.................................................................. 42, 43
Device ID Register .............................................................. 43
Device Overview ............................................................. 9, 79
E
Effects of Reset
PWM mode ............................................................... 157
Electrical Specifications .................................................... 221
Enhanced Mid-Range CPU................................................. 13
Extended Instruction Set
ADDFSR ................................................................... 211
F
Firmware Instructions........................................................ 207
Fixed Voltage Reference (FVR)........................................ 117
Associated Registers ................................................ 118
Flash Program Memory ...................................................... 83
Associated Registers .................................................. 98
Configuration Word w/ Flash Program Memory.......... 98
Erasing........................................................................ 87
Modifying..................................................................... 93
Write Verify ................................................................. 95
Writing......................................................................... 89
FSR Register ...................................................................... 24
FVRCON (Fixed Voltage Reference Control) Register..... 118
I
INDF Register ..................................................................... 24
Indirect Addressing .............................................................34
Instruction Format ............................................................. 208
Instruction Set ................................................................... 207
ADDLW ..................................................................... 211
ADDWF..................................................................... 211
ADDWFC .................................................................. 211
ANDLW ..................................................................... 211
ANDWF..................................................................... 211
BRA........................................................................... 212
CALL ......................................................................... 213
CALLW...................................................................... 213
LSLF ......................................................................... 215
LSRF......................................................................... 215
MOVF........................................................................ 215
MOVIW ..................................................................... 216
MOVLB ..................................................................... 216
MOVWI ..................................................................... 217
OPTION .................................................................... 217
RESET ...................................................................... 217
SUBWFB................................................................... 219
TRIS.......................................................................... 220
BCF........................................................................... 212
BSF........................................................................... 212
BTFSC ...................................................................... 212
BTFSS ...................................................................... 212
CALL ......................................................................... 213
CLRF......................................................................... 213
CLRW ....................................................................... 213
CLRWDT .................................................................. 213
COMF ....................................................................... 213
DECF........................................................................ 213
DECFSZ ................................................................... 214
GOTO ....................................................................... 214
INCF ......................................................................... 214
INCFSZ..................................................................... 214
IORLW...................................................................... 214
IORWF...................................................................... 214
MOVLW .................................................................... 216
MOVWF.................................................................... 216
NOP.......................................................................... 217
RETFIE..................................................................... 218
RETLW ..................................................................... 218
RETURN................................................................... 218
RLF........................................................................... 218
RRF .......................................................................... 219
SLEEP ...................................................................... 219
SUBLW..................................................................... 219
SUBWF..................................................................... 219
SWAPF..................................................................... 220
XORLW .................................................................... 220
XORWF .................................................................... 220
INTCON Register................................................................ 66
Internal Oscillator Block
INTOSC
Specifications ................................................... 232
Internal Sampling Switch (RSS) Impedance ..................... 132
Internet Address ............................................................... 262
Interrupt-On-Change......................................................... 111
Associated Registers................................................ 115
Interrupts ............................................................................ 61
ADC .......................................................................... 126
Associated registers w/ Interrupts .............................. 73
Configuration Word w/ Clock Sources........................ 52
TMR1........................................................................ 143
INTOSC Specifications..................................................... 232
IOCAF Register ................................................................ 113
IOCAN Register................................................................ 113
IOCAP Register ................................................................ 113
IOCBF Register ................................................................ 114
IOCBN Register................................................................ 114
IOCBP Register ................................................................ 114
L
LATA Register .......................................................... 103, 109
LATB Register .................................................................. 106
Load Conditions................................................................ 231
LSLF ................................................................................. 215
LSRF ................................................................................ 215
M
MCLR ................................................................................. 56
Internal........................................................................ 56
Memory Organization ......................................................... 15
Data ............................................................................ 17
Program...................................................................... 15
Microchip Internet Web Site.............................................. 262
MOVIW ............................................................................. 216
MOVLB ............................................................................. 216
MOVWI ............................................................................. 217
MPLAB ASM30 Assembler, Linker, Librarian ................... 242
MPLAB Integrated Development Environment Software.. 241
MPLAB PM3 Device Programmer .................................... 244
MPLAB REAL ICE In-Circuit Emulator System ................ 243
PIC16(L)F1507
DS41586A-page 259 Preliminary 2011 Microchip Technology Inc.
MPLINK Object Linker/MPLIB Object Librarian ................242
N
NCO
Associated registers..................................................186
NCOxACCH Register........................................................ 184
NCOxACCL Register ........................................................ 184
NCOxACCU Register........................................................ 184
NCOxCLK Register...........................................................183
NCOxCON Register..........................................................183
NCOxINCH Register ......................................................... 185
NCOxINCL Register.......................................................... 185
Numerically Controlled Oscillator (NCO)...........................177
O
OPCODE Field Descriptions .............................................207
OPTION ............................................................................ 217
OPTION Register..............................................................137
OSCCON Register.............................................................. 51
Oscillator
Associated Registers ..................................................52
Associated registers..................................................201
Oscillator Module ................................................................ 45
ECH ............................................................................ 45
ECL ............................................................................. 45
ECM ............................................................................ 45
INTOSC ......................................................................45
Oscillator Parameters........................................................232
Oscillator Specifications.................................................... 232
Oscillator Start-up Timer (OST)
Specifications............................................................ 235
OSCSTAT Register.............................................................52
P
Packaging ......................................................................... 245
Marking ............................................................. 245, 246
PDIP Details..............................................................247
PCL and PCLATH............................................................... 14
PCL Register.......................................................................24
PCLATH Register................................................................24
PCON Register .............................................................25, 59
PIE1 Register................................................................25, 67
PIE2 Register................................................................25, 68
PIE3 Register................................................................25, 69
Pinout Descriptions
PIC16(L)F1507 ........................................................... 11
PIR1 Register................................................................ 25, 70
PIR2 Register................................................................ 25, 71
PIR3 Register................................................................ 25, 72
PMADR Registers...............................................................83
PMADRH Registers ............................................................ 83
PMADRL Register...............................................................96
PMADRL Registers.............................................................83
PMCON1 Register ........................................................ 83, 97
PMCON2 Register ........................................................ 83, 98
PMDATH Register...............................................................96
PMDATL Register ...............................................................96
PMDRH Register................................................................. 96
PORTA.............................................................................. 101
ANSELA Register .....................................................101
Associated Registers ................................................ 104
Configuration Word w/ PORTA ................................. 104
LATA Register............................................................. 26
PORTA Register ......................................................... 25
Specifications............................................................ 233
PORTA Register ...............................................................102
PORTB
ANSELB Register ..................................................... 105
Associated Registers................................................ 107
LATB Register ............................................................ 26
Pin Descriptions and Diagrams ................................ 105
PORTB Register......................................................... 25
PORTB Register............................................................... 106
PORTC
ANSELC Register..................................................... 108
Associated Registers................................................ 110
LATC Register ............................................................ 26
Pin Descriptions and Diagrams ................................ 108
PORTC Register......................................................... 25
PORTC Register............................................................... 109
Power-Down Mode (Sleep)................................................. 75
Associated Registers.................................................. 78
Power-on Reset.................................................................. 54
Power-up Time-out Sequence ............................................ 56
Power-up Timer (PWRT) .................................................... 54
Specifications ........................................................... 235
PR2 Register ...................................................................... 25
Program Memory................................................................ 15
Map and Stack (PIC16(L)F1507 ................................. 16
Programming, Device Instructions.................................... 207
Pulse Width Modulation (PWM)........................................ 155
Associated registers w/ PWM................................... 160
PWM Mode
Duty Cycle ........................................................ 156
Effects of Reset ................................................ 157
Example PWM Frequencies and
Resolutions, 20 MHZ................................ 157
Example PWM Frequencies and
Resolutions, 8 MHz .................................. 157
Operation in Sleep Mode.................................. 157
Setup for Operation using PWMx pins ............. 158
System Clock Frequency Changes .................. 157
PWM Period.............................................................. 156
Setup for PWM Operation using PWMx Pins ........... 158
PWMxCON Register......................................................... 159
PWMxDCH Register ......................................................... 160
PWMxDCL Register.......................................................... 160
R
Reader Response............................................................. 263
Read-Modify-Write Operations ......................................... 207
Registers
ADCON0 (ADC Control 0) ........................................ 127
ADCON1 (ADC Control 1) ........................................ 128
ADCON2 (ADC Control 2) ........................................ 129
ADRESH (ADC Result High) with ADFM = 0) .......... 130
ADRESH (ADC Result High) with ADFM = 1) .......... 131
ADRESL (ADC Result Low) with ADFM = 0)............ 130
ADRESL (ADC Result Low) with ADFM = 1)............ 131
ANSELA (PORTA Analog Select)............................. 103
ANSELB (PORTB Analog Select)............................. 107
ANSELC (PORTC Analog Select) ............................ 110
APFCON (Alternate Pin Function Control) ............... 100
BORCON Brown-out Reset Control) .......................... 55
CLCDATA (Data Output) .......................................... 175
CLCxCON (CLCx Control)........................................ 167
CLCxGLS0 (Gate 1 Logic Select)............................. 171
CLCxGLS1 (Gate 2 Logic Select)............................. 172
CLCxGLS2 (Gate 3 Logic Select)............................. 173
CLCxGLS3 (Gate 4 Logic Select)............................. 174
CLCxPOL (Signal Polarity Control)........................... 168
CLCxSEL0 (Multiplexer Data 1 and 2 Select)........... 169
2011 Microchip Technology Inc. Preliminary DS41586A-page 260
PIC16(L)F1507
Configuration Word 1 .................................................. 40
Configuration Word 2 .................................................. 41
Core Function, Summary............................................ 24
CWGxCON0 (CWG Control 0).................................. 197
CWGxCON1 (CWG Control 1).................................. 198
CWGxCON2 (CWG Control 1).................................. 199
CWGxDBF (CWGx Dead Band Falling Count) ......... 200
CWGxDBR (CWGx Dead Band Rising Count) ......... 200
Device ID .................................................................... 43
FVRCON................................................................... 118
INTCON (Interrupt Control)......................................... 66
IOCAF (Interrupt-on-Change PORTA Flag).............. 113
IOCAN (Interrupt-on-Change PORTA
Negative Edge) ................................................. 113
IOCAP (Interrupt-on-Change PORTA
Positive Edge)................................................... 113
IOCBF (Interrupt-on-Change PORTB Flag).............. 114
IOCBN (Interrupt-on-Change PORTB
Negative Edge) ................................................. 114
IOCBP (Interrupt-on-Change PORTB
Positive Edge)................................................... 114
LATA (Data Latch PORTA)....................................... 103
LATB (Data Latch PORTB)....................................... 106
LATC (Data Latch PORTC) ......................................109
NCOxACCH (NCOx Accumulator High Byte) ........... 184
NCOxACCL (NCOx Accumulator Low Byte)............. 184
NCOxACCU (NCOx Accumulator Upper Byte)......... 184
NCOxCLK (NCOx Clock Control) ............................. 183
NCOxCON (NCOx Control) ...................................... 183
NCOxINCH (NCOx Increment High Byte)................. 185
NCOxINCL (NCOx Increment Low Byte).................. 185
OPTION_REG (OPTION) ......................................... 137
OSCCON (Oscillator Control) ..................................... 51
OSCSTAT (Oscillator Status) ..................................... 52
PCON (Power Control Register) ................................. 59
PCON (Power Control) ............................................... 59
PIE1 (Peripheral Interrupt Enable 1)........................... 67
PIE2 (Peripheral Interrupt Enable 2)........................... 68
PIE3 (Peripheral Interrupt Enable 3)........................... 69
PIR1 (Peripheral Interrupt Register 1) ........................ 70
PIR2 (Peripheral Interrupt Request 2) ........................ 71
PIR3 (Peripheral Interrupt Request 3) ........................ 72
PMADRL (Program Memory Address)........................ 96
PMCON1 (Program Memory Control 1)...................... 97
PMCON2 (Program Memory Control 2)...................... 98
PMDATH (Program Memory Data)............................. 96
PMDATL (Program Memory Data).............................. 96
PMDRH (Program Memory Address) ......................... 96
PORTA...................................................................... 102
PORTB...................................................................... 106
PORTC ..................................................................... 109
PWMxCON (PWM Control)....................................... 159
PWMxDCH (PWM Control)....................................... 160
PWMxDCL (PWM Control) ....................................... 160
Special Function, Summary........................................25
STATUS...................................................................... 18
T1CON (Timer1 Control)........................................... 147
T1GCON (Timer1 Gate Control)............................... 148
T2CON...................................................................... 153
TRISA (Tri-State PORTA)......................................... 102
TRISB (Tri-State PORTB)......................................... 106
TRISC (Tri-State PORTC) ........................................ 109
VREGCON (Voltage Regulator Control) ..................... 78
WDTCON (Watchdog Timer Control) ......................... 81
WPUA (Weak Pull-up PORTA)................................. 104
WPUB (Weak Pull-up PORTB)................................. 107
WPUC (Weak Pull-up PORTC) ................................ 110
RESET.............................................................................. 217
Reset .................................................................................. 53
Reset Instruction................................................................. 56
Resets ................................................................................ 53
Associated Registers.................................................. 60
Configuration Word w/ Resets.................................... 60
Revision History................................................................ 255
S
Software Simulator (MPLAB SIM) .................................... 243
Special Function Registers (SFRs)..................................... 25
Stack................................................................................... 32
Accessing ................................................................... 32
Reset .......................................................................... 34
Stack Overflow/Underflow .................................................. 56
STATUS Register ............................................................... 18
SUBWFB .......................................................................... 219
T
T1CON Register ......................................................... 25, 147
T1GCON Register ............................................................ 148
T2CON (Timer2) Register................................................. 153
T2CON Register ................................................................. 25
Temperature Indicator
Associated Registers................................................ 120
Temperature Indicator Module.......................................... 119
Thermal Considerations.................................................... 230
Timer0 .............................................................................. 135
Associated Registers................................................ 137
Operation.................................................................. 135
Specifications ........................................................... 236
Timer1 .............................................................................. 139
Associated registers ................................................. 149
Asynchronous Counter Mode ................................... 141
Reading and Writing......................................... 141
Clock Source Selection ............................................ 140
Interrupt .................................................................... 143
Operation.................................................................. 140
Operation During Sleep ............................................ 143
Prescaler .................................................................. 141
Specifications ........................................................... 236
Timer1 Gate
Selecting Source .............................................. 141
TMR1H Register....................................................... 139
TMR1L Register ....................................................... 139
Timer2 .............................................................................. 151
Associated registers ................................................. 154
Timers
Timer1
T1CON ............................................................. 147
T1GCON........................................................... 148
Timer2
T2CON ............................................................. 153
Timing Diagrams
A/D Conversion ........................................................ 237
A/D Conversion (Sleep Mode).................................. 238
Brown-out Reset (BOR)............................................ 234
Brown-out Reset Situations ........................................ 55
CLKOUT and I/O ...................................................... 233
Clock Timing............................................................. 232
INT Pin Interrupt ......................................................... 64
Internal Oscillator Switch Timing ................................ 49
Reset Start-up Sequence ........................................... 57
Reset, WDT, OST and Power-up Timer ................... 234
PIC16(L)F1507
DS41586A-page 261 Preliminary 2011 Microchip Technology Inc.
Timer0 and Timer1 External Clock ........................... 235
Timer1 Incrementing Edge........................................ 143
Wake-up from Interrupt ...............................................76
Timing Parameter Symbology...........................................231
TMR0 Register....................................................................25
TMR1H Register ................................................................. 25
TMR1L Register.................................................................. 25
TMR2 Register....................................................................25
TRIS.................................................................................. 220
TRISA Register ........................................................... 25, 102
TRISB................................................................................ 105
TRISB Register ........................................................... 25, 106
TRISC ............................................................................... 108
TRISC Register........................................................... 25, 109
V
VREF. SEE ADC Reference Voltage
VREGCON Register............................................................ 78
W
Wake-up Using Interrupts ...................................................75
Watchdog Timer (WDT) ...................................................... 56
Associated Registers ..................................................82
Configuration Word w/ Watchdog Timer ..................... 82
Modes ......................................................................... 80
Specifications............................................................ 235
WDTCON Register.............................................................. 81
WPUA Register................................................................. 104
WPUB Register................................................................. 107
WPUC Register................................................................. 110
Write Protection...................................................................42
WWW Address..................................................................262
2011 Microchip Technology Inc. Preliminary DS41586A-page 262
PIC16(L)F1507
NOTES:
PIC16(L)F1507
DS41586A-page 263 2011 Microchip Technology Inc.
THE MI CR O C H IP WE B SIT E
Microchip provides online support via our WWW site at
www.microchip.com. This web site is used as a means
to make files and information easily available to
customers. Accessible by using your favorite Internet
browser, the web site contains the following
information:
Product Support – Data sheets and errata,
application notes and sample programs, design
resources, user’s guides and hardware support
documents, latest software releases and archived
software
General Technical Support – Frequently Asked
Questions (FAQ), technical support requests,
online discussion groups, Microchip consultant
program member listing
Business of Microchip – Product selector and
ordering guides, latest Microchip press releases,
listing of seminars and events, listings of
Microchip sales offices, distributors and factory
representatives
CUSTOMER CHANGE NOTIFICATION
SERVICE
Microchip’s customer notification service helps keep
customers current on Microchip products. Subscribers
will receive e-mail notification whenever there are
changes, updates, revisions or errata related to a
specified product family or development tool of interest.
To register, access the Microchip web site at
www.microchip.com. Under “Support”, click on
“Customer Change Notification” and follow the
registration instructions.
CUSTOMER SUPP ORT
Users of Microchip products can receive assistance
through several channels:
Distributor or Representative
Local Sales Office
Field Application Engineer (FAE)
Technical Support
Development Systems Information Line
Customers should contact their distributor,
representative or field application engineer (FAE) for
support. Local sales offices are also available to help
customers. A listing of sales offices and locations is
included in the back of this document.
Technic al suppo rt is avail able throug h the we b site
at: http://microchip.com/support
2011 Microchip Technology Inc. Preliminary DS41586A-page 264
PIC16(L)F1507
READER RESP ONSE
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip
product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our
documentation can better serve you, please FAX your comments to the Technical Publications Manager at
(480) 792-4150.
Please list the following information, and use this outline to provide us with your comments about this document.
TO: Technical Publications Manager
RE: Reader Response
Total Pages Sent ________
From: Name
Company
Address
City / State / ZIP / Country
Telephone: (_______) _________ - _________
Application (optional):
Would you like a reply? Y N
Device: Literature Number:
Questions:
FAX: (______) _________ - _________
DS41586APIC16(L)F1507
1. What are the best features of this document?
2. How does this document meet your hardware and software development needs?
3. Do you find the organization of this document easy to follow? If not, why?
4. What additions to the document do you think would enhance the structure and subject?
5. What deletions from the document could be made without affecting the overall usefulness?
6. Is there any incorrect or misleading information (what and where)?
7. How would you improve this document?
PIC16(L)F1507
DS41586A-page 265 Preliminary 2011 Microchip Technology Inc.
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.
PART NO. X/XX XXX
PatternPackageTemperature
Range
Device
Device: PIC16F1507, PIC16LF1507
Tape and Reel
Option: Blank = Standard packaging (tube or tray)
T = Tape and Reel(1)
Temperature
Range: I= -40C to +85C(Industrial)
E= -40
C to +125C (Extended)
Package: ML = Micro Lead Frame (QFN) 4x4
P=Plastic DIP
SO = SOIC
SS = SSOP
Pattern: QTP, SQTP, Code or Special Requirements
(blank otherwise)
Examples:
a) PIC16LF1507T - I/SO
Tape and Reel,
Industrial temperature,
SOIC package
b) PIC16F1507 - I/P
Industrial temperature
PDIP package
c) PIC16F1507 - E/ML 298
Extended temperature,
QFN package
QTP pattern #298
Note 1: Tape and Reel identifier only appears in the
catalog part number description. This
identifier is used for ordering purposes and is
not printed on the device package. Check
with your Microchip Sales Office for package
availability with the Tape and Reel option.
[X](1)
Tape and Reel
Option
-
DS41586A-page 266 Preliminary 2011 Microchip Technology Inc.
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Los A n ge les
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509
ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Hangzhou
Tel: 86-571-2819-3180
Fax: 86-571-2819-3189
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049
ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370
Taiwan - Kaohs iung
Tel: 886-7-213-7830
Fax: 886-7-330-9305
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350
EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Cop e nha gen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820
Worldwide Sales and Service
05/02/11