International TOR Rectifier Description Fifth Generation HEXFET Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon ara. This benefit, combined with the fast switching speed and ruggedized device design for which HEXFET Power MOSFETs are well known, provides the designer with an extremely efficient and reliable device for use in a Logic-Level Gate Drive Advanced Process Technology isolated Package High Voltage Isolation = 2.5K VRMS Sink to Lead Creepage Dist. = 4.8mm Fully Avalanche Rated wide variety of applications. The TO-220 Fuil-Pak eliminates the need for additional insulating hardware in commercial-industrial applications. The moulding compound used provides a high isolation capability and a low thermal resistance between the tab and external heatsink. This isolation is equivalent to using a 100 micron mica barrier PD - 9.1369B IRLIS705N HEXFET Power MOSFET D Voss = 55V Rpsvon) =0.01Q s Ip = 52A TO-220 Full-Pak with standard TO-220 product. The Full-Pak is mounted to a heatsink using a single clip or by a single screw fixing. Absolute Maximum Ratings Parameter Max. Units Ip @ Ty = 25C Continuous Drain Current, Veg @ 10V 52 Ip @ Te = 100C | Continuous Drain Current; Veg @ 10V 37 A lom Pulsed Drain Current 310 Pp @T = 25C Power Dissipation 58 Ww Linear Derating Factor 0.39 WEC Ves Gate-to-Source Voltage +16 Vv Eas Single Pulse Avalanche Energy @@ 340 mJ lar Avalanche Current O 46 A Ear Repetitive Avalanche Energy 5.8 mJ dv/dt Peak Diode Recovery dv/dt @ 5.0 Vins Ty Operating Junction and +55 to+ 175 Tstq Storage Temperature Range C Soldering Temperature, for 10 seconds 300 (1.6mm from case } Mounting torque, 6-32 or M3 srew 10 lbfein (1.1Nem) Thermal Resistance Parameter Typ. Max. Units Riaic Junction-to-Case _ 26 oC Rasa Junction-to-Ambient ~ 65 C-570 www.irf.com International IRLIS705N tar Rectifier Electrical Characteristics @ T, = 25C (unless otherwise specified) Parameter Min. | Typ. | Max. |Units Conditions Vieryoss Drain-to-Source Breakdown Voltage 58 | | V_| Ves = OV, lp = 250pA AVisrypss/ATs| Breakdown Voltage Temp. Coefficient | -- |0.056) | VPC| Reference to 25C, Ip = 1imA ~ ~ 10.010 Ves = 10V, Ip = 28A Roson) Static Drain-to-Source On-Resistance ne |0.012] Q | Veg =5.0V, Ip = 28A ~~ | == 10.018 Ves = 4.0V, Ip = 244 Vasith) Gate Threshold Voltage 10}, | 2.0 Vs] Vos = Vas; Ip = 250pA Os Forward Transconductance 50 | S | Vos = 25V, Ip = 46A [| | 2 Vos = 55V, Vag = OV loss Drain-to-Source Leakage Current [T 1260 | #4 Wos=44V, Veg = 0V, 1) = 150C lass Gate-to-Source Forward Leakage | - | 100 nA Vag = 16V Gate-to-Source Reverse Leakage _ | -100 Vas = -16V Qg Total Gate Charge ~ | 98 Ip = 46A Qgs Gate-to-Source Charge _ ~ | 19 | nO | Vps = 44V Qga Gate-to-Drain ("Miller") Charge | | 49 Ves = 5.0V, see figure 6 and 13 @ tafon) Turn-On Delay Time 12 | Vpp = 28V t Rise Time | 140} ns Ip = 46A tarot) Turn-Off Delay Time | Wil Re = 1.8, Ves = .0V ti Fall Time 78 Rp = 0.5922, see figure 10 @@ . . Between fead, 5 Lp Intermal Drain inductance | 45 | a mm (0.25in.) @ Ls Internal Source Inductance |75 | from package . and center of die contact s Ciss Input Capacitance |3600) Vas = OV | Coss Output Capacitance | 870| pF Vos = 25V Cres Reverse Transfer Capacitance 1|320| f = 1.0MHz, see figure 5@ Cc Drain to Sink Capacitance | 2) f = 1.0MHz Source-Drain Ratings and Characteristics Parameter Min.| Typ.| Max. | Units Conditions Is Continuous Source Current MOSFET symbol 8 (Body Diode) |] 8 a | Showing the isn Pulsed Source Current _. | | at0 integral reverse 6 (Body Diode) O p-n junction diode. is Vsp Diode Forward Voltage | ~] 13 Voo| Ty = 28C, Is = 28A, Vag = OV tre Reverse Recovery Time ~~ | 94] 140] ns | Ty = 25C, lp =46A On Reverse Recovery Charge | 290} 440} nC | di/dt = 100A/us Notes: & Repetitive rating; pulse width limited by max. junction temperature. (see figure 11) Vop = 25V, starting Tj = 25C, L = 320UH, Ag = 250, ing = 46A. (see figure 12) Iso < 46A, di/dt < 250A/us, Von S Viarinss. Tus 175C www.irf.com Pulse width < 300us; duty cycle < 2% t=60s, f = 60Hz Uses IRL3705N data and test conditions C-571 IRLI3705N International ToR Rectifier 1006 1000 15 + 1avk 10v o.ov 6,04 4.Qy 3.0 BOTTOM 25 |! 109 100 ly , Drain-to-Source Current (A) ly . Drain-to-Source Current (A) 10 10 "(F 20u8 PULSE WIDTH *"" 20us PULSE WIDTH ' jo Ty = 25C 1 Ty = 175C 9.1 1 1G 100 O4 1 10 100 Vos , Drain-to-Source Voltage (V) Vog . Drain-to-Source Voltage (V} Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 3.0 : & { ! | 4 ' = s : : Papi gd ! < BQ B.B acheter = a yop igadade i _ a ! 1 ' { 0 6 ebee errr 8 Ss pee pepe fee Pipe a fe Pe = S 3 Sisk tpt A 9 S : : ' i ~ 16 oe ~ 10 . of ent pha : cbc dese BS os foot ont 2 a Vv pst O5V et 5 : cpp pte fete op fe | ' 20s PULSE WIDTH 6.0 aetna Veg = 10V 2.0 3.6 4.0 5.0 6.0 7.0 8.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 Veg . Gate-to-Source Voltage (V) T, , Junction Temperature (C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance Vs. Temperature 0-572 www.irf.com International IRLIS705N TOR Rectifier 6000 Vig = OV, f= 1MHz 8 Ip = 46A i i i Roo [Giss = Cys + C gg, Cas SHORTED Pt fe bo Ld 5000 N. 4p = oo = : Vog = 2av [\ . @ 12 H 7 a> | NPS _~ o 4 | au = 4 ~ a a woe whee & 4000 2 i = 3000 5 3 oe f y Toy a o ss * 6 2000 2 : o S - A feo a 1000 2 8 J | Vy fooop te For TEST CIRCUIT a o Law L._ SEE FIGURE 13 1 18 100 0 20 40 60 80 100 120 140 Vpg Drain-to-Source Voltage (V) Qg, Total Gate Charge (nC) Fig 5. Typical Capacitance Vs. Fig 6. Typical Gate Charge Vs. Drain-to-Source Voltage Gate-to-Source Voltage 1060 1000 _ -~ BY RpSion) < - meh = 2 A 4 << 3 = 100 @ = 5 2 109 o & g Ty= 175C S z Qa Pa OB 10 a 2 Te = 25C ~~ Ty = 175C": 10 Singla Pulse 0.4 0.8 1.2 1.6 2.0 24 2.8 1 10 100 Vp , Source-to-Drain Voltage (V) Vos Drain-to-Source Voltage (V) Fig 7. Typical Source-Drain Diode Fig 8. Maximum Safe Operating Area Forward Voltage www.irf.com C-573 IRLI3705N International TOR Rectitier 60 800 > lp & | TOP 19A 0 > 33A 5 2 BOTTOM 46A = = 600 , x uw = 40 = S 2 - | he wo ! = g 3 o = 30 a 400 * 3 s 2 . - 20 a. i 2 2 2 200 10 0 wo, ep 25V) 25 50 7 1000 6 1250( 150175 25 50 75 100 125 150 175 Tc , Case Temperature (C) Starting Ty , Junction Temperature (C) Fig 9. Maximum Drain Current Vs. Fig 12c. Maximum Avalanche Energy Case Temperature Vs. Drain Current 10 oO 5 <= = No; a a c 2 a a o ox = 0.1 @ = ae a ad wash ee wee . one r Purse Po (THERMAL RESPONSE). ! : ' , | Notes: rm Spree afer snes sete pebae risen Fr t4 Duty factor D = ty /t 2 2. Peak Ty=P ox Zinsc +.1o 0.01 0.00004 0.0001 0.001 0.01 O41 1 10 ty, Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case Mechanical drawings, Appendix A Part marking information, Appendix B Test Circuit diagrams, Appendix C C-574 www.irf.com