Symbol Parameter Typ. Max. Units
RθJA Junction-to-Ambient––– 55
RθJA Junction-to-Ambient12.5 –––
RθJA Junction-to-Ambient20 ––– °C/W
RθJC Junction-to-Case3.0 –––
RθJ-PCB Junction-to-PCB mounted 1.0 –––
DirectFETTM Power MOSFET
IRF6602
Parameter Max. Units
VDS Drain- Source Voltage 20 V
ID @ TC = 25°C Continuous Drain Current, VGS @ 4.5V 11
ID @ TC = 70°C Continuous Drain Current, VGS @ 4.5V 8.8 A
IDM Pulsed Drain Current 88
PD @TC = 25°C Power Dissipation 2.3
PD @TC = 70°C Power Dissipation 1.5
Linear Derating Factor 18 mW/°C
VGS Gate-to-Source Voltage ± 20 V
TJ, TSTG Junction and Storage Temperature Range -55 to + 150 °C
Absolute Maximum Ratings
W
www.irf.com 1
Description DirectFET ISOMETRIC
Thermal Resistance
04/24/02
VDSS RDS(on) max ID
20V 13m@VGS = 10V 1 1A
19m@VGS = 4.5V 8. 8A
PD - 94363A
The IRF6602 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging
to achieve the lowest on-state resistance charge product in a package that has the footprint of an SO-8 and only 0.7 mm
profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly
equipment and vapor phase, infra-red or convection soldering techniques. The DirectFET package allows dual sided cooling
to maximize thermal transfer in power systems, IMPROVING previous best thermal resistance by 80%.
The IRF6602 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction
and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power
the latest generation of processors operating at higher frequencies. The IRF6602 has been optimized for parameters that
are critical in synchronous buck converters including Rds(on) and gate charge to minimize losses in the control FET socket.
lApplication Specific MOSFETs
lIdeal for CPU Core DC-DC Converters
l Low Conduction Losses
l Low Switching Losses
l Low Profile (<0.7 mm)
l Dual Sided Cooling Compatible
l Compatible with existing Surface Mount
Techniques
IRF6602
2www.irf.com
Symbol Parameter Min. Typ. Max. Units Conditions
gfs Forward Transconductance 20 ––– ––– SV
DS = 10V, ID = 8.8A
QgTotal Gate Charge Cont FET ––– 13 20 VGS = 5.0V, VDS = 10V, ID = 8.8A
QgTotal Gate Charge Sync FET ––– 11 ––– VGS = 5.0V, VDS < 100mV
Qgs1 Pre-Vth Gate-Source Charge ––– 3.5 ––– VDS = 16V, ID = 8.8A
Qgs2 Post-Vth Gate-Source Charge ––– 1.3 ––– nC
Qgd Gate to Drain Charge ––– 4.8 –––
Qsw Switch Charge (Qgs2 + Qgd)––– 6.1 –––
Qoss Output Charge ––– 19 ––– VDS = 16V, VGS = 0V
td(on) Turn-On Delay Time ––– 11 ––– VDD = 15V
trRise Time ––– 58 ––– ID = 8.8A
td(off) Turn-Off Delay Time ––– 15 ––– RG = 1.8
tfFall Time ––– 5.5 ––– VGS = 4.5V
Ciss Input Capacitance ––– 1420 ––– VGS = 0V
Coss Output Capacitance ––– 960 ––– VDS = 10V
Crss Reverse Transfer Capacitance ––– 100 ––– pF ƒ = 1.0MHz
Symbol Parameter Min. Typ. Max. Units Conditions
ISContinuous Source Current MOSFET symbol
(Body Diode) ––– ––– showing the
ISM Pulsed Source Current integral reverse
(Body Diode) ––– ––– p-n junction diode.
––– 0.83 1.2 V TJ = 25°C, IS = 8.8A, VGS = 0V
––– 0.65 ––– TJ = 125°C, IS = 8.8A, VGS = 0V
trr Reverse Recovery Time ––– 42 62 ns TJ = 25°C, IF = 8.8A, VR=15V
Qrr Reverse Recovery Charge ––– 51 77 nC di/dt = 100A/µs
trr Reverse Recovery Time ––– 43 64 ns TJ = 125°C, IF = 8.8A, VR=15V
Qrr Reverse Recovery Charge ––– 55 82 nC di/dt = 100A/µs
Dynamic @ TJ = 25°C (unless otherwise specified)
ns
Symbol Parameter Typ. Max. Units
EAS Single Pulse Avalanche Energy––– 97 mJ
IAR Avalanche Current––– 8.8 A
Avalanche Characteristics
S
D
G
Diode Characteristics
11
88 A
VSD Diode Forward Voltage
Parameter Min. Typ. Max. Units Conditions
V(BR)DSS Drain-to-Source Breakdown Voltage 20 ––– ––– VV
GS = 0V, ID = 250µA
V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient ––– 0.022 ––– V/°C Reference to 25°C, ID = 1mA
––– 10 1 3 VGS = 10V, ID = 11A
––– 14 1 9 VGS = 4.5V, ID = 8.8A
VGS(th) Gate Threshold Voltage 1.0 ––– 3.0 V VDS = VGS, ID = 250µA
––– ––– 20 µA VDS = 16V, VGS = 0V
––– ––– 125 VDS = 16V, VGS = 0V, TJ = 125°C
Gate-to-Source Forward Leakage ––– ––– 200 VGS = 20V
Gate-to-Source Reverse Leakage ––– ––– -200 nA VGS = -20V
Static @ TJ = 25°C (unless otherwise specified)
IGSS
IDSS Drain-to-Source Leakage Current
RDS(on) Static Drain-to-Source On-Resistance m
IRF6602
www.irf.com 3
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance
Vs. Temperature
-60 -40 -20 020 40 60 80 100 120 140 160
0.0
0.5
1.0
1.5
2.0
T , Junction Temperature
(
C
)
R , Drain-to-Source On Resistance
(Normalized)
J
DS(on)
°
V =
I =
GS
D
10V
11A
0.1 110 100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current (A)
2.7V
20µs PULSE WIDTH
Tj = 25°C
VGS
TOP 10V
5.0V
4.5V
4.0V
3.5V
3.3V
3.0V
BOTTOM 2.7V
0.1 110 100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current (A)
2.7V
20µs PULSE WIDTH
Tj = 150°C
VGS
TOP 10V
5.0V
4.5V
4.0V
3.5V
3.3V
3.0V
BOTTOM 2.7V
2.0 2.5 3.0 3.5 4.0 4.5 5.0
VGS, Gate-to-Source Voltage (V)
1.00
10.00
100.00
ID, Drain-to-Source Current )
TJ = 25°C
TJ = 150°C
VDS = 15V
20µs PULSE WIDTH
IRF6602
4www.irf.com
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
04812 16
0
1
2
4
5
6
Q , Total Gate Char
g
e
(
nC
)
V , Gate-to-Source Voltage (V)
G
GS
I=
D8.8A
V = 16V
DS
Fig 7. Typical Source-Drain Diode
Forward Voltage Fig 8. Maximum Safe Operating Area
0.1
1
10
100
0.2 0.4 0.6 0.8 1.0 1.2 1.4
V ,Source-to-Drain Volta
g
e
(
V
)
I , Reverse Drain Current (A)
SD
SD
V = 0 V
GS
T = 150 C
J°
T = 25 C
J°
110 100
VDS, Drain-to-Source Voltage (V)
10
100
1000
10000
100000
C, Capacitance(pF)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = C
gs + Cgd, C
ds SHORTED
Crss
= C
gd
Coss
= C
ds + Cgd
0 1 10 100
VDS , Drain-toSource Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
Tc = 25°C
Tj = 150°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY RDS(on)
100µsec
IRF6602
www.irf.com 5
Fig 10. Maximum Effective Transient Thermal Impedance, Junction-to-Case
0.1
1
10
100
0.00001 0.0001 0.001 0.01 0.1 1 10 10
0
Notes:
1. Duty factor D = t / t
2. Peak T = P x Z + T
1 2
JDM thJA A
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response (Z )
1
thJA
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
Fig 10a. Switching Time Test Circuit
VDS
90%
10%
VGS t
d(on)
t
r
t
d(off)
t
f
Fig 10b. Switching Time Waveforms
VDS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RGD.U.T.
4.5V
+
-
VDD
25 50 75 100 125 150
0
3
6
9
12
T , Case Temperature ( C)
I , Drain Current (A)
°
C
D
Fig 9. Maximum Drain Current Vs.
Ambient Temperature
IRF6602
6www.irf.com
Fig 13. On-Resistance Vs. Gate Voltage
Fig 12. On-Resistance Vs. Drain Current
Fig 13a&b. Basic Gate Charge Test Circuit
and Waveform
Fig 14a&b. Unclamped Inductive Test circuit
and Waveforms Fig 14c. Maximum Avalanche Energy
Vs. Drain Current
D.U.T. V
DS
I
D
I
G
3mA
V
GS
.3µF
50K
.2µF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
VGS
Q
G
Q
GS
Q
GD
V
G
Charge
tp
V
(
BR
)
DSS
I
AS
RG
IAS
0.01
t
p
D.U.T
L
VDS
+
-VDD
DRIVER
A
15V
20V
25 50 75 100 125 150
0
50
100
150
200
250
Startin
g
T
j
, Junction Temperature
C
E , Single Pulse Avalanche Energy (mJ)
AS
°
ID
TOP
BOTTOM
3.9A
7.0A
8.8A
2.0 4.0 6.0 8.0 10.0
VGS, Gate -to -Source Voltage (V)
-50
150
350
550
750
950
1150
RDS(on), Drain-to -Source On Resistance (m )
ID = 11A
0 20406080100
ID , Drain Current (A)
5
10
15
20
RDS (on) , Drain-to-Source On Resistance (m )
VGS = 10V
VGS = 4.5V
IRF6602
www.irf.com 7
DirectFET Outline Dimension
IRF6602
8www.irf.com
DirectFET PCB Footprint
DirectFET Tape and Reel Dimension
IRF6602
www.irf.com 9
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IRs Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.04/02
Repetitive rating; pulse width limited by max. junction temperature.
Pulse width 400µs; duty cycle 2%.
Surface mounted on 1 in square Cu board.
Used double sided cooling, mounting pad.
Mounted on minimum footprint full size board with metalized back and with small clip heatsink.
TC measured with thermal couple mounted to top (Drain) of part.
Starting TJ = 25°C, L = 2.5mH, RG = 25, IAS = 8.8A. (See Figure 14)
Notes:
DirectFET Part Marking