VS-16CDU06-M3 www.vishay.com Vishay Semiconductors Ultrafast Rectifier, 2 x 8 A FRED Pt(R) FEATURES eSMP(R) Series * Ultrafast recovery time, reduced Qrr, and soft recovery K * 175 C maximum operating junction temperature * For PFC CRM, snubber operation * Low forward voltage drop 1 * Low leakage current 2 Top View Bottom View * Meets MSL level 1, per J-STD-020, LF maximum peak of 260 C SMPD (TO-263AC) K Anode 1 Cathode Anode 2 * Meets JESD 201 class 2 whisker test * Material categorization: for definitions of compliance please see www.vishay.com/doc?99912 DESCRIPTION / APPLICATIONS State of the art ultrafast recovery rectifiers specifically designed with optimized performance of forward voltage drop, ultrafast recovery time, and soft recovery. PRIMARY CHARACTERISTICS IF(AV) 2x8A VR 600 V VF at IF 0.94 V trr 45 ns The planar structure and the platinum doped life time control guarantee the best overall performance, ruggedness, and reliability characteristics. These devices are intended for use in PFC, boost, in the AC/DC section of SMPS, freewheeling and clamp diodes. TJ max. 175 C Package SMPD (TO-263AC) Circuit configuration Dual serial Their extremely optimized stored charge and low recovery current minimize the switching losses and reduce power dissipation in the switching element and snubbers. ABSOLUTE MAXIMUM RATINGS PARAMETER SYMBOL Peak repetitive reverse voltage Average rectified forward current Non-repetitive peak surge current TEST CONDITIONS VRRM per device per diode per device per diode IF(AV) IFSM VALUES UNITS 600 V 16 Tsolder pad = 149 C 8 A 200 TJ = 25 C, 6 ms square pulse 105 ELECTRICAL SPECIFICATIONS (TJ = 25 C unless otherwise specified) PARAMETER Breakdown voltage, blocking voltage Forward voltage, per diode SYMBOL VBR, VR VF Reverse leakage current, per diode IR Junction capacitance, per diode CT TEST CONDITIONS MIN. TYP. MAX. 600 - - IF = 8 A - 1.1 1.4 IR = 100 A IF = 8 A, TJ = 150 C - 0.94 1.15 VR = VR rated - - 5 TJ = 150 C, VR = VR rated - 20 150 VR = 600 V - 8 - UNITS V A pF Revision: 12-Nov-2018 Document Number: 95814 1 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 VS-16CDU06-M3 www.vishay.com Vishay Semiconductors DYNAMIC RECOVERY CHARACTERISTICS (TJ = 25 C unless otherwise specified) PARAMETER SYMBOL Reverse recovery time trr TEST CONDITIONS Reverse recovery charge UNITS - 45 - - - 60 TJ = 25 C - 70 - - 100 - - 12 - - 17 - TJ = 25 C - 430 - TJ = 125 C - 850 - MIN. TYP. MAX. UNITS IF = 8 A, dIF/dt = 500 A/s, VR = 400 V TJ = 125 C Qrr MAX. IF = 1 A, dIF/dt = 50 A/s, VR = 30 V TJ = 25 C IRRM TYP. IF = 0.5 A, IR = 1 A, Irr = 0.25 A TJ = 125 C Peak recovery current MIN. ns A nC THERMAL - MECHANICAL SPECIFICATIONS PARAMETER SYMBOL TEST CONDITIONS Maximum junction and storage temperature range TJ, TStg -55 - +175 C Thermal resistance, per diode junction to solder pad RthJ-Sp - 1.8 2.5 C/W Approximate weight g 0.02 oz. Case style SMPD (TO-263AC) 100 16CDU06 100 TJ = 175 C IR - Reverse Current (A) IF - Instantaneous Forward Current (A) Marking device 0.55 10 TJ = 175 C 1 TJ = 150 C TJ = 125 C TJ = 25 C 0.1 TJ = 150 C 10 TJ = 125 C 1 0.1 TJ = 25 C 0.01 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 0 100 200 300 400 500 600 VF - Forward Voltage Drop (V) VR - Reverse Voltage (V) Fig. 1 - Typical Forward Voltage Drop Characteristics Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage Revision: 12-Nov-2018 Document Number: 95814 2 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 VS-16CDU06-M3 www.vishay.com Vishay Semiconductors CT - Junction Capacitance (pF) 100 10 1 0 100 200 300 400 500 600 VR - Reverse Voltage (V) Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage ZthJC - Thermal Impedance Junction to Case (C/W) 10 1 0.50 0.20 0.10 0.05 0.02 0.01 DC 0.1 0.01 0.00001 0.0001 0.001 0.01 0.1 1 t1 - Rectangular Pulse Duration (s) 180 14 175 12 Average Power Loss (W) Allowable Case Temperature (C) Fig. 4 - Maximum Thermal Impedance ZthJC Characteristics 170 165 DC 160 Square wave (D = 0.50) 80 % rated VR applied 155 150 RMS limit 10 8 D = 0.20 D = 0.25 D = 0.33 D = 0.50 D = 0.75 DC 6 4 2 See note (1) 145 0 0 1 2 3 4 5 6 7 8 9 0 2 4 6 8 10 12 IF(AV) - Average Forward Current (A) IF(AV) - Average Forward Current (A) Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current Fig. 6 - Forward Power Loss Characteristics Note (1) Formula used: T = T - (Pd + Pd C J REV) x RthJC; Pd = forward power loss = IF(AV) x VFM at (IF(AV)/D) (see fig. 5); PdREV = inverse power loss = VR1 x IR (1 - D); IR at VR1 = rated VR Revision: 12-Nov-2018 Document Number: 95814 3 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 VS-16CDU06-M3 www.vishay.com Vishay Semiconductors 180 1000 160 125 C 800 140 125 C Qrr (nC) trr (ns) 120 25 C 100 80 600 25 C 400 60 200 40 20 0 100 1000 100 1000 dIF/dt (A/s) dIF/dt (A/s) Fig. 7 - Typical Reverse Recovery Time vs. dIF/dt Fig. 8 - Typical Stored Charge vs. dIF/dt (3) trr IF ta tb 0 Qrr (2) IRRM (4) 0.5 IRRM di(rec)M/dt (5) 0.75 IRRM (1) diF/dt (1) diF/dt - rate of change of current through zero crossing (2) IRRM - peak reverse recovery current (3) trr - reverse recovery time measured from zero crossing point of negative going IF to point where a line passing through 0.75 IRRM and 0.50 IRRM extrapolated to zero current. (4) Qrr - area under curve defined by trr and IRRM Qrr = trr x IRRM 2 (5) di(rec)M/dt - peak rate of change of current during tb portion of trr Fig. 9 - Reverse Recovery Waveform and Definitions Revision: 12-Nov-2018 Document Number: 95814 4 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 VS-16CDU06-M3 www.vishay.com Vishay Semiconductors ORDERING INFORMATION TABLE Device code VS- 16 C D U 06 -M3 1 2 3 4 5 6 7 1 - Vishay Semiconductors product 2 - Current rating (16 A) 3 - Circuit configuration: C = common cathode 4 - D = SMPD package 5 - Process type, U = ultrafast recovery 6 - Voltage code (06 = 600 V) 7 - -M3 = halogen-free, RoHS-compliant, and terminations lead (Pb)-free ORDERING INFORMATION (Example) PREFERRED P/N QUANTITY PER REEL MINIMUM ORDER QUANTITY PACKAGING DESCRIPTION VS-16CDU06-M3/I 2000 2000 13" diameter plastic tape and reel LINKS TO RELATED DOCUMENTS Dimensions www.vishay.com/doc?95604 Part marking information www.vishay.com/doc?95566 Packaging information www.vishay.com/doc?88869 SPICE model www.vishay.com/doc?96575 Revision: 12-Nov-2018 Document Number: 95814 5 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Outline Dimensions www.vishay.com Vishay Semiconductors TO-263AC (SMPD) DIMENSIONS in inches (millimeters) TO-263AC (SMPD) 5() WR WR 120 Mounting Pad Layout 0,1 5() 120 5() 0,1 Revision: 02-Jun-14 Document Number: 95604 1 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Legal Disclaimer Notice www.vishay.com Vishay Disclaimer ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners. (c) 2017 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED Revision: 08-Feb-17 1 Document Number: 91000 Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: Vishay: VS-16CDU06-M3/I