INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRA-LOW VF DIODE
FOR INDUCTION HEATING AND SOFT SWITCHING APPLICATIONS
IRG7PH35UD1PbF
IRG7PH35UD1-EP
1www.irf.com
02/21/2012
E
G
n-channel
C
VCES = 1200V
I NOMINAL = 20A
TJ(max) = 150°C
VCE(on) typ. = 1.9V
Benefits
Device optimized for induction heating and soft switching
applications
High Efficiency due to Low VCE(on), low switching losses
and Ultra-low VF
Rugged transient performance for increased reliability
Excellent current sharing in parallel operation
Low EMI
G
C
E
Gate Collector Emitter
TO-247AC
IRG7PH35UD1PbF
TO-247AD
IRG7PH35UD1-EP
GCE
C
GCE
C
Features
Low VCE (ON) trench IGBT Technology
Low Switching Losses
Square RBSOA
Ultra-Low VF Diode
1300Vpk Repetitive Transient Capacity
100% of the Parts Tested for ILM
Positive VCE (ON) Temperature Co-Efficient
Tight Parameter Distribution
Lead Free Package
Absolute Maximum Ratings
Parameter Max. Units
V
CES
Collector-to-Emitter Voltage 1200 V
I
C
@ T
C
= 25°C Continuous Collector Current 50
I
C
@ T
C
= 100°C Continuous Collector Current 25
I
NOMINAL
Nominal Current 20
I
CM
Pulse Collector Current, V
GE
=15V
dg
150 A
I
LM
Clamped Inductive Load Current, V
GE
=20V
c
80
I
F
@ T
C
= 25°C Diode Continous Forward Current 50
I
F
@ T
C
= 100°C Diode Continous Forward Current 25
I
FM
Diode Maximum Forward Current
d
80
V
GE
Continuous Gate-to-Emitter Voltage ±30 V
P
D
@ T
C
= 25°C Maximum Power Dissipation 179 W
P
D
@ T
C
= 100°C Maximum Power Dissipation 71
T
J
Operating Junction and -55 to +150
T
STG
Storage Temperature Range °C
Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1m)
Thermal Resistance
Parameter Min. Typ. Max. Units
R
JC
(IGBT) Thermal Resistance Junction-to-Case-(each IGBT)
f
––– ––– 0.70
R
JC
(Diode) Thermal Resistance Junction-to-Case-(each Diode)
f
––– ––– 1.35 °C/W
R
CS
Thermal Resistance, Case-to-Sink (flat, greased surface) –– 0.24 ––
R
JA
Thermal Resistance, Junction-to-Ambient (typical socket mount) ––– 40 –––
PD - 97455A
IRG7PH35UD1PbF/IRG7PH35UD1-EP
2www.irf.com
Notes:
VCC = 80% (VCES), VGE = 20V, RG = 10
Pulse width limited by max. junction temperature.
Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
R is measured at TJ approximately 90°C.
FBSOA operating conditions only.
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V
(BR)CES
Collector-to-Emitter Breakdown Voltage
1200 V V
GE
= 0V, I
C
= 100μA
e
V
(BR)Transient
Repetitive Transient Collector-to-Emitter Voltage
1300 V V
GE
= 0V, T
J
= 75°C, PW
10μs
e
V
(BR)CES
/T
J
Temperature Coeff. of Breakdown Voltage
—1.2—V/°C
V
GE
= 0V, I
C
= 1mA (25°C-150°C)
V
CE(on)
Collector-to-Emitter Saturation Voltage 1.9 2.2 V I
C
= 20A, V
GE
= 15V, T
J
= 25°C
—2.3 I
C
= 20A, V
GE
= 15V, T
J
= 150°C
V
GE(th)
Gate Threshold Voltage 3.0 6.0 V V
CE
= V
GE
, I
C
= 600μA
gfe Forward Transconductance 22 S V
CE
= 50V, I
C
= 20A, PW = 30μs
I
CES
Collector-to-Emitter Leakage Current 1.0 100 μAV
GE
= 0V, V
CE
= 1200V
—120 V
GE
= 0V, V
CE
= 1200V, T
J
= 15C
V
FM
Diode Forward Voltage Drop 1.15 1.26 V I
F
= 20A
—1.08— I
F
= 20A, T
J
= 150°C
I
GES
Gate-to-Emitter Leakage Current ±100 nA V
GE
= ±30V
Switching Characteristics @ T
J
= 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
Q
g
Total Gate Charge (turn-on) 85 130 I
C
= 20A
Q
ge
Gate-to-Emitter Charge (turn-on) 15 20 nC V
GE
= 15V
Q
gc
Gate-to-Collector Charge (turn-on) 35 50 V
CC
= 600V
I
C
= 20A, V
CC
= 600V, V
GE
= 15V
E
off
Turn-Off Switching Loss 620 850 μJR
G
= 10
, L = 200μH,L
S
= 150nH, T
J
= 25°C
Energy losses include tail
t
d(off)
Turn-Off delay time 160 180 ns I
C
= 20A, V
CC
= 600V, V
GE
= 15V
t
f
Fall time 80 105 R
G
= 10, L = 200μH,L
S
= 150nH, T
J
= 25°C
I
C
= 20A, V
CC
= 600V, V
GE
=15V
E
off
Turn-Off Switching Loss 1120 μJR
G
= 10, L = 200μH,L
S
= 150nH, T
J
= 150°C
Energy losses include tail
t
d(off)
Turn-Off delay time 190 ns I
C
= 20A, V
CC
= 600V, V
GE
= 15V
t
f
Fall time 210 R
G
= 10, L = 200μH,L
S
= 150nH, T
J
= 150°C
C
ies
Input Capacitance 1940 pF V
GE
= 0V
C
oes
Output Capacitance 120 V
CC
= 30V
C
res
Reverse Transfer Capacitance 40 f = 1.0Mhz
T
J
= 150°C, I
C
= 80A
RBSOA Reverse Bias Safe Operating Area FULL SQUARE V
CC
= 960V, Vp =1200V
Rg = 10, V
GE
= +20V to 0V
Conditions
IRG7PH35UD1PbF/IRG7PH35UD1-EP
www.irf.com 3
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 30μs
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 30μs
Fig. 4 - Reverse Bias SOA
TJ = 150°C; VGE = 20V
10 100 1000 10000
VCE (V)
1
10
100
1000
IC (A)
Fig. 3 - Typical Gate Threshold Voltage
(Normalized) vs. Junction Temperature
0246810
VCE (V)
0
10
20
30
40
50
60
70
80
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
0246810
VCE (V)
0
10
20
30
40
50
60
70
80
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
25 50 75 100 125 150
TJ , Temperature (°C)
0.5
0.6
0.7
0.8
0.9
1.0
VGE(th),
Gate Threshold Voltage (Normalized)
IC = 600μA
25 50 75 100 125 150
TC (°C)
0
10
20
30
40
50
IC (A)
25 50 75 100 125 150
TC (°C)
0
25
50
75
100
125
150
175
200
Ptot (W)
IRG7PH35UD1PbF/IRG7PH35UD1-EP
4www.irf.com
Fig. 12 - Typ. Transfer Characteristics
VCE = 50V; tp = 30μs
Fig. 11 - Typical VCE vs. VGE
TJ = 150°C
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
Fig. 8 - Typ. Diode Forward Voltage Drop
Characteristics
0.0 0.5 1.0 1.5 2.0
VF (V)
0
10
20
30
40
50
60
70
80
IF (A)
25°C
150°C
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 150°C; tp = 30μs
0246810
VCE (V)
0
10
20
30
40
50
60
70
80
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
4 8 12 16 20
VGE (V)
1
2
3
4
5
6
7
8
VCE (V)
ICE = 10A
ICE = 20A
ICE = 40A
5 101520
VGE (V)
1
2
3
4
5
6
7
8
VCE (V)
ICE = 10A
ICE = 20A
ICE = 40A
5 101520
VGE (V)
1
2
3
4
5
6
7
8
VCE (V)
ICE = 10A
ICE = 20A
ICE = 40A
45678910
VGE, Gate-to-Emitter Voltage (V)
0
10
20
30
40
50
60
70
80
IC, Collector-to-Emitter Current (A)
TJ = 150°C
TJ = 25°C
IRG7PH35UD1PbF/IRG7PH35UD1-EP
www.irf.com 5
Fig. 18 - Typical Gate Charge vs. VGE
ICE = 20A; L = 2.4mH
Fig. 14 - Typ. Switching Time vs. IC
TJ = 150°C; L = 680μH; VCE = 600V, RG = 10; VGE = 15V
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 150°C; L = 680μH; VCE = 600V, ICE = 20A; VGE = 15V
Fig. 16 - Typ. Switching Time vs. RG
TJ = 150°C; L = 680μH; VCE = 600V, ICE = 20A; VGE = 15V
Fig. 17 - Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
0100 200 300 400 500 600
VCE (V)
10
100
1000
10000
Capacitance (pF)
Cies
Coes
Cres
0 20406080100
Q G, Total Gate Charge (nC)
0
2
4
6
8
10
12
14
16
VGE, Gate-to-Emitter Voltage (V)
VCES = 600V
VCES = 400V
0 25 50 75 100 125
Rg ()
1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
Energy (μJ)
EOFF
020 40 60 80 100 120
RG ()
10
100
1000
10000
Swiching Time (ns)
tdOFF
tF
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 150°C; L = 680μH; VCE = 600V, RG = 10; VGE = 15V
0 1020304050
IC (A)
200
400
600
800
1000
1200
1400
1600
1800
2000
2200
Energy (μJ)
EOFF
010 20 30 40
IC (A)
10
100
1000
Swiching Time (ns)
tdOFF
tF
IRG7PH35UD1PbF/IRG7PH35UD1-EP
6www.irf.com
Fig 19. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
Fig. 20. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
1E-006 1E-005 0.0001 0.001 0.01 0.1 1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
J
J
1
1
2
23
3
R1
R1R2
R2R3
R3
Ci iRi
Ci= iRi
C
4
4
R4
R4Ri (°C/W) i (sec)
0.017 0.000013
0.218 0.000141
0.299 0.002184
0.177 0.013107
Ri (°C/W) i (sec)
0.00756 0.000005
0.56517 0.000677
0.54552 0.003514
0.25085 0.019551
J
J
1
1
2
23
3
R1
R1R2
R2R3
R3
Ci iRi
Ci= iRi
C
4
4
R4
R4
IRG7PH35UD1PbF/IRG7PH35UD1-EP
www.irf.com 7
Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit
Fig.C.T.3 - Switching Loss Circuit Fig.C.T.4 - BVCES Filter Circuit
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 150°C using Fig. CT.3
VCC
0
1K
VCCDUT
L
L
Rg
80 V
DUT VCC
+
-
L
Rg
VCC
DUT /
DRIVER
diode clamp /
DUT
-5V
G force
C sens
e
100K
DUT
0.0075μF
D1 22K
E force
C force
E sense
-100
0
100
200
300
400
500
600
700
800
-0.500.511.52
time(µs)
V
CE
(V)
-5
0
5
10
15
20
25
30
35
40
I
CE
(A )
90% I
CE
5% V
CE
5% I
CE
Eoff Loss
tf
IRG7PH35UD1PbF/IRG7PH35UD1-EP
8www.irf.com
TO-247AC Part Marking Information
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
<($5 
'$7(&2'(
3$57180%(5
,17(51$7,21$/
/2*2
5(&7,),(5
$66(0%/<

,5)3(
+
/,1(+
LQGLFDWHV/HDG)UHH :((./27&2'(
,17+($66(0%/</,1(+
$66(0%/('21::
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
(;$03/( :,7+$66(0%/<
7+,6,6$1,5)3(
/27&2'(
TO-247AC package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
IRG7PH35UD1PbF/IRG7PH35UD1-EP
www.irf.com 9
$66(0%/< <($5 
$66(0%/('21::
,17+($66(0%/</,1(+
(;$03/( 7+,6,6$1,5*3%.'(
/27&2'(
:,7+$66(0%/< 3$57180%(5
'$7(&2'(
,17(51$7,21$/
5(&7,),(5
/2*2
+

:((.
/,1(+
/27&2'(
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
TO-247AD Part Marking Information
TO-247AD Package Outline
Dimensions are shown in millimeters (inches)
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 02/2012
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
TO-247AD package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/