Publication Release Date: April 2005
- 1 - Revision A10
W681511
SINGLE-CHANNEL VOICEBAND CODEC
Advanced Data Sheet
W681511
- 2 -
1. GENERAL DESCRIPTION
The W681511 is a general-purpose single channel PCM CODEC with pin-selectable µ-Law or A-Law
companding. The device is compliant with the ITU G.712 specification. It operates off of a single +5V
power supply and is available in 20-pin PDIP, SOG, SSOP, and TSSOP package options. Functions
performed include digitization and reconstruction of voice signals, and band limiting and smoothing
filters required for PCM systems. The filters are compliant with ITU G.712 specification. W681511
performance is specified over the industrial temperature range of –40°C to +85°C.
The W681511 includes an on-chip precision voltage reference and an additional power amplifier,
capable of driving 300 loads differentially up to a level of 6.3V peak-to-peak. The analog section is
fully differential, reducing noise and improving the power supply rejection ratio. The data transfer
protocol supports both long-frame and short-frame synchronous communications for PCM
applications, and IDL and GCI communications for ISDN applications. W681511 accepts seven
master clock rates between 256 kHz and 4.096 MHz, and an on-chip pre-scaler automatically
determines the division ratio for the required internal clock.
For fast evaluation and prototyping purposes, the W681511DK development kit is available.
2. FEATURES
Single +5V power supply
Typical power dissipation of 25 mW,
power-down mode of 0.5 µW
Fully-differential analog circuit design
On-chip precision reference of 1.575 V for
a 0 dBm TLP at 600
Push-pull power amplifiers with external
gain adjustment with 300 load capability
Seven master clock rates of 256 kHz to
4.096 MHz
Pin-selectable µ-Law and A-Law
companding (compliant with ITU G.711)
CODEC A/D and D/A filtering compliant
with ITU G.712
Industrial temperature range (–40°C to
+85°C)
Package: 20-pin SOG
ApplIcations
Digital Telephone Systems
Central Office Equipment (Gateways,
Switches, Routers)
PBX Systems (Gateways, Switches)
PABX/SOHO Systems
Local Loop card
SOHO Routers
VoIP Terminals
Enterprise Phones
ISDN Terminals
Analog line cards
Digital Voice Recorders
W681511
Publication Release Date: April 2005
- 3 - Revision A10
3. BLOCK DIAGRAM
256 kHz,
512 kHz,
1536 kHz,
1544 kHz,
2048 kHz,
2560 kHz
& 4096 kHz
MCLK 256 kHz
8 kHz
512 kHz
Pre -scaler
V
DD
V
SS
Power Conditioning
Voltage reference V
AG
PUI
G.712 CODEC
G.711
µ
/A -Law
PAO+
PAO-
PAI
RO
AO
AI+
AI-
µ
/A
-
Law
Tra
ns
mit
PC
M
Int
erf
ace
Re
cei
ve
PC
M
Int
erf
ace
FST
BCLKT
PCMT
FSR
BCLKR
PCMR
V
REF
256 kHz,
512 kHz,
1536 kHz,
1544 kHz,
2048 kHz,
2560 kHz
& 4096 kHz
MCLK 256 kHz
8 kHz
Pre -Scaler
Power Conditioning
Voltage reference V
AG
G.712 CODEC
G.711
µ
/A -Law
RO+
µ
/A
-
Law
G.712 CODEC
G.711
µ
/A -Law
µ
/A
-
Law
Transmit
PCM
Interface
Receive
PCM
Interface
BCLKT
BCLKT
BCLKR
V
W681511
- 4 -
4. TABLE OF CONTENTS
1. GENERAL DESCRIPTION.................................................................................................................. 2
2. FEATURES ......................................................................................................................................... 2
3. BLOCK DIAGRAM .............................................................................................................................. 3
4. TABLE OF CONTENTS ...................................................................................................................... 4
5. PIN CONFIGURATION ....................................................................................................................... 6
6. PIN DESCRIPTION............................................................................................................................. 7
7. FUNCTIONAL DESCRIPTION............................................................................................................ 8
7.1. Transmit Path............................................................................................................................. 8
7.2. Receive Path.............................................................................................................................. 9
7.3. Power Management................................................................................................................. 10
7.3.1. Analog and Digital Supply .............................................................................................. 10
7.3.2. Analog Ground Reference Voltage Output .................................................................... 10
7.4. PCM Interface .......................................................................................................................... 10
7.4.1. Long Frame Sync ........................................................................................................... 10
7.4.2. Short Frame Sync .......................................................................................................... 11
7.4.3. GCI Interface .................................................................................................................. 11
7.4.4. IDL Interface ................................................................................................................... 12
7.4.5. System Timing................................................................................................................ 12
8. TIMING DIAGRAMS.......................................................................................................................... 13
9. ABSOLUTE MAXIMUM RATINGS.................................................................................................... 20
9.1. Absolute Maximum Ratings ..................................................................................................... 20
9.2. Operating Conditions ............................................................................................................... 20
10. ELECTRICAL CHARACTERISTICS ............................................................................................... 21
10.1. General Parameters .............................................................................................................. 21
10.2. Analog Signal Level and Gain Parameters............................................................................ 22
10.3. Analog Distortion and Noise Parameters .............................................................................. 23
10.4. Analog Input and Output Amplifier Parameters ..................................................................... 24
10.5. Digital I/O ............................................................................................................................... 26
10.5.1. µ-Law Encode Decode Characteristics........................................................................ 26
10.5.2. A-Law Encode Decode Characteristics ....................................................................... 27
10.5.3. PCM Codes for Zero and Full Scale ............................................................................ 28
10.5.4. PCM Codes for 0dBm0 Output .................................................................................... 28
11. TYPICAL APPLICATION CIRCUIT.................................................................................................29
12. PACKAGE SPECIFICATION .......................................................................................................... 31
12.1. 20L SOG – 300mil ................................................................................................................. 31
W681511
Publication Release Date: April 2005
- 5 - Revision A10
13. ORDERING INFORMATION........................................................................................................... 32
14. VERSION HISTORY ....................................................................................................................... 33
W681511
- 6 -
5. PIN CONFIGURATION
20
19
18
17
16
15
14
13
12
11
SINGLE
CHANNEL
CODEC
1
2
3
4
5
6
7
8
9
10
SOG
RO+
NC
PAI
PAO-
PAO+
V
DD
FSR
PCMR
BCLKR
PUI
V
AG
AI+
AI-
AO
µ
/A
V
SS
FST
PCMT
BCLKT
MCLK
20
19
18
17
16
15
14
13
12
11
SINGLE
CHANNEL
CODEC
1
2
3
4
5
6
7
8
9
10
V
DD
FSR
BCLKR
V
AG
µ
/A-Law
V
SS
BCLKT
MCLK
W681511
Publication Release Date: April 2005
- 7 - Revision A10
6. PIN DESCRIPTION
Pin
Name
Pin
No.
Functionality
RO+ 1
Non-inverting output of the receive smoothing filter. This pin can typically drive a 2 k load to
1.575 volt peak referenced to the analog ground level.
NC 2 Not connected.
PAI 3 This pin is the inverting input to the power amplifier. Its DC level is at the VAG voltage.
PAO- 4 Inverting power amplifier output. This pin can drive a 300 load to 1.575 volt peak referenced
to the VAG voltage level.
PAO+ 5 Non-inverting power amplifier output. This pin can drive a 300 load to 1.575 volt peak
referenced to the VAG voltage level.
VDD 6
Power supply. This pin should be decoupled to VSS with a 0.1µF ceramic capacitor.
FSR 7 8 kHz Frame Sync input for the PCM receive section. This pin also selects channel 0 or
channel 1 in the GCI and IDL modes. It can also be connected to the FST pin when transmit
and receive are synchronous operations.
PCMR 8 PCM input data receive pin. The data needs to be synchronous with the FSR and BCLKR pins.
BCLKR 9 PCM receive bit clock input pin. This pin also selects the interface mode. The GCI mode is
selected when this pin is tied to VSS. The IDL mode is selected when this pin is tied to VDD.
This pin can also be tied to the BCLKT when transmit and receive are synchronous operations.
PUI 10 Power up input signal. When this pin is tied to VDD, the part is powered up. When tied to VSS,
the part is powered down.
MCLK 11 System master clock input. Possible input frequencies are 256 kHz, 512 kHz, 1536 kHz, 1544
kHz, 2048 kHz, 2560 kHz & 4096 kHz. For a better performance, it is recommended to have
the MCLK signal synchronous and aligned to the FST signal. This is a requirement in the
case of 256 and 512 kHz frequency.
BCLKT 12 PCM transmit bit clock input pin.
PCMT 13 PCM output data transmit pin. The output data is synchronous with the FST and BCLKT pins.
FST 14 8 kHz transmit frame sync input. This pin synchronizes the transmit data bytes.
VSS 15 This is the supply ground. This pin should be connected to 0V.
µ/A-Law 16 Compander mode select pin. µ-Law companding is selected when this pin is tied to VDD. A-Law
companding is selected when this pin is tied to VSS.
AO 17 Analog output of the first gain stage in the transmit path.
AI- 18 Inverting input of the first gain stage in the transmit path.
AI+ 19 Non-inverting input of the first gain stage in the transmit path.
VAG 20 Mid-Supply analog ground pin, which supplies a 2.5 Volt reference voltage for all-analog signal
processing. This pin should be decoupled to VSS with a 0.01µF to 0.1 µF capacitor. This pin
becomes high impedance when the chip is powered down.
W681511
- 8 -
7. FUNCTIONAL DESCRIPTION
W681511 is a single-rail, single channel PCM CODEC for voiceband applications. The CODEC
complies with the specifications of the ITU-T G.712 recommendation. The CODEC also includes a
complete µ-Law and A-Law compander. The µ-Law and A-Law companders are designed to comply
with the specifications of the ITU-T G.711 recommendation.
The block diagram in section 3 shows the main components of the W681511. The chip consists of a
PCM interface, which can process long and short frame sync formats, as well as GCI and IDL formats.
The pre-scaler of the chip provides the internal clock signals and synchronizes the CODEC sample
rate with the external frame sync frequency. The power conditioning block provides the internal
power supply for the digital and the analog section, while the voltage reference block provides a
precision analog ground voltage for the analog signal processing. The main CODEC block diagram
is shown in section 3.
Figure 7.1 The W681511 Signal Path
7.1. Transmit Path
The A-to-D path of the CODEC contains an analog input amplifier with externally configurable gain
setting (see application examples in section 11). The device has an input operational amplifier whose
output is the input to the encoder section. If the input amplifier is not required for operation it can be
powered down and bypassed. In that case a single ended input signal can be applied to the AO pin or
the AI- pin. The AO pin becomes high input impedance when the input amplifier is powered down. The
input amplifier can be powered down by connecting the AI+ pin to VDD or VSS. The AO pin is selected
as an input when AI+ is tied to VDD and the AI- pin is selected as an input when AI+ is tied to VSS (see
Table 7.1).
PAO
+
PAO
8
µ
/A
-
n
AI
+
AI
-
w
µ
/A
-
ol
AO
+
RO
+
-
VA
G
Ant
-
Aliasi
Fil
te
r
=
H
Ant
i
-
Aliasi
n
Fil
te
r
f
C
=
200
H
High
Pas
Fil
t
S
m
oot
n
Filter
2
H
S
m
oot
n
Filter
1
8
µ
/A
Co
n
t
r
o
l
8
µ
/A
-
Co
n
t
r
o
l
PAI
V
AG
Ant
-
A
li
as
in
g
Fil
te
r
-
Aliasing
Fil
te
r
Ant
-
Fil
te
r
High Pass
Fil
te
r
S
m
oot
hin
g
Filter
Filter
Smoothing
Filter
Filter
Receive Path
Transmit Path
+ -
+
+
+
-
A/
D
Co
nv
e
r
te
r
D
/
A
Converter
f
C
=
3400Hz
f
C
=
3400Hz
C
=
200Hz
f
W681511
Publication Release Date: April 2005
- 9 - Revision A10
AI+ Input Amplifier Input
VDD Powered Down AO
1.2 to VDD-1.2 Powered Up AI+, AI-
VSS Powered Down AI-
Table 7.1 Input Amplifier Modes of operation
When the input amplifier is powered down, the input signal at AO or AI- needs to be referenced to the
analog ground voltage VAG.
The output of the input amplifier is fed through a low-pass filter to prevent aliasing at the switched
capacitor 3.4 kHz low pass filter. The 3.4 kHz switched capacitor low pass filter prevents aliasing of
input signals above 4 kHz, due to the sampling at 8 kHz. The output of the 3.4 kHz low pass filter is
filtered by a high pass filter with a 200 Hz cut-off frequency. The filters are designed according to the
recommendations in the G.712 ITU-T specification. From the output of the high pass filter the signal is
digitized. The signal is converted into a compressed 8-bit digital representation with either µ-Law or A-
Law format. The µ-Law or A-Law format is pin-selectable through the µ/A-Law pin. The compression
format can be selected according to Table 7.2.
µ/A-Law Pin Format
VSS A-Law
VDD µ-Law
Table 7.2. Pin-selectable Compression Format
The digital 8-bit µ-Law or A-Law samples are fed to the PCM interface for serial transmission at the
sample rate supplied by the external frame sync FST.
7.2. Receive Path
The 8-bit digital input samples for the D-to-A path are serially shifted in by the PCM interface and
converted to parallel data bits. During every cycle of the frame sync FSR, the parallel data bits are fed
through the pin-selectable µ-Law or A-Law expander and converted to analog samples. The mode of
expansion is selected by the µ/A-Law pin as shown in Table 7.2. The analog samples are filtered by a
low-pass smoothing filter with a 3.4 kHz cut-off frequency, according to the ITU-T G.712 specification.
A sin(x)/x compensation is integrated with the low pass smoothing filter. The output of this filter is
buffered to provide the receive output signal RO+. The RO+ output can be externally connected to the
PAI pin to provide a differential output with high driving capability at the PAO+ and PAO- pins. By
using external resistors (see section 11 for examples), various gain settings of this output amplifier
can be achieved. If the transmit power amplifier is not in use, it can be powered down by connecting
PAI to VDD.
W681511
- 10 -
7.3. POWER MANAGEMENT
7.3.1. Analog and Digital Supply
The power supply for the analog and digital parts of the W681511 must be 5V +/- 10%. This supply
voltage is connected to the VDD pin. The VDD pin needs to be decoupled to ground through a 0.1 µF
ceramic capacitor.
7.3.2. Analog Ground Reference Voltage Outpt
The analog ground reference voltage is available for external reference at the VAG pin. This voltage
needs to be decoupled to VSS through a 0.01 µF ceramic capacitor.
7.4. PCM INTERFACE
The PCM interface is controlled by pins BCLKR, FSR, BCLKT & FST. The input data is received
through the PCMR pin and the output data is transmitted through the PCMT pin. The modes of
operation of the interface are shown in Table 7.3.
BCLKR FSR Interface Mode
64 kHz to 4.096 MHz 8 kHz Long or Short Frame Sync
VSS V
SS ISDN GCI with active channel B1
VSS V
DD ISDN GCI with active channel B2
VDD V
SS ISDN IDL with active channel B1
VDD V
DD ISDN IDL with active channel B2
Table 7.3 PCM Interface mode selections
7.4.1. Long Frame Sync
The Long Frame Sync or Short Frame Sync interface mode can be selected by connecting the
BCLKR or BCLKT pin to a 64 kHz to 4.096 MHz clock and connecting the FSR or FST pin to the 8
kHz frame sync. The device synchronizes the data word for the PCM interface and the CODEC
sample rate on the positive edge of the Frame Sync signal. It recognizes a Long Frame Sync when
the FST pin is held high for two consecutive falling edges of the bit-clock at the BCLKT pin. The length
of the Frame Sync pulse can vary from frame to frame, as long as the positive frame sync edge
occurs every 125 µsec. During data transmission in the Long Frame Sync mode, the transmit data pin
W681511
Publication Release Date: April 2005
- 11 - Revision A10
PCMT will become low impedance when the Frame Sync signal FST is high or when the 8 bit data
word is being transmitted. The transmit data pin PCMT will become high impedance when the Frame
Sync signal FST becomes low while the data is transmitted or when half of the LSB is transmitted. The
internal decision logic will determine whether the next frame sync is a long or a short frame sync,
based on the previous frame sync pulse. To avoid bus collisions, the PCMT pin will be high
impedance for two frame sync cycles after every power down state. More detailed timing information
can be found in the interface timing section.
7.4.2. Short Frame Sync
The W681511 operates in the Short Frame Sync Mode when the Frame Sync signal at pin FST is high
for one and only one falling edge of the bit-clock at the BCLKT pin. On the following rising edge of the
bit-clock, the W681511 starts clocking out the data on the PCMT pin, which will also change from high
to low impedance state. The data transmit pin PCMT will go back to the high impedance state halfway
the LSB. The Short Frame Sync operation of the W681511 is based on an 8-bit data word. When
receiving data on the PCMR pin, the data is clocked in on the first falling edge after the falling edge
that coincides with the Frame Sync signal. The internal decision logic will determine whether the next
frame sync is a long or a short frame sync, based on the previous frame sync pulse. To avoid bus
collisions, the PCMT pin will be high impedance for two frame sync cycles after every power down
state. More detailed timing information can be found in the interface timing section.
7.4.3. General Circuit Interface (GCI)
The GCI interface mode is selected when the BCLKR pin is connected to VSS for two or more frame
sync cycles. It can be used as a 2B+D timing interface in an ISDN application. The GCI interface
consists of 4 pins : FSC (FST), DCL (BCLKT), Dout (PCMT) & Din (PCMR). The FSR pin selects
channel B1 or B2 for transmit and receive. Data transitions occur on the positive edges of the data
clock DCL. The Frame Sync positive edge is aligned with the positive edge of the data clock DCLK.
The data rate is running half the speed of the bit-clock. The channels B1 and B2 are transmitted
consecutively. Therefore, channel B1 is transmitted on the first 16 clock cycles of DCL and B2 is
transmitted on the second 16 clock cycles of DCL. For more timing information, see the timing section.
W681511
- 12 -
7.4.4. Interchip Digital Link (IDL)
The IDL interface mode is selected when the BCLKR pin is connected to VDD for two or more frame
sync cycles. It can be used as a 2B+D timing interface in an ISDN application. The IDL interface
consists of 4 pins : IDL SYNC (FST), IDL CLK (BCLKT), IDL TX (PCMT) & IDL RX (PCMR). The FSR
pin selects channel B1 or B2 for transmit and receive. The data for channel B1 is transmitted on the
first positive edge of the IDL CLK after the IDL SYNC pulse. The IDL SYNC pulse is one IDL CLK
cycle long. The data for channel B2 is transmitted on the eleventh positive edge of the IDL CLK after
the IDL SYNC pulse. The data for channel B1 is received on the first negative edge of the IDL CLK
after the IDL SYNC pulse. The data for channel B2 is received on the eleventh negative edge of the
IDL CLK after the IDL SYNC pulse. The transmit signal pin IDL TX becomes high impedance when
not used for data transmission and also in the time slot of the unused channel. For more timing
information, see the timing section.
7.4.5. System Timing
The system can work at 256 kHz, 512 kHz, 1536 kHz, 1544 kHz, 2048 kHz, 2560 kHz & 4096 kHz
master clock rates. The system clock is supplied through the master clock input MCLK and can be
derived from the bit-clock if desired. An internal pre-scaler is used to generate a fixed 256 kHz and 8
kHz sample clock for the internal CODEC. The pre-scaler measures the master clock frequency
versus the Frame Sync frequency and sets the division ratio accordingly. If the Frame Sync is low for
the entire frame sync period while the MCLK and BCLK pin clock signals are still present, the
W681511 will enter the low power standby mode. Another way to power down is to set the PUI pin to
low. When the system needs to be powered up again, the PUI pin needs to be set to high and the
Frame Sync pulse needs to be present. It will take two Frame Sync cycles before the pin PCMT will
become low impedance.
W681511
Publication Release Date: April 2005
- 13 - Revision A10
8. TIMING DIAGRAMS
Figure 8.1 Long Frame Sync PCM Timing
FST
BCLKT
D7 D6 D5 D4 D3 D2 D1PCMT
MSB LSB
THID TBCK
D0
TBCKH TBCKL
TFS
TFTFH
TFTRS
TFTRH
THID
TBDTD
TFDTD
01 23 45 7 8 0 1
MSB LSB
FSR
BCLKR
TBCK
D6 D5 D4 D3 D2 D1 D0PCMR D7
TDRH
TDRS
TBCKH TBCKL
TFS
TFRFH
TFRRS
TFRRH
01 23 45 67 8 0 1
6
MCLK
TFTRHM TFTRSM TMCKH TMCKL
TMCK
TRISE TFALL
TFSL
TFSL
W681511
- 14 -
SYMBOL DESCRIPTION MIN TYP MAX UNIT
1/TFS FST, FSR Frequency --- 8 --- kHz
TFSL FST / FSR Minimum Low Width 1 T
BCK sec
1/TBCK BCLKT, BCLKR Frequency 64 --- 4096 kHz
TBCKH BCLKT, BCLKR High Pulse Width 50 --- --- ns
TBCKL BCLKT, BCLKR Low Pulse Width 50 --- --- ns
TFTRH BCLKT 0 Falling Edge to FST Rising
Edge Hold Time
20 --- --- ns
TFTRS FST Rising Edge to BCLKT 1 Falling
edge Setup Time
80 --- --- ns
TFTFH BCLKT 2 Falling Edge to FST Falling
Edge Hold Time
50 --- --- ns
TFDTD FST Rising Edge to Valid PCMT Delay
Time
--- --- 60 ns
TBDTD BCLKT Rising Edge to Valid PCMT
Delay Time
--- --- 60 ns
THID Delay Time from the Later of FST
Falling Edge, or
BCLKT 8 Falling Edge to PCMT Output
High Impedance
10 --- 60 ns
TFRRH BCLKR 0 Falling Edge to FSR Rising
Edge Hold Time
20 --- --- ns
TFRRS FSR Rising Edge to BCLKR 1 Falling
edge Setup Time
80 --- --- ns
TFRFH BCLKR 2 Falling Edge to FSR Falling
Edge Hold Time
50 --- --- ns
TDRS Valid PCMR to BCLKR Falling Edge
Setup Time
0 --- --- ns
TDRH PCMR Hold Time from BCLKR Falling
Edge
50 --- --- ns
Table 8.1 Long Frame Sync PCM Timing Parameters
1 TFSL must be at least TBCK
W681511
Publication Release Date: April 2005
- 15 - Revision A10
Figure 8.2 Short Frame Sync PCM Timing
D7 D6 D5 D4 D3 D2 D1
MSB LSB
TBCK
D0
TBCKH TBCKL
TFS
TFTRS
TFTRH
THID
TBDTD
01 2 3 45 6 7 8 01
FST
BCLKT
PCMT
TBDTD
TFTFH
-1
TFTFS
MSB LSB
TBCK
D6 D5 D4 D3 D2 D1 D0D7
TDRH
TDRS
TBCKH TBCKL
TFS
TFRRS
TFRRH
01 2 3 45 6 7 8 01
FSR
BCLKR
PCMR
TFRFH
-1
TFRFS
MCLK
TFTRHM TFTRSM TMCKH TMCKL
TMCK
TRISE TFALL
W681511
- 16 -
SYMBOL DESCRIPTION MIN TYP MAX UNIT
1/TFS FST, FSR Frequency --- 8 --- kHz
1/TBCK BCLKT, BCLKR Frequency 64 --- 4096 kHz
TBCKH BCLKT, BCLKR High Pulse Width 50 --- --- ns
TBCKL BCLKT, BCLKR Low Pulse Width 50 --- --- ns
TFTRH BCLKT –1 Falling Edge to FST Rising Edge Hold
Time
20 --- --- ns
TFTRS FST Rising Edge to BCLKT 0 Falling edge Setup
Time
80 --- --- ns
TFTFH BCLKT 0 Falling Edge to FST Falling Edge Hold Time 50 --- --- ns
TFTFS FST Falling Edge to BCLKT 1 Falling Edge Setup
Time
50 --- --- ns
TBDTD BCLKT Rising Edge to Valid PCMT Delay Time 10 --- 60 ns
THID Delay Time from BCLKT 8 Falling Edge to PCMT
Output High Impedance
10 --- 60 ns
TFRRH BCLKR –1 Falling Edge to FSR Rising Edge Hold
Time
20 --- --- ns
TFRRS FSR Rising Edge to BCLKR 0 Falling edge Setup
Time
80 --- --- ns
TFRFH BCLKR 0 Falling Edge to FSR Falling Edge Hold Time 50 --- --- ns
TFRFS FSR Falling Edge to BCLKR 1 Falling Edge Setup
Time
50 --- --- ns
TDRS Valid PCMR to BCLKR Falling Edge Setup Time 0 --- --- ns
TDRH PCMR Hold Time from BCLKR Falling Edge 50 --- --- ns
Table 8.2 Short Frame Sync PCM Timing Parameters
W681511
Publication Release Date: April 2005
- 17 - Revision A10
Figure 8.3 IDL PCM Timing
SYMBOL DESCRIPTION MIN TYP MAX UNIT
1/TFS FST Frequency --- 8 --- kHz
1/TBCK BCLKT Frequency 256 --- 4096 kHz
TBCKH BCLKT High Pulse Width 50 --- --- ns
TBCKL BCLKT Low Pulse Width 50 --- --- ns
TFSRH BCLKT –1 Falling Edge to FST Rising Edge
Hold Time
20 --- --- ns
TFSRS FST Rising Edge to BCLKT 0 Falling edge
Setup Time
60 --- --- ns
TFSFH BCLKT 0 Falling Edge to FST Falling Edge
Hold Time
20 --- --- ns
TBDTD BCLKT Rising Edge to Valid PCMT Delay
Time
10 --- 60 ns
THID Delay Time from the BCLKT 8 Falling Edge
(B1 channel) or BCLKT 18 Falling Edge (B2
Channel) to PCMT Output High Impedance
10 --- 50 ns
TDRS Valid PCMR to BCLKT Falling Edge Setup
Time
20 --- --- ns
TDRH PCMR Hold Time from BCLKT Falling Edge 75 --- --- ns
Table 8.3 IDL PCM Timing Parameters
FST
BCLKT
PCMT
PCMR
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
TFS
TFSRH
TFSFH
TFSRS
TBDTD TBDTD TBDTD TBDTD
THID THID
TDRS TDRS
TDRH TDRH
BCH = 0
B1 Channel
BCH = 1
B2 Channel
MSB
MSB
MSB
MSB
LSB
LSB
LSB
LSB
TBCK
TBCKH TBCKL
-1
W681511
- 18 -
Figure 8.4 GCI PCM Timing
SYMBOL DESCRIPTION MIN TYP MAX UNIT
1/TFST FST Frequency --- 8 --- kHz
1/TBCK BCLKT Frequency 512 --- 6176 kHz
TBCKH BCLKT High Pulse Width 50 --- --- ns
TBCKL BCLKT Low Pulse Width 50 --- --- ns
TFSRH BCLKT 0 Falling Edge to FST Rising Edge Hold Time 20 --- --- ns
TFSRS FST Rising Edge to BCLKT 1 Falling edge Setup Time 60 --- --- ns
TFSFH BCLKT 1 Falling Edge to FST Falling Edge Hold Time 20 --- --- ns
TFDTD FST Rising Edge to Valid PCMT Delay Time --- --- 60 ns
TBDTD BCLKT Rising Edge to Valid PCMT Delay Time --- --- 60 ns
THID Delay Time from the BCLKT 16 Falling Edge (B1
channel) or BCLKT 32 Falling Edge (B2 Channel) to
PCMT Output High Impedance
10 --- 50 ns
TDRS Valid PCMR to BCLKT Rising Edge Setup Time 20 --- --- ns
TDRH PCMR Hold Time from BCLKT Rising Edge --- --- 60 ns
Table 8.4 GCI PCM Timing Parameters
FST
BCLKT
PCMT
PCMR
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0
TFS
TFDTD TBDTD TBDTD TBDTD
THID THID
TDRS TDRS
TDRH TDRH
BCH = 0
B1 Channel
BCH = 1
B2 Channel
MSB
MSB
MSB
MSB
LSB
LSB
LSB
LSB
TFSRH
TFSFH
TFSRS
TBCK
TBCKH TBCKL
234567891011121314151617181920212223242526272829303132333410
W681511
Publication Release Date: April 2005
- 19 - Revision A10
SYMBOL DESCRIPTION MIN TYP MAX UNIT
1/TMCK Master Clock Frequency --- 256
512
1536
1544
2048
2560
4096
--- kHz
TMCKH /
TMCK
MCLK Duty Cycle for 256 kHz
Operation
45% 55%
TMCKH Minimum Pulse Width High for
MCLK(512 kHz or Higher)
50 --- --- ns
TMCKL Minimum Pulse Width Low for MCLK
(512 kHz or Higher)
50 --- --- ns
TFTRHM MCLK falling Edge to FST Rising Edge
Hold Time
50 --- --- ns
TFTRSM FST Rising Edge to MCLK Falling edge
Setup Time
50 --- --- ns
TRISE Rise Time for All Digital Signals --- --- 50 ns
TFALL Fall Time for All Digital Signals --- --- 50 ns
Table 8.5 General PCM Timing Parameters
W681511
- 20 -
9. ABSOLUTE MAXIMUM RATINGS
9.1. ABSOLUTE MAXIMUM RATINGS
Condition Value
Junction temperature 1500C
Storage temperature range -650C to +1500C
Voltage Applied to any pin (VSS - 0.3V) to (VDD + 0.3V)
Voltage applied to any pin (Input current limited to +/-20 mA) (VSS – 1.0V) to (VDD + 1.0V)
Lead temperature (soldering – 10 seconds) 3000C
VDD - VSS -0.5V to +6V
1. Stresses above those listed may cause permanent damage to the device. Exposure to the absolute
maximum ratings may affect device reliability. Functional operation is not implied at these conditions.
9.2. OPERATING CONDITIONS
Condition Value
Industrial operating temperature -400C to +850C
Supply voltage (VDD) +4.5V to +5.5V
Ground voltage (VSS) 0V
Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely
affect the life and reliability of the device.
W681511
Publication Release Date: April 2005
- 21 - Revision A10
10. ELECTRICAL CHARACTERISTICS
10.1. GENERAL PARAMETERS
Symbol Parameters Conditions Min (2) Typ (1) Max (2) Units
VIL Input Low Voltage 0.6 V
VIH Input High Voltage 2.4 V
VOL PCMT Output Low Voltage IOL = 3 mA 0.4 V
VOH PCMT Output High Voltage IOL = -3 mA VDD
0.4
V
IDD VDD Current (Operating) - ADC + DAC No Load 5 8 mA
ISB V
DD Current (Standby) FST & FSR =Vss ;
PUI=VDD
10 100
µA
Ipd V
DD Current (Power Down) PUI= Vss 0.1 10
µA
IIL Input Leakage Current VSS<VIN<VDD +/-10
µA
IOL PCMT Output Leakage Current VSS<PCMT<VDD
High Z State
+/-10
µA
CIN Digital Input Capacitance 10 pF
COUT PCMT Output Capacitance PCMT High Z 15 pF
1. Typical values: TA = 25°C , VDD = 5.0 V
2. All min/max limits are guaranteed by Winbond via electrical testing or characterization. Not all
specifications are 100 percent tested.
W681511
- 22 -
10.2. ANALOG SIGNAL LEVEL AND GAIN PARAMETERS
VDD=5V ±10%; VSS=0V; TA=-40°C to +85°C; all analog signals referred to VAG;
TRANSMIT
(A/D)
RECEIVE
(D/A)
UNITPARAMETER SYM. CONDITION TYP.
MIN. MAX. MIN. MAX.
Absolute
Level
LABS 0 dBm0 = 0dBm @ 6001.096 --- --- --- --- VPK
Max. Transmit
Level
TXMAX 3.17 dBm0 for µ-Law
3.14 dBm0 for A-Law
1.579
1.573
---
---
---
---
---
---
---
---
VPK
VPK
Absolute Gain
(0 dBm0 @
1020 Hz;
TA=+25°C)
GABS 0 dBm0 @ 1020 Hz;
TA=+25°C
0 -0.25 +0.25 -0.25 +0.25 dB
Absolute Gain
variation with
Temperature
GABST TA=0°C to TA=+70°C
TA=-40°C to TA=+85°C
0 -0.03
-0.05
+0.03
+0.05
-0.03
-0.05
+0.03
+0.05
dB
Frequency
Response,
Relative to
0dBm0 @
1020 Hz
GRTV 15 Hz
50 Hz
60 Hz
200 Hz
300 to 3000 Hz
3300 Hz
3400 Hz
3600 Hz
4000 Hz
4600 Hz to 100 kHz
---
---
---
---
---
---
---
---
---
---
---
---
---
-1.0
-0.20
-0.35
-0.8
---
---
---
-40
-30
-26
-0.4
+0.15
+0.15
0
0
-14
-32
-0.5
-0.5
-0.5
-0.5
-0.20
-0.35
-0.8
---
---
---
0
0
0
0
+0.15
+0.15
0
0
-14
-30
dB
Gain Variation
vs. Level Tone
(1020 Hz
relative to –10
dBm0)
GLT +3 to –40 dBm0
-40 to –50 dBm0
-50 to –55 dBm0
---
---
---
-0.3
-0.6
-1.6
+0.3
+0.6
+1.6
-0.2
-0.4
-1.6
+0.2
+0.4
+1.6
dB
W681511
Publication Release Date: April 2005
- 23 - Revision A10
10.3. ANALOG DISTORTION AND NOISE PARAMETERS
VDD=5V ±10%; VSS=0V; TA=-40°C to +85°C; all analog signals referred to VAG;
TRANSMIT (A/D) RECEIVE (D/A) PARAMETER SYM. CONDITION
MIN. TYP. MAX. MIN. TYP. MAX.
UNIT
Total Distortion vs.
Level Tone (1020 Hz,
µ-Law, C-Message
Weighted)
DLTµ +3 dBm0
0 dBm0 to -30 dBm0
-40 dBm0
-45 dBm0
36
36
29
25
---
---
---
---
---
---
---
---
34
36
30
25
---
---
---
---
---
---
---
---
dBC
Total Distortion vs.
Level Tone (1020 Hz,
A-Law, Psophometric
Weighted)
DLTA +3 dBm0
0 dBm0 to -30 dBm0
-40 dBm0
-45 dBm0
36
36
29
25
---
---
---
---
---
---
---
---
34
36
30
25
---
---
---
---
---
---
---
---
dBp
Spurious Out-Of-Band
at RO+ (300 Hz to
3400 Hz @ 0dBm0)
DSPO 4600 Hz to 7600 Hz
7600 Hz to 8400 Hz
8400 Hz to 100000 Hz
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
-30
-40
-30
dB
Spurious In-Band (700
Hz to 1100 Hz @
0dBm0)
DSPI 300 to 3000 Hz ---
--- -47
---
--- -47
dB
Intermodulation
Distortion (300 Hz to
3400 Hz –4 to –21
dBm0
DIM Two tones
--- --- -41 --- --- -41 dB
Crosstalk (1020 Hz @
0dBm0)
DXT --- --- -75 --- --- -75 dBm0
Absolute Group Delay τABS 1200Hz --- --- 360 --- --- 240
µsec
Group Delay
Distortion (relative to
group delay @ 1200
Hz)
τD 500 Hz
600 Hz
1000 Hz
2600 Hz
2800 Hz
---
---
---
---
---
---
---
---
---
---
750
380
130
130
750
---
---
---
---
---
---
---
---
---
---
750
370
120
120
750
µsec
Idle Channel Noise NIDL µ-Law; C-message
A-Law; Psophometric
---
---
---
---
5
-69
---
---
---
---
13
-79
dBrnc
dBm0p
W681511
- 24 -
10.4. ANALOG INPUT AND OUTPUT AMPLIFIER PARAMETERS
VDD=5V ±10%; VSS=0V; TA=-40°C to +85°C; all analog signals referred to VAG;
PARAMETER SYM. CONDITION MIN. TYP. MAX. UNIT.
AI Input Offset Voltage VOFF,AI AI+, AI- --- --- ±25 mV
AI Input Current IIN,AI AI+, AI- ---
±0.1 ±1.0 µA
AI Input Resistance RIN,AI AI+, AI- to VAG 10 --- ---
M
AI Input Capacitance CIN,AI AI+, AI- --- --- 10 pF
AI Common Mode Input Voltage
Range
VCM,AI AI+, AI- 1.2 --- VDD-1.2 V
AI Common Mode Rejection
Ratio
CMRRTI AI+, AI- --- 60 --- dB
AI Amp Gain Bandwidth Product GBWTI AO, RLD10k --- 2150 --- kHz
AI Amp DC Open Loop Gain GTI AO, RLD10k --- 95 --- dB
AI Amp Equivalent Input Noise NTI C-Message Weighted --- -24 --- dBrnC
AO Output Voltage Range VTG RLD=10k to VAG
RLD=2k to VAG
0.5
1.0
---
---
VDD-0.5
VDD-1.0
V
Load Resistance RLDTGRO AO, RO to VAG 2 --- ---
k
Load Capacitance CLDTGRO AO, RO --- --- 100 pF
AO & RO Output Current IOUT1 0.5 AO,RO+ VDD-0.5 ±1.0 --- --- mA
RO+ Output Resistance RRO+ RO+, 0 to 3400 Hz --- 1 ---
RO+ Output Offset Voltage VOFF,RO+ RO+ to VAG --- ---
±25 mV
Analog Ground Voltage VAG Relative to VSS 2.429 2.5 2.573 V
VAG Output Resistance RVAG Within ±25mV change --- 2.5 12.5
Power Supply Rejection Ratio (0
to 100 kHz to VDD, C-message)
PSRR Transmit
Receive
30
30
80
75
---
---
dBC
PAI Input Offset Voltage VOFF,PAI PAI --- --- ±20 mV
PAI Input Current IIN,PAI PAI --- ±0.05 ±1.0 µA
PAI Input Resistance RIN,PAI PAI to VAG 10 --- ---
M
PAI Amp Gain Bandwidth
Product
GBWPI PAO- no load --- 1000 --- kHz
Output Offset Voltage VOFF,PO PAO+ to PAO- --- --- ±50 mV
Load Resistance RLDPO PAO+, PAO-
differentially
300 --- ---
Load Capacitance CLDPO PAO+, PAO-
differentially
--- --- 1000 pF
W681511
Publication Release Date: April 2005
- 25 - Revision A10
PARAMETER SYM. CONDITION MIN. TYP. MAX. UNIT.
PO Output Current IOUTPO 0.5 AO,RO+ VDD-0.5 ±10.0 --- --- mA
PO Output Resistance RPO PAO+ to PAO- --- 1 ---
PO Differential Gain GPO RLD=300, +3dBm0, 1
kHz, PAO+ to PAO-
-0.2 0 +0.2 dB
PO Differential Signal to
Distortion C-Message weighted
DPO ZLD=300
ZLD=100nF + 100
ZLD=100nF + 20
45
---
---
60
40
40
---
---
---
dBC
PO Power Supply Rejection
Ratio (0 to 25 kHz to VDD,
Differential out)
PSRRP
O
0 to 4 kHz
4 to 25 kHz
40
---
55
40
---
---
dB
W681511
- 26 -
10.5. DIGITAL I/O
10.5.1. µ-Law Encode Decode Characteristics
Digital Code
D7 D6 D5 D4 D3 D2 D1 D0
Normalized
Encode
Decision
Levels
Sign Chord Chord Chord Step Step Step Step
Normalized
Decode
Levels
1 0 0 0 0 0 0 0 8031
:
1 0 0 0 1 1 1 1 4191
:
1 0 0 1 1 1 1 1 2079
:
1 0 1 0 1 1 1 1 1023
:
1 0 1 1 1 1 1 1 495
:
1 1 0 0 1 1 1 1 231
:
1 1 0 1 1 1 1 1 99
:
1 1 1 0 1 1 1 1 33
:
1 1 1 1 1 1 1 0 2
1 1 1 1 1 1 1 1 0
8159
7903
:
4319
4063
:
2143
2015
:
1055
991
:
511
479
:
239
223
:
103
95
:
35
31
:
3
1
0
Notes:
Sign bit = 0 for negative values, sign bit = 1 for positive values
W681511
Publication Release Date: April 2005
- 27 - Revision A10
10.5.2. A-Law Encode Decode Characteristics
Digital Code
D7 D6 D5 D4 D3 D2 D1 D0
Normalized
Encode
Decision
Levels Sign Chord Chord Chord Step Step Step Step
Normalized
Decode
Levels
1 0 1 0 1 0 1 0 4032
:
1 0 1 0 0 1 0 1 2112
:
1 0 1 1 0 1 0 1 1056
:
1 0 0 0 0 1 0 1 528
:
1 0 0 1 0 1 0 1 264
:
1 1 1 0 0 1 0 1 132
:
1 1 1 0 0 1 0 1 66
:
1 1 0 1 0 1 0 1 1
4096
3968
:
2048
2048
:
1088
1024
:
544
512
:
272
256
:
136
128
:
68
64
:
2
0
Notes:
1. Sign bit = 0 for negative values, sign bit = 1 for positive values
2. Digital code includes inversion of all even number bits
W681511
- 28 -
10.5.3. PCM Codes for Zero and Full Scale
µ-Law A-Law
Level Sign bit
(D7)
Chord bits
(D6,D5,D4)
Step bits
(D3,D2,D1,D0)
Sign bit
(D7)
Chord bits
(D6,D5,D4)
Step bits
(D3,D2,D1,D0)
+ Full Scale 1 000 0000 1 010 1010
+ Zero 1 111 1111 1 101 0101
- Zero 0 111 1111 0 101 0101
- Full Scale 0 000 0000 0 010 1010
10.5.4. PCM Codes for 0dBm0 Output
µ-Law A-Law
Sample Sign bit
(D7)
Chord bits
(D6,D5,D4)
Step bits
(D3,D2,D1,D0)
Sign bit
(D7)
Chord bits
(D6,D5,D4)
Step bits
(D3,D2,D1,D0)
1 0 001 1110 0 011 0100
2 0 000 1011 0 010 0001
3 0 000 1011 0 010 0001
4 0 001 1110 0 011 0100
5 1 001 1110 1 011 0100
6 1 000 1011 1 010 0001
7 1 000 1011 1 010 0001
8 1 001 1110 1 011 0100
W681511
Publication Release Date: April 2005
- 29 - Revision A10
11. TYPICAL APPLICATION CIRCUIT
VAG 20
AI+ 19
AI-18
AO 17
µ
/A 16
VSS 15
FST 14
PCMT 13
BCLKT 12
MCLK 11
1 V
REF
2 RO-
3 PAI
4 PAO-
5 PAO+
6 V
DD
7 FSR
8 PCMR
9 BCLKR
10 PUI
SOG
27k
27k
-
V
AUDIOOUT
+
0.1
µ
F
V
DD
Power
Control
2.048 MHz
PCM OUT
PCM IN
8 kHz
V
DD
27k
0.01
µ
F
27k
27k27k
1.0
µ
F
1.0
µ
F
V
AUDIOIN
-
V
AUDIOIN+
VAG 20
AI+ 19
AI-18
AO 17
µ
/A 16
VSS 15
FST 14
PCMT 13
BCLKT 12
MCLK 11
1 RO+
2 NC
3 PAI
4 PAO-
5 PAO+
6 V
DD
7 FSR
8 PCMR
9 BCLKR
10 PUI
-
+
0.1
µ
F
V
DD
Power
Control
2.048 MHz
PCM OUT
PCM IN
8 kHz
V
DD
27k
27k
27k27k
1.0
µ
F
1.0
µ
F
V
AUDIOIN
-
V
AUDIOIN+
Figure 11.1 Typical circuit for Differential Analog I/O’s
VAG 20
AI+ 19
AI-18
AO 17
µ
/A 16
VSS 15
FST 14
PCMT 13
BCLKT 12
MCLK 11
1 V
REF
2 RO-
3 PAI
4 PAO-
5 PAO+
6 V
DD
7 FSR
8 PCMR
9 BCLKR
10 PUI
SOG
27k
27k
0.1
µ
F
V
DD
2.048 MHz
PCM OUT
PCM IN
8 kHz
V
DD
27k
0.01
µ
F
27k
27k27k1.0
µ
F
1.0
µ
F
V
AUDIOIN
AUDIO OUT
R
L
2k
100
µ
F
AUDIO OUT
R
L
150
Power
Control
VAG 20
AI+ 19
AI-18
AO 17
µ
/A 16
VSS 15
FST 14
PCMT 13
BCLKT 12
MCLK 11
1 RO+
2 NC
3 PAI
4 PAO-
5 PAO+
6 V
DD
7 FSR
8 PCMR
9 BCLKR
10 PUI
27k
27k
0.1
µ
F
V
DD
2.048 MHz
PCM OUT
PCM IN
8 kHz
V
DD
27k
27k
27k27k1.0
µ
F
1.0
µ
F
V
AUDIOIN
AUDIO OUT
R
L
2k
100
µ
F
AUDIO OUT
R
L
150
Power
Control
Figure 11.2 Typical circuit for Single Ended Analog I/O’s
W681511
- 30 -
VAG 20
AI+ 19
AI-18
AO 17
µ
/A 16
VSS 15
FST 14
PCMT 13
BCLKT 12
MCLK 11
1 VREF
2 RO-
3 PAI
4 PAO-
5 PAO+
6 VDD
7 FSR
8 PCMR
9 BCLKR
10 PUI
27k
0.1
µ
F
V
DD
2.048 MHz
PCM OUT
PCM IN
8 kHz
V
DD
1k
0.01
µ
F
100k
100k1k1.0
µ
F
1.0
µ
F
27k
1.5k
1.5k
Electret
Microphone
WM
-
54B Panasonic
Speake
Power
Control
1k200 p F
VAG 20
AI+ 19
AI-18
AO 17
µ
/A 16
VSS 15
FST 14
PCMT 13
BCLKT 12
MCLK 11
1 RO+
2 NC
3 PAI
4 PAO-
5 PAO+
6 VDD
7 FSR
8 PCMR
9 BCLKR
10 PUI
SOG
27k
0.1
µ
F
V
DD
2.048 MHz
PCM OUT
PCM IN
8 kHz
V
DD
1k
0.01
µ
F
100k
100k1k1.0
µ
F
1.0
µ
F
27k
27k
1.5k
1.5k
Electret
Microphone
WM
-
54B Panasonic
27k
Speaker
Power
Control
1k200 p F
Figure 11.3 Handset Interface
VAG 20
AI+ 19
AI-18
AO 17
µ
/A 16
VSS 15
FST 14
PCMT 13
BCLKT 12
MCLK 11
1 V
REF
2 RO-
3 PAI
4 PAO-
5 PAO+
6 V
DD
7 FSR
8 PCMR
9 BCLKR
10 PUI
SOG
27k
27k
0.1
µ
F
V
DD
4.096 MHz
PCM OUT
PCM IN
8 kHz
VDD
27k
0.01
µ
F
27k
1.0
µ
F
600
N
=1
N
=1
TIP
RING
600
B1
0V
B2 -+5V
Power
Control
VAG 20
AI+ 19
AI-18
AO 17
µ
/A 16
VSS 15
FST 14
PCMT 13
BCLKT 12
MCLK 11
1 RO+
2 NC
3 PAI
4 PAO-
5 PAO+
6 V
DD
7 FSR
8 PCMR
9 BCLKR
10 PUI
27k
0.1
µ
F
V
DD
4.096 MHz
PCM OUT
PCM IN
8 kHz
VDD
600
600
TIP
600
B1
0V
B2 -+5V
Power
Control
Figure 11.4 Transformer Interface Circuit in GCI mode
W681511
Publication Release Date: April 2005
- 31 - Revision A10
12. PACKAGE SPECIFICATION
12.2. 20L SOG (SOP)-300MIL
SMALL OUTLINE PACKAGE (SAME AS SOG & SOIC) DIMENSIONS
DIMENSION (MM) DIMENSION (INCH)
SYMBOL MIN. MAX. MIN. MAX.
A 2.35 2.65 0.093 0.104
A1 0.10 0.30 0.004 0.012
b 0.33 0.51 0.013 0.020
c 0.23 0.32 0.009 0.013
E 7.40 7.60 0.291 0.299
D 12.60 13.00 0.496 0.512
e 1.27 BSC 0.050 BSC
HE 10.00 10.65 0.394 0.419
Y - 0.10 - 0.004
L 0.40 1.27 0.016 0.050
L
O
c
E
H
A
A
e
b
D
SEATING
Y
0.2
GAUGE
E
1
21
1
W681511
- 32 -
0 0º 8º
W681511
Publication Release Date: April 2005
- 33 - Revision A10
13. ORDERING INFORMATION
Winbond Part Number Description
When ordering W681511 series devices, please refer to the following part numbers.
Part Number
W681511IS
Package Type:
S = 20-Lead Plastic Small Outline Package (SOG/SOP)
Product Family
W681511 Product
W681511_
W681511
- 34 -
14. VERSION HISTORY
VERSION DATE PAGE DESCRIPTION
A9 Decembe
r 4, 2002
A10 April 2005 33 Add Important Notice
Important Notice
Winbond products are not designed, intended, authorized or warranted for use as components
in systems or equipment intended for surgical implantation, atomic energy control
instruments, airplane or spaceship instruments, transportation instruments, traffic signal
instruments, combustion control instruments, or for other applications intended to support or
sustain life. Further more, Winbond products are not intended for applications wherein failure
of Winbond products could result or lead to a situation wherein personal injury, death or
severe property or environmental damage could occur.
Winbond customers using or selling these products for use in such applications do so at their
own risk and agree to fully indemnify Winbond for any damages resulting from such improper
use or sales.
Headquarters Winbond Electronics Corporation America Winbond Electronics (Shanghai) Ltd.
No. 4, Creation Rd. III 2727 North First Street, San Jose, 27F, 299 Yan An W. Rd. Shanghai,
Science-Based Industrial Park, CA 95134, U.S.A. 200336 China
Hsinchu, Taiwan TEL: 1-408-9436666 TEL: 86-21-62365999
TEL: 886-3-5770066 FAX: 1-408-5441798 FAX: 86-21-62356998
FAX: 886-3-5665577 http://www.winbond-usa.com/
http://www.winbond.com.tw/
Taipei Office Winbond Electronics Corporation Japan Winbond Electronics (H.K.) Ltd.
9F, No. 480, Pueiguang Rd. 7F Daini-ueno BLDG, 3-7-18 Unit 9-15, 22F, Millennium City,
Neihu District, Shinyokohama Kohoku-ku, No. 378 Kwun Tong Rd.,
Taipei, 114, Taiwan Yokohama, 222-0033 Kowloon, Hong Kong
TEL: 886-2-81777168 TEL: 81-45-4781881 TEL: 852-27513100
FAX: 886-2-87153579 FAX: 81-45-4781800 FAX: 852-27552064
Please note that all data and specifications are subject to change without notice.
All the trademarks of products and companies mentioned in this datasheet belong to their respective owners.
The information contained in this datasheet may be subject to change without
notice. It is the responsibility of the customer to check the Winbond USA website
(www.winbond-usa.com) periodically for the latest version of this document, and
any Errata Sheets that may be generated between datasheet revisions.