1010 Tyco Electronics Corp.
Data Sheet
May 1998dc-dc Converters; 18 to 36 Vdc Input, 6.5 Vdc Output; 50 W to 150 W
FC050S6R5 and FC150S6R5 Power Modules:
Feature Descriptions
(continued)
Output Overvoltage Clamp
The output overvoltage clamp consists of control cir-
cuitry, independent of the primary regulation loop, that
monitors the voltage on the output terminals. The con-
trol loop of the clamp has a higher voltage set point
than the primary loop (see Feature Specifications
table). This provides a redundant voltage-control that
reduces the risk of output overvoltage.
Thermal Considerations
Introduction
The power modules operate in a variety of thermal
environments; however, sufficient cooling should be
provided to help ensure reliable operation of the unit.
Heat-dissipating components inside the unit are ther-
mally coupled to the case. Heat is removed by conduc-
tion, convection, and radiation to the surrounding
environment. Proper cooling can be verified by mea-
suring the case temperature. Peak temperature occurs
at the position indicated in Figure 16.
8-582(C).v
Note: Top view, measurements shown in millimeters and (inches).
Pin locations are for reference only.
Figure 16. Case Temperature Measurement
Location
The temperature at this location should not exceed
95 °C . The maximum case temperature can be limited to
a lower value for extremely high reliability. The output
pow er of the module should not exceed the rated power
f or the module as listed in the Ordering Information table.
For additional information about these modules, refer to
the
Thermal Management for High-Power Board-
Mounted Power Modules
Technical Note (TN97-009EPS).
Heat Transfer Without Heat Sinks
Derating curves for forced-air cooling without a heat
sink are shown in Figure 17. These curves can be used
to determine the appropriate airflow for a given set of
operating conditions. F or e xample , if the unit dissipates
20 W of heat, the correct airflow in a 40 °C en vironment
is 1.0 m/s (200 ft./min.).
8-587(C)
Figure 17. Power Derating vs. Local Ambient
Temperature and Air Velocity
Heat Transfer with Heat Sinks
The power modules have threaded #4-40 fasteners,
which enable heat sinks or cold plates to be attached to
the module. The mounting torque must not exceed
0.56 N-m (5 in.-lb.).
Thermal derating with heat sinks is expressed b y using
the ov er all thermal resistance of the module. Total mod-
ule thermal resistance (
θ
ca) is defined as the maximum
case temperature rise (
∆
T
C, max
) divided by the module
power dissipation (P
D
):
The location to measure case temperature (T
C
) is
shown in Figure 16. Case-to-ambient thermal resis-
tance vs. airflow for various heat sink configurations is
shown in Figure 18 and Figure 19. These curves were
obtained by experimental testing of heat sinks, which
are offered in the product catalog.
IN:DC 28V, 6.5A OUT:DC 6.5V, 23.1A
150W
PARALLEL
+
SENSE
–
+
OUT
–
CASE
ON/OFF
+
–IN
FC150S6R59
DC-DC Power Module
MADE IN USA
Protected by U.S. Paterts: 5,036,452 5,179,365
MEASURE CASE
TEMPERATURE HERE
76 (3.0)
18 (0.7)
Lucent
TRIM
TUV Rheinland¨
30
POWER DISSIPATION, P
D
(W)
LOCAL AMBIENT TEMPERATURE, T
A
(°C)
20
10
020406080
40
100
0
0.1 m/s (20 ft./min.)
NATURAL CONVECTION
0.5 m/s (100 ft./min.)
1.0 m/s (200 ft./min.)
1.5 m/s (300 ft./min.)
2.0 m/s (400 ft./min.)
2.5 m/s (500 ft./min.)
3.0 m/s (600 ft./min.)
3.5 m/s (700 ft./min.)
4.0 m/s (800 ft./min.)
θca ∆TC max,
PD
--------------------- TCTA–()
PD
------------------------
==