HEXFET® Power MOSFET
S
D
G
Parameter Typ. Max. Units
RθJC Junction-to-Case ––– 3.3
RθJA Case-to-Ambient (PCB mount)** ––– 50 °C/W
RθJA Junction-to-Ambient ––– 110
Thermal Resistance
VDSS = 55V
RDS(on) = 0.065
ID = 17A
Description
12/6/04
www.irf.com 1
lLogic-Level Gate Drive
lSurface Mount (IRLR024N)
lStraight Lead (IRLU024N)
lAdvanced Process Technology
lFast Switching
lFully Avalanche Rated
lLead-Free
Fifth Generation HEXFET® Power MOSFETs from International Rectifier
utilize advanced processing techniques to achieve the lowest possible on-
resistance per silicon area. This benefit, combined with the fast switching
speed and ruggedized device design that HEXFET power MOSFETs are well
known for, provides the designer with an extremely efficient device for use in
a wide variety of applications.
The D-PAK is designed for surface mounting using vapor phase, infrared, or
wave soldering techniques. The straight lead version (IRFU series) is for
through-hole mounting applications. Power dissipation levels up to 1.5 watts
are possible in typical surface mount applications.
** When mounted on 1" square PCB (FR-4 or G-10 Material ) .
For recommended footprint and soldering techniques refer to application note #AN-994
Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 17
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 12 A
IDM Pulsed Drain Current 72
PD @TC = 25°C Power Dissipation 45 W
Linear Derating Factor 0.3 W/°C
VGS Gate-to-Source Voltage ± 16 V
EAS Single Pulse Avalanche Energy68 mJ
IAR Avalanche Current11 A
EAR Repetitive Avalanche Energy4.5 mJ
dv/dt Peak Diode Recovery dv/dt 5.0 V/ns
TJOperating Junction and -55 to + 175
TSTG Storage Temperature Range
Soldering Temperature, for 10 seconds 300 (1.6mm from case )
°C
Absolute Maximum Ratings
PD- 95081A
IRLR024NPbF
IRLU024NPbF
D-Pak I-Pak
IRLR024NPbF IRLU024NPbF
IRLR/U024NPbF
2www.irf.com
S
D
G
Parameter Min. Typ. Max. Units Conditions
ISContinuous Source Current MOSFET symbol
(Body Diode) ––– ––– showing the
ISM Pulsed Source Current integral reverse
(Body Diode) ––– ––– p-n junction diode.
VSD Diode Forward Voltage –– –– 1.3 V TJ = 25°C, IS = 11A, VGS = 0V
trr Reverse Recovery Time –– 60 90 ns TJ = 25°C, IF = 11A
Qrr Reverse RecoveryCharge ––– 130 200 nC di/dt = 100A/µs
ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Source-Drain Ratings and Characteristics
17
72
A
VDD = 25V, starting TJ = 25°C, L = 790µH
RG = 25, IAS = 11A. (See Figure 12)
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11)
Pulse width 300µs; duty cycle 2%.
Uses IRLZ24N data and test conditions.
This is applied for I-PAK, LS of D-PAK is measured between
lead and center of die contact
ISD 11A, di/dt 290A/µs, VDD V(BR)DSS,
TJ 175°C
Notes:
Parameter Min. Typ. Max. Units Conditions
V(BR)DSS Drain-to-Source Breakdown Voltage 55 ––– ––– V VGS = 0V, ID = 250µA
V(BR)DSS/TJBreakdown Voltage Temp. Coefficient –– 0.061 V/°C Reference to 25°C, ID = 1mA
––– ––– 0.065 VGS = 10V, ID = 10A
––– ––– 0.080 VGS = 5.0V, ID = 10A
––– ––– 0.110 VGS = 4.0V, ID = 9.0A
VGS(th) Gate Threshold Voltage 1.0 –– 2.0 V VDS = VGS, ID = 250µA
gfs Forward Transconductance 8.3 –– –– S VDS = 25V, ID = 11A
––– ––– 25 µA VDS = 55V, VGS = 0V
––– ––– 250 VDS = 44V, VGS = 0V, TJ = 150°C
Gate-to-Source Forward Leakage –– –– 100 nA VGS = 16V
Gate-to-Source Reverse Leakage –– –– -100 VGS = -16V
QgTotal Gate Charge ––– –– 15 ID = 11A
Qgs Gate-to-Source Charge –– ––– 3.7 nC VDS = 44V
Qgd Gate-to-Drain ("Miller") Charge –– –– 8.5 VGS = 5.0V, See Fig. 6 and 13 
td(on) Turn-On Delay Time ––– 7.1 –– VDD = 28V
trRise Time –– 74 –– ns ID = 11A
td(off) Turn-Off Delay Time ––– 20 –– RG = 12Ω, VGS = 5.0V
tfFall Time –– 29 –– RD = 2.4Ω, See Fig. 10 
Between lead,
6mm (0.25in.)
from package
and center of die contact
Ciss Input Capacitance –– 480 –– VGS = 0V
Coss Output Capacitance –– 130 ––– pF VDS = 25V
Crss Reverse Transfer Capacitance –– 61 ––– ƒ = 1.0MHz, See Fig. 5
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
nH
IGSS
S
D
G
LSInternal Source Inductance –– 7.5 ––
RDS(on) Static Drain-to-Source On-Resistance
LDInternal Drain Inductance  4.5 
IDSS Drain-to-Source Leakage Current
IRLR/U024NPbF
www.irf.com 3
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
0.1
1
10
100
0.1 1 10 100
I , Drain-to-Source Current (A)
D
V , Drain-to-Source Voltage (V)
DS
A
20µs PULSE WIDTH
T = 25°C
J
VGS
TOP 15V
12V
10V
8.0V
6.0V
4.0V
3.0V
BOTTOM 2.5V
2.5V
0.1
1
10
100
0.1 1 10 100
I , Drain-to-Source Current (A)
D
V , Drain-to-Source Voltage (V)
DS
A
20µs PULSE WIDTH
T = 175°C
VGS
TOP 15V
12V
10V
8.0V
6.0V
4.0V
3.0V
BOTTOM 2.5V
2.5V
J
0.1
1
10
100
2345678910
T = 25°C
J
GS
V , Gate-to-Source Voltage (V)
D
I , Drain-to-Source Current (A)
T = 175°C
J
A
V = 15V
20µs PULSE WIDTH
DS
0.0
0.5
1.0
1.5
2.0
2.5
3.0
-60 -40 -20 0 20 40 60 80 100 120 140 160 180
J
T , Junction Temperature (°C)
R , Drain-to-Source On Resistance
DS(on)
(Normalized)
V = 10V
GS
A
I = 18A
D
17 A
IRLR/U024NPbF
4www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
0
200
400
600
800
1 10 100
C, Capacitance (pF)
DS
V , Drain-to-Source Voltage (V)
A
V = 0V, f = 1MHz
C = C + C , C SHORTED
C = C
C = C + C
GS
iss gs gd ds
rss gd
oss ds gd
C
iss
C
oss
C
rss
0
3
6
9
12
15
0 4 8 12 16 20
Q , Total Gate Charge (nC)
G
V , Gate-to-Source Voltage (V)
GS
A
FOR TEST CIRCUIT
SEE FIGURE 13
V = 44V
V = 28V
I = 11A
DS
DS
D
1
10
100
0.4 0.8 1.2 1.6 2.0
T = 25°C
J
V = 0V
GS
V , Source-to-Drain Voltage (V)
I , Reverse Drain Current (A)
SD
SD
A
T = 175°C
J
1
10
100
1000
1 10 100
V , Drain-to-Source Voltage (V)
DS
I , Drain Current (A)
OPERATION IN THIS AREA LIMITED
BY R
D
DS(on)
10µs
100µs
1ms
10ms
A
T = 25°C
T = 175°C
Single Pulse
C
J
IRLR/U024NPbF
www.irf.com 5
Fig 10a. Switching Time Test Circuit
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 10b. Switching Time Waveforms
VDS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RG
D.U.T.
5V
+
-
VDD
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
0.01
0.1
1
10
0.00001 0.0001 0.001 0.01 0.1 1
t , Rectangular Pulse Duration (sec)
1
thJC
D = 0.50
0.01
0.02
0.05
0.10
0.20
SINGLE PULSE
(THERMAL RESPONSE)
A
Thermal Response (Z )
P
t
2
1
t
DM
Notes:
1. Duty factor D = t / t
2. Peak T = P x Z + T
12
J
DM thJC
C
25 50 75 100 125 150 175
0
5
10
15
20
T , Case Temperature ( C)
I , Drain Current (A)
°
C
D
IRLR/U024NPbF
6www.irf.com
Q
G
Q
GS
Q
GD
V
G
Charge
D.U.T. V
DS
I
D
I
G
3mA
V
GS
.3µF
50K
.2µF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
10 V
Fig 13b. Gate Charge Test Circuit
Fig 13a. Basic Gate Charge Waveform
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
Fig 12a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
15V
20V
0
20
40
60
80
100
120
140
25 50 75 100 125 150 175
J
E , Single Pulse Avalanche Energy (mJ)
AS
A
Starting T , Junction Temperature (°C)
V = 25V
I
TOP 4.5A
7.8A
BOTTOM 11A
DD
D
IRLR/U024NPbF
www.irf.com 7
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P. W .
Period
+
-
+
+
+
-
-
-
Fig 14. For N-Channel HEXFET® MOSFETs
* VGS = 5V for Logic Level Devices
Peak Diode Recovery dv/dt Test Circuit
RG
VDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
*
IRLR/U024NPbF
8www.irf.com
D-Pak (TO-252AA) Part Marking Information
D-Pak (TO-252AA) Package Outline
Dimensions are shown in millimeters (inches)
12
IN THE ASSEMBLY LINE "A"
ASS EMBLE D ON WW 16, 1999
EXAMPLE:
WIT H AS S E MB L Y
T HIS IS AN IRFR120
LOT CODE 1234
YEAR 9 = 1999
DAT E CODE
WE E K 16
PART NUMBER
LOGO
INT ERNAT IONAL
RECTIFIER
ASSEMBLY
LOT CODE
916A
IRFU120
34
YEAR 9 = 1999
DAT E CODE
OR
P = DE S I GN AT E S L E AD- F R E E
PRODUCT (OPTIONAL)
Note: "P" in assembly line position
i ndicates "L ead- F r ee"
12 34
WE E K 16
A = ASSEMBLY SITE CODE
PART NUMBER
IRFU120
LINE A
LOGO
LOT CODE
ASSEMBLY
INTERNATIONAL
RECTIFIER
IRLR/U024NPbF
www.irf.com 9
I-Pak (TO-251AA) Package Outline
Dimensions are shown in millimeters (inches)
I-Pak (TO-251AA) Part Marking Information
ASSEMBLY
EXAMPLE:
WITH ASSEMBLY
THIS IS AN IRFU120
YEAR 9 = 1999
DAT E CODE
LINE A
WEEK 19
IN THE ASSEMBLY LINE "A"
AS S EMBL E D ON WW 19, 1999
LOT CODE 5678
PART NUMBER
56
IRF U120
INTERNATIONAL
LOGO
RECTIFIER
LOT CODE
919A
78
Note: "P" in assembly line
position indicates "Lead-Free"
OR
56 78
ASSEMBLY
LOT CODE
RECT IFIER
LOGO
INTERNATIONAL
IRFU120
PART NUMBER
WEEK 19
DAT E CODE
YEAR 9 = 1999
A = ASSEMBLY SITE CODE
P = DESIGNATES LEAD-FREE
PRODUCT (OPTIONAL)
IRLR/U024NPbF
10 www.irf.com
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.12/04
D-Pak (TO-252AA) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TR
16.3 ( .641 )
15.7 ( .619 )
8.1 ( .318 )
7.9 ( .312 )
12.1 ( .476 )
11.9 ( .469 ) FEED DIRECTION FEED DIRECTION
16.3 ( .641 )
15.7 ( .619 )
TRR TRL
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
NOTES :
1. OUTLINE CONFORMS TO EIA-481.
16 mm
13 INCH
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/