The HM534253B is a 1-Mbit multiport video RAM
equipped with a 256-kword ×4-bit dynamic RAM
and a 512-word ×4-bit SAM (serial access
memory). Its RAM and SAM operate
independently and asynchronously. It can transfer
data between RAM and SAM. In addition, it has
two modes to realize fast writing in RAM. Block
write and flash write modes clear the data of 4-
word ×4-bit and the data of one row (512-word ×
4-bit) respectively in one cycle of RAM. And the
HM534253B makes split transfer cycle possible by
dividing SAM into two split buffers equipped with
256-word ×4-bit each. This cycle can transfer data
to SAM which is not active, and enables a
continuous serial access.
Features
Multiport organization
Asynchronous and simultaneous operation of
RAM and SAM capability
RAM: 256 kword ×4 bit
SAM: 512 word ×4 bit
Access time
RAM: 60 ns/70 ns/80 ns/100 ns max
SAM: 20 ns/22 ns/25 ns/25 ns max
Cycle time
RAM: 125 ns/135 ns/150 ns/180 ns min
SAM: 25 ns/25 ns/30 ns/30 ns min
Low power
Active RAM: 413 mW max
SAM: 275 mW max
Standby 38.5 mW max
High-speed page mode capability
Mask write mode capability
Bidirectional data transfer cycle between RAM
and SAM capability
Split transfer cycle capability
Block write mode capability
Flash write mode capability
3 variations of refresh (8 ms/512 cycles)
RAS
-only refresh
CAS
-before-
RAS
refresh
– Hidden refresh
TTL compatible
Ordering Information
Type No. Access time Package
————————————————————
HM534253BJ-6 60 ns 400-mil 28-pin
HM534253BJ-7 70 ns plastic SOJ
HM534253BJ-8 80 ns (CP-28D)
HM534253BJ-10 100 ns
————————————————————
HM534253BZ-6 60 ns 400-mil 28-pin
HM534253BZ-7 70 ns plastic ZIP
HM534253BZ-8 80 ns (ZP-28)
HM534253BZ-10 100 ns
————————————————————
HM534253BT-6 60 ns 8 mm ×14 mm
HM534253BT-7 70 ns 32-pin TSOP
HM534253BT-8 80 ns type I
HM534253BT-10 100 ns (TFP-32DA)
————————————————————
HM534253BR-6 60 ns 8 mm ×14 mm
HM534253BR-7 70 ns 32-pin TSOP
HM534253BR-8 80 ns type I reverse
HM534253BR-10 100 ns (TFP-32DAR)
————————————————————
ADE-203-204C(Z)
HM534253B Series
262,144-word ×4-bit Multiport CMOS Video RAM
Rev. 3.0
Apr. 24, 1995
Pin Arrangement
Pin Description
Pin name Function
–––––––––––––––––––––––––––––––––––––––––
A0 – A8 Address inputs
————————————————————–
I/O0 – I/O3 RAM port data inputs/outputs
————————————————————–
SI/O0 – SI/O3 SAM port data inputs/outputs
————————————————————–
RAS Row address strobe
————————————————————–
CAS Column address strobe
————————————————————–
WE Write enable
————————————————————–
DT/OE Data transfer/output enable
–––––––––––––––––––––––––––––––––––––––––
Pin name Function
–––––––––––––––––––––––––––––––––––––––––
SC Serial clock
————————————————————–
SE SAM port enable
————————————————————–
DSF Special function input flag
————————————————————–
QSF Special function output flag
————————————————————–
VCC Power supply
————————————————————–
VSS Ground
————————————————————–
NC No connection
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
DSF
I/O2
I/O3
SE
SI/O2
SI/O3
V
NC
NC
SC
SI/O0
SI/O1
DT/OE
I/O0
I/O1
WE
SS
CAS
QSF
A0
A1
A2
A3
A7
NC
NC
V
A4
A5
A6
A8
RAS
NC
CC
(Top View)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
28
27
26
25
24
23
22
21
20
19
18
17
16
15
SC
SI/O0
SI/O1
DT/OE
I/O0
I/O1
WE
NC
RAS
A8
A6
A5
A4
VCC
VSS
SI/O3
SI/O2
SE
I/O3
I/O2
DSF
CAS
QSF
A0
A1
A2
A3
A7
(Top View)
HM534253BJ Series HM534253BT Series
HM534253BZ Series HM534253BR Series
2
HM534253B Series
3
2
1
3
5
7
9
11
13
15
17
19
21
23
25
27
2
4
6
8
10
12
14
16
18
20
22
24
26
28
DSF
I/O3
SI/O2
VSS
SI/O0
DT/OE
I/O1
NC
A8
A5
VCC
A3
A1
QSF
I/O2
SE
SI/O3
SC
SI/O1
I/O0
WE
RAS
A6
A4
A7
A2
A0
CAS
(Bottom View)
Block Diagram
A0 – A8
SI/O0 – SI/O3
I/O0 – I/O3
RAS
CAS
DT/OE
WE
DSF
SC
SE
Timing Generator
Output
Buffer
Input
Buffer
Mask
Register
Input Data
Control Serial Output
Buffer Serial Input
Buffer
Column Decoder
Sense Amplifier & I/O Bus
SAM I/O Bus
SAM Column Decoder
Data
Register
Serial Address
Counter
Refresh
Counter
Row Address
Buffer
Column Address
Buffer
Row Decoder
Memory Array
Data
Register
Transfer
Gate
Transfer
Gate
Flash Write
Control
Block Write
Control
Color
Register
Address Mask
Register
QSF
3
HM534253B Series
Pin Functions
RAS
(input pin):
RAS
is a basic RAM signal. It is active in low level and standby in high level. Row
address and signals as shown in table 1 are input at the falling edge of
RAS
. The input level of these
signals determine the operation cycle of the HM534253B.
Table 1. Operation Cycles of the HM534253B
———————————————————————————————————————————————
Input level at the falling edge of RAS
—————————————————————— DSF at the falling Operation mode
CAS DT/OE WE SE DSF edge of CAS
———————————————————————————————————————————————
L X X X X CBR refresh
———————————————————————————————————————————————
H L L L L X Write transfer
———————————————————————————————————————————————
H L L H L X Pseudo transfer
———————————————————————————————————————————————
H L L X H X Split write transfer
———————————————————————————————————————————————
H L H X L X Read transfer
———————————————————————————————————————————————
H L H X H X Split read transfer
———————————————————————————————————————————————
H H L X L L Read/mask write
———————————————————————————————————————————————
H H L X L H Mask block write
———————————————————————————————————————————————
H H L X H X Flash write
———————————————————————————————————————————————
H H H X L L Read/write
———————————————————————————————————————————————
H H H X L H Block write
———————————————————————————————————————————————
H H H X H X Color register read/write
———————————————————————————————————————————————
Note: X: Don't care.
CAS
(input pin): Column address and DSF signals are fetched into chip at the falling edge of
CAS
, which
determines the operation mode of the HM534253B.
CAS
controls output impedance of I/O in RAM.
A0 – A8 (input pins): Row address is determined by A0 – A8 level at the falling edge of
RAS
. Column
address is determined by A0 – A8 level at the falling edge of
CAS
. In transfer cycles, row address is the
address on the word line which transfers data with SAM data register, and column address is the SAM start
address after transfer.
4
HM534253B Series
WE
(input pin):
WE
pin has two functions at the falling edge of
RAS
and after. When
WE
is low at the
falling edge of
RAS
, the HM534253B turns to mask write mode. According to the I/O level at the time,
write on each I/O can be masked. (
WE
level at the falling edge of
RAS
is don’t care in read cycle.) When
WE
is high at the falling edge of
RAS
, a normal write cycle is executed. After that,
WE
switches
read/write cycles as in a standard DRAM. In a transfer cycle, the direction of transfer is determined by
WE
level at the falling edge of
RAS
. When
WE
is low, data is transferred from SAM to RAM (data is
written into RAM), and when
WE
is high, data is transferred from RAM to SAM (data is read from RAM).
I/O0 – I/O3 (input/output pins): I/O pins function as mask data at the falling edge of
RAS
(in mask write
mode). Data is written only to high I/O pins. Data on low I/O pins are masked and internal data are
retained. After that, they function as input/output pins as those of a standard DRAM. In block write cycle,
they function as address mask data at the falling edges of
CAS
.
DT
/
OE
(input pin):
DT
/
OE
pin functions as
DT
(data transfer) pin at the falling edge of
RAS
and as
OE
(output enable) pin after that. When
DT
is low at the falling edge of
RAS
, this cycle becomes a transfer
cycle. When
DT
is high at the falling edge of
RAS
, RAM and SAM operate independently.
SC (input pin): SC is a basic SAM clock. In a serial read cycle, data outputs from an SI/O pin
synchronously with the rising edge of SC. In a serial write cycle, data on an SI/O pin at the rising edge of
SC is fetched into the SAM data register.
SE
(input pin):
SE
pin activates SAM. When
SE
is high, SI/O is in the high impedance state in serial read
cycle and data on SI/O is not fetched into the SAM data register in serial write cycle.
SE
can be used as a
mask for serial write because internal pointer is incremented at the rising edge of SC.
SI/O0 – SI/O3 (input/output pins): SI/Os are input/output pins in SAM. Direction of input/output is
determined by the previous transfer cycle. When it was a read transfer cycle, SI/O outputs data. When it
was a pseudo transfer cycle or write transfer cycle, SI/O inputs data.
DSF (input pin): DSF is a special function data input flag pin. It is set to high at the falling edge of
RAS
when new functions such as color register read/write, split transfer, and flash write, are used. DSF is set to
high at the falling edge of
CAS
when block write is executed.
QSF (output pin): QSF outputs data of address A8 in SAM. QSF is switched from low to high by
accessing address 255 in SAM and from high to low by accessing 511 address in SAM.
Operation of HM534253B
RAM Port Operation
RAM Read Cycle (
DT
/
OE
high,
CAS
high and DSF low at the falling edge of
RAS
, DSF low at the
falling edge of
CAS
)
Row address is entered at the
RAS
falling edge and column address at the
CAS
falling edge to the device
as in standard DRAM. Then, when
WE
is high and
DT
/
OE
is low while
CAS
is low, the selected address
data outputs through I/O pin. At the falling edge of
RAS
,
DT
/
OE
and
CAS
become high to distinguish
RAM read cycle from transfer cycle and CBR refresh cycle. Address access time (tAA) and
RAS
to
column address delay time (tRAD) specifications are added to enable high-speed page mode.
5
HM534253B Series
RAM Write Cycle (Early Write, Delayed Write, Read-Modify-Write)
(
DT
/
OE
high,
CAS
high and DSF low at the falling edge of
RAS
, DSF low at the falling edge of
CAS
)
• Normal Mode Write Cycle (
WE
high at the falling edge of
RAS
)
When
CAS
and
WE
are set low after driving
RAS
low, a write cycle is executed and I/O data is written in
the selected addresses. When all 4 I/Os are written,
WE
should be high at the falling edge of
RAS
to
distinguish normal mode from mask write mode.
If
WE
is set low before the
CAS
falling edge, this cycle becomes an early write cycle and all I/O become in
high impedance. Data is entered at the
CAS
falling edge.
If
WE
is set low after the
CAS
falling edge, this cycle becomes a delayed write cycle. Data is input at the
WE
falling. I/O does not become high impedance in this cycle, so data should be entered with
OE
in high.
If
WE
is set low after tCWD (min) and tAWD (min) after the
CAS
falling edge, this cycle becomes a read-
modify-write cycle and enables read/write at the same address in one cycle. In this cycle also, to avoid I/O
contention, data should be input after reading data and driving
OE
high.
• Mask Write Mode (
WE
low at the falling edge of
RAS
)
If
WE
is set low at the falling edge of
RAS
, the cycle becomes a mask write mode which writes only to
selected I/O. Whether or not an I/O is written depends on I/O level (mask data) at the falling edge of
RAS
.
Then the data is written in high I/O pins and masked in low ones and internal data is retained. This mask
data is effective during the
RAS
cycle. So, in high-speed page mode, the mask data is retained during the
page access.
High-Speed Page Mode Cycle (
DT
/
OE
high,
CAS
high and DSF low at the falling edge of
RAS
)
High-speed page mode cycle reads/writes the data of the same row address at high speed by toggling
CAS
while
RAS
is low. Its cycle time is one third of the random read/write cycle. In this cycle, read, write, and
block write cycles can be mixed. Note that address access time (tAA),
RAS
to column address delay time
(tRAD), and access time from
CAS
precharge (tACP) are added. In one
RAS
cycle, 512-word memory
cells of the same row address can be accessed. It is necessary to specify access frequency within tRASP
max (100 µs).
Color Register Set/Read Cycle (
CAS
high,
DT
/
OE
high,
WE
high and DSF high at the falling edge of
RAS
)
In color register set cycle, color data is set to the internal color register used in flash write cycle or block
write cycle. 4 bits of internal color register are provided at each I/O. This register is composed of static
circuits, so once it is set, it retains the data until reset. Color register set cycle is just as same as the usual
write cycle except that DSF is set high at the falling edge of
RAS
, and read, early write and delayed write
cycle can be executed. In this cycle, the HM534253B refreshes the row address fetched at the falling edge
of
RAS
.
6
HM534253B Series
Flash Write Cycle (
CAS
high,
DT
/
OE
high,
WE
low, and DSF high at the falling edge of
RAS
)
In a flash write cycle, a row of data (512 word x 4 bit) is cleared to 0 or 1 at each I/O according to the data
of color register mentioned before. It is also necessary to mask I/O in this cycle. When
CAS
and
DT
/
OE
is set high,
WE
is low, and DSF is high at the falling edge of
RAS
, this cycle starts. Then, the row address
to clear is given to row address and mask data is given to I/O. Mask data is as same as that of a RAM
write cycle. High I/O is cleared, low I/O is not cleared and the internal data is retained. Cycle time is the
same as those of RAM read/write cycles, so all bits can be cleared in 1/512 of the usual cycle time. (See
figure 1.)
RAS
CAS
Address
WE
DT/OE
DSF
I/O
Color Register Set Cycle Flash Write Cycle Flash Write Cycle
Row Xi Xj
*1 *1Color Data
Set color register Execute flash write into each
I/O on row address Xi using
color resister.
Execute flash write into
each I/O on row address
Xj using color resister.
*1 I/O Mask Data
Low: Mask
High: Non Mask
Figure 1. Use of Flash Write
7
HM534253B Series
Block Write cycle (
CAS
high,
DT
/
OE
high and DSF low at the falling edge of
RAS
, DSF high at the
falling edge of
CAS
)
In a block write cycle, 4 columns of data (4 word x 4 bit) is cleared to 0 or 1 at each I/O according to the
data of color register. Column addresses A0 and A1 are disregarded. The data on I/Os and addresses can
be masked. I/O level at the falling edge of
CAS
determines the address to be cleared. (See figure 2.) In a
page mode cycle, mixed cycle of normal Read/Write and block write can be allowed by controlling DSF.
• Normal Mode Block Write Cycle (
WE
high at the falling edge of
RAS
)
The data on 4 I/Os are all cleared when
WE
is high at the falling edge of
RAS
.
• Mask Block Write Mode (
WE
low at the falling edge of
RAS
)
When
WE
is low at the falling edge of
RAS
, the HM534253B starts mask block write mode to clear the
data on an optional I/O. The mask data is the same as that of a RAM write cycle. High I/O is cleared, low
I/O is not cleared and the internal data is retained. The mask data is available in the
RAS
cycle. In page
mode block write cycle, the mask data is retained during the page access.
Color Register Set Cycle Block Write Cycle Block Write Cycle
Row Row Column A2–A8 Row Column A2–A8
*1 *1
*1*1
Color Data Address Mask Address Mask
RAS
CAS
Address
WE
DT/OE
DSF
I/O
*1
I/O Mask Data
Low: Mask
High: Non Mask
Address Mask Data
Low: Mask
High: Non Mask
I/O0
I/O1
I/O2
I/O3
Column0 (A0 = 0, A1 = 0) Mask Data
Column1 (A0 = 1, A1 = 0) Mask Data
Column2 (A0 = 0, A1 = 1) Mask Data
Column3 (A0 = 1, A1 = 1) Mask Data
WE
Low
High
I/O
I/O Mask Data
Don't care Non mask
Mask
Mode
Figure 2. Use of Block Write
8
HM534253B Series
Transfer Operation
The HM534253B provides the read transfer cycle, split read transfer cycle,pseudo transfer cycle, write
transfer cycle, and split write transfer cycle as data transfer cycles. These transfer cycles are set by driving
CAS
high and
DT
/
OE
low at the falling edge of
RAS
. They have following functions:
(1) Transfer data between row address and SAM data register (except for pseudo transfer cycle)
Read transfer cycle and split read transfer cycle: RAM to SAM
Write transfer cycle and split write transfer cycle: SAM to RAM
(2) Determine SI/O state (except for split read transfer cycle and split write transfer cycle)
Read transfer cycle: SI/O output
Pseudo transfer cycle and write transfer cycle: SI/O input
(3) Determine first SAM address to access after transferring at column address (SAM start address).
SAM start address must be determined by read transfer cycle or pseudo transfer cycle (split transfer cycle
isn’t available) before SAM access, after power on, and determined for each transfer cycle.
Read Transfer Cycle (
CAS
high,
DT
/
OE
low,
WE
high and DSF low at the falling edge of
RAS
)
This cycle becomes read transfer cycle by driving
DT
/
OE
low,
WE
high and DSF low at the falling edge of
RAS
. The row address data (512 x 4 bits) determined by this cycle is transferred to SAM data register
synchronously at the rising edge of
DT
/
OE
. After the rising edge of
DT
/
OE
, the new address data outputs
from SAM start address determined by column address. In read transfer cycle,
DT
/
OE
must be risen to
transfer data from RAM to SAM.
This cycle can access SAM even during transfer (real time read transfer). In this case, the timing tSDD
(min) specified between the last SAM access before transfer and
DT
/
OE
rising edge and tSDH (min)
specified between the first SAM access and
DT
/
OE
rising edge must be satisfied. (See figure 3.)
When read transfer cycle is executed, SI/O becomes output state by first SAM access. Input must be set
high impedance before tSZS (min) of the first SAM access to avoid data contention.
9
HM534253B Series
RAS
CAS
Address
DT/OE
SC
SI/O
SAM Data before Transfer SAM Data after Transfer
tSDD tSDH
L
Xi Yj
Yj Yj + 1
DSF
Figure 3 Real Time Read Transfer
Pseudo Transfer Cycle (
CAS
high,
DT
/
OE
low,
WE
low,
SE
high and DSF low at the falling edge of
RAS
)
Pseudo transfer cycle switches SI/O to input state and set SAM start address without data transfer to RAM.
This cycle starts when
CAS
is high,
DT
/
OE
low,
WE
low,
SE
high and DSF low at the falling edge of
RAS
.
Data should be input to SI/O later than tSID (min) after
RAS
becomes low to avoid data contention. SAM
access becomes enabled after tSRD (min) after
RAS
becomes high. In this cycle, SAM access is inhibited
during
RAS
low, therefore, SC must not be risen.
Write Transfer cycle (
CAS
high,
DT
/
OE
low,
WE
low,
SE
low, and DSF low at the falling edge of
RAS
)
Write transfer cycle can transfer a row of data input by serial write cycle to RAM. The row address of data
transferred into RAM is determined by the address at the falling edge of
RAS
. The column address is
specified as the first address for serial write after terminating this cycle. Also in this cycle, SAM access
becomes enabled after tSRD (min) after
RAS
becomes high. SAM access is inhibited during
RAS
low. In
this period, SC must not be risen. Data transferred to SAM by read transfer cycle or split read transfer
cycle can be written to other addresses of RAM by write transfer cycle. However, the address to write data
must be the same MSB of row address (AX8) as that of the read transfer cycle. Figure 4 shows the
example of row bit data transfer. In case AX8 is 0, data cannot be transferred RAM address within the
range of 100000000 to 111111111. Same as the case of AX8 = 1.
A8 A0
000000000
100000000
011111111
111111111
(Row address)
........
A8 A0
000000000
100000000
011111111
111111111
........
Possible
Impossible
(Read transfer cycle) (Write transfer cycle)
SAM
RAM
RAM
SAM
(Row address) SAM
RAM
RAM
SAM
........
Figure 4. Example of Row Bit Data Transfer
10
HM534253B Series
Split Read Transfer Cycle (
CAS
high,
DT
/
OE
low,
WE
high and DSF high at the falling edge of
RAS
)
To execute a continuous serial read by real time read transfer, the HM534253B must satisfy SC and
DT
/
OE
timings and requires an external circuit to detect SAM last address. Split read transfer cycle makes it
possible to execute a continuous serial read without the above timing limitation. Figure 5 shows the block
diagram for a split transfer. SAM data register (DR) consists of 2 split buffers, whose organizations are
256-word x 4-bit each. Let us suppose that data is read from upper data register DR1 (The row address
AX8 is 0 and SAM address A8 is 1.). When split read transfer is executed setting row address AX8 0 and
SAM start addresses A0 to A7, 256-word x 4-bit data are transferred from RAM to the lower data register
DR0 (SAM address A8 is 0) automatically. After data are read from data register DR1, data start to be read
from SAM start addresses of data register DR0. If the next split read transfer isn’t executed while data are
read from data register DR0, data start to be read from SAM start address 0 of DR1 after data are read from
data register DR0. If split read transfer is executed setting row address AX8 1 and SAM start addresses A0
to A7 while data are read from data register DR1, 256-word x 4-bit data are transferred to data register
DR2. After data are read from data register DR1, data start to be read from SAM start addresses of data
register DR2. If the next split read transfer isn ’t executed while data is read from data register DR2, data
start to be read from SAM start address 0 of data register DR3 after data are read from data register DR2.
In this time, SAM data is the one transferred to data register DR3 finally while row address AX8 is 1. In
split read data transfer, the SAM start address A8 is automatically set in the data register which isn’t used.
The data on SAM address A8, which will be accessed next, outputs to QSF. QSF is switched from low to
high by accessing SAM last address 255 and from high to low by accessing address 511.
Split read transfer cycle is set when
CAS
is high,
DT
/
OE
is low,
WE
is high and DSF is high at the falling
edge of
RAS
. The cycle can be executed asyncronously with SC. However, tSTS (min) timing specified
between SC rising and
RAS
falling must be satisfied. SAM last address must be accessed, satisfying tRST
(min), tCST (min), and tAST (min) timings specified between
RAS
or
CAS
falling and column address.
(See figure 6.)
In split read transfer, SI/O isn't switched to output state. Therefore, read transfer must be executed to
switch SI/O to output state when the previous transfer cycle is pseudo transfer or write transfer cycle.
11
HM534253B Series
Figure 5. Block Diagram for Split Transfer
Split Write Transfer Cycle (
CAS
high,
DT
/
OE
low,
WE
low and DSF high at the falling edge of
RAS
)
A continuous serial write cannot be executed because accessing SAM is inhibited during
RAS
low in write
transfer. Split write transfer cycle makes it possible. In this cycle, tSTS (min), tRST (min), tCST (min) and
tAST (min) timings must be satisfied like split read transfer cycle. And it is impossible to switch SI/O to
input state in this cycle. If SI/O is in output state, pseudo transfer cycle should be executed to switch SI/O
into input state. Data transferred to SAM by read transfer cycle or split read transfer cycle can be written
to other addresses of RAM by split write transfer cycle. However, pseudo transfer cycle must be executed
before split write transfer cycle. And the MSB of row address (AX8) to write data must be the same as that
of the read transfer cycle or the split read transfer cycle.
12
HM534253B Series
Memory
Array
AX8 = 0
Memory
Array
DR
1
SAM I/O Bus
SAM Column Deco
d
DR0
SAM I/O Bus
DR
3
DR2
SAM I/O Buffer
SI/O
AX8 = 1
Figure 6 Limitation in Split Transfer
SAM Port Operation
Serial Read Cycle
SAM port is in read mode when the previous data transfer cycle is read transfer cycle. Access is
synchronized with SC rising, and SAM data is output from SI/O. When
SE
is set high, SI/O becomes high
impedance, and the internal pointer is incremented by the SC rising. After indicating the last address
(address 511), the internal pointer indicates address 0 at the next access.
Serial Write Cycle
If previous data transfer cycle is pseudo transfer cycle or write transfer cycle, SAM port goes into write
mode. In this cycle, SI/O data is fetched into data register at the SC rising edge like in the serial read
cycle. If
SE
is high, SI/O data isn t fetched into data register. Internal pointer is incremented by the SC
rising, so
SE
high can be used as mask data for SAM. After indicating the last address (address 511), the
internal pointer indicates address 0 at the next access.
Refresh
RAM Refresh
RAM, which is composed of dynamic circuits, requires refresh to retain data. Refresh is executed by
accessing all 512 row addresses within 8 ms. There are three refresh cycles: (1)
RAS
-only refresh cycle,
(2)
CAS
-before-
RAS
(CBR) refresh cycle, and (3) Hidden refresh cycle. Besides them, the cycles which
activate
RAS
such as read/write cycles or transfer cycles can refresh the row address. Therefore, no refresh
cycle is required when all row addresses are accessed within 8 ms.
(1)
RAS
-Only Refresh Cycle:
RAS
-only refresh cycle is executed by activating only
RAS
cycle with
CAS
fixed to high after inputting the row address (= refresh address) from external circuits. To distinguish this
cycle from data transfer cycle,
DT
/
OE
must be high at the falling edge of
RAS
.
(2) CBR Refresh Cycle: CBR refresh cycle is set by activating
CAS
before
RAS
. In this cycle, refresh
address need not to be input through external circuits because it is input through an internal refresh counter.
In this cycle, output is in high impedance and power dissipation is lowered because
CAS
circuits don’t
operate.
(3) Hidden Refresh Cycle: Hidden refresh cycle executes CBR refresh with the data output by reactivating
RAS
when
DT
/
OE
and
CAS
keep low in normal RAM read cycles.
SAM Refresh
SAM parts (data register, shift resister and selector), organized as fully static circuitry, require no refresh.
13
HM534253B Series
Absolute Maximum Ratings
Parameter Symbol Value Unit Note
———————————————————————————————————————————
Voltage on any pin relative to VSS VT–1.0 to +7.0 V 1
———————————————————————————————————————————
Supply voltage relative to VSS VCC –0.5 to +7.0 V 1
———————————————————————————————————————————
Short circuit output current Iout 50 mA
———————————————————————————————————————————
Power dissipation PT1.0 W
———————————————————————————————————————————
Operating temperature Topr 0 to +70 °C
———————————————————————————————————————————
Storage temperature Tstg –55 to +125 °C
———————————————————————————————————————————
Note 1. Relative to VSS.
Recommended DC Operating Conditions (Ta = 0 to +70°C)
Parameter Symbol Min Typ Max Unit Notes
———————————————————————————————————————————
Supply voltage VCC 4.5 5.0 5.5 V 1
———————————————————————————————————————————
Input high voltage VIH 2.4 6.5 V 1
———————————————————————————————————————————
Input low voltage VIL –0.5*2 0.8 V 1
———————————————————————————————————————————
Notes: 1. All voltage referred to VSS
2. –3.0 V for pulse width < 10 ns.
14
HM534253B Series
DC Characteristics (Ta = 0 to +70°C, VCC = 5 V ± 10%, VSS = 0 V)
HM534253B
——————————————————
-6 -7 -8 -10
———— ———— ———— ————
Parameter Symbol Min Max Min Max Min Max Min Max Unit Test conditions
———————————————————————————————————————————
Operating ICC1 75 70 60 55 mA RAS, CAS SC = VIL, SE = VIH
current ————————————————————————cycling ————————
ICC7 125 120 100 95 mA tRC = min SE = VIL, SC cycling
tSCC = min
———————————————————————————————————————————
Standby ICC2 7 7 —7 —7 mARAS, CAS SC = VIL, SE = VIH
current ————————————————————————= VIH ————————
ICC8 50 50 40 40 mA SE = VIL, SC cycling
tSCC = min
———————————————————————————————————————————
RAS
-only ICC3 75 70 60 55 mA RAS cyclingSC = VIL, SE = VIH
refresh ————————————————————————CAS = VIH ————————
current ICC9 125 120 100 95 mA tRC = min SE = VIL, SC cycling
tSCC = min
———————————————————————————————————————————
Page mode ICC4 80 80 70 65 mA CAS cyclingSC = VIL, SE = VIH
current ————————————————————————RAS = VIL ————————
ICC10 130 130 110 105 mA tPC = min SE = VIL, SC cycling
tSCC = min
———————————————————————————————————————————
CAS
-before- ICC5 50 45 40 35 mA RAS cyclingSC = VIL, SE = VIH
RAS refresh ————————————————————————tRC = min ————————
current ICC11 100 95 80 75 mA SE = VIL, SC cycling
tSCC = min
———————————————————————————————————————————
Data
ICC6 80 75 65 60 mA RAS, CAS SC = VIL, SE = VIH
transfer ————————————————————————cycling ————————
current ICC12 130 125 105 100 mA tRC = min SE = VIL, SC cycling
tSCC = min
———————————————————————————————————————————
Input leakageILI –10 10 –10 10 –10 10 –10 10 µA
current
———————————————————————————————————————————
Output ILO –10 10 –10 10 –10 10 –10 10 µA
leakage
current
———————————————————————————————————————————
Output high VOH 2.4 2.4 2.4 2.4 V IOH = –2 mA
voltage
———————————————————————————————————————————
Output low VOL 0.4 0.4 0.4 0.4 V IOL = 4.2 mA
voltage
———————————————————————————————————————————
Notes: 1. ICC depends on output load condition when the device is selected. ICC max is specified at the
output open condition.
2. Address can be changed once while RAS is low and CAS is high.
15
HM534253B Series
Capacitance (Ta = 25°C, VCC = 5 V, f = 1 MHz, Bias: Clock, I/O = VCC, address =VSS)
Parameter Symbol Typ Max Unit Note
———————————————————————————————————————————
Input capacitance (Address) CI1 5 pF 1
———————————————————————————————————————————
Input capacitance (Clocks) CI2 5 pF 1
———————————————————————————————————————————
Output capacitance (I/O, SI/O, QSF) CI/O 7 pF 1
———————————————————————————————————————————
Note: 1. This parameter is sampled and not 100% tested.
AC Characteristics (Ta = 0 to +70°C, VCC = 5 V ± 10%, VSS = 0 V) *1, *16
Test Conditions
– Input rise and fall times: 5 ns
– Input pulse levels: VSS to 3.0 V
– Input timing reference levels: 0.8 V, 2.4 V
– Output timing reference levels: 0.8 V, 2.0 V
– Output load: See figures
Common Parameter HM534253B
————————————————————
-6 -7 -8 -10
———— ———— ———— ————
Parameter SymbolMin Max Min Max Min Max Min Max Unit Notes
———————————————————————————————————————————
Random read or write cycle time tRC 125 135 150 180 ns
———————————————————————————————————————————
RAS
precharge time tRP 55 55 60 70 ns
———————————————————————————————————————————
RAS
pulse width tRAS 60
10000
70
10000
80
10000
100
10000
ns
———————————————————————————————————————————
CAS
pulse width tCAS 20 20 20 25 ns
———————————————————————————————————————————
I = – 2 mA
OH
I = 4.2 mA
OL
+ 5 V
I / O * 1
100 pF
I = – 2 mA
I = 4.2 mA
OL
+ 5 V
SI / O * 1
50 pF
OH
Output Load (B)Output Load (A)
Note: 1. Including scope and jigs.
16
HM534253B Series
Common Parameter (cont)
HM534253B
————————————————————
-6 -7 -8 -10
———— ———— ———— ————
Parameter SymbolMin Max Min Max Min Max Min Max Unit Notes
———————————————————————————————————————————
Row address setup time tASR 0— 0 0— 0ns
———————————————————————————————————————————
Row address hold time tRAH 10 10 10 10 ns
———————————————————————————————————————————
Column address setup time tASC 0— 0 0— 0ns
———————————————————————————————————————————
Column address hold time tCAH 15 15 15 15 ns
———————————————————————————————————————————
RAS
to
CAS
delay time tRCD 20 40 20 50 20 60 20 75 ns 2
———————————————————————————————————————————
RAS
hold time referred to CAS tRSH 20 20 20 25 ns
———————————————————————————————————————————
CAS
hold time referred to RAS tCSH 60 70 80 100 ns
———————————————————————————————————————————
CAS
to
RAS
precharge time tCRP 10 10 10 10 ns
———————————————————————————————————————————
Transition time
(rise to fall) tT3 50 3 50 3 50 3 50 ns 3
———————————————————————————————————————————
Refresh period tREF —8 8 —8 8 ms
———————————————————————————————————————————
DT to RAS setup time
tDTS 0— 0 0— 0ns
———————————————————————————————————————————
DT to RAS hold time
tDTH 10 10 10 10 ns
———————————————————————————————————————————
DSF to RAS setup time tFSR 0— 0 0— 0ns
———————————————————————————————————————————
DSF to RAS hold time tRFH 10 10 10 10 ns
———————————————————————————————————————————
DSF to CAS setup time tFSC 0— 0 0— 0ns
———————————————————————————————————————————
DSF to CAS hold time tCFH 15 15 15 15 ns
———————————————————————————————————————————
Data-in to CAS delay time tDZC 0— 0 0— 0ns4
———————————————————————————————————————————
Data-in to OE delay time tDZO 0— 0 0— 0ns4
———————————————————————————————————————————
Output buffer turn-off delay tOFF1 20 20 20 20 ns 5
referred to CAS
———————————————————————————————————————————
Output buffer turn-off delay
tOFF2 20 20 20 20 ns 5
referred to OE
———————————————————————————————————————————
17
HM534253B Series
Read Cycle (RAM), Page Mode Read Cycle
HM534253B
————————————————————
-6 -7 -8 -10
———— ———— ———— ————
Parameter SymbolMin Max Min Max Min Max Min Max Unit Notes
———————————————————————————————————————————
Access time from
RAS
tRAC 60 70 80 100 ns 6, 7
———————————————————————————————————————————
Access time from
CAS
tCAC 20 20 20 25 ns 7, 8
———————————————————————————————————————————
Access time from OE tOAC 20 20 20 25 ns 7
———————————————————————————————————————————
Address access time tAA 35 35 40 45 ns 7, 9
———————————————————————————————————————————
Read command setup time tRCS 0— 0 0— 0ns
———————————————————————————————————————————
Read command hold time tRCH 0— 0 0— 0ns10
———————————————————————————————————————————
Read command hold time tRRH 10 10 10 10 ns 10
referred to
RAS
———————————————————————————————————————————
RAS to column address delay time tRAD 15 25 15 35 15 40 15 55 ns 2
———————————————————————————————————————————
Column address to RAS lead time tRAL 35 35 40 45 ns
———————————————————————————————————————————
Column address to CAS lead time tCAL 35 35 40 45 ns
———————————————————————————————————————————
Page mode cycle time
tPC 45 45 50 55 ns
———————————————————————————————————————————
CAS precharge time
tCP 10 10 10 10 ns
———————————————————————————————————————————
Access time from
CAS precharge
tACP 40 40 45 50 ns
———————————————————————————————————————————
Page mode RAS pulse width tRASP 60 100000 70 100000 80 100000 100 100000 ns
———————————————————————————————————————————
18
HM534253B Series
Write Cycle (RAM), Page Mode Write Cycle, Color Register Set Cycle
HM534253B
———————————————————
-6 -7 -8 -10
———— ———— ———— ————
Parameter SymbolMin Max Min Max Min Max Min Max Unit Notes
———————————————————————————————————————————
Write command setup time tWCS 0— 0 0—0 ns11
———————————————————————————————————————————
Write command hold time tWCH 15 15 15 15 ns
———————————————————————————————————————————
Write command pulse width tWP 15 15 15 15 ns
———————————————————————————————————————————
Write command to
RAS
lead time tRWL 20 20 20 20 ns
———————————————————————————————————————————
Write command to
CAS
lead time tCWL 20 20 20 20 ns
———————————————————————————————————————————
Data-in setup time tDS 0— 0 0—0 ns12
———————————————————————————————————————————
Data-in hold time tDH 15 15 15 15 ns 12
———————————————————————————————————————————
WE to RAS setup time tWS 0— 0 0—0 ns
———————————————————————————————————————————
WE to RAS hold time tWH 10 10 10 10 ns
———————————————————————————————————————————
Mask data to RAS
setup
time tMS 0— 0 0—0 ns
———————————————————————————————————————————
Mask data to RAS hold time tMH 10 10 10 10 ns
———————————————————————————————————————————
OE hold time referred to WE tOEH 20 20 20 20 ns
———————————————————————————————————————————
Page mode cycle time tPC 45 45 50 55 ns
———————————————————————————————————————————
CAS precharge time tCP 10 10 10 10 ns
———————————————————————————————————————————
CAS to data-in delay time tCDD 20 20 20 20 ns 13
———————————————————————————————————————————
Page mode RAS pulse width tRASP 60 100000 70 100000 80 100000 100 100000 ns
———————————————————————————————————————————
19
HM534253B Series
Read-Modify-Write Cycle
HM534253B
————————————————————
-6 -7 -8 -10
———— ———— ———— ————
Parameter SymbolMin Max Min Max Min Max Min Max Unit Notes
———————————————————————————————————————————
Read-modify-write cycle time tRWC 175 185 200 230 ns
———————————————————————————————————————————
RAS
pulse width tRWS 110 10000 120 10000 130 10000 150 10000 ns
(read-modify-write cycle)
———————————————————————————————————————————
CAS
to
WE
delay time tCWD 45 45 45 50 ns 14
———————————————————————————————————————————
Column address to WE delay time tAWD 60 60 65 70 ns 14
———————————————————————————————————————————
OE
to data-in delay time tODD 20 20 20 20 ns 12
———————————————————————————————————————————
Access time from RAS tRAC 60 70 80 100 ns 6, 7
———————————————————————————————————————————
Access time from CAS tCAC 20 20 20 25 ns 7, 8
———————————————————————————————————————————
Access time from OE tOAC 20 20 20 25 ns 7
———————————————————————————————————————————
Address access time tAA 35 35 40 45 ns 7, 9
———————————————————————————————————————————
RAS to column address delay time
tRAD 15 25 15 35 15 40 15 55 ns
———————————————————————————————————————————
Read command setup time
tRCS 0— 0 0— 0ns
———————————————————————————————————————————
Write command to RAS lead time
tRWL 20 20 20 20 ns
———————————————————————————————————————————
Write command to CAS lead time
tCWL 20 20 20 20 ns
———————————————————————————————————————————
Write command pulse width
tWP 15 15 15 15 ns
———————————————————————————————————————————
Data-in setup time
tDS 0— 0 0— 0ns12
———————————————————————————————————————————
Data-in hold time
tDH 15 15 15 15 ns 12
———————————————————————————————————————————
OE hold time referred to WE
tOEH 20 20 20 20 ns
———————————————————————————————————————————
20
HM534253B Series
Refresh Cycle
HM534253B
————————————————————
-6 -7 -8 -10
———— ———— ———— ————
Parameter SymbolMin Max Min Max Min Max Min Max Unit Notes
———————————————————————————————————————————
CAS
setup time tCSR 10 10 10 10 ns
(
CAS
-before-
RAS
refresh)
———————————————————————————————————————————
CAS
hold time tCHR 10 10 10 10 ns
(
CAS
-before-
RAS
refresh)
———————————————————————————————————————————
RAS
precharge to CAS hold time tRPC 10 10 10 10 ns
———————————————————————————————————————————
Flash Write Cycle, Block Write Cycle
HM534253B
————————————————————
-6 -7 -8 -10
———— ———— ———— ————
Parameter SymbolMin Max Min Max Min Max Min Max Unit Notes
———————————————————————————————————————————
CAS
to data-in delay time tCDD 20 20 20 20 ns 13
———————————————————————————————————————————
OE
to data-in delay time tODD 20 20 20 20 ns 13
———————————————————————————————————————————
Read Transfer Cycle
HM534253B
————————————————————
-6 -7 -8 -10
———— ———— ———— ————
Parameter SymbolMin Max Min Max Min Max Min Max Unit Notes
———————————————————————————————————————————
DT hold time referred to RAS
tRDH 50 10000 60 10000 65 10000 80 10000 ns
———————————————————————————————————————————
DT hold time referred to CAS
tCDH 20 20 20 25 ns
———————————————————————————————————————————
DT hold time referred to
tADH 25 25 30 30 ns
column address
———————————————————————————————————————————
DT precharge time
tDTP 20 20 20 30 ns
———————————————————————————————————————————
DT to RAS delay time
tDRD 65 65 70 80 ns
———————————————————————————————————————————
SC to RAS setup time
tSRS 25 25 30 30 ns
———————————————————————————————————————————
1st SC to RAS hold time
tSRH 60 70 80 100 ns
———————————————————————————————————————————
21
HM534253B Series
Read Transfer Cycle (cont)
HM534253B
————————————————————
-6 -7 -8 -10
———— ———— ———— ————
Parameter SymbolMin Max Min Max Min Max Min Max Unit Notes
———————————————————————————————————————————
1st SC to CAS hold time
tSCH 25 25 25 25 ns
———————————————————————————————————————————
1st SC to column address
hold time tSAH 40 40 45 50 ns
———————————————————————————————————————————
Last SC to DT delay time
tSDD 5— 5 5— 5ns
———————————————————————————————————————————
Last SC to DT delay time
tSDD2 25 25 25 25 ns 19
———————————————————————————————————————————
1st SC to DT hold time
tSDH 10 10 15 15 ns
———————————————————————————————————————————
RAS to QSF delay time
tRQD 65 70 75 85 ns 15
———————————————————————————————————————————
CAS to QSF delay time
tCQD 35 35 40 40 ns 15
———————————————————————————————————————————
DT to QSF delay time
tDQD 35 35 35 35 ns 15
———————————————————————————————————————————
QSF hold time referred to RAS
tRQH 20 20 20 25 ns
———————————————————————————————————————————
QSF hold time referred to CAS
tCQH 5— 5 5— 5ns
———————————————————————————————————————————
QSF hold time referred to DT
tDQH 5— 5 5— 5ns
———————————————————————————————————————————
Serial data-in to 1st SC delay time
tSZS 0— 0 0— 0ns
———————————————————————————————————————————
Serial clock cycle time
tSCC 25 25 30 30 ns
———————————————————————————————————————————
SC pulse width
tSC 5 5 10 10 ns
———————————————————————————————————————————
SC precharge time
tSCP 10 10 10 10 ns
———————————————————————————————————————————
SC access time
tSCA 20 22 25 25 ns 15
———————————————————————————————————————————
Serial data-out hold time
tSOH 5— 5 5— 5ns
———————————————————————————————————————————
Serial data-in setup time
tSIS 0— 0 0— 0ns
———————————————————————————————————————————
Serial data-in hold time
tSIH 15 15 15 15 ns
———————————————————————————————————————————
RAS to column address delay time
tRAD 15 25 15 35 15 40 15 55 ns
———————————————————————————————————————————
Column address to RAS lead time
tRAL 35 35 40 45 ns
———————————————————————————————————————————
RAS precharge to DT high hold time
tDTHH 10 10 10 10 ns 18
———————————————————————————————————————————
22
HM534253B Series
Pseudo Transfer Cycle, Write Transfer Cycle
HM534253B
————————————————————
-6 -7 -8 -10
———— ———— ———— ————
Parameter SymbolMin Max Min Max Min Max Min Max Unit Notes
———————————————————————————————————————————
SE setup time referred to RAS tES 0— 0 0— 0ns
———————————————————————————————————————————
SE hold time referred to RAS tEH 10 10 10 10 ns
———————————————————————————————————————————
SC setup time referred to RAS
tSRS 25 25 30 30 ns
———————————————————————————————————————————
RAS to SC delay time
tSRD 20 20 25 25 ns
———————————————————————————————————————————
Serial output buffer turn-off time
tSRZ 10 40 10 40 10 45 10 50 ns
referred to RAS
———————————————————————————————————————————
RAS to serial data-in delay time
tSID 40 40 45 50 ns
———————————————————————————————————————————
RAS to QSF delay time
tRQD 65 70 75 85 ns 15
———————————————————————————————————————————
CAS to QSF delay time
tCQD 35 35 40 40 ns 15
———————————————————————————————————————————
QSF hold time referred to RAS
tRQH 20 20 20 25 ns
———————————————————————————————————————————
QSF hold time referred to CAS
tCQH 5— 5 5— 5ns
———————————————————————————————————————————
Serial clock cycle time
tSCC 25 25 30 30 ns
———————————————————————————————————————————
SC pulse width
tSC 5 5 10 10 ns
———————————————————————————————————————————
SC precharge time
tSCP 10 10 10 10 ns
———————————————————————————————————————————
SC access time
tSCA 20 22 25 25 ns 15
———————————————————————————————————————————
SE access time
tSEA 20 22 25 25 ns 15
———————————————————————————————————————————
Serial data-out hold time
tSOH 5— 5 5— 5ns
———————————————————————————————————————————
Serial write enable setup time
tSWS 5— 5 5— 5ns
———————————————————————————————————————————
Serial data-in setup time
tSIS 0— 0 0— 0ns
———————————————————————————————————————————
Serial data-in hold time
tSIH 15 15 15 15 ns
———————————————————————————————————————————
23
HM534253B Series
Split Read Transfer Cycle, Split Write Transfer Cycle
HM534253B
————————————————————
-6 -7 -8 -10
———— ———— ———— ————
Parameter SymbolMin Max Min Max Min Max Min Max Unit Notes
———————————————————————————————————————————
Split transfer setup time
tSTS 20 20 20 25 ns
———————————————————————————————————————————
Split transfer hold time
tRST 60 70 80 100 ns
referred to RAS
———————————————————————————————————————————
Split transfer hold time tCST 20 20 20 25 ns
referred to CAS
———————————————————————————————————————————
Split transfer hold time
referred to tAST 35 35 40 45 ns
column address
———————————————————————————————————————————
SC to QSF delay time
tSQD 30 30 30 30 ns 15
———————————————————————————————————————————
QSF hold time referred to SC
tSQH 5— 5 5— 5ns
———————————————————————————————————————————
Serial clock cycle time
tSCC 25 25 30 30 ns
———————————————————————————————————————————
SC pulse width
tSC 5 5 10 10 ns
———————————————————————————————————————————
SC precharge time
tSCP 10 10 10 10 ns
———————————————————————————————————————————
SC access time
tSCA 20 22 25 25 ns 15
———————————————————————————————————————————
Serial data-out hold time
tSOH 5— 5 5— 5ns
———————————————————————————————————————————
Serial data-in setup time
tSIS 0— 0 0— 0ns
———————————————————————————————————————————
Serial data-in hold time
tSIH 15 15 15 15 ns
———————————————————————————————————————————
RAS to column address delay time
tRAD 15 25 15 35 15 40 15 55 ns
———————————————————————————————————————————
Column address to RAS lead time
tRAL 35 35 40 45 ns
———————————————————————————————————————————
24
HM534253B Series
Serial Read Cycle, Serial Write Cycle HM534253B
————————————————————
-6 -7 -8 -10
———— ———— ———— ————
Parameter SymbolMin Max Min Max Min Max Min Max Unit Notes
———————————————————————————————————————————
Serial clock cycle time
tSCC 25 25 30 30 ns
———————————————————————————————————————————
SC pulse width
tSC 5 5 10 10 ns
———————————————————————————————————————————
SC precharge width
tSCP 10 10 10 10 ns
———————————————————————————————————————————
Access time from SC
tSCA 20 22 25 25 ns 15
———————————————————————————————————————————
Access time from SE
tSEA 20 22 25 25 ns 15
———————————————————————————————————————————
Serial data-out hold time
tSOH 5— 5 5— 5ns
———————————————————————————————————————————
Serial output buffer turn-off time
tSEZ 20 20 20 20 ns 5
referred to SE
———————————————————————————————————————————
Serial data-in setup time
tSIS 0— 0 0— 0ns
———————————————————————————————————————————
Serial data-in hold time
tSIH 15 15 15 15 ns
——————————————————————————————————————————
Serial write enable setup time
tSWS 5— 5 5— 5ns
———————————————————————————————————————————
Serial write enable hold time
tSWH 15 15 15 15 ns
———————————————————————————————————————————
Serial write disable setup time
tSWIS 5— 5 5— 5ns
———————————————————————————————————————————
Serial write disable hold time
tSWIH 15 15 15 15 ns
———————————————————————————————————————————
25
HM534253B Series
Notes: 1. AC measurements assume tT= 5 ns.
2. When tRCD > tRCD (max) and tRAD > tRAD (max), access time is specified by tCAC or tAA.
3. VIH (min) and VIL (max) are reference levels for measuring timing of input signals. Transition
time tTis measured between VIH and VIL.
4. Data input must be floating before output buffer is turned on. In read cycle, read-modify-write
cycle and delayed write cycle, either tDZC (min) or tDZO (min) must be satisfied.
5. tOFF1 (max), tOFF2 (max), and tSEZ (max) are defined as the time at which the output achieves
the open circuit condition (VOH – 100 mV, VOL + 100 mV).
6. Assume that tRCD < tRCD (max) and tRAD < tRAD (max). If tRCD or tRAD is greater than the
maximum recommended value shown in this table, tRAC exceeds the value shown.
7. Measured with a load circuit equivalent to 2 TTL loads and 100 pF.
8. When tRCD > tRCD (max) and tRAD < tRAD (max), access time is specified by tCAC.
9. When tRCD < tRCD (max) and tRAD > tRAD (max), access time is specified by tAA.
10. If either tRCH or tRRH is satisfied, operation is guaranteed.
11. When tWCS > tWCS (min), the cycle is an early write cycle, and I/O pins remain in an open
circuit (high impedance) condition.
12. These parameters are specified by the later falling edge of CAS or WE.
13. Either tCDD (min) or tODD (min) must be satisfied because output buffer must be turned off by
CAS or OE prior to applying data to the device when output buffer is on.
14. When tAWD > tAWD (min) and tCWD > tCWD (min) in read-modify-write cycle, the data of the
selected address outputs to an I/O pin and input data is written into the selected address. tODD
(min) must be satisfied because output buffer must be tur ned off by OE prior to applying data to
the device.
15. Measured with a load circuit equivalent to 2 TTL loads and 50 pF.
16. After power-up, pause for 100 µs or more and execute at least 8 initialization cycle (normal
memory cycle or refresh cycle), then start operation.
17. When the serial write cycle is used, at least one SC pulse is required before proper SAM
operation after VCC stabilized.
18. tDTHH (min) must be satisfied only if DT/OE rises up before RAS rises in a read transfer cycle.
19. After read transfer cycle, if split read transfer cycle is executed without SC access and SC
address is 254 or 510, tSDD2 (min) must be satisfied 25 ns. Except for those cases, tSDD (min)
is effective and satisfied 5 ns.
26
HM534253B Series
Timing Waveforms*19
Read Cycle
Early Write Cycle
tRC
tRAS
tCSH
tRCD tRSHtCAS
tRAL tCAL
tCAH
tASC
tRAH
tASR
tRCS
tCAC
tAA
tRAC
tOAC
tDZC
tDZO
tDTH
tDTS
tFSR tRFH tFSC tCFH
tCDD
tOFF1
tOFF2
tRRH tRCH
tRP
tCRP
RAS
CAS
Address
WE
I/O
(Output)
DT/OE
DSF
I/O
(Input)
Row Column
tRAD
Valid Dout
tRC
RAS
CAS
Address
WE
I/O
(Output)
DT/OE
DSF
I/O
(Input)
tRAS tRP
tCRP
tCSH tRSH
tCAS
tCAH
tASC
tRAH
tASR
tWS tWH tWCS tWCH
tDTS
tMH tDS tDH
tMS
tDTH
tFSR tFSC
tRFH tCFH
tRCD
High-Z
*1
Row Column
Valid DinMask Data
Note: 1. This cycle becomes a normal mode write cycle when WE is high and a mask write cycle when
WE is low.
Note19: H or L (H: VIH (min) VIN VIH (max), L: VIL (min) VIN VIL (max))
Invalid Dout
27
HM534253B Series
Delayed Write Cycle
Read-Modify-Write Cycle
RAS
CAS
Address
WE
I/O
(Output)
DT/OE
DSF
I/O
(Input)
Row Column
*1
Valid Din
Mask Data
tRC
tRAS tRP
tCRP
tCSH
tRSH
tRCD tCAS
tASR tRAH tCAH
tRWL tCWL
tWP
tWS tWH
tMS tMH tDS
tDZC
tDTS tDTH
tFSR tRFH tFSC tCFH
tOEH
tDH
tOFF2
tODD
tASC
Note: 1. This cycle becomes a normal mode write cycle when WE is high and a mask write cycle when
WE is low.
28
HM534253B Series
RAS
CAS
Address
WE
I/O
(Output)
DT/OE
DSF
I/O
(Input)
Row Column
Valid Dout
Mask Data
tRWC
Valid Din
*1
tRWS tRP
tCRP
tRWL
tCWL
tWP
tAWD
tCWD
tRCS
tWS tWH
tCAC
tAA
tRAC
tOAC
tDZC
tMH
tMS
tOFF2
tODD
tDS tDH
tOEH
tDTS tDTH tDZO
tFSC
tRFH
tFSR tCFH
tRAD
tRCD
tASR tRAH tASC tCAH
Note: 1. This cycle becomes a normal mode write cycle when WE is high and a mask write cycle when
WE is low.
Page Mode Read Cycle
Page Mode Write Cycle (Early Write)
RAS
CAS
Address
WE
I/O
(Output)
DT/OE
DSF
I/O
(Input)
tRC
tRASP tRP
tCRP
tRSH
tCAS
tCP
tPC
tCP
tRCD
tCSH
tRAD tCAL
tCAH
tRAH
tASR
tRCS tRCH tRCS tRCS
tRCH
tCAH
tASC tCAL tASC
tRAL tCAL
tCAH
tRRH
tRCH
tCAS
tCAS
tAA tOFF1
tACP
tCAC
tAA
tACP tOFF1
tCDD
tOAC
tDZC
tCDD
tOAC tOFF2
tDZC
tCDD
tOFF2
tOAC
tDZC
tDZO
tDTH
tFSR
tDTS
tRFH tFSC tCFH tFSC tCFH tFSC tCFH
tRAC
tAA
tCAC
tOFF1
tASC
tCAC
Row Column Column Column
Valid
Dout Valid
Dout Valid Dout
RAS
CAS
Address
WE
I/O
(Output)
DT/OE
DSF
I/O
(Input)
tRC
tRASP
tCSH tCAS
tRCD tCP tCAS
tPC tCP tRSH
tCAS tCRP
tRP
tCAH
tASC
tCAH
tASC
tCAH
tASC
tRAH
tASR
tWS tWH tWCS tWCH tWCS tWCH tWCH
tWCS
tDS tDH
tDH
tDS
tDH
tDS
tMH
tMS
tDTS tDTH
tFSR tRFH tFSC tCFH tFSC tCFH tFSC tCFH
Row Column Column Column
*1
Valid Din Valid Din Valid Din
Mask
Data
High-Z
Note: 1. This cycle becomes a normal mode write cycle when WE is high and a mask write cycle when
WE is low.
29
HM534253B Series
Page Mode Write Cycle (Delayed Write)
RAS-Only Refresh Cycle
RAS
CAS
Address
WE
I/O
(Output)
DT/OE
DSF
I/O
(Input)
tRC
tRASP
tCSH
tRCD tCAS
tPC
tCP tCAS tCP tRSH
tCAS
tRP
tCRP
tCAH
tASC
tRWL tCWL
tWP
tCWL
tWP
tCWL
tWP
tCAH
tASC
tCAH
tASC
tRAH
tASR
tWS tWH
tMH
tMS
tDTS
tFSR tRFH tCFH
tFSC tFSC tCFH tFSC tCFH
tOEH
tDH
tDS tDH tDS tDH tDS
Row Column Column Column
*1
Mask
Data Valid
Din Valid
Din Valid
Din
Note: 1. This cycle becomes a normal mode write cycle when WE is high and a mask write cycle when
WE is low.
RAS
CAS
Address
I/O
(Output)
DT/OE
DSF
I/O
(Input)
tRC
tRAS tRP
tRPC
tASR tRAH
tCRP
tCDD
tOFF1
tOFF2 tODD
tDTS tDTH
tFSR tRFH
Row
30
HM534253B Series
CAS-Before-RAS Refresh Cycle
Hidden Refresh Cycle
RAS
CAS
Address
I/O
(Output)
DT/OE
DSF
tRC
tRAS tRP
tRPC tCSR
tCHR
tRP
tRPC tCSR
tCP
tOFF1 High-Z
WE
Inhibit Falling Transition
RAS
CAS
Address
I/O
(Output)
DT/OE
DSF
I/O
(Input)
tRC
WE
tRAS
tRCD tRSH
tRAL
tRAD
tASR tASC tCAH
tRCS tRRH
tCAC
tAA
tCHR
tRAS
tRP
tRC
tRP
tCRP
tOFF1
tOFF2
tDZC tOAC
tDZO
tDTH
tDTS
tFSR tRFH tFSC tCFH
tRAH
Row Column
tRAC Valid Dout
31
HM534253B Series
Color Register Set Cycle (Early Write)
Color Register Set Cycle (Delayed Write)
RAS
CAS
Address
WE
I/O
(Output)
DT/OE
DSF
I/O
(Input)
tRC
tRAS tRP
tCRP
tCSH tRSH
tRCD tCAS
tRAH
tASR
tWS tWH tWCS tWCH
tDH
tDS
tDTS tDTH
tRFH
tFSR
Color Data
Row
High-Z
RAS
CAS
Address
WE
I/O
(Output)
DT/OE
DSF
I/O
(Input)
tRC
tRAS
tCSH
tRCD
tRP
tCRP
tCAS
tRSH
tASR tRAH
tWS
tDTS
tFSR tRFH
tOEH
tDS tDH
tCWL
tRWL
tWP
Color Data
Row
High-Z
32
HM534253B Series
Color Register Read Cycle
tRC
tRAS
tCSH
tRCD tRSH
tCAS
tASR tRAH
tWH
tWS tRCS
tRP
tCRP
tRRH tRCH
tCDD
tOFF1
tODD
tOFF2
tCAC
tRAC
tDZC tOAC
tDZO
tDTH
tDTS
tFSR tRFH
RAS
CAS
Address
WE
I/O
(Output)
I/O
(Input)
DT/OE
DSF
Row
Valid Out
33
HM534253B Series
Flash Write Cycle
Block Write Cycle
tRAS
RAS
CAS
Address
WE
I/O
(Output)
I/O
(Input)
DT/OE
DSF
tRC tRP
tRCD
tCRP
tASR tRAH
tWH
tWS
tCDD
tOFF2 tODD tMS
tDTS tDTH
tMH
tRFH
tFSR
High-Z
Row
Mask Data
tOFF1
tRAS
RAS
CAS
Address
WE
I/O
(Output)
I/O
(Input)
DT/OE
DSF
tRC tRP
tCRP
tRSH
tRCD
tCSH
tCRP
tASR tRAH tASC tCAH
tWS tWH
tCDD
tOFF1
tOFF2 tODD tMS tMH
tDTH
tDS tDH
tFSR tRFH tFSC tCFH
tDTS
Row Column A2-A8
*1
I/O Mask Data Address
Mask Data
High-Z
Note: 1. This cycle becomes a normal block write cycle when WE is high and a mask block write cycle
when WE is low.
34
HM534253B Series
Page Mode Block Write Cycle
tRC
RAS
CAS
Address
WE
I/O
(Output)
DT/OE
DSF
I/O
(Input)
tRASP tRP
tRSH
tCAS tCRP
tCP
tPC tCAS
tCP
tCAS
tRCDtCSH
tASC
tASC
tASR tRAH tCAH tCAH
tWS tWH
tMS tMH tDS tDH tDS tDH tDS tDH
tASC tCAH
tFSC tCFH
tCFH
tFSC
tCFH
tFSC
tDTH
tDTS
tFSR tRFH
Row
*1
I/O
Mask
Column
A2-A8 Column
A2-A8 Column
A2-A8
Address
Mask
Address
Mask
Address
Mask
High-Z
Note: 1. This cycle becomes a normal block write cycle when WE is high and a mask block write cycle
when WE is low.
35
HM534253B Series
Read Transfer Cycle (1)
tRC
tRAS
tCSH
tRCD tRSH
tCAS
tCAH
tASC tRAL
tRAD
tASR tRAH
tWH
tWS
tDTS tCDH
tADH
tRDH
tDRD
tDTP
tDTHH
tSCC
tSCC
tSCC
tSCC
tSDH tSC tSCP
tSOH
tSCA tSCA
tSOH tSOH
tSCA
tSDD2*
tSCA tSOH
Previous Row New Row
tRP
RAS
CAS
Address
WE
I/O
(Output)
DT/OE
SC
SI/O
(Output)
SI/O
(Input)
tSOH
Valid Sout Valid Sout Valid Sout Valid Sout
High-Z
Row SAM Start
Address
tCRP
tFSR tRFH
tCQD
tCQH
tRQH
tRQD
tDQD
tDQH
SAM Address MSB
QSF *1
QSF *2
SAM Address MSB
DSF
Valid Sout
tSDD 3
Notes: 1. This QSF timing is referred when SC is risen once or more between the previous transfer cycle
and CAS falling edge of this cycle (QSF is switched by DT rising).
2. This QSF timing is referred when SC isn't risen between the previous transfer cycle and CAS
falling edge of this cycle (QSF is switched by RAS or CAS falling).
3. After read transfer cycle, if split read transfer cycle is executed without SC access and SC
address is 254 or 510, tSDD2 (min) must be satisfied 25 ns. Except for those cases, tSDD
(min) is effective and satisfied 5 ns.
36
HM534253B Series
Read Transfer Cycle (2)
tRAS
RAS
CAS
Address
WE
I/O
(Output)
DT/OE
DSF
SC
SI/O
(Output)
QSF
SI/O
(Input)
tRC
tRSH
tCAS
tCSH
tRCD
tRAD
tRAH
tASR tASC tCAH
tWH
tWS
tRP
tCRP
tRAL
tDTS
tRFH
tFSR
tDRD
tDTP
tSRS
tSC tSDH tSCC
tSC tSCP
tSCA
tSCP
tSCA
tSOH
tSZS
tDQD
tDQH
tSIH
tSIS Valid Sout
Row Sam Start
Address
High-Z
SAM Address MSB
Valid
Sin
tDTHH
Inhibit Rising Transition
tDTH
tSAH
tSCH
tSRH
tCQD
tCQH
tRQD
tRQH
37
HM534253B Series
Pseudo Transfer Cycle
RAS
CAS
Address
WE
I/O
(Output)
DT/OE
DSF
SE
SI/O
(Output)
QSF
SI/O
(Input)
SAM Address MSB
SC
tRC
tRAS tRP
tCRP
tRSH
tCAS
tRCD
tASR tRAH tASC tCAH
tWH
tWS
tDTS
tFSR
tDTH
tRFH
tSEZ
tEHtES
tSRS
tSC
tSCA
tSOH tSRZ
tSID
tCQD
tCQH
tRQD
tRQH
tSIS tSIH tSIS tSIH
tSWS
tSRD
tSCP
tSCC
tSC tSCP
Valid Sin Valid Sin
Row SAM Start
Address
Valid Sout
tCSH
High - Z
Valid
Sout
Inhibit Rising Transition
38
HM534253B Series
Write Transfer Cycle
RAS
CAS
Address
WE
I/O
(Output)
DT/OE
DSF
SE
SI/O
(Output)
QSF
SI/O
(Input)
SC
tRC
tRAS tRP
tCRP
tRSH
tCAS
tRCD
tASR tRAH tASC tCAH
tWH
tWS
tDTS
tFSR
tDTH
tRFH
Row SAM Start
Address
tES tEH
tSRS
tSWS tSC
tSIHtSIS
tCQDtCQH
tRQD
tRQH
tSWS
tSRD
tSCP
tSCC
tSC tSCP
tSIS tSIH tSIS tSIH
High-Z
Valid Sin Valid Sin Valid Sin
SAM Address MSB
tCSH
Inhibit Rising Transition
39
HM534253B Series
Split Read Transfer Cycle
tRC
RAS
CAS
Address
WE
I/O
(Output)
DT/OE
DSF
SE
SI/O
(Output)
QSF
SI/O
(Input)
SC
tRAS tRP
tCSH
tRSH
tRCD
tCAS
tASC
tRAH
tASR
tWS tWH
tOFF1
tDTS tDTH
tFSR tRFH
tRSTtAST
tCST
tSCC
tSC tSCP
tSTS
tSQD
tSQH
tSQD
tSQH
SAM Address MSB
Valid
Sout Valid
Sout Valid
Sout Valid
Sout
Valid Sout
511
(255) n
(n+255) n+1
(n+256) 253
(509) 254
(510) 255
(511)
n+2
(n+257) Yi+255
(Yi)
High-Z
Low
Row SAM Start
Address Yi
tCAH tRAL
tRAD
tSCA
tSOHtSOH
tSCA
Valid
Sout
tCRP tCRP
40
HM534253B Series
Split Write Transfer Cycle
tRC
RAS
CAS
Address
WE
I/O
(Output)
DT/OE
DSF
SE
SI/O
(Output)
QSF
SI/O
(Input)
SC
tRAS tRP
tCSH
tRSH
tRCD
tCAS
tASC
tRAH
tASR
tWS tWH
tOFF1
tDTS tDTH
tFSR tRFH
tRSTtAST
tCST
tSCC
tSC tSCP
tSTS
tSIS tSIH tSIS tSIH
tSQD
tSQH
tSQD
tSQH
SAM Address MSB
Valid
Sin Valid
Sin Valid
Sin Valid
Sin Valid
Sin
Valid Sin
511
(255) n
(n+255) n+1
(n+256) 254
(510) 255
(511)
n+2
(n+257) Yi+255
(Yi)
High-Z
Low
Row SAM Start
Address Yi
tCAH tRAL
tSIS tSIH
Valid Sin
n+3
(n+258)
41
HM534253B Series
Serial Read Cycle
Serial Write Cycle
SE
SC
SI/O
(Output)
tSCC
tSCP
tSC
tSCA
tSOH tSEZ
tSC tSCP tSC
tSEA
tSCA
tSCP tSC
tSCA
tSOH
Valid Sout Valid Sout Valid Sout Valid
Sout
tSCC
tSCC
SE
SC
SI/O
(Input) Valid Sin Valid Sin Valid Sin
tSWH tSWIS tSWIH tSWS
tSCC
tSC tSCP
tSIS tSIH
tSCC
tSCP
tSC
tSCC
tSCtSCP
tSC
tSIS tSIH
tSIH
tSIS
42
HM534253B Series
Package Dimensions
HM534253BJ Series (CP-28D) Unit: mm
HM534253BZ Series (ZP-28) Unit: mm
9.40 ± 0.25
114
0.10
1.27
0.43 ± 0.10
3.50 ± 0.26
+ 0.21
– 0.24
0.63 Min
2.40
15
28
18.54 Max
18.17
0.74
10.16 ± 0.13
11.18 ± 0.13
1.3 Max
0.25+ 0.10
– 0.05
0.50
35.58
1.27 2.54
8.71
10.16 Max
2.80 Min
2.85
36.57 Max
1
+ 0.08
– 0.12
28
1.045 Max
43
HM534253B Series
Package Dimensions (cont)
HM534253BT Series (TFP-32DA) Unit: mm
HM534253BR Series (TFP-32DAR) Unit: mm
0.10
0.08 M
0.50
8.0
0.20 ± 0.10
0.5 ± 0.1
14.0 ± 0.2
0.17 ± 0.05
0.08 Min
0.18 Max
1.2 Max
12.4
0 – 5 °
32
116
17
8.2 Max
0.45 Max
0.10
0.08 M
0.50
8.0
0.20 ± 0.10
14.0 ± 0.2
0.17 ± 0.05
0.08 Min
0.18 Max
1.20 Max
12.40
0 – 5 °
17
16 1
32
0.50 ± 0.10
8.2 Max
0.45 Max
44
HM534253B Series