IXYA20N120C3HV IXYP20N120C3 IXYH20N120C3 1200V XPTTM GenX3TM IGBTs High-Speed IGBT for 20-50 kHz Switching VCES = IC110 = VCE(sat) tfi(typ) = 1200V 20A 3.4V 108ns TO-263HV (IXYA) G E Symbol Test Conditions Maximum Ratings VCES VCGR TJ = 25C to 175C TJ = 25C to 175C, RGE = 1M VGES VGEM Continuous Transient IC25 IC110 ICM TC = 25C TC = 110C TC = 25C, 1ms IA EAS TC = 25C TC = 25C SSOA (RBSOA) VGE = 15V, TVJ = 150C, RG = 10 Clamped Inductive Load PC TC = 25C V V 20 30 V V 40 20 96 A A A 10 400 A mJ ICM = 40 @VCE VCES A 278 W -55 ... +175 175 -55 ... +175 C C C 300 260 C C 1.13/10 10..65 / 22..14.6 Nm/lb.in. N/lb 2.5 3.0 6.0 g g g TJ TJM Tstg TL TSOLD Maximum Lead Temperature for Soldering 1.6 mm (0.062in.) from Case for 10s Md FC Mounting Torque (TO-220 & TO247) Mounting Force (TO-263) Weight TO-263 TO-220 TO-247 C (Tab) 1200 1200 TO-220 (IXYP) G Characteristic Values Min. Typ. Max. BVCES IC = 250A, VGE = 0V 1200 G VGE(th) IC = 250A, VCE = VGE 3.0 ICES 5.0 15 500 A A 100 nA 3.4 V V VCE = VCES, VGE = 0V TJ = 150C IGES VCE = 0V, VGE = 20V VCE(sat) IC = 20A, VGE = 15V, Note 1 TJ = 150C (c) 2013 IXYS CORPORATION, All Rights Reserved V 4.0 C E G = Gate E = Emitter Tab C = Collector Tab = Collector Features High Voltage Package Optimized for Low Switching Losses Square RBSOA Positive Thermal Coefficient of Vce(sat) Avalanche Rated International Standard Packages Advantages V Tab TO-247 AD (IXYH) Symbol Test Conditions (TJ = 25C, Unless Otherwise Specified) CE High Power Density Low Gate Drive Requirement Applications High Frequency Power Inverters UPS Motor Drives SMPS PFC Circuits Battery Chargers Welding Machines Lamp Ballasts DS100484B(02/13) IXYA20N120C3HV Symbol Test Conditions (TJ = 25C Unless Otherwise Specified) Characteristic Values Min. Typ. Max. gfs 7.0 IC = 20A, VCE = 10V, Note 1 Cies Coes Cres VCE = 25V, VGE = 0V, f = 1MHz Qg(on) Qge Qgc IC = 20A, VGE = 15V, VCE = 0.5 * VCES td(on) tri Eon td(off) tfi Eoff td(on) tri Eon td(off) tfi Eoff RthJC RthCS RthCS Notes: Inductive load, TJ = 25C IC = 20A, VGE = 15V VCE = 0.5 * VCES, RG = 10 Note 2 Inductive load, TJ = 150C IC = 20A, VGE = 15V VCE = 0.5 * VCES, RG = 10 Note 2 TO-220 TO-247 TO-220 Outline 11.5 S 1110 70 27 pF pF pF 53 9 22 nC nC nC 20 29 1.3 90 108 0.5 ns ns mJ ns ns mJ 1.0 IXYP20N120C3 IXYH20N120C3 20 40 3.7 115 105 0.7 ns ns mJ ns ns mJ 0.50 0.21 0.54 C/W C/W C/W Pins: 1 - Gate 3 - Emitter 2 - Collector TO-247 Outline 1. Pulse test, t 300s, duty cycle, d 2%. 2. Switching times & energy losses may increase for higher VCE(clamp), TJ or RG. 1 2 P 3 TO-263HV Outline e Terminals: 1 - Gate 3 - Emitter Dim. Millimeter Min. Max. A 4.7 5.3 A1 2.2 2.54 A2 2.2 2.6 b 1.0 1.4 1.65 2.13 b1 b2 2.87 3.12 C .4 .8 D 20.80 21.46 E 15.75 16.26 e 5.20 5.72 L 19.81 20.32 L1 4.50 P 3.55 3.65 Q 5.89 6.40 R 4.32 5.49 S 6.15 BSC PIN: 1 - Gate 2 - Emitter 3 - Collector 2 - Collector Inches Min. Max. .185 .209 .087 .102 .059 .098 .040 .055 .065 .084 .113 .123 .016 .031 .819 .845 .610 .640 0.205 0.225 .780 .800 .177 .140 .144 0.232 0.252 .170 .216 242 BSC IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions. IXYS MOSFETs and IGBTs are covered 4,835,592 by one or more of the following U.S. patents: 4,860,072 4,881,106 4,931,844 5,017,508 5,034,796 5,049,961 5,063,307 5,187,117 5,237,481 5,381,025 5,486,715 6,162,665 6,259,123 B1 6,306,728 B1 6,404,065 B1 6,534,343 6,583,505 6,683,344 6,727,585 7,005,734 B2 6,710,405 B2 6,759,692 7,063,975 B2 6,710,463 6,771,478 B2 7,071,537 7,157,338B2 IXYA20N120C3HV Fig. 1. Output Characteristics @ TJ = 25C Fig. 2. Extended Output Characteristics @ TJ = 25C 100 40 VGE = 15V 13V 11V 10V 35 30 VGE = 15V 80 13V 9V 12V 25 I C - Amperes I C - Amperes IXYP20N120C3 IXYH20N120C3 8V 20 15 60 11V 10V 40 9V 7V 10 8V 20 5 7V 6V 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 0 5 10 15 20 25 VCE - Volts VCE - Volts Fig. 3. Output Characteristics @ TJ = 150C Fig. 4. Dependence of VCE(sat) on Junction Temperature 2.4 40 VGE = 15V 13V 11V 10V 30 2.0 9V 25 20 8V 15 7V 10 I C = 40A 1.6 I C = 20A 1.2 0.8 I C = 10A 6V 5 5V 0 0 1 2 3 4 30 VGE = 15V VCE(sat) - Normalized 35 I C - Amperes 6V 0 6 5 6 7 0.4 -50 8 -25 0 25 VCE - Volts 50 75 100 125 150 175 TJ - Degrees Centigrade Fig. 5. Collector-to-Emitter Voltage vs. Gate-to-Emitter Voltage Fig. 6. Input Admittance 50 11 TJ = - 40C 25C 150C 45 TJ = 25C 40 9 7 I C - Amperes VCE - Volts 35 I C = 40A 5 30 25 20 15 20A 3 10 5 10A 1 0 6 7 8 9 10 11 12 VGE - Volts (c) 2013 IXYS CORPORATION, All Rights Reserved 13 14 15 3.5 4.5 5.5 6.5 7.5 VGE - Volts 8.5 9.5 10.5 IXYA20N120C3HV Fig. 7. Transconductance Fig. 8. Gate Charge 16 16 TJ = - 40C 14 14 12 12 25C 10 150C VGE - Volts g f s - Siemens IXYP20N120C3 IXYH20N120C3 8 6 I C = 20A I G = 10mA 10 8 6 4 4 2 2 0 VCE = 600V 0 0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 I C - Amperes QG - NanoCoulombs Fig. 9. Capacitance Fig. 10. Reverse-Bias Safe Operating Area 50 55 10,000 40 1,000 I C - Amperes Capacitance - PicoFarads f = 1 MHz Cies Coes 100 30 20 10 TJ = 150C RG = 10 dv / dt < 10V / ns Cres 10 0 0 5 10 15 20 25 30 35 40 200 400 600 800 1000 1200 VCE - Volts VCE - Volts Fig. 11. Maximum Transient Thermal Impedance 1 Z (th)JC - C / W 0.1 0.01 0.001 0.00001 0.0001 0.001 0.01 Pulse Width - Seconds IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions. 0.1 1 10 IXYA20N120C3HV Fig. 13. Inductive Switching Energy Loss vs. Collector Current Fig. 12. Inductive Switching Energy Loss vs. Gate Resistance 2 Eoff 1.2 16 VCE = 600V I C = 40A 0.8 8 ---10 1.0 8 TJ = 150C 0.8 6 0.6 4 I C = 20A TJ = 25C 0.4 4 0 0.4 15 20 25 30 35 40 45 50 2 0.2 0 10 0 20 55 22 24 26 28 1.4 ---- 0.6 4 t f i - Nanoseconds Eoff - MilliJoules 6 I C = 20A 2 0.2 100 280 240 100 200 I C = 20A 80 160 I C = 40A 120 40 80 20 0 150 125 320 120 60 0.4 40 10 15 20 25 30 35 40 45 50 TJ - Degrees Centigrade RG - Ohms Fig. 16. Inductive Turn-off Switching Times vs. Collector Current Fig. 17. Inductive Turn-off Switching Times vs. Junction Temperature 140 160 130 td(off) - - - - 80 100 TJ = 25C 60 90 40 80 20 70 22 24 26 28 30 32 34 I C - Amperes (c) 2013 IXYS CORPORATION, All Rights Reserved 36 38 40 tfi td(off) - - - - 130 RG = 10 , VGE = 15V VCE = 600V 120 120 I C = 20A 100 110 80 100 60 90 I C = 40A 40 80 20 25 50 75 100 TJ - Degrees Centigrade 125 70 150 t d(off) - Nanoseconds 110 t d(off) - Nanoseconds TJ = 150C 100 55 140 140 120 t f i - Nanoseconds tfi RG = 10 , VGE = 15V VCE = 600V t f i - Nanoseconds td(off) - - - - t d(off) - Nanoseconds 0.8 Eon - MilliJoules I C = 40A 120 40 VCE = 600V 140 8 75 38 TJ = 150C, VGE = 15V VCE = 600V 20 tfi 160 1.0 50 36 360 10 RG = 10 , VGE = 15V 25 34 180 12 Eon 32 Fig. 15. Inductive Turn-off Switching Times vs. Gate Resistance Fig. 14. Inductive Switching Energy Loss vs. Junction Temperature Eoff 30 I C - Amperes RG - Ohms 1.2 Eon - MilliJoules 12 Eon RG = 10 , VGE = 15V VCE = 600V Eon - MilliJoules 1.2 12 --- E off - MilliJoules Eon - TJ = 150C , VGE = 15V 1.6 Eoff - MilliJoules 1.4 20 Eoff IXYP20N120C3 IXYH20N120C3 IXYA20N120C3HV Fig. 19. Inductive Turn-on Switching Times vs. Collector Current Fig. 18. Inductive Turn-on Switching Times vs. Gate Resistance 280 td(on) - - - - 35 I C = 40A 30 80 25 I C = 20A td(on) - - - 23 VCE = 600V 120 22 80 21 TJ = 150C 40 40 20 TJ = 25C 20 0 0 15 10 15 20 25 30 35 40 45 50 19 20 55 22 24 26 Fig. 20. Inductive Turn-on Switching Times vs. Junction Temperature 27 32 34 36 38 40 80 td(on) - - - - RG = 10 , VGE = 15V TJ = 150C Triangular Wave 70 TC = 75C 25 VCE = 600V 60 VCE = 600V 23 80 21 I C = 20A 40 VGE = 15V I C - Amperes I C = 40A 120 t d(on) - Nanoseconds t r i - Nanoseconds 30 Fig. 21. Maximum Peak Load Current vs. Frequency 200 160 28 I C - Amperes RG - Ohms tri t d(on) - Nanoseconds 40 160 120 tri RG = 10 , VGE = 15V 160 VCE = 600V 200 24 45 t r i - Nanoseconds tri TJ = 150C, VGE = 15V t d(on) - Nanoseconds t r i - Nanoseconds 200 50 240 IXYP20N120C3 IXYH20N120C3 RG = 10 D = 0.5 50 Square Wave 40 30 20 19 10 0 25 50 75 100 125 17 150 TJ - Degrees Centigrade 0 0.1 1 10 100 1000 fmax - KiloHertzs IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions. IXYS REF: IXY_20N120C3(4L) 9-06-13-C Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.