Advance Data Sheet
May 2001
TDCS4810G SONET/SDH
10 Gbits/s APS Port and TSI
Features
10 Gbit bidirectional data path with common frame
synchronization and clocking.
Versatile IC which supports an aggregate band-
width of 30 Gbits/s.
Supports flexible 48-channel STS-12 data links.
Supports full nonblocking fabric with switching
granularity of STS-1/STM-1.
Support for line/path switching.
Supports any valid mix of STS-1 and concatenated
payloads from STS-3c to STS-192c.
Provides a standard 5-pin P1149.1 JTAG port with
memory BIST scan and boundary scan.
Low-power 1.5 V operation with 3.3 V inputs and
outputs.
Configurable on-chip TSI block for switching of
STS-1s.
On-chip connection memory for flexible configura-
tion of working connections and protect connec-
tions for each STS-1.
792 LBGA package.
–40 °C to +85 °C industrial temperature range.
Interface
Robust receiver interface capable of handling
STS-12 streams having combined static- and
dynamic-frame offsets of up to 64 bytes without
creating traffic disruption.
Frames to and performs integrity check on each
STS-12 interface.
Each STS-12 input interface consists of an LVDS
data input with integral clock and data recovery
(CDR).
Each STS-12 output interface consists of an LVDS
output.
Ability to insert an AIS-L or pass-through when an
LOF condition occurs.
Interfaces have A1/A2 framing, link trace, parity,
and a communications link.
Cross Connect
Supports up to 576 STS-1 time slots.
48 input channels and 48 output channels.
Each input time slot can be connected to any/all
output time slots.
Each output time slot can be connected to any
input time slot or be assigned AIS-P or UNEQ-P.
Fully programmable and nonblocking cross con-
nect.
Supports drop-and-continue and full broadcast
capabilities.
Ability to insert path AIS and UNEQ indications on
any STS-1 under software control.
Protection Switching
Supports 1+1, 1:1, 1:N, UPSR, and BLSR protec-
tion mechanisms with four connection memory.
Separate line and path protection mechanisms.
Supports equipment protection switching.
On-chip working/protected memory paths for easy
switch configurations.
Microprocessor Interface
Microprocessor interface supports both synchro-
nous and asynchronous operations.
16-bit wide data bus interface and 13-bit wide
address bus.
Table of Contents
Contents Page
2Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Features .................................................................................................................................................................... 1
Interface .................................................................................................................................................................. 1
Cross Connect ........................................................................................................................................................ 1
Protection Switching ............................................................................................................................................... 1
Microprocessor Interface ...........................................................................................................................................1
Applications ............................................................................................................................................................... 6
Description.................................................................................................................................................................6
Receive Interface .................................................................................................................................................... 7
Fabric Core ............................................................................................................................................................. 7
Transmit Interface ................................................................................................................................................... 7
Microprocessor Interface ........................................................................................................................................ 7
Pin Information ..........................................................................................................................................................8
Overview..................................................................................................................................................................35
Byte Ordering........................................................................................................................................................35
Receive Interface ..................................................................................................................................................35
Cross Connect ......................................................................................................................................................36
Transmit Interface .................................................................................................................................................38
Frame Pulse..........................................................................................................................................................38
Microprocessor Interface ......................................................................................................................................39
Powerdown Mode .................................................................................................................................................39
Supervisory Features............................................................................................................................................40
Test Features........................................................................................................................................................40
Software Reset .....................................................................................................................................................41
Interrupts...............................................................................................................................................................41
Functional Description .............................................................................................................................................42
Receiver Block ......................................................................................................................................................42
Cross Connect Block ............................................................................................................................................46
Transmitter Block ..................................................................................................................................................51
CPU Interface Block..............................................................................................................................................52
Back-to-Back Cross Connect................................................................................................................................53
Register Descriptions ..............................................................................................................................................54
A Note on Alarm Register Reset Defaults.............................................................................................................56
Device-Level Registers .........................................................................................................................................57
Port (STS-192) Level Registers ............................................................................................................................62
Channel-Level Registers.......................................................................................................................................66
STS-1 Level Registers .......................................................................................................................................... 70
Absolute Maximum Ratings.....................................................................................................................................72
Handling Precautions ..............................................................................................................................................72
Operating Conditions............................................................................................................................................... 72
Electrical Characteristics .........................................................................................................................................73
Power Sequencing................................................................................................................................................73
Low Voltage Differential Signal (LVDS) Buffers....................................................................................................73
Timing Characteristics .............................................................................................................................................77
Microprocessor Interface Timing...........................................................................................................................77
Outline Diagram.......................................................................................................................................................83
792-Pin LBGA ....................................................................................................................................................... 83
Ordering Information................................................................................................................................................ 84
Revision History.......................................................................................................................................................85
May 2001—Rev 2 .................................................................................................................................................85
List of Figures
Contents Page
Agere Systems Inc. 3
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Figure 1. TDCS4810G Block Diagram ..................................................................................................................... 6
Figure 2. Pin Diagram of 792 LBGA (Bottom View) ................................................................................................. 8
Figure 3. Suggested Schematic for 1.0 V and 1.4 V Reference Voltages .............................................................. 25
Figure 4. Transmitter TOH on LVDS Output .......................................................................................................... 38
Figure 5. SYS_FP Timing Requirements ............................................................................................................... 38
Figure 6. Receiver Block Diagram.......................................................................................................................... 42
Figure 7. Framer State Machine............................................................................................................................. 43
Figure 8. TSHIM Timeline....................................................................................................................................... 45
Figure 9. Connection Memory Physical Organization ............................................................................................ 46
Figure 10. Connection Memory Entry..................................................................................................................... 47
Figure 11. APS Byte Handling................................................................................................................................ 48
Figure 12. APS Byte Switching Example................................................................................................................ 48
Figure 13. Transmitter Block Diagram.................................................................................................................... 51
Figure 14. STS-12 Frame Structure ....................................................................................................................... 52
Figure 15. Illegal Back-to-Back Cross Connect Illustration .................................................................................... 53
Figure 16. Alternate Illegal Back-to-Back Cross Connect Illustration ..................................................................... 53
Figure 17. LVDS Driver and Receiver and Associated Internal Components ........................................................ 74
Figure 18. LVDS Driver and Receiver .................................................................................................................... 74
Figure 19. LVDS Driver .......................................................................................................................................... 74
Figure 20. M860 Synchronous Write Cycle (MPMODE = 10 or 11) ....................................................................... 78
Figure 21. M860 Synchronous Read Cycle (MPMODE = 10 or 11) ....................................................................... 79
Figure 22. M360 Asynchronous Write Cycle (MPMODE = 00)............................................................................... 80
Figure 23. M360 Asynchronous Read Cycle (MPMODE = 00) .............................................................................. 81
Figure 24. DSP R/W Synchronous Write Cycle (MPMODE = 01)—Two or More Wait-States Mode..................... 82
List of Tables
Contents Page
4Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Table 1. Pin Assignments for 792-Pin LBGA by Pin Number Order......................................................................... 9
Table 2. Pin Assignments for 792-Pin LBGA by Signal Name Order ..................................................................... 14
Table 3. Pin Descriptions—Receive Interface ........................................................................................................ 19
Table 4. Pin Descriptions—Transmit Interface ....................................................................................................... 22
Table 5. Pin Descriptions—LVDS Reference Cell Pins.......................................................................................... 25
Table 6. Pin Descriptions—Microprocessor Interface ............................................................................................ 26
Table 7. Pin Descriptions—System Control ........................................................................................................... 27
Table 8. Pin Descriptions—PLL References .......................................................................................................... 28
Table 9. Pin Descriptions—JTAG Interface............................................................................................................ 28
Table 10. Pin Descriptions—Power and Ground.................................................................................................... 29
Table 11. Pin Descriptions—No Connect ............................................................................................................... 31
Table 12. Pin Descriptions—Unused Pins.............................................................................................................. 33
Table 13. Pin Summary .......................................................................................................................................... 34
Table 14. STS-12 Byte Ordering ............................................................................................................................ 35
Table 15. STS-192 Byte Ordering .......................................................................................................................... 35
Table 16. Path Alarm (E1/F1) Information Encoding.............................................................................................. 49
Table 17. Line Alarm (E2) Information Encoding.................................................................................................... 49
Table 18. Memory Map Summary .......................................................................................................................... 54
Table 19. Device Interrupt Status Register (RO).................................................................................................... 57
Table 20. Device Interrupt Status Mask Register (R/W)......................................................................................... 58
Table 21. Channel Alarm Interrupt Status Register (RO) ....................................................................................... 58
Table 22. Channel Alarm Interrupt Status Mask Register (R/W)............................................................................ 59
Table 23. Device-Level Alarm Register (W1C)....................................................................................................... 59
Table 24. Device-Level Alarm Mask Register (R/W) .............................................................................................. 59
Table 25. Device ID Register (RO)......................................................................................................................... 59
Table 26. Device Vintage Register (RO) ................................................................................................................ 60
Table 27. Scratch Pad Register (R/W) ................................................................................................................... 60
Table 28. Device Provisioning Register (R/W) ....................................................................................................... 60
Table 29. Device Control Register (R/W) ............................................................................................................... 61
Table 30. Frame Offset Register (R/W).................................................................................................................. 61
Table 31. Framing Error A1A2 Corrupt Value (R/W) .............................................................................................. 61
Table 32. Number of Columns (R/W) ..................................................................................................................... 61
Table 33. Write Lock Register (R/W)...................................................................................................................... 61
Table 34. Channel Alarm Interrupt Status (Consolidation) Register....................................................................... 62
Table 35. Channel Alarm Interrupt Status Mask Register ...................................................................................... 62
Table 36. Path Status Alarm Interrupt Status (Consolidation) Register ................................................................. 62
Table 37. Path Status Alarm Interrupt Status Mask Register ................................................................................. 62
Table 38. Line Status (E2) Change Alarm (W1C) .................................................................................................. 62
Table 39. Line Status (E2) Change Mask (R/W) .................................................................................................... 63
Table 40. APS (K1K2) Change Alarm (W1C)......................................................................................................... 63
Table 41. APS (K1K2) Change Alarm Mask (R/W) ................................................................................................ 63
Table 42. Connection Memory Switch Alarm (W1C) .............................................................................................. 63
Table 43. Connection Memory Switch Alarm Mask (R/W) ..................................................................................... 63
Table 44. FIFO Thresholds (R/W) .......................................................................................................................... 64
Table 45. Configuration A/B Select (R/W) .............................................................................................................. 64
Table 46. Configuration A/B Readback (RO) ......................................................................................................... 64
Table 47. Configuration C/D Line or Path Switching Mode (R/W).......................................................................... 64
Table 48. Configuration C/D Select (R/W).............................................................................................................. 64
Table 49. Configuration C/D Readback (RO) ......................................................................................................... 64
Table 50. Audit Memory Control (R/W) .................................................................................................................. 65
Table 51. Audit Memory Status (RO) ..................................................................................................................... 65
List of Tables (continued)
Contents Page
Agere Systems Inc. 5
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Table 52. Audit Memory [23:0] (RO)....................................................................................................................... 65
Table 53. S1 Generation Status (RO) .................................................................................................................... 65
Table 54. S1 Generation Force Toggle (R/W)........................................................................................................ 65
Table 55. Channel Alarm Register (W1C) .............................................................................................................. 66
Table 56. Channel Alarm Mask Register (R/W) ..................................................................................................... 66
Table 57. Path Status (E1/F1) Change Alarm (W1C)............................................................................................. 66
Table 58. Path Status (E1/F1) Change Alarm Mask (R/W) .................................................................................... 67
Table 59. Channel Provisioning Register (R/W) ..................................................................................................... 67
Table 60. Channel Control Register (R/W)............................................................................................................. 68
Table 61. APS Control Register (R/W) ................................................................................................................... 68
Table 62. APS Status Register (RO) ...................................................................................................................... 68
Table 63. APS Insert Value Register (R/W) ........................................................................................................... 68
Table 64. Channel Path Switch Control (R/W) ....................................................................................................... 69
Table 65. Channel Path Switch Readback (RO) .................................................................................................... 69
Table 66. Channel AIS-P Insert (R/W) ................................................................................................................... 69
Table 67. Channel UNEQ-P Insert (R/W)............................................................................................................... 69
Table 68. Extracted Line Status (E2) (RO)............................................................................................................. 69
Table 69. Line Error Counts (RO)........................................................................................................................... 69
Table 70. Channel Alarm Freeze Register (RO) .................................................................................................... 70
Table 71. Connection Memory AC (R/W) ............................................................................................................... 70
Table 72. Connection Memory AD (R/W) ............................................................................................................... 71
Table 73. Connection Memory BC (R/W) ............................................................................................................... 71
Table 74. Connection Memory BD (R/W) ............................................................................................................... 71
Table 75. Extracted Path Status (RO) .................................................................................................................... 71
Table 76. Absolute Maximum Ratings.................................................................................................................... 72
Table 77. ESD Threshold Voltage .......................................................................................................................... 72
Table 78. Recommended Operating Conditions .................................................................................................... 72
Table 79. LVDS Driver dc Data .............................................................................................................................. 75
Table 80. LVDS Driver ac Data .............................................................................................................................. 75
Table 81. LVDS Driver Reference Data ................................................................................................................. 76
Table 82. LVDS Receiver Data .............................................................................................................................. 76
Table 83. LVTTL 3.3 V Logic Interface Characteristics .......................................................................................... 76
Table 84. Microprocessor Interface Timing ............................................................................................................ 77
Table 85. TA_N/TEA_N Cycle Termination for Synchronous Write Cycle ............................................................. 78
Table 86. TA_N/TEA_N Cycle Termination for Synchronous Read Cycle ............................................................. 79
Table 87. TA_N/TEA_N Cycle Termination for Asynchronous Write Cycle ........................................................... 80
Table 88. TA_N/TEA_N Cycle Termination for Asynchronous Read Cycle ........................................................... 81
Table 89. Basic 792-Pin LBGA............................................................................................................................... 84
6Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Applications
SONET/SDH terminal equipment.
SONET/SDH digital cross connect equipment.
SONET/SDH add-drop multiplex equipment.
SONET/SDH test equipment.
TDCS4810G will interface seamlessly to a number of Agere Systems Inc. existing/next-generation high-speed
framers.
Description
The TDCS4810G has four sections: receive interface channels, a cross connect fabric core, transmit channels,
and a microprocessor interface. The block diagram of the TDCS4810G is shown in Figure 1.
All data stream channels must be synchronous in frequency, but can be asynchronous in phase.
The TDCS4810G does not perform pointer processing functions. These are performed by the line and tributary
cards, which align the payload at known positions relative to a common frame signal.
The TDCS4810G is able to support SONET and SDH cross connects.
The A1, A2, B1, H1, H2, H3, K1, and K2 bytes are used for their original SONET/SDH purposes.
Note: Throughout this document, the term channel always refers to an STS-12 data stream that is carried on a
single LVDS link.
5-8022.a(F)
Figure 1. TDCS4810G Block Diagram
FABRIC CORE
TRANSMIT
TRANSMIT
CONNECTION
MICROPROCESSOR
JTAG INTERFACE
D_OUT0_[15:0]
D_OUT1_[15:0]
D_IN1_[15:0]
D_OUT2_[15:0]
D_IN2_[15:0]
TDO
TDI
TCK
TMS
TRST_N
DATA_[15:0]
CS_N
TS_N
DS_N
INT_N
MPMODE[1:0]
PARITY_[1:0]
INTERFACE
PORT 0
RECEIVE
INTERFACE
PORT 0
TRANSMIT
INTERFACE
PORT 2
RECEIVE
INTERFACE
PORT 2
INTERFACE
PORT 1
RECEIVE
INTERFACE
PORT 1
MEMORY
D_IN0_[15:0]
PCLK
ADDRESS_[12:0]
TA_N
RW_N
TEA_N
HIZ_N
RST_N
SYS_FP
SYS_CLK
PM_CLK
Agere Systems Inc. 7
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Description (continued)
Receive Interface
The receiver is composed of 48 STS-12 channels that
are either treated as independent channels, or treated
as three groups of 16 channels each, forming three
STS-192 streams. Incoming data for each channel is
received through an LVDS serial port operating at
622 Mbits/s. The incoming serial stream frequency
must be the same as the outgoing LVDS serial stream
of the transmitter. Each STS-192 interface (16 chan-
nels) has its own PLL using the same reference clock.
The receiver is able to handle STS-12 streams having
combined static and dynamic frame offsets of up to
64 bytes without creating any traffic disruption.
The receiver performs three major functions, which are
described in greater detail in upcoming sections: the
clock and data recovery (CDR), the framer, and the
FIFO aligner.
Fabric Core
The cross connect has 48 input channels and 48 out-
put channels. Each channel has the bandwidth capac-
ity to carry an STS-12 worth of data. The channels can
also be thought of as three bidirectional STS-192 data
streams.
The fabric core consists of a time-slot interchanger
(TSI), a connection memory (shown externally in
Figure 1), E1/F1/E2 extraction, and AIS/UNEQ inser-
tion.
Time-Slot Interchanger (TSI)
The TSI is used to reorder the STS-1 data. In doing
this, the TSI ensures that any output STS-1 channel
can be connected to any input STS-1 regardless of any
other switch configuration. Incoming data is written into
one of two buffers in a regular order while output data
is read from another buffer in an order dependent on
the address provided to the TSI, from the connection
memory, for each channel. Once one buffer has been
completely written to, the read and write buffers switch.
This switch is controlled by a synchronization input.
Connection Memory
The connection memory is used to configure the TSI to
switch the incoming STS-1s to the desired output
buffer. There is a working memory to configure the
working connections for each STS-1, and there is a
protected memory to configure the protection connec-
tion for each STS-1. Each of the working and protected
memories are duplicated (A and B) to allow for easy
software configuration.
E1/F1/E2 Extraction
The E1 and F1 bytes of each STS-1 carry information
indicating the path status of that STS-1. Both bytes
contain the same information. This information can be
used by software to initiate a switch from working to
protected configurations. The E1 and F1 bytes are
extracted from STS-1s at the output of the TSI and
stored.
The bytes are monitored for a change, and if a change
is detected, a latched alarm is raised.
The E2 byte of the STS-1 of each STS-12 (channel)
carries proprietary information indicating the line status
of that STS-12. This information can be used by soft-
ware to initiate a switch from working to protected con-
figurations. The E2 byte is extracted from the STS-1 of
each STS-12 at the input to the TSI and stored.
AIS/UNEQ Insertion
Path AIS(AIS-P) and UNEQ indications can be inserted
on individual STS-1s within a stream under software
control to squelch individual STS-1s during and after
network topology reconfigurations. This process
ensures that downstream path processors will detect a
normal pointer and will thus be able to extract the path
overhead in order to detect an UNEQ defect.
Transmit Interface
The transmitter is composed of 48 STS-12 channels
that are always treated as independent channels.
Incoming data for each channel is received from the
cross connect. Each of the outgoing LVDS serial
streams of the transmitter transmits at a rate of
622 Mbits/s, and the data is synchronized to the sys-
tem clock.
Microprocessor Interface
The microprocessor interface supports both synchro-
nous and asynchronous operations. The microproces-
sor interface has a 16-bit wide data bus and a 13-bit
wide address bus.
Channels can be independently enabled or disabled
under software control with powerdown mode. In the
event that redundant cross connects are desired,
3-state buffers are available to support redundancy.
Supervisory features built into the TDCS4810G provide
diagnostic capabilities and fault coverage. There is an
interrupt output for the microprocessor interface. Inter-
rupt sources are maskable.
8Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Pin Information
5-9863(F)
Figure 2. Pin Diagram of 792 LBGA (Bottom View)
19
30 2628 2432 22 20 18 46810121416 234
52325 731 29 1521 327 1117 913 135 33
3638
3739
T
D
H
AL
F
K
B
P
M
L
J
AH
R
C
E
Y
N
U
AN
G
AD
V
AM
AJ
AG
AE
AC
AA
W
AP
AK
AF
AB
AR
A
AU AT
AV
AW
HIDDEN
A1 MARKER
Agere Systems Inc. 9
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Pin Information (continued)
Table 1. Pin Assignments for 792-Pin LBGA by Pin Number Order
Notes:
Do not connect pins designated as NC (no connect pins).
Pins designated as UNUSED (unused pins) have no connection between the pin and the die.
Pin Signal Name Pin Signal Name Pin Signal Name Pin Signal Name
A1 VDD B1 VDD C1 D_OUT0_12_N D1 D_OUT0_15_N
A2 VDD B2 VDD C2 D_OUT0_12 D2 D_OUT0_15
A3 D_OUT0_11 B3 D_OUT0_11_N C3 VSS D3 VSS
A4 D_OUT0_08 B4 D_OUT0_08_N C4 VSS D4 VSS
A5 REF14_0 B5 REF10_0 C5 D_OUT0_10 D5 D_OUT0_10_N
A6 D_OUT0_05 B6 D_OUT0_05_N C6 D_OUT0_07 D6 D_OUT0_07_N
A7 D_OUT0_04 B7 D_OUT0_04_N C7 VDD D7 VSS
A8 D_OUT0_02 B8 D_OUT0_02_N C8 UNUSED D8 UNUSED
A9 D_OUT0_00 B9 D_OUT0_00_N C9 VSS D9 VDD2
A10 D_IN0_00 B10 D_IN0_00_N C10 UNUSED D10 UNUSED
A11 D_IN0_01 B11 D_IN0_01_N C11 VDD D11 VSS
A12 D_IN0_03 B12 D_IN0_03_N C12 CTAP0_0 D12 REXT0
A13 D_IN0_05 B13 D_IN0_05_N C13 VSS D13 VDD2
A14 D_IN0_07 B14 D_IN0_07_N C14 CTAP0_1 D14 UNUSED
A15 D_IN0_09 B15 D_IN0_09_N C15 VDD D15 VSS
A16 D_IN0_10 B16 D_IN0_10_N C16 CTAP0_2 D16 UNUSED
A17 D_IN0_12 B17 D_IN0_12_N C17 VSS D17 VDD2
A18 D_IN0_14 B18 D_IN0_14_N C18 CTAP0_3 D18 UNUSED
A19 UNUSED B19 VDD C19 VSS D19 D_IN0_15
A20 VDD B20 VDD C20 VSS D20 VSS
A21 UNUSED B21 VDD C21 VSS D21 D_IN1_15
A22 D_IN1_14 B22 D_IN1_14_N C22 CTAP1_3 D22 UNUSED
A23 D_IN1_12 B23 D_IN1_12_N C23 VSS D23 VDD2
A24 D_IN1_10 B24 D_IN1_10_N C24 CTAP1_2 D24 UNUSED
A25 D_IN1_09 B25 D_IN1_09_N C25 VDD D25 VSS
A26 D_IN1_07 B26 D_IN1_07_N C26 CTAP1_1 D26 UNUSED
A27 D_IN1_05 B27 D_IN1_05_N C27 VSS D27 VDD2
A28 D_IN1_03 B28 D_IN1_03_N C28 CTAP1_0 D28 REXT1
A29 D_IN1_01 B29 D_IN1_01_N C29 VDD D29 VSS
A30 D_IN1_00 B30 D_IN1_00_N C30 UNUSED D30 UNUSED
A31 D_OUT1_00 B31 D_OUT1_00_N C31 VSS D31 VDD2
A32 D_OUT1_02 B32 D_OUT1_02_N C32 UNUSED D32 UNUSED
A33 D_OUT1_04 B33 D_OUT1_04_N C33 VDD D33 VSS
A34 D_OUT1_05 B34 D_OUT1_05_N C34 D_OUT1_07 D34 D_OUT1_07_N
A35 RESHI_1 B35 RESLO_1 C35 D_OUT1_10 D35 D_OUT1_10_N
A36 D_OUT1_08 B36 D_OUT1_08_N C36 VSS D36 VSS
A37 D_OUT1_11 B37 D_OUT1_11_N C37 VSS D37 VSS
A38 VDD B38 VDD C38 D_OUT1_12 D38 D_OUT1_15
A39 VDD B39 VDD C39 D_OUT1_12_N D39 D_OUT1_15_N
10 Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Pin Information (continued)
Table 1. Pin Assignments for 792-Pin LBGA by Pin Number Order (continued)
Notes:
Do not connect pins designated as NC (no connect pins).
Pins designated as UNUSED (unused pins) have no connection between the pin and the die.
Pin Signal Name Pin Signal Name Pin Signal Name Pin Signal Name
E1 NC F1 NC G1 NC K4 NC
E2 NC F2 NC G2 NC K5 NC
E3 D_OUT0_13_N F3 NC G3 VDD K6 NC
E4 D_OUT0_13 F4 NC G4 VSS K34 NC
E5 VDD2 F5 VDD2 G5 D_OUT0_14_N K35 NC
E6 VDD2 F6 VDD2 G6 D_OUT0_14 K36 NC
E7 D_OUT0_09 F7 D_OUT0_09_N G34 D_OUT1_14 K37 NC
E8 D_OUT0_06 F8 D_OUT0_06_N G35 D_OUT1_14_N K38 NC
E9 RESLO_0 F9 RESHI_0 G36 VSS K39 NC
E10 D_OUT0_03 F10 D_OUT0_03_N G37 VDD L1 NC
E11 D_OUT0_01 F11 D_OUT0_01_N G38 NC L2 NC
E12 VDDA F12 VSSA G39 NC L3 VDD
E13 D_IN0_02 F13 D_IN0_02_N H1 UNUSED L4 VSS
E14 D_IN0_04 F14 D_IN0_04_N H2 UNUSED L5 NC
E15 D_IN0_06 F15 D_IN0_06_N H3 NC L6 NC
E16 D_IN0_08 F16 D_IN0_08_N H4 NC L34 NC
E17 D_IN0_11 F17 D_IN0_11_N H5 NC L35 NC
E18 D_IN0_13 F18 D_IN0_13_N H6 NC L36 VSS
E19 D_IN0_15_N F19 VDD2 H34 NC L37 VDD
E20 VDD2 F20 VDD2 H35 NC L38 NC
E21 D_IN1_15_N F21 VDD2 H36 NC L39 NC
E22 D_IN1_13 F22 D_IN1_13_N H37 NC M1 UNUSED
E23 D_IN1_11 F23 D_IN1_11_N H38 NC M2 UNUSED
E24 D_IN1_08 F24 D_IN1_08_N H39 NC M3 NC
E25 D_IN1_06 F25 D_IN1_06_N J1 NC M4 NC
E26 D_IN1_04 F26 D_IN1_04_N J2 NC M5 NC
E27 D_IN1_02 F27 D_IN1_02_N J3 VSS M6 NC
E28 VDDA F28 VSSA J4 VDD2 M34 NC
E29 D_OUT1_01 F29 D_OUT1_01_N J5 NC M35 NC
E30 D_OUT1_03 F30 D_OUT1_03_N J6 NC M36 NC
E31 REF10_1 F31 REF14_1 J34 NC M37 NC
E32 D_OUT1_06 F32 D_OUT1_06_N J35 NC M38 UNUSED
E33 D_OUT1_09 F33 D_OUT1_09_N J36 VDD2 M39 UNUSED
E34 VDD2 F34 VDD2 J37 VSS N1 UNUSED
E35 VDD2 F35 VDD2 J38 NC N2 UNUSED
E36 D_OUT1_13 F36 NC J39 NC N3 VSS
E37 D_OUT1_13_N F37 NC K1 NC N4 VDD2
E38 NC F38 NC K2 NC N5 UNUSED
E39 NC F39 NC K3 NC N6 UNUSED
Agere Systems Inc. 11
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Pin Information (continued)
Table 1. Pin Assignments for 792-Pin LBGA by Pin Number Order (continued)
Notes:
Do not connect pins designated as NC (no connect pins).
Pins designated as UNUSED (unused pins) have no connection between the pin and the die.
Pin Signal Name Pin Signal Name Pin Signal Name Pin Signal Name
N34 UNUSED T37 ADDRESS_8 Y1 VDD AC4 VDD2
N35 UNUSED T38 ADDRESS_7 Y2 VDD AC5 NC
N36 VDD2 T39 ADDRESS_6 Y3 VSS AC6 NC
N37 VSS U1 NC Y4 VSS AC34 DATA_9
N38 UNUSED U2 NC Y5 VDD2 AC35 DATA_8
N39 NC U3 VSS Y6 VDD2 AC36 VDD2
P1 NC U4 VDD2 Y34 VDD2 AC37 VSS
P2 UNUSED U5 NC Y35 VDD2 AC38 DATA_7
P3 NC U6 NC Y36 VSS AC39 DATA_6
P4 UNUSED U34 ADDRESS_5 Y37 VSS AD1 UNUSED
P5 UNUSED U35 ADDRESS_4 Y38 VDD AD2 UNUSED
P6 UNUSED U36 VDD2 Y39 VDD AD3 UNUSED
P34 DXP U37 VSS AA1 UNUSED AD4 NC
P35 DXN U38 ADDRESS_3 AA2 VDD AD5 UNUSED
P36 NC U39 ADDRESS_2 AA3 VSS AD6 CTAP_CLK_FP
P37 NC V1 TRST_N AA4 UNUSED AD34 PARITY_1
P38 NC V2 TDO AA5 RST_N AD35 PARITY_0
P39 NC V3 TSTMD_N AA6 VDD2 AD36 DATA_13
R1 NC V4 SCANEN_N AA34 VDD2 AD37 DATA_12
R2 NC V5 NC AA35 SYNC_N AD38 DATA_11
R3 VDD V6 NC AA36 INT_N AD39 DATA_10
R4 VSS V34 ADDRESS_1 AA37 VSS AE1 NC
R5 NC V35 ADDRESS_0 AA38 VDD AE2 NC
R6 NC V36 MPMODE_1 AA39 UNUSED AE3 VDD
R34 UNUSED V37 MPMODE_0 AB1 HIZ_N AE4 VSS
R35 NC V38 CS_N AB2 NC AE5 SYS_CLK_N
R36 VSS V39 TS_N AB3 NC AE6 SYS_CLK
R37 VDD W1 TCK AB4 NC AE34 UNUSED
R38 ADDRESS_11 W2 VDD AB5 NC AE35 UNUSED
R39 ADDRESS_10 W3 VSS AB6 NC AE36 VSS
T1 NC W4 TDI AB34 DATA_5 AE37 VDD
T2 NC W5 TMS AB35 DATA_4 AE38 DATA_15
T3 NC W6 VDD2 AB36 DATA_3 AE39 DATA_14
T4 NC W34 VDD2 AB37 DATA_2 AF1 SYS_FP_N
T5 NC W35 DS_N AB38 DATA_1 AF2 SYS_FP
T6 NC W36 RW_N AB39 DATA_0 AF3 NC
T34 UNUSED W37 VSS AC1 NC AF4 UNUSED
T35 ADDRESS_12 W38 VDD AC2 NC AF5 NC
T36 ADDRESS_9 W39 PCLK AC3 VSS AF6 NC
12 Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Pin Information (continued)
Table 1. Pin Assignments for 792-Pin LBGA by Pin Number Order (continued)
Notes:
Do not connect pins designated as NC (no connect pins).
Pins designated as UNUSED (unused pins) have no connection between the pin and the die.
Pin Signal Name Pin Signal Name Pin Signal Name Pin Signal Name
AF34 UNUSED AJ37 VDD AN1 NC AP28 VSSA
AF35 UNUSED AJ38 NC AN2 NC AP29 D_OUT2_01_N
AF36 UNUSED AJ39 NC AN3 VDD AP30 D_OUT2_03_N
AF37 UNUSED AK1 NC AN4 VSS AP31 RESHI_2
AF38 TEA_N AK2 NC AN5 NC AP32 D_OUT2_06_N
AF39 TA_N AK3 NC AN6 NC AP33 D_OUT2_09_N
AG1 UNUSED AK4 NC AN34 D_OUT2_14 AP34 VDD2
AG2 UNUSED AK5 NC AN35 D_OUT2_14_N AP35 VDD2
AG3 VSS AK6 NC AN36 VSS AP36 NC
AG4 VDD2 AK34 NC AN37 VDD AP37 NC
AG5 NC AK35 NC AN38 NC AP38 NC
AG6 NC AK36 NC AN39 NC AP39 NC
AG34 UNUSED AK37 NC AP1 NC AR1 NC
AG35 UNUSED AK38 NC AP2 NC AR2 NC
AG36 VDD2 AK39 NC AP3 NC AR3 NC
AG37 VSS AL1 NC AP4 NC AR4 NC
AG38 UNUSED AL2 NC AP5 VDD2 AR5 VDD2
AG39 UNUSED AL3 VSS AP6 VDD2 AR6 VDD2
AH1 NC AL4 VDD2 AP7 NC AR7 NC
AH2 NC AL5 NC AP8 NC AR8 NC
AH3 NC AL6 NC AP9 NC AR9 NC
AH4 NC AL34 NC AP10 NC AR10 NC
AH5 NC AL35 NC AP11 NC AR11 NC
AH6 NC AL36 VDD2 AP12 VSSA AR12 VDDA
AH34 NC AL37 VSS AP13 NC AR13 NC
AH35 NC AL38 NC AP14 NC AR14 NC
AH36 NC AL39 NC AP15 NC AR15 NC
AH37 NC AM1 NC AP16 NC AR16 NC
AH38 UNUSED AM2 NC AP17 NC AR17 NC
AH39 UNUSED AM3 NC AP18 NC AR18 NC
AJ1 NC AM4 NC AP19 VDD2 AR19 NC
AJ2 NC AM5 NC AP20 VDD2 AR20 VDD2
AJ3 VDD AM6 NC AP21 VDD2 AR21 D_IN2_15_N
AJ4 VSS AM34 NC AP22 D_IN2_13_N AR22 D_IN2_13
AJ5 NC AM35 NC AP23 D_IN2_11_N AR23 D_IN2_11
AJ6 NC AM36 NC AP24 D_IN2_08_N AR24 D_IN2_08
AJ34 NC AM37 NC AP25 D_IN2_06_N AR25 D_IN2_06
AJ35 NC AM38 UNUSED AP26 D_IN2_04_N AR26 D_IN2_04
AJ36 VSS AM39 UNUSED AP27 D_IN2_02_N AR27 D_IN2_02
Agere Systems Inc. 13
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Pin Information (continued)
Table 1. Pin Assignments for 792-Pin LBGA by Pin Number Order (continued)
Notes:
Do not connect pins designated as NC (no connect pins).
Pins designated as UNUSED (unused pins) have no connection between the pin and the die.
Pin Signal Name Pin Signal Name Pin Signal Name Pin Signal Name
AR28 VDDA AT31 VDD2 AU34 D_OUT2_07 AV37 D_OUT2_11_N
AR29 D_OUT2_01 AT32 UNUSED AU35 D_OUT2_10 AV38 VDD
AR30 D_OUT2_03 AT33 VSS AU36 VSS AV39 VDD
AR31 RESLO_2 AT34 D_OUT2_07_N AU37 VSS AW1 VDD
AR32 D_OUT2_06 AT35 D_OUT2_10_N AU38 D_OUT2_12 AW2 VDD
AR33 D_OUT2_09 AT36 VSS AU39 D_OUT2_12_N AW3 NC
AR34 VDD2 AT37 VSS AV1 VDD AW4 NC
AR35 VDD2 AT38 D_OUT2_15 AV2 VDD AW5 NC
AR36 D_OUT2_13 AT39 D_OUT2_15_N AV3 NC AW6 NC
AR37 D_OUT2_13_N AU1 NC AV4 NC AW7 NC
AR38 NC AU2 NC AV5 NC AW8 NC
AR39 NC AU3 VSS AV6 NC AW9 NC
AT1 NC AU4 VSS AV7 NC AW10 NC
AT2 NC AU5 NC AV8 NC AW11 NC
AT3 VSS AU6 NC AV9 NC AW12 NC
AT4 VSS AU7 VDD AV10 NC AW13 NC
AT5 NC AU8 UNUSED AV11 NC AW14 NC
AT6 NC AU9 VSS AV12 NC AW15 NC
AT7 VSS AU10 UNUSED AV13 NC AW16 NC
AT8 UNUSED AU11 VDD AV14 NC AW17 NC
AT9 VDD2 AU12 NC AV15 NC AW18 NC
AT10 UNUSED AU13 VSS AV16 NC AW19 UNUSED
AT11 VSS AU14 NC AV17 NC AW20 VDD
AT12 NC AU15 VDD AV18 NC AW21 UNUSED
AT13 VDD2 AU16 NC AV19 VDD AW22 D_IN2_14
AT14 UNUSED AU17 VSS AV20 VDD AW23 D_IN2_12
AT15 VSS AU18 NC AV21 VDD AW24 D_IN2_10
AT16 UNUSED AU19 VSS AV22 D_IN2_14_N AW25 D_IN2_09
AT17 VDD2 AU20 VSS AV23 D_IN2_12_N AW26 D_IN2_07
AT18 UNUSED AU21 VSS AV24 D_IN2_10_N AW27 D_IN2_05
AT19 NC AU22 CTAP2_3 AV25 D_IN2_09_N AW28 D_IN2_03
AT20 VSS AU23 VSS AV26 D_IN2_07_N AW29 D_IN2_01
AT21 D_IN2_15 AU24 CTAP2_2 AV27 D_IN2_05_N AW30 D_IN2_00
AT22 UNUSED AU25 VDD AV28 D_IN2_03_N AW31 D_OUT2_00
AT23 VDD2 AU26 CTAP2_1 AV29 D_IN2_01_N AW32 D_OUT2_02
AT24 UNUSED AU27 VSS AV30 D_IN2_00_N AW33 D_OUT2_04
AT25 VSS AU28 CTAP2_0 AV31 D_OUT2_00_N AW34 D_OUT2_05
AT26 UNUSED AU29 VDD AV32 D_OUT2_02_N AW35 REF14_2
AT27 VDD2 AU30 UNUSED AV33 D_OUT2_04_N AW36 D_OUT2_08
AT28 REXT2 AU31 VSS AV34 D_OUT2_05_N AW37 D_OUT2_11
AT29 VSS AU32 UNUSED AV35 REF10_2 AW38 VDD
AT30 UNUSED AU33 VDD AV36 D_OUT2_08_N AW39 VDD
14 Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Pin Information (continued)
Table 2. Pin Assignments for 792-Pin LBGA by Signal Name Order
Notes:
Do not connect pins designated as NC (no connect pins).
Pins designated as UNUSED (unused pins) have no connection between the pin and the die.
Signal Name Pin Signal Name Pin Signal Name Pin Signal Name Pin
ADDRESS_0 V35 D_IN0_04 E14 D_IN1_07_N B26 D_IN2_11 AR23
ADDRESS_1 V34 D_IN0_04_N F14 D_IN1_08 E24 D_IN2_11_N AP23
ADDRESS_2 U39 D_IN0_05 A13 D_IN1_08_N F24 D_IN2_12 AW23
ADDRESS_3 U38 D_IN0_05_N B13 D_IN1_09 A25 D_IN2_12_N AV23
ADDRESS_4 U35 D_IN0_06 E15 D_IN1_09_N B25 D_IN2_13 AR22
ADDRESS_5 U34 D_IN0_06_N F15 D_IN1_10 A24 D_IN2_13_N AP22
ADDRESS_6 T39 D_IN0_07 A14 D_IN1_10_N B24 D_IN2_14 AW22
ADDRESS_7 T38 D_IN0_07_N B14 D_IN1_11 E23 D_IN2_14_N AV22
ADDRESS_8 T37 D_IN0_08 E16 D_IN1_11_N F23 D_IN2_15 AT21
ADDRESS_9 T36 D_IN0_08_N F16 D_IN1_12 A23 D_IN2_15_N AR21
ADDRESS_10 R39 D_IN0_09 A15 D_IN1_12_N B23 NC AW10
ADDRESS_11 R38 D_IN0_09_N B15 D_IN1_13 E22 NC AV10
ADDRESS_12 T35 D_IN0_10 A16 D_IN1_13_N F22 NC AW11
CS_N V38 D_IN0_10_N B16 D_IN1_14 A22 NC AV11
CTAP_CLK_FP AD6 D_IN0_11 E17 D_IN1_14_N B22 NC AR13
CTAP0_0 C12 D_IN0_11_N F17 D_IN1_15 D21 NC AP13
CTAP0_1 C14 D_IN0_12 A17 D_IN1_15_N E21 NC AW12
CTAP0_2 C16 D_IN0_12_N B17 D_IN2_00 AW30 NC AV12
CTAP0_3 C18 D_IN0_13 E18 D_IN2_00_N AV30 NC AR14
CTAP1_0 C28 D_IN0_13_N F18 D_IN2_01 AW29 NC AP14
CTAP1_1 C26 D_IN0_14 A18 D_IN2_01_N AV29 NC AW13
CTAP1_2 C24 D_IN0_14_N B18 D_IN2_02 AR27 NC AV13
CTAP1_3 C22 D_IN0_15 D19 D_IN2_02_N AP27 NC AR15
CTAP2_0 AU28 D_IN0_15_N E19 D_IN2_03 AW28 NC AP15
CTAP2_1 AU26 D_IN1_00 A30 D_IN2_03_N AV28 NC AW14
CTAP2_2 AU24 D_IN1_00_N B30 D_IN2_04 AR26 NC AV14
CTAP2_3 AU22 D_IN1_01 A29 D_IN2_04_N AP26 NC AR16
NC AU12 D_IN1_01_N B29 D_IN2_05 AW27 NC AP16
NC AU14 D_IN1_02 E27 D_IN2_05_N AV27 NC AW15
NC AU16 D_IN1_02_N F27 D_IN2_06 AR25 NC AV15
NC AU18 D_IN1_03 A28 D_IN2_06_N AP25 NC AW16
D_IN0_00 A10 D_IN1_03_N B28 D_IN2_07 AW26 NC AV16
D_IN0_00_N B10 D_IN1_04 E26 D_IN2_07_N AV26 NC AR17
D_IN0_01 A11 D_IN1_04_N F26 D_IN2_08 AR24 NC AP17
D_IN0_01_N B11 D_IN1_05 A27 D_IN2_08_N AP24 NC AW17
D_IN0_02 E13 D_IN1_05_N B27 D_IN2_09 AW25 NC AV17
D_IN0_02_N F13 D_IN1_06 E25 D_IN2_09_N AV25 NC AR18
D_IN0_03 A12 D_IN1_06_N F25 D_IN2_10 AW24 NC AP18
D_IN0_03_N B12 D_IN1_07 A26 D_IN2_10_N AV24 NC AW18
Agere Systems Inc. 15
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Pin Information (continued)
Table 2. Pin Assignments for 792-Pin LBGA by Signal Name Order (continued)
Notes:
Do not connect pins designated as NC (no connect pins).
Pins designated as UNUSED (unused pins) have no connection between the pin and the die.
Signal Name Pin Signal Name Pin Signal Name Pin Signal Name Pin
NC AV18 D_OUT1_02 A32 D_OUT2_05_N AV34 NC AR7
NC AT19 D_OUT1_02_N B32 D_OUT2_06 AR32 NC AP7
NC AR19 D_OUT1_03 E30 D_OUT2_06_N AP32 NC AU5
D_OUT0_00 A9 D_OUT1_03_N F30 D_OUT2_07 AU34 NC AT5
D_OUT0_00_N B9 D_OUT1_04 A33 D_OUT2_07_N AT34 NC AW3
D_OUT0_01 E11 D_OUT1_04_N B33 D_OUT2_08 AW36 NC AV3
D_OUT0_01_N F11 D_OUT1_05 A34 D_OUT2_08_N AV36 NC AU2
D_OUT0_02 A8 D_OUT1_05_N B34 D_OUT2_09 AR33 NC AU1
D_OUT0_02_N B8 D_OUT1_06 E32 D_OUT2_09_N AP33 NC AR4
D_OUT0_03 E10 D_OUT1_06_N F32 D_OUT2_10 AU35 NC AR3
D_OUT0_03_N F10 D_OUT1_07 C34 D_OUT2_10_N AT35 NC AN6
D_OUT0_04 A7 D_OUT1_07_N D34 D_OUT2_11 AW37 NC AN5
D_OUT0_04_N B7 D_OUT1_08 A36 D_OUT2_11_N AV37 NC AT2
D_OUT0_05 A6 D_OUT1_08_N B36 D_OUT2_12 AU38 NC AT1
D_OUT0_05_N B6 D_OUT1_09 E33 D_OUT2_12_N AU39 DATA_0 AB39
D_OUT0_06 E8 D_OUT1_09_N F33 D_OUT2_13 AR36 DATA_1 AB38
D_OUT0_06_N F8 D_OUT1_10 C35 D_OUT2_13_N AR37 DATA_2 AB37
D_OUT0_07 C6 D_OUT1_10_N D35 D_OUT2_14 AN34 DATA_3 AB36
D_OUT0_07_N D6 D_OUT1_11 A37 D_OUT2_14_N AN35 DATA_4 AB35
D_OUT0_08 A4 D_OUT1_11_N B37 D_OUT2_15 AT38 DATA_5 AB34
D_OUT0_08_N B4 D_OUT1_12 C38 D_OUT2_15_N AT39 DATA_6 AC39
D_OUT0_09 E7 D_OUT1_12_N C39 NC AW9 DATA_7 AC38
D_OUT0_09_N F7 D_OUT1_13 E36 NC AV9 DATA_8 AC35
D_OUT0_10 C5 D_OUT1_13_N E37 NC AR11 DATA_9 AC34
D_OUT0_10_N D5 D_OUT1_14 G34 NC AP11 DATA_10 AD39
D_OUT0_11 A3 D_OUT1_14_N G35 NC AW8 DATA_11 AD38
D_OUT0_11_N B3 D_OUT1_15 D38 NC AV8 DATA_12 AD37
D_OUT0_12 C2 D_OUT1_15_N D39 NC AR10 DATA_13 AD36
D_OUT0_12_N C1 D_OUT2_00 AW31 NC AP10 DATA_14 AE39
D_OUT0_13 E4 D_OUT2_00_N AV31 NC AW7 DATA_15 AE38
D_OUT0_13_N E3 D_OUT2_01 AR29 NC AV7 DS_N W35
D_OUT0_14 G6 D_OUT2_01_N AP29 NC AW6 DXN P35
D_OUT0_14_N G5 D_OUT2_02 AW32 NC AV6 DXP P34
D_OUT0_15 D2 D_OUT2_02_N AV32 NC AR8 HIZ_N AB1
D_OUT0_15_N D1 D_OUT2_03 AR30 NC AP8 INT_N AA36
D_OUT1_00 A31 D_OUT2_03_N AP30 NC AU6 MPMODE_0 V37
D_OUT1_00_N B31 D_OUT2_04 AW33 NC AT6 MPMODE_1 V36
D_OUT1_01 E29 D_OUT2_04_N AV33 NC AW4 NC E1
D_OUT1_01_N F29 D_OUT2_05 AW34 NC AV4 NC E2
16 Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Pin Information (continued)
Table 2. Pin Assignments for 792-Pin LBGA by Signal Name Order (continued)
Notes:
Do not connect pins designated as NC (no connect pins).
Pins designated as UNUSED (unused pins) have no connection between the pin and the die.
Signal Name Pin Signal Name Pin Signal Name Pin Signal Name Pin
NC E38 NC K35 NC U1 NC AJ38
NC E39 NC K36 NC U2 NC AJ39
NC F1 NC K37 NC U5 NC AK1
NC F2 NC K38 NC U6 NC AK2
NC F3 NC K39 NC V5 NC AK3
NC F4 NC L1 NC V6 NC AK4
NCF36NCL2NCAB2NC AK5
NCF37NCL5NCAB3NC AK6
NCF38NCL6NCAB4NC AK34
NC F39 NC L34 NC AB5 NC AK35
NC G1 NC L35 NC AB6 NC AK36
NC G2 NC L38 NC AC1 NC AK37
NC G38 NC L39 NC AC2 NC AK38
NC G39 NC M3 NC AC5 NC AK39
NC H3 NC M4 NC AC6 NC AL1
NC H4 NC M5 NC AD4 NC AL2
NC H5 NC M6 NC AE1 NC AL5
NC H6 NC M34 NC AE2 NC AL6
NC H34 NC M35 NC AF3 NC AL34
NC H35 NC M36 NC AF5 NC AL35
NC H36 NC M37 NC AF6 NC AL38
NC H37 NC N39 NC AG5 NC AL39
NC H38 NC P1 NC AG6 NC AM1
NC H39 NC P3 NC AH1 NC AM2
NC J1 NC P36 NC AH2 NC AM3
NC J2 NC P37 NC AH3 NC AM4
NC J5 NC P38 NC AH4 NC AM5
NC J6 NC P39 NC AH5 NC AM6
NC J34 NC R1 NC AH6 NC AM34
NCJ35NCR2NCAH34NC AM35
NCJ38NCR5NCAH35NC AM36
NCJ39NCR6NCAH36NC AM37
NC K1 NC R35 NC AH37 NC AN1
NC K2 NC T1 NC AJ1 NC AN2
NC K3 NC T2 NC AJ2 NC AN38
NC K4 NC T3 NC AJ5 NC AN39
NC K5 NC T4 NC AJ6 NC AP1
NC K6 NC T5 NC AJ34 NC AP2
NCK34NCT6NCAJ35NC AP3
Agere Systems Inc. 17
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Pin Information (continued)
Table 2. Pin Assignments for 792-Pin LBGA by Signal Name Order (continued)
Notes:
Do not connect pins designated as NC (no connect pins).
Pins designated as UNUSED (unused pins) have no connection between the pin and the die.
Signal Name Pin Signal Name Pin Signal Name Pin Signal Name Pin
NC AP4 SYS_FP_N AF1 UNUSED P2 UNUSED AT32
NC AP36 TA_N AF39 UNUSED P4 UNUSED AU8
NC AP37 TCK W1 UNUSED P5 UNUSED AU10
NC AP38 TDI W4 UNUSED P6 UNUSED AU30
NC AP39 TDO V2 UNUSED R34 UNUSED AU32
NC AR1 TEA_N AF38 UNUSED T34 UNUSED AW19
NC AR2 TMS W5 UNUSED AA1 UNUSED AW21
NC AR38 TRST_N V1 UNUSED AA4 VDD A1
NC AR39 TS_N V39 UNUSED AA39 VDD A2
PARITY_0 AD35 TSTMD_N V3 UNUSED AD1 VDD A20
PARITY_1 AD34 UNUSED A19 UNUSED AD2 VDD A38
PCLK W39 UNUSED A21 UNUSED AD3 VDD A39
REF10_0 B5 UNUSED C8 UNUSED AD5 VDD B1
REF10_1 E31 UNUSED C10 UNUSED AE34 VDD B2
REF10_2 AV35 UNUSED C30 UNUSED AE35 VDD B19
NC AR9 UNUSED C32 UNUSED AF4 VDD B20
REF14_0 A5 UNUSED D8 UNUSED AF34 VDD B21
REF14_1 F31 UNUSED D10 UNUSED AF35 VDD B38
REF14_2 AW35 UNUSED D14 UNUSED AF36 VDD B39
NC AP9 UNUSED D16 UNUSED AF37 VDD C7
RESHI_0 F9 UNUSED D18 UNUSED AG1 VDD C11
RESHI_1 A35 UNUSED D22 UNUSED AG2 VDD C15
RESHI_2 AP31 UNUSED D24 UNUSED AG34 VDD C25
NC AW5 UNUSED D26 UNUSED AG35 VDD C29
RESLO_0 E9 UNUSED D30 UNUSED AG38 VDD C33
RESLO_1 B35 UNUSED D32 UNUSED AG39 VDD G3
RESLO_2 AR31 UNUSED H1 UNUSED AH38 VDD G37
NC AV5 UNUSED H2 UNUSED AH39 VDD L3
REXT0 D12 UNUSED M1 UNUSED AM38 VDD L37
REXT1 D28 UNUSED M2 UNUSED AM39 VDD R3
REXT2 AT28 UNUSED M38 UNUSED AT8 VDD R37
NC AT12 UNUSED M39 UNUSED AT10 VDD W2
RST_N AA5 UNUSED N1 UNUSED AT14 VDD W38
RW_N W36 UNUSED N2 UNUSED AT16 VDD Y1
SCANEN_N V4 UNUSED N5 UNUSED AT18 VDD Y2
SYNC_N AA35 UNUSED N6 UNUSED AT22 VDD Y38
SYS_CLK AE6 UNUSED N34 UNUSED AT24 VDD Y39
SYS_CLK_N AE5 UNUSED N35 UNUSED AT26 VDD AA2
SYS_FP AF2 UNUSED N38 UNUSED AT30 VDD AA38
18 Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Pin Information (continued)
Table 2. Pin Assignments for 792-Pin LBGA by Signal Name Order (continued)
Notes:
Do not connect pins designated as NC (no connect pins).
Pins designated as UNUSED (unused pins) have no connection between the pin and the die.
Signal Name Pin Signal Name Pin Signal Name Pin Signal Name Pin
VDD AE3 VDD2 J4 VSS C3 VSS AA3
VDD AE37 VDD2 J36 VSS C4 VSS AA37
VDD AJ3 VDD2 N4 VSS C9 VSS AC3
VDD AJ37 VDD2 N36 VSS C13 VSS AC37
VDD AN3 VDD2 U4 VSS C17 VSS AE4
VDD AN37 VDD2 U36 VSS C19 VSS AE36
VDD AU7 VDD2 W6 VSS C20 VSS AG3
VDD AU11 VDD2 W34 VSS C21 VSS AG37
VDD AU15 VDD2 Y5 VSS C23 VSS AJ4
VDD AU25 VDD2 Y6 VSS C27 VSS AJ36
VDD AU29 VDD2 Y34 VSS C31 VSS AL3
VDD AU33 VDD2 Y35 VSS C36 VSS AL37
VDD AV1 VDD2 AA6 VSS C37 VSS AN4
VDD AV2 VDD2 AA34 VSS D3 VSS AN36
VDD AV19 VDD2 AC4 VSS D4 VSS AT3
VDD AV20 VDD2 AC36 VSS D7 VSS AT4
VDD AV21 VDD2 AG4 VSS D11 VSS AT7
VDD AV38 VDD2 AG36 VSS D15 VSS AT11
VDD AV39 VDD2 AL4 VSS D20 VSS AT15
VDD AW1 VDD2 AL36 VSS D25 VSS AT20
VDD AW2 VDD2 AP5 VSS D29 VSS AT25
VDD AW20 VDD2 AP6 VSS D33 VSS AT29
VDD AW38 VDD2 AP19 VSS D36 VSS AT33
VDD AW39 VDD2 AP20 VSS D37 VSS AT36
VDD2 D9 VDD2 AP21 VSS G4 VSS AT37
VDD2 D13 VDD2 AP34 VSS G36 VSS AU3
VDD2 D17 VDD2 AP35 VSS J3 VSS AU4
VDD2 D23 VDD2 AR5 VSS J37 VSS AU9
VDD2 D27 VDD2 AR6 VSS L4 VSS AU13
VDD2 D31 VDD2 AR20 VSS L36 VSS AU17
VDD2 E5 VDD2 AR34 VSS N3 VSS AU19
VDD2 E6 VDD2 AR35 VSS N37 VSS AU20
VDD2 E20 VDD2 AT9 VSS R4 VSS AU21
VDD2 E34 VDD2 AT13 VSS R36 VSS AU23
VDD2 E35 VDD2 AT17 VSS U3 VSS AU27
VDD2 F5 VDD2 AT23 VSS U37 VSS AU31
VDD2 F6 VDD2 AT27 VSS W3 VSS AU36
VDD2 F19 VDD2 AT31 VSS W37 VSS AU37
VDD2 F20 VDDA E12 VSS Y3 VSSA F12
VDD2 F21 VDDA E28 VSS Y4 VSSA F28
VDD2 F34 VDDA AR12 VSS Y36 VSSA AP12
VDD2 F35 VDDA AR28 VSS Y37 VSSA AP28
Agere Systems Inc. 19
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Pin Information (continued)
Table 3. Pin Descriptions—Receive Interface
Note: The speed for each channel below is 622.08 Mbits/s.
Pin Symbol Type*
* I = input, LVDS = low-voltage differential signal.
Name/Description
A10
B10
D_IN0_00
D_IN0_00_N
I
LVDS
Port 0 Input 0. LVDS data input pair for port 0, channel 0.
A11
B11
D_IN0_01
D_IN0_01_N
I
LVDS
Port 0 Input 1. LVDS data input pair for port 0, channel 1.
E13
F13
D_IN0_02
D_IN0_02_N
I
LVDS
Port 0 Input 2. LVDS data input pair for port 0, channel 2.
A12
B12
D_IN0_03
D_IN0_03_N
I
LVDS
Port 0 Input 3. LVDS data input pair for port 0, channel 3.
E14
F14
D_IN0_04
D_IN0_04_N
I
LVDS
Port 0 Input 4. LVDS data input pair for port 0, channel 4.
A13
B13
D_IN0_05
D_IN0_05_N
I
LVDS
Port 0 Input 5. LVDS data input pair for port 0, channel 5.
E15
F15
D_IN0_06
D_IN0_06_N
I
LVDS
Port 0 Input 6. LVDS data input pair for port 0, channel 6.
A14
B14
D_IN0_07
D_IN0_07_N
I
LVDS
Port 0 Input 7. LVDS data input pair for port 0, channel 7.
E16
F16
D_IN0_08
D_IN0_08_N
I
LVDS
Port 0 Input 8. LVDS data input pair for port 0, channel 8.
A15
B15
D_IN0_09
D_IN0_09_N
I
LVDS
Port 0 Input 9. LVDS data input pair for port 0, channel 9.
A16
B16
D_IN0_10
D_IN0_10_N
I
LVDS
Port 0 Input 10. LVDS data input pair for port 0, channel 10.
E17
F17
D_IN0_11
D_IN0_11_N
I
LVDS
Port 0 Input 11. LVDS data input pair for port 0, channel 11.
A17
B17
D_IN0_12
D_IN0_12_N
I
LVDS
Port 0 Input 12. LVDS data input pair for port 0, channel 12.
E18
F18
D_IN0_13
D_IN0_13_N
I
LVDS
Port 0 Input 13. LVDS data input pair for port 0, channel 13.
A18
B18
D_IN0_14
D_IN0_14_N
I
LVDS
Port 0 Input 14. LVDS data input pair for port 0, channel 14.
D19
E19
D_IN0_15
D_IN0_15_N
I
LVDS
Port 0 Input 15. LVDS data input pair for port 0, channel 15.
C18
C16
C14
C12
CTAP0_3
CTAP0_2
CTAP0_1
CTAP0_0
Center Taps for Port 0 Inputs. Provides center-tapped common-mode
termination. These inputs should be terminated through individual external
0.01 µF capacitors to ground.
20 Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Pin Information (continued)
Table 3. Pin Descriptions—Receive Interface (continued)
Note: The speed for each channel below is 622.08 Mbits/s.
Pin Symbol Type*
* I = input, LVDS = low-voltage differential signal.
Name/Description
A30
B30
D_IN1_00
D_IN1_00_N
I
LVDS
Port 1 Input 0. LVDS data input pair for port 1, channel 0.
A29
B29
D_IN1_01
D_IN1_01_N
I
LVDS
Port 1 Input 1. LVDS data input pair for port 1, channel 1.
E27
F27
D_IN1_02
D_IN1_02_N
I
LVDS
Port 1 Input 2. LVDS data input pair for port 1, channel 2.
A28
B28
D_IN1_03
D_IN1_03_N
I
LVDS
Port 1 Input 3. LVDS data input pair for port 1, channel 3.
E26
F26
D_IN1_04
D_IN1_04_N
I
LVDS
Port 1 Input 4. LVDS data input pair for port 1, channel 4.
A27
B27
D_IN1_05
D_IN1_05_N
I
LVDS
Port 1 Input 5. LVDS data input pair for port 1, channel 5.
E25
F25
D_IN1_06
D_IN1_06_N
I
LVDS
Port 1 Input 6. LVDS data input pair for port 1, channel 6.
A26
B26
D_IN1_07
D_IN1_07_N
I
LVDS
Port 1 Input 7. LVDS data input pair for port 1, channel 7.
E24
F24
D_IN1_08
D_IN1_08_N
I
LVDS
Port 1 Input 8. LVDS data input pair for port 1, channel 8.
A25
B25
D_IN1_09
D_IN1_09_N
I
LVDS
Port 1 Input 9. LVDS data input pair for port 1, channel 9.
A24
B24
D_IN1_10
D_IN1_10_N
I
LVDS
Port 1 Input 10. LVDS data input pair for port 1, channel 10.
E23
F23
D_IN1_11
D_IN1_11_N
I
LVDS
Port 1 Input 11. LVDS data input pair for port 1, channel 11.
A23
B23
D_IN1_12
D_IN1_12_N
I
LVDS
Port 1 Input 12. LVDS data input pair for port 1, channel 12.
E22
F22
D_IN1_13
D_IN1_13_N
I
LVDS
Port 1 Input 13. LVDS data input pair for port 1, channel 13.
A22
B22
D_IN1_14
D_IN1_14_N
I
LVDS
Port 1 Input 14. LVDS data input pair for port 1, channel 14.
D21
E21
D_IN1_15
D_IN1_15_N
I
LVDS
Port 1 Input 15. LVDS data input pair for port 1, channel 15.
C22
C24
C26
C28
CTAP1_3
CTAP1_2
CTAP1_1
CTAP1_0
Center Taps for Port 1 Inputs. Provides center-tapped common-mode
termination. These inputs should be terminated through individual external
0.01 µF capacitors to ground.
Agere Systems Inc. 21
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Pin Information (continued)
Table 3. Pin Descriptions—Receive Interface (continued)
Note: The speed for each channel below is 622.08 Mbits/s.
Pin Symbol Type*
* I = input, LVDS = low-voltage differential signal.
Name/Description
AW30
AV30
D_IN2_00
D_IN2_00_N
I
LVDS
Port 2 Input 0. LVDS data input pair for port 2, channel 0.
AW29
AV29
D_IN2_01
D_IN2_01_N
I
LVDS
Port 2 Input 1. LVDS data input pair for port 2, channel 1.
AR27
AP27
D_IN2_02
D_IN2_02_N
I
LVDS
Port 2 Input 2. LVDS data input pair for port 2, channel 2.
AW28
AV28
D_IN2_03
D_IN2_03_N
I
LVDS
Port 2 Input 3. LVDS data input pair for port 2, channel 3.
AR26
AP26
D_IN2_04
D_IN2_04_N
I
LVDS
Port 2 Input 4. LVDS data input pair for port 2, channel 4.
AW27
AV27
D_IN2_05
D_IN2_05_N
I
LVDS
Port 2 Input 5. LVDS data input pair for port 2, channel 5.
AR25
AP25
D_IN2_06
D_IN2_06_N
I
LVDS
Port 2 Input 6. LVDS data input pair for port 2, channel 6.
AW26
AV26
D_IN2_07
D_IN2_07_N
I
LVDS
Port 2 Input 7. LVDS data input pair for port 2, channel 7.
AR24
AP24
D_IN2_08
D_IN2_08_N
I
LVDS
Port 2 Input 8. LVDS data input pair for port 2, channel 8.
AW25
AV25
D_IN2_09
D_IN2_09_N
I
LVDS
Port 2 Input 9. LVDS data input pair for port 2, channel 9.
AW24
AV24
D_IN2_10
D_IN2_10_N
I
LVDS
Port 2 Input 10. LVDS data input pair for port 2, channel 10.
AR23
AP23
D_IN2_11
D_IN2_11_N
I
LVDS
Port 2 Input 11. LVDS data input pair for port 2, channel 11.
AW23
AV23
D_IN2_12
D_IN2_12_N
I
LVDS
Port 2 Input 12. LVDS data input pair for port 2, channel 12.
AR22
AP22
D_IN2_13
D_IN2_13_N
I
LVDS
Port 2 Input 13. LVDS data input pair for port 2, channel 13.
AW22
AV22
D_IN2_14
D_IN2_14_N
I
LVDS
Port 2 Input 14. LVDS data input pair for port 2, channel 14.
AT21
AR21
D_IN2_15
D_IN2_15_N
I
LVDS
Port 2 Input 15. LVDS data input pair for port 2, channel 15.
AU22
AU24
AU26
AU28
CTAP2_3
CTAP2_2
CTAP2_1
CTAP2_0
Center Taps for Port 2 Inputs. Provides center-tapped common-mode
termination. These inputs should be terminated through individual external
0.01 µF capacitors to ground.
22 Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Pin Information (continued)
Table 4. Pin Descriptions—Transmit Interface
Note: The speed for each channel below is 622.08 Mbits/s.
Pin Symbol Type*
* O = output, LVDS = low-voltage differential signal.
Name/Description
A9
B9
D_OUT0_00
D_OUT0_00_N
O
LVDS
Port 0 Output 0. LVDS output pair for port 0, channel 0.
E11
F11
D_OUT0_01
D_OUT0_01_N
O
LVDS
Port 0 Output 1. LVDS output pair for port 0, channel 1.
A8
B8
D_OUT0_02
D_OUT0_02_N
O
LVDS
Port 0 Output 2. LVDS output pair for port 0, channel 2.
E10
F10
D_OUT0_03
D_OUT0_03_N
O
LVDS
Port 0 Output 3. LVDS output pair for port 0, channel 3.
A7
B7
D_OUT0_04
D_OUT0_04_N
O
LVDS
Port 0 Output 4. LVDS output pair for port 0, channel 4.
A6
B6
D_OUT0_05
D_OUT0_05_N
O
LVDS
Port 0 Output 5. LVDS output pair for port 0, channel 5.
E8
F8
D_OUT0_06
D_OUT0_06_N
O
LVDS
Port 0 Output 6. LVDS output pair for port 0, channel 6.
C6
D6
D_OUT0_07
D_OUT0_07_N
O
LVDS
Port 0 Output 7. LVDS output pair for port 0, channel 7.
A4
B4
D_OUT0_08
D_OUT0_08_N
O
LVDS
Port 0 Output 8. LVDS output pair for port 0, channel 8.
E7
F7
D_OUT0_09
D_OUT0_09_N
O
LVDS
Port 0 Output 9. LVDS output pair for port 0, channel 9.
C5
D5
D_OUT0_10
D_OUT0_10_N
O
LVDS
Port 0 Output 10. LVDS output pair for port 0, channel 10.
A3
B3
D_OUT0_11
D_OUT0_11_N
O
LVDS
Port 0 Output 11. LVDS output pair for port 0, channel 11.
C2
C1
D_OUT0_12
D_OUT0_12_N
O
LVDS
Port 0 Output 12. LVDS output pair for port 0, channel 12.
E4
E3
D_OUT0_13
D_OUT0_13_N
O
LVDS
Port 0 Output 13. LVDS output pair for port 0, channel 13.
G6
G5
D_OUT0_14
D_OUT0_14_N
O
LVDS
Port 0 Output 14. LVDS output pair for port 0, channel 14.
D2
D1
D_OUT0_15
D_OUT0_15_N
O
LVDS
Port 0 Output 15. LVDS output pair for port 0, channel 15.
Agere Systems Inc. 23
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Pin Information (continued)
Table 4. Pin Descriptions—Transmit Interface (continued)
Note: The speed for each channel below is 622.08 Mbits/s.
Pin Symbol Type*
* O = output, LVDS = low-voltage differential signal.
Name/Description
A31
B31
D_OUT1_00
D_OUT1_00_N
O
LVDS
Port 1 Output 0. LVDS output pair for port 1, channel 0.
E29
F29
D_OUT1_01
D_OUT1_01_N
O
LVDS
Port 1 Output 1. LVDS output pair for port 1, channel 1.
A32
B32
D_OUT1_02
D_OUT1_02_N
O
LVDS
Port 1 Output 2. LVDS output pair for port 1, channel 2.
E30
F30
D_OUT1_03
D_OUT1_03_N
O
LVDS
Port 1 Output 3. LVDS output pair for port 1, channel 3.
A33
B33
D_OUT1_04
D_OUT1_04_N
O
LVDS
Port 1 Output 4. LVDS output pair for port 1, channel 4.
A34
B34
D_OUT1_05
D_OUT1_05_N
O
LVDS
Port 1 Output 5. LVDS output pair for port 1, channel 5.
E32
F32
D_OUT1_06
D_OUT1_06_N
O
LVDS
Port 1 Output 6. LVDS output pair for port 1, channel 6.
C34
D34
D_OUT1_07
D_OUT1_07_N
O
LVDS
Port 1 Output 7. LVDS output pair for port 1, channel 7.
A36
B36
D_OUT1_08
D_OUT1_08_N
O
LVDS
Port 1 Output 8. LVDS output pair for port 1, channel 8.
E33
F33
D_OUT1_09
D_OUT1_09_N
O
LVDS
Port 1 Output 9. LVDS output pair for port 1, channel 9.
C35
D35
D_OUT1_10
D_OUT1_10_N
O
LVDS
Port 1 Output 10. LVDS output pair for port 1, channel 10.
A37
B37
D_OUT1_11
D_OUT1_11_N
O
LVDS
Port 1 Output 11. LVDS output pair for port 1, channel 11.
C38
C39
D_OUT1_12
D_OUT1_12_N
O
LVDS
Port 1 Output 12. LVDS output pair for port 1, channel 12.
E36
E37
D_OUT1_13
D_OUT1_13_N
O
LVDS
Port 1 Output 13. LVDS output pair for port 1, channel 13.
G34
G35
D_OUT1_14
D_OUT1_14_N
O
LVDS
Port 1 Output 14. LVDS output pair for port 1, channel 14.
D38
D39
D_OUT1_15
D_OUT1_15_N
O
LVDS
Port 1 Output 15. LVDS output pair for port 1, channel 15.
24 Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Pin Information (continued)
Table 4. Pin Descriptions—Transmit Interface (continued)
Note: The speed for each channel below is 622.08 Mbits/s.
Pin Symbol Type*
* O = output, LVDS = low-voltage differential signal.
Name/Description
AW31
AV31
D_OUT2_00
D_OUT2_00_N
O
LVDS
Port 2 Output 0. LVDS output pair for port 2, channel 0.
AR29
AP29
D_OUT2_01
D_OUT2_01_N
O
LVDS
Port 2 Output 1. LVDS output pair for port 2, channel 1.
AW32
AV32
D_OUT2_02
D_OUT2_02_N
O
LVDS
Port 2 Output 2. LVDS output pair for port 2, channel 2.
AR30
AP30
D_OUT2_03
D_OUT2_03_N
O
LVDS
Port 2 Output 3. LVDS output pair for port 2, channel 3.
AW33
AV33
D_OUT2_04
D_OUT2_04_N
O
LVDS
Port 2 Output 4. LVDS output pair for port 2, channel 4.
AW34
AV34
D_OUT2_05
D_OUT2_05_N
O
LVDS
Port 2 Output 5. LVDS output pair for port 2, channel 5.
AR32
AP32
D_OUT2_06
D_OUT2_06_N
O
LVDS
Port 2 Output 6. LVDS output pair for port 2, channel 6.
AU34
AT34
D_OUT2_07
D_OUT2_07_N
O
LVDS
Port 2 Output 7. LVDS output pair for port 2, channel 7.
AW36
AV36
D_OUT2_08
D_OUT2_08_N
O
LVDS
Port 2 Output 8. LVDS output pair for port 2, channel 8.
AR33
AP33
D_OUT2_09
D_OUT2_09_N
O
LVDS
Port 2 Output 9. LVDS output pair for port 2, channel 9.
AU35
AT35
D_OUT2_10
D_OUT2_10_N
O
LVDS
Port 2 Output 10. LVDS output pair for port 2, channel 10.
AW37
AV37
D_OUT2_11
D_OUT2_11_N
O
LVDS
Port 2 Output 11. LVDS output pair for port 2, channel 11.
AU38
AU39
D_OUT2_12
D_OUT2_12_N
O
LVDS
Port 2 Output 12. LVDS output pair for port 2, channel 12.
AR36
AR37
D_OUT2_13
D_OUT2_13_N
O
LVDS
Port 2 Output 13. LVDS output pair for port 2, channel 13.
AN34
AN35
D_OUT2_14
D_OUT2_14_N
O
LVDS
Port 2 Output 14. LVDS output pair for port 2, channel 14.
AT38
AT39
D_OUT2_15
D_OUT2_15_N
O
LVDS
Port 2 Output 15. LVDS output pair for port 2, channel 15.
Agere Systems Inc. 25
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Pin Information (continued)
Table 5. Pin Descriptions—LVDS Reference Cell Pins
0622(F)
Figure 3. Suggested Schematic for 1.0 V and 1.4 V Reference Voltages
Pin Symbol Type*
* I = input.
Name/Description
B5 REF10_0 I 1.0 V Reference Voltage for Port 0.
E31 REF10_1 I 1.0 V Reference Voltage for Port 1.
AV35 REF10_2 I 1.0 V Reference Voltage for Port 2.
AR9 REF10_3 I 1.0 V Reference Voltage for Port 3.
A5 REF14_0 I 1.4 V Reference Voltage for Port 0.
F31 REF14_1 I 1.4 V Reference Voltage for Port 1.
AW35 REF14_2 I 1.4 V Reference Voltage for Port 2.
AP9 REF14_3 I 1.4 V Reference Voltage for Port 3.
F9 RESHI_0 Connect a 100 ± 1% resistor between these two pins.
E9 RESLO_0
A35 RESHI_1 Connect a 100 ± 1% resistor between these two pins.
B35 RESLO_1
AP31 RESHI_2 Connect a 100 ± 1% resistor between these two pins.
AR31 RESLO_2
AW5 RESHI_3 Connect a 100 ± 1% resistor between these two pins.
AV5 RESLO_3
3.3 V
2.32 k
1%
1 k
1% 10 nF
3.3 V
1.91 k
1%
1.43 k
1% 10 nF
LVDSREF10
LVDSREF14
26 Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Pin Information (continued)
Table 6. Pin Descriptions—Microprocessor Interface
Pin Symbol Type*
* I = input, Iu = input with internal pull-up resistor, Ou = output with internal pull-up resistor. Non-LVDS inputs and outputs are 3.3 V CMOS,
5 V compatible, and TTL-compatible.
Motorola is a registered trademark of Motorola, Inc.
Name/Description
V36
V37
MPMODE_1
MPMODE_0
IMicroprocessor Mode. These pins must be driven to select a microprocessor
mode.
00 = Asynchronous mode—M360 (Motorola MC68360, for example).
01 = DSP synchronous mode (Motorola DSP56309, for example).
10 = Synchronous mode—M860 (Motorola MPC860, for example).
11 = Synchronous mode, no parity—M860 (MPC860, for example).
W39 PCLK I Microprocessor Clock. Must be provided in order to read and write to any
register. Rising edge.
V38 CS_N I Chip Select (Active-Low). This signal must be low during register access.
Requires an external pull-up resistor of 10 k.
V39 TS_N I Transfer Start or Address Strobe (Active-Low).
Transfer start when MPMODE = 01, 10, or 11 (synchronous).
Address strobe when MPMODE = 00 (asynchronous).
Requires an external pull-up resistor of 10 k.
W35 DS_N I Data Strobe (Active-Low). This signal, when used in the asynchronous mode
(MPMODE = 00), indicates that the data is valid for MPU writes. Requires an
external pull-up resistor of 10 k for M860 and DSP modes.
W36 RW_N I Read/Write. This signal is low to indicate a write operation and is high to indi-
cate a read operation.
AF39 TA_N O Data Transfer Acknowledge (Active-Low). This signal acknowledges the
data transfer cycle. Requires an external pull-up resistor of 10 k.
AF38 TEA_N O Transfer Error Acknowledge (Active-Low). This signal goes low to indicate
an internal error related to the data transfer cycle. Requires an external pull-up
resistor of 10 k.
AA36 INT_N O Interrupt (Active-Low). This signal goes low when the device generates an
unmasked interrupt. Requires an external pull-up resistor of 10 k. It is an
open-drain output.
T35 ADDRESS_12 I Address Bus [12:0]. This bus is used to address registers for the micropro-
cessor.
R38 ADDRESS_11 I
R39 ADDRESS_10 I
T36 ADDRESS_9 I
T37 ADDRESS_8 I
T38 ADDRESS_7 I
T39 ADDRESS_6 I
U34 ADDRESS_5 I
U35 ADDRESS_4 I
U38 ADDRESS_3 I
U39 ADDRESS_2 I
V34 ADDRESS_1 I
V35 ADDRESS_0 I
Agere Systems Inc. 27
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Pin Information (continued)
Table 6. Pin Descriptions—Microprocessor Interface (continued)
Table 7. Pin Descriptions—System Control
Pin Symbol Type*
* I/Ou = bidirectional pin with internal pull-up resistor. Non-LVDS inputs, outputs, and bidirects are 3.3 V CMOS, 5 V compatible, and TTL-
compatible.
Name/Description
AE38 DATA_15 I/O Data Bus [15:0]. This bus is a bidirectional data bus for writing and reading
software registers.
AE39 DATA_14 I/O
AD36 DATA_13 I/O
AD37 DATA_12 I/O
AD38 DATA_11 I/O
AD39 DATA_10 I/O
AC34 DATA_9 I/O
AC35 DATA_8 I/O
AC38 DATA_7 I/O
AC39 DATA_6 I/O
AB34 DATA_5 I/O
AB35 DATA_4 I/O
AB36 DATA_3 I/O
AB37 DATA_2 I/O
AB38 DATA_1 I/O
AB39 DATA_0 I/O
AD34 PARITY_1 I/O Data Bus Parity—Upper Byte. Odd parity for upper byte [15:8].
AD35 PARITY_0 I/O Data Bus Parity—Lower Byte. Odd parity for lower byte [7:0].
Pin Symbol Type*
* I = input, Iu/O = bidirectional pin with internal pull-up resistor. Non-LVDS inputs, outputs, and bidirects are 3.3 V CMOS, 5 V compatible,
and TTL-compatible.
Name/Description
AE6
AE5
SYS_CLK
SYS_CLK_N
I
LVDS
System Clock. Must be provided in order to read and write to any register.
LVDS input pair for the 155.52 MHz system reference clock.
AF2
AF1
SYS_FP
SYS_FP_N
I
LVDS
System Frame Pulse. LVDS input pair for the 8 kHz system frame pulse.
The frame is defined as beginning on the rising edge of the system frame
pulse. The frame pulse is synchronous to SYS_CLK.
AD6 CTAP_CLK_FP Center Tap for Clock and Frame Pulse. Center tap for SYS_CLK and
SYS_FP input buffers. This input should be terminated through an external
0.01 µF capacitor to ground.
AA35 SYNC_N I/O Switch Synchronization (Active-Low). Requires an external pull-up resis-
tor of 10 k. It is an open-drain output.
AA5 RST_N I Asynchronous Chip Reset (Active-Low). This input incorporates hystere-
sis. Setting this input to 0 causes an asynchronous reset of the device. To
ensure proper reset, this input should be held low for a minimum of 26 ns (at
least two 77.76 MHz clock cycles). Requires an external pull-up resistor of
10 k.
AB1 HIZ_N IuGlobal Pin 3-State Control (Active-Low). This input incorporates hystere-
sis. Setting this input to 0 causes all TDCS4810G outputs to assume a high-
impedance state except for the JTAG test data output (TDO) pin.
P34 DXP Temperature Sensing Diode Anode.
P35 DXN Temperature Sensing Diode Cathode.
28 Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Pin Information (continued)
Table 8. Pin Descriptions—PLL References
Table 9. Pin Descriptions—JTAG Interface
Pin Symbol Type Name/Description
D12 REXT0 External PLL Bypass Resistor—Port 0. Should be externally connected
through a 10 k ± 1% resistor to PLL analog ground (VSSA).
D28 REXT1 External PLL Bypass Resistor—Port 1. Should be externally connected
through a 10 k ± 1% resistor to PLL analog ground (VSSA).
AT28 REXT2 External PLL Bypass Resistor—Port 2. Should be externally connected
through a 10 k ± 1% resistor to PLL analog ground (VSSA).
Pin Symbol Type*
* O = output, Iu = input with internal pull-up resistor. Non-LVDS inputs and outputs are 3.3 V CMOS, 5 V compatible, and
TTL-compatible.
Name/Description
W1 TCK IuTest Clock. This signal provides timing for test operations.
W5 TMS IuTest Mode Select. Controls test operations. TMS is sampled on the rising
edge of TCK.
W4 TDI IuTest Data In. TDI is sampled on the rising edge of TCK.
V2 TDO O Test Data Out. This output is updated on the falling edge of TCK. The TDO
output is 3-stated except when scanning out test data.
V1 TRST_N IuTest Reset (Active-Low). This signal provides an asynchronous reset for
the TAP.
Note: This input should be tied low (to VSS) for normal device operation.
If TRST_N is high, a TCK must be present to ensure that the correct test
mode is clocked in on the TMS input.
V3 TSTMD_N IuScan Test Mode (Active-Low).
V4 SCANEN_N IuScan Mode Enable (Active-Low).
Agere Systems Inc. 29
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Pin Information (continued)
Table 10. Pin Descriptions—Power and Ground
Pin Symbol Type*
* I = input.
Name/Description
D9, D13, D17,
D23, D27, D31,
E5, E6, E20,
E34, E35, F5,
F6, F19, F20,
F21, F34, F35,
J4, J36, N4, N36,
U4, U36, W6,
W34, Y5, Y6,
Y34, Y35, AA6,
AA34, AC4,
AC36, AG4,
AG36, AL4,
AL36, AP5, AP6,
AP19, AP20,
AP21, AP34,
AP35, AR5, AR6,
AR20, AR34,
AR35, AT9,
AT13, AT17,
AT23, AT27,
AT31
VDD2 I1.5 V Internal Supply Voltage ±5%. Provides 1.5 V internal to the
device.
A1, A2, A20,
A38, A39, B1,
B2, B19, B20,
B21, B38, B39,
C7, C11, C15,
C25, C29, C33,
G3, G37, L3,
L37, R3, R37,
W2, W38, Y1,
Y2, Y38, Y39,
AA2, AA38, AE3,
AE37, AJ3,
AJ37, AN3,
AN37, AU7,
AU11, AU15,
AU25, AU29,
AU33, AV1, AV2,
AV19, AV20,
AV21, AV38,
AV39, AW1,
AW2, AW20,
AW38, AW39
VDD I3.3 V I/O Supply Voltage ±5%. Provides 3.3 V to the I/O pins.
30 Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Pin Information (continued)
Table 10. Pin Descriptions—Power and Ground (continued)
Pin Symbol Type*
* I = input.
Name/Description
C3, C4, C9, C13,
C17, C19, C20,
C21, C23, C27,
C31, C36, C37,
D3, D4, D7, D11,
D15, D20, D25,
D29, D33, D36,
D37, G4, G36,
J3, J37, L4, L36,
N3, N37, R4,
R36, U3, U37,
W3, W37, Y3,
Y4, Y36, Y37,
AA3, AA37, AC3,
AC37, AE4,
AE36, AG3,
AG37, AJ4,
AJ36, AL3,
AL37, AN4,
AN36, AT3, AT4,
AT7, AT11, AT15,
AT20, AT25,
AT29, AT33,
AT36, AT37,
AU3, AU4, AU9,
AU13, AU17,
AU19, AU20,
AU21, AU23,
AU27, AU31,
AU36, AU37
VSS IDigital Ground.
E12
E28
AR12
AR28
VDDA I1.5 V Analog Positive Supply Voltage for PLL Circuits ±5%. Power
dissipation is 0.28 W (See Absolute Maximum Ratings on page 72).
F12
F28
AP12
AP28
VSSA IAnalog Ground for PLL Circuits.
Agere Systems Inc. 31
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Pin Information (continued)
Table 11. Pin Descriptions—No Connect
Pin Symbol Type*
* Non-LVDS inputs and outputs are 3.3 V CMOS, 5 V compatible, and TTL-compatible.
Name/Description
E1, E2, E38, E39,
F1, F2, F3, F4,
F36, F37, F38,
F39, G1, G2,
G38, G39, H3,
H4, H5, H6, H34,
H35, H36, H37,
H38, H39, J1, J2,
J5, J6, J34, J35,
J38, J39, K1, K2,
K3, K4, K5, K6,
K34, K35, K36,
K37, K38, K39,
L1, L2, L5, L6,
L34, L35, L38,
L39, M3, M4, M5,
M6, M34, M35,
M36, M37, N39,
P1, P3, P36, P37,
P38, P39, R1, R2,
R5, R6, R35, T1,
T2, T3, T4, T5,
T6, U1, U2, U5,
U6, V5, V6, AB2,
AB3, AB4, AB5,
AB6, AC1, AC2,
AC5, AC6, AD4,
AE1, AE2, AF3,
AF5, AF6, AG5,
AG6, AH1, AH2,
AH3, AH4, AH5,
AH6, AH34,
AH35, AH36,
AH37, AJ1, AJ2,
AJ5, AJ6, AJ34,
AJ35, AJ38,
AJ39, AK1, AK2,
AK3, AK4, AK5,
AK6, AK34,
AK35, AK36,
AK37, AK38,
AK39, AL1, AL2,
AL5, AL6, AL34,
AL35, AL38,
AL39, AM1, AM2,
AM3, AM4, AM5,
AM6
NC No Connect. Do not connect these pins. Includes internal manufac-
turing test pins.
32 Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Pin Information (continued)
Table 11. Pin Descriptions—No Connect (continued)
Pin Symbol Type*
* Non-LVDS inputs and outputs are 3.3 V CMOS, 5 V compatible, and TTL-compatible.
Name/Description
AM34, AM35,
AM36, AM37,
AN1, AN2,
AN38, AN39,
AP1, AP2, AP3,
AP4, AP7, AP8,
AP9, AP10,
AP11, AP13,
AP14, AP15,
AP16, AP17,
AP18, AP36,
AP37, AP38,
AP39, AR1, AR2,
AR3, AR4, AR7,
AR8, AR9,
AR10, AR11,
AR13, AR14,
AR15, AR16,
AR17, AR18,
AR19, AR38,
AR39, AT1, AT2,
AT5, AT6, AT12,
AT19, AU1, AU2,
AU3, AU6,
AU12, AU14,
AU16, AU18,
AV4, AV5, AV6,
AV7, AV8, AV9,
AV10, AV11,
AV12, AV13,
AV14, AV15,
AV16, AV17,
AV18, AW3,
AW4, AW5,
AW6, AW7,
AW8, AW9,
AW10, AW11,
AW12, AW13,
AW14, AW15,
AW16, AW17,
AW18
NC No Connect. Do not connect these pins. Includes internal manufactur-
ing test pins.
Agere Systems Inc. 33
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Pin Information (continued)
Table 12. Pin Descriptions—Unused Pins
* Non-LVDS inputs and outputs are 3.3 V CMOS, 5 V compatible, and TTL-compatible.
Pin Symbol Type*Name/Description
A19, A21,
C8, C10,
C30, C32,
D8, D10,
D14, D16,
D18, D22,
D24, D26,
D30, D32,
H1, H2, M1,
M2, M38,
M39, N1, N2,
N5, N6, N34,
N35, N38,
P2, P4, P5,
P6, R34,
T34, AA1,
AA4, AA39,
AD1, AD2,
AD3, AD5,
AE34, AE35,
AF4, AF34,
AF35, AF36,
AF37, AG1,
AG2, AG34,
AG35, AG38,
AG39, AH38,
AH39, AM38,
AM39, AT8,
AT10, AT14,
AT16, AT18,
AT22, AT24,
AT26, AT30,
AT32, AU8,
AU10, AU30,
AU32,
AW19, AW21
UNUSED Unused Pins. These pins are unused, and there is no connection
between the pin and the die.
34 Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Pin Information (continued)
Table 13. Pin Summary
Pin Type Pin Direction Count
LVDS Input 100
Output 96
Reference Cell Pins 12
CMOS Input 28
Output 4
Bidirectional 19
NC 238
UNUSED 75
Other (Center taps, external resistors, diodes) 23
Power 116
Ground 84
Total 792
Agere Systems Inc. 35
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Overview
Byte Ordering
Each channel carries an STS-12 worth of data. The ordering of bytes within the STS-12 is shown in Table 14. In
the case of an STS-192, each of the STS-12 channels comprising the STS-192 carries an STS-12 extracted from
the STS-192. The byte ordering in this case is shown in Table 15. STS-48 ordering follows the same format, with
each constituent STS-12 of the STS-48 entering the chip on separate channels.
Table 14. STS-12 Byte Ordering
Table 15. STS-192 Byte Ordering
Receive Interface
Receiver Operations
The receiver is composed of 48 STS-12 channels that are either treated as independent channels, treated as three
groups of 16 channels each, forming three STS-192 streams, or treated as 16 groups of three channels each,
forming 12 STS-48 streams. Incoming data for each channel is received through an LVDS serial port operating at
622 Mbits/s. The incoming serial stream frequency must be the same as the outgoing LVDS serial stream of the
transmitter. Each STS-192 interface (16 channels) uses the system clock (SYS_CLK) as a reference clock.
The receiver is able to handle STS-12 streams having combined static and dynamic frame offsets of up to 64 bytes
without creating any traffic disruption.
Timeslot 01234567891011
Byte 147102581136912
Time (Left to Right for each STS-12 Channel)
STS-12
Number
01234567891011
147102581136912 0
13 16 19 22 14 17 20 23 15 18 21 24 1
25 28 31 34 26 29 32 35 27 30 33 36 2
37 40 43 46 38 41 44 47 39 42 45 48 3
49 52 55 58 50 53 56 59 51 54 57 60 4
61 64 67 70 62 65 68 71 63 66 69 72 5
73 76 79 82 74 77 80 83 75 78 81 84 6
85 88 91 94 86 89 92 95 87 90 93 96 7
97 100 103 106 98 101 104 107 99 102 105 108 8
109 112 115 118 110 113 116 119 111 114 117 120 9
121 124 127 130 122 125 128 131 123 126 129 132 10
133 136 139 142 134 137 140 143 135 138 141 144 11
145 148 151 154 146 149 152 155 147 150 153 156 12
157 160 163 166 158 161 164 167 159 162 165 168 13
169 172 175 178 170 173 176 179 171 174 177 180 14
181 184 187 190 182 185 188 191 183 186 189 192 15
3636 Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Overview (continued)
Receive Interface (continued)
The receiver consists of the following major blocks: the
clock and data recovery (CDR), the framer, and the
FIFO aligner.
The CDR is responsible for recovering clock and data.
It interfaces directly with the framer by providing an
8-bit parallel data output and the recovered 77.76 MHz
clock. Note that parallel data is not byte-aligned at this
point.
The framer is responsible for locking onto the STS-12
frame. It does so by first finding the byte boundary
within the received 8-bit data bus and then identifying
A1/A2 transitions.
Receiver behavior during an LOF condition is under
software control. It is possible to select either insert AIS
or pass-through when an LOF condition occurs (per-
channel control). It is also possible to force AIS on a
per-channel basis.
Note: AIS forces all bytes to ones. Moreover, occur-
rence of LOF on a specific channel does not
have any impact on all other in-frame channels.
The FIFO aligner is responsible for aligning the 48
STS-12 frames to the system frame pulse for proper
cross connect operation. The FIFO aligner is 64-bytes
deep and thus provides room for aligning channels
having frame offsets of up to 64 bytes. The 64-byte
window is determined by the system frame pulse and a
software-programmable offset register. The FIFO is
designed so that some streams can be taken from the
outputs of another cross connect without the need to
realign the frame position (due to delay through the first
cross connect). Thus, the offset register should be pro-
grammed so that the FIFO causes as little delay as
possible through the cross connect. Since the FIFO
aligner for each channel is independent, the state of
any FIFO will not affect any other FIFO. (See FIFO
Aligner section for more details, page 44.)
Cross Connect
Cross Connect Operations
The cross connect has 48 input channels and 48 out-
put channels. Each channel operates at 77.76 MHz
and thus carries an STS-12 worth of bandwidth. The
channels can also be thought of as three bidirectional
STS-192 data streams.
The cross connect is fully programmable and non-
blocking. Each STS-1 of each output channel is inde-
pendently programmed to connect to any STS-1 from
any input channel.
The basic architecture of the cross connect consists of
a time-slot interchange (TSI) macro, a connection
memory, E1/F1/E2 extraction, APS byte handling, and
AIS/UNEQ insertion.
Time-Slot Interchanger (TSI)
A TSI is used to reorder the STS-1 data. Incoming data
is written into one of two buffers in a regular order,
while output data is read from another buffer in an
order dependent on the address provided to the TSI for
each channel. When one buffer has been completely
written to, the read and write buffers switch. This is
controlled by a synchronization input.
Connection Memory
The connection memory is used to configure the TSI to
switch the incoming STS-1s to the desired output
STS-1s. There is a working memory to configure the
working connections for each STS-1, and there is a
protected memory to configure the protection connec-
tion for each STS-1. Each of the working and protected
memories are duplicated (A and B) to allow for easy
software configuration. The four memories are working
A, working B, protected A, and protected B.
The memory that is used for switching is selectable by
software. Configuration A or configuration B memory is
selected per-STS-12 (channel). This can be used for
line switching or for software preconfiguration. For
example, if a new configuration is required, and a par-
ticular STS-12 is using configuration A memory (work-
ing or protected), the new configuration is programmed
into configuration B memory (working and protected),
and then the STS-12 is switched to use configuration
B.
Working or protected memory is selected per STS-1 or
per channel. This is configurable for each channel.
Switching on an STS-1 basis can be used for path
switching applications while switching on a per-channel
basis can be used for line switching applications. For
example, if a particular STS-1 is using the working A
memory, it can be switched to the configuration in pro-
tected A memory without affecting any other STS-1s.
Synchronization
Any software-programmed switch from one connection
memory to another will take effect on an A1/A2 bound-
ary. Triggers are ignored and the switch is made at the
Agere Systems Inc. 37
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Overview (continued)
Cross Connect (continued)
next A1/A2 boundary; the switch is made during the S1
byte time. The trigger for a switch is configurable on a
per-channel basis. The possible triggers are the follow-
ing:
The SYNC_N pin.
A chip-level control bit.
The S1 byte received in the channel has changed to
or from the value 0xF0.
The S1 byte received in a particular channel
(selected at the top level) has changed to or from the
value 0xF0.
APS Byte Handling
The K1 and K2 bytes of the STS-1 of each channel are
monitored for a change. If a change is detected, a
latched alarm is raised. The received value is stored
and is available in a status register. The LTE is respon-
sible for validating the K bytes and ensuring only the
validated value is sent on the STS-1 of the channel.
Agere LTE chips support this function.
The APS bytes (K1, K2) along with the data communi-
cation bytes (D1—D12) and the line status (E2) can
optionally be switched separately, regardless of the
content of the connection memory. Each output chan-
nel can source these bytes (for all STS-1s in the chan-
nel) from any input channel, bypassing the maps
programmed into the connection memories. This
allows these bytes to take a different path through a
system than the data, easing APS operations in a sys-
tem with multiple cross connects.
Note: When changing the source of these bytes via a
register write, the change occurs immediately
and is not synchronized to the frame boundary.
The K1 and K2 bytes of the outgoing channels can be
overridden with a software-programmable value (pro-
grammed on a per-channel basis). The software-pro-
grammed values are inserted in the second time slot
(STS-1 #4) of the output channel, allowing the vali-
dated bytes to pass through from the input to make
them available to subsequent equipment. To use the
inserted values for APS, the LTE must be able to insert
the K1 and K2 from the second time slot into the cor-
rect APS byte positions on the output line. Agere LTE
chips support this function.
E1/F1/E2 Extraction
The E1 and F1 bytes of each STS-1 carry information
indicating the path status of that STS-1. Both bytes
contain the same information. This information can be
used by software to initiate a switch from working to
protected configurations. The E1 and F1 bytes are
extracted from STS-1s at the output of the TSI and
stored.
The bytes are monitored for a change and, if a change
is detected, latched alarms (E1F1ALM, E2ALM) are set
(see Register Descriptions, page 66 and page 62
respectively).
The received values can be read through the micropro-
cessor interface. A single read will return both the E1
and F1 value for a particular STS-1.
The E2 byte of the STS-1 of each STS-12 (channel)
carries information indicating the line status of that
STS-12. This information can be used by software to
initiate a switch from working to protected configura-
tions.
AIS/UNEQ Insertion
Path AIS and UNEQ indications can be inserted on any
STS-1 under software control. This ensures that down-
stream path processors will detect a normal pointer
and will thus be able to extract the path overhead in
order to detect an UNEQ defect. AIS/UNEQ insertion
does not affect E1/F1 or E2 values (or any of the TOH).
AIS insertion takes precedence over UNEQ insertion.
Changes to the AIS/UNEQ microprocessor registers
will not take effect until the next frame boundary.
38 Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Overview (continued)
Transmit Interface
The transmitter is composed of 48 STS-12 channels that are always treated as independent channels. Each of the
outgoing LVDS serial streams of the transmitter transmits at a rate of 622 Mbits/s, and the data is synchronized to
the system clock (SYS_CLK).
SPE and TOH data received through the cross connect is transferred, unaltered, to the serial LVDS output. How-
ever, the B1 byte of STS-1 #1 is always replaced with a new calculated value (the 11 bytes following B1 are
replaced with all zeros). Also, A1 and A2 bytes of all STS-1s are always regenerated.
TOH bytes on LVDS outputs are as shown in Figure 4.
5-9872r.3(F)
Figure 4. Transmitter TOH on LVDS Output
Frame Pulse
The input frame pulse should be synchronous to the input 155.52 MHz clock. It is then internally synchronized to
the 77.76 MHz clock that is generated from the 155.52 MHz system clock. The frame pulse, in combination with the
frame pulse offset register, determines the alignment of the frame internal to the device. If the frame pulse occurs,
it must occur for at least eight frames (1 ms) since the previous frame pulse, and must occur in multiples of 125 µs
(one frame). The minimum time that must elapse after the rising edge of the frame pulse before the SYS_CLK can
correctly sample the frame pulse is 2 ns. See Figure 5 below.
1399(F)
Notes:
ts = minimum 2 ns.
th = minimum 1 ns.
pw = minimum 6.43 ns FP_MODE = 1.
pw = minimum 51.44 ns FP_MODE = 0 (default).
pw can be longer than the minimum, and the hold time for the falling edge of the pulse is not critical as long as the minimum width has been
exceeded.
Figure 5. SYS_FP Timing Requirements
REGENERATED BYTES: A1, A2, B1
TRANSPARENT BYTES FROM INPUTS
B1
A1 A2
00000000000
SYS_FP
SYS_CLK
ts
pw
th
Agere Systems Inc. 39
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Overview (continued)
Frame Pulse (continued)
If SYS_CLK rises in under 2 ns after the rising edge of
the frame pulse, the SYS_CLK will not sample the
frame pulse until its next rising edge.
The frame pulse detection is configured by a device-
level control bit (FP_MODE). The frame pulse can be a
one (or more) clock wide pulse or it can be an eight (or
more) clock wide pulse (in reference to the 155.52 MHz
system clock). For normal operation, the device can be
set to one or more clocks. If the frame pulse comes
from a source that encodes the S1 byte onto the frame
pulse signal with manchester encoding, then the frame
pulse detection must be set to four or more clocks. This
ensures that the manchester-encoded S1 does not
interfere with framing.
Microprocessor Interface
Architecture
The TDCS4810G microprocessor interface architec-
ture is configured for glueless interface to two specific
microprocessors, the Motorola MPC860 and the
MC68360, and to the Motorola DSP56309 digital signal
processor; however, other processors may also be
used, as long as the bus cycles comply with those of
the MPC860, DSP56309, or the MC68360. Bus trans-
fers using the MC68360 are asynchronous, while the
MPC860 and DSP56309 transfers are synchronous to
the processor clock. When the MPC860 is used, parity
is generated and checked on the data bus.
The microprocessor interface operates at the fre-
quency of the microprocessor clock (PCLK) input. The
state of the MPMODE input signal determines whether
bus transfers are synchronous or asynchronous with
respect to PCLK.
The TDCS4810G has a separate 13-bit wide address
bus and a 16-bit wide data bus. The microprocessor
interface generates an external processor bus error
(from pin TEA_N) if an internal data acknowledgment is
not received in a predetermined period of time or on
parity errors.
Transfer Error Acknowledge (Pin TEA_N)
The TDCS4810G contains a bus time-out counter.
When this counter saturates, a bus error is generated
to the external processor through the transfer error
acknowledge signal pin TEA_N. This feature must be
considered with respect to the external processor’s
ability to generate its own internal bus time-out. Trans-
fer error acknowledge will be asserted if an internal
data acknowledgment is not received within 32 PCLK
periods of the start of the access. This interval is used
since all valid internal accesses to the device will be
completed in significantly less than 32 PCLK periods.
(See Table 6, page 26.)
Transfer error acknowledge is also asserted if the cal-
culated parity value does not match the parity gener-
ated by the external microprocessor on a data transfer.
The generation of transfer error acknowledge on parity
errors can be disabled by setting the MPMODE bits to
11.
Interrupt Structure
The interrupt structure of the TDCS4810G is designed
to minimize the effort for software/firmware to isolate
the interrupt source. The interrupt structure is com-
prised of different registers depending on the consoli-
dation level. At the lowest level (source level), there are
two registers. The first is an alarm register (AR). An
alarm register is typically of the write 1 clear (W1C)
type. The second is an interrupt mask (IM) register of
the read/write (RW) type.
An alarm register latches a raw status alarm. This
latched alarm may contribute to an interrupt if its corre-
sponding interrupt mask bit is disabled. Individual
latched alarms are consolidated into an interrupt status
register (ISR). If any of the latched alarms that are con-
solidated into a bit of an ISR are set and unmasked,
the ISR bit is set. The ISR bit may contribute to an
interrupt if its corresponding interrupt mask bit is dis-
abled. ISRs may be consolidated into higher-level ISR
in a similar fashion until all alarms are consolidated into
the chip-level ISR. The alarm register that causes an
interrupt can be determined by traversing the tree of
ISRs, starting at the chip-level ISR, until the source
alarm is found.
Note: Interrupts are masked when the corresponding
bit in the mask register is 1. If the mask register
bit is 0, then the interrupt is enabled.
Powerdown Mode
In powerdown mode, clocks are stopped from toggling
whenever clock gating is possible. When clock gating
is not possible, logic is inhibited from toggling by either
using clock enable signals on flip-flops, or by forcing
data paths to all ones.
The CDR block should also be powered down.
4040 Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Overview (continued)
Powerdown Mode (continued)
Channels can be independently enabled or disabled
under software control using powerdown mode. The
default setting after powerup or a device reset is with
all 48 channels in powerdown mode (disabled). The
desired channels must be enabled via the micropro-
cessor interface before normal operations can com-
mence.
Supervisory Features
Supervisory features built into the TDCS4810G provide
diagnostic capabilities and fault coverage.
Frame Pulse Integrity: The input frame pulse is mon-
itored to ensure that it does not move and that it
repeats at least once every 1 ms (8 frames). If the
frame pulse moves or does not repeat for more than
1 ms, latched alarm FPERR is raised (see Register
Descriptions, page 59).
LVDS Link Integrity: There is B1 parity generation on
each of the 48 LVDS output channels. Performance
monitoring on each of the 48 LVDS input channels is
implemented as B1 parity error checking. Upon
detection of an error, a counter is incremented (one
count per errored bit) and a latched alarm is raised.
The counter is 8 bits wide and does not roll over after
the maximum value is reached. This feature is provi-
sionable on a per-channel basis.
Framer Monitoring: There is framer performance
monitoring in the receive section of the 48 channels.
Framer status (LOF) and A1/A2 frame error count
are reported. These features are provisionable on a
per-channel basis:
— Framer status is implemented as a simple LOF
latched alarm. While the framer state machine is
in the LOF state, this bit is forced active. It is
meant to report any LOF occurrence as well as to
report the actual state machine status (if the flag is
cleared while the state machine is in LOF, the bit
will not be cleared).
A1/A2 frame error counter is incremented (one
count per errored STS-12 frame) upon detection
of a frame error on any of the used A1/A2 bytes
(only consider the last A1 byte and the first A2
byte). The counter is 8 bits wide and does not roll
over after the maximum value is reached.
FIFO Aligner Monitoring: There is monitoring of the
FIFO aligner operating point. Upon deviating from
the nominal operating point of the FIFO by more than
user-programmable threshold values (minimum and
maximum threshold values), a latched alarm bit will
be set. Threshold values are defined per port
(16 channels); alarms are defined per channel.
Frame Offset Monitoring: There is monitoring of the
frame offset between all enabled channels; disabled
channels are excluded from the monitoring. Monitor-
ing is performed continuously. Upon exceeding the
maximum allowed frame offset between all enabled
channels, a latched alarm bit will be set.
Microprocessor Interface Monitoring: There is moni-
toring of potential write cycles that may occur when
operating in write protect mode. Upon detecting a
write access to the TDCS4810G when the device is
in write protect mode, latched alarm WLOCKALM will
be set (see Register Descriptions, page 59).
The B1 error counter and A1/A2 frame error counter
are latched into a read-only register and cleared when
the CNTFRZ bit is set (see Register Descriptions,
page 61).
The B1 error, LOF error, FIFO operating point, and
frame offset alarms are latched internally. The latched
values are transferred to a freeze register and then
cleared when the ALMFRZ bit is set (see Register
Descriptions, page 61).
Test Features
Test features built into the TDCS4810G are a key ele-
ment in providing testing and debugging capabilities for
the many aspects of chip-level, board-level, and sys-
tem-level functionality.
A1/A2 Error Insert: A frame error inject feature is pro-
vided in the transmitter section, allowing the user to
replace framing bytes A1/A2 (only the last A1 byte
and first A2 byte) with a selectable A1/A2 byte value
for a selectable number of consecutive frames. The
number of consecutive frames to alter is specified by
a 4-bit field, while the A1/A2 value is specified by a
16-bit field. The error insert feature is on a per-chan-
nel basis; A1/A2 values and 4-bit frame count value
are on a per-device basis.
B1 Error Insert: A B1 error insert feature is provided
in the transmitter section, allowing the user to insert
errors on user-selectable bits in the B1 byte. Errors
are created by simply inverting bit values. This fea-
ture is on a per-bit basis and can insert a single error
per bit. Bits to invert are specified through an 8-bit
register, where each bit is associated with one of the
8 B1 bits. This feature is provisionable on a per-
channel basis.
Agere Systems Inc. 41
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Overview (continued)
Test Features (continued)
Scrambler/Descrambler Disable: A scrambler/descrambler disable feature is provided, allowing the user to dis-
able the scrambler of the transmitter and the descrambler of the receiver. Note that B1 should then be calculated
(in the transmitter and the receiver) on the nonscrambled data stream. This feature is provisionable for the entire
device.
Software Reset
An asynchronous software reset is provided. The software reset is self-clearing, and it resets the whole device.
Interrupts
There is a common interrupt output for the microprocessor interface. Interrupt sources are maskable and are
caused by the following (if not masked):
Write to Locked Registers: An interrupt when the WLOCKALM flag is set (per device). See Register Descrip-
tions, page 59.
Frame Pulse Error: An interrupt when the input frame pulse moves or is not asserted for more than 1 ms (per
device).
B1 Parity Error: An interrupt when the B1 parity error flag is set (per STS-12).
LOF: An interrupt when the LOF flag is set (per STS-12).
FIFO Threshold Error: An interrupt when the FIFO aligner threshold error flag is set (per STS-12).
Frame Offset Error: An interrupt when the frame offset error flag is set (per STS-12).
E1/F1 Change: An interrupt when extracted bytes from the current frame differ from those in the previous frame
(per STS-1).
E2 Change: An interrupt when the extracted byte from the current frame differs from that in the previous frame
(per STS-12).
42 Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Functional Description
Receiver Block
The receiver block converts the incoming LVDS serial stream into an 8-bit parallel bus. The output bus is synchro-
nized to the system clock and the frame is synchronized to the system frame signal. The system frame signal is
high to indicate when data on the bus corresponds to the A1 byte of STS-1 #1. SPE bytes are transferred, unal-
tered, from LVDS input to parallel output. Figure 6 shows a block diagram of the receiver section.
5-9874r.2(F)
Figure 6. Receiver Block Diagram
SONET
FRAME
RECOVERY
B1
PARITY
ERROR
COUNT
SONET
DESCRAM-
BLER
AIS
INSERT
LVDS
16 CLOCKS
AT 622 MHz
(FROM PLL)
LOF FLAG,
LOF COUNT,
A1/A2 ERROR COUNT
(SOFT REG.)
B1 PARITY ERROR
COUNT, B1
PARITY ERROR FLAG
(SOFT REG.)
DATA OUT
SYSTEM
FRAME PULSE
FRAME
OFFSET
ALARM FLAG
(SOFT REG.)
FIF
O
MIN/MAX
THRESHOLDS
(SOFT REG.)
FRAME
OFFSET
VALUE
(SOFT REG.)
FIF
O
ALARM FLAG
THRESHOLD
(SOFT REG.)
AI
S
ON LOF
(SOFT CTL.)
F
O
R
C
E
AIS
(SOFT CTL.)
DISABLE
DE
SC
RAMBLER
(SOFT CTL.)
B1
LOF
READWRITE
FPFP
FIFO
ALIGNER
FIFO READ/WRITE
CONTROL
TO CROSS CONNECT
CLOCK
(155.52 MHz)
INPUT
SERIAL TO
PARALLEL
(PART OF
CDR)
Agere Systems Inc. 43
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Functional Description (continued)
Receiver Block (continued)
LVDS Serial-to-Parallel Converter
Each CDR incorporates a PLL, which is locked onto the
system clock. The PLL multiplies the 77.76 MHz sys-
tem clock to a 622 MHz clock, which is used to provide
LVDS clock recovery modules with 16 phase-shifted
clocks (100 ps resolution). Each channel is able to
recover the 622 MHz clock associated with its LVDS
input and captures the incoming STS-12 data stream.
If an LVDS input is unconnected (floating), the LVDS
clock recovery continues to provide a valid clock for
downstream logic: internal logic timing is not violated
and logic does not lock up. In such a case, loss of fram-
ing occurs. The framer also goes back to the in-frame
state when LVDS input is back (assuming good data).
No reset is needed.
SONET Frame Recovery
The SONET framer detects the position of the SONET
frame and generates a frame pulse (FP) signal to mark
the position of byte A1 in STS-1 #1.
The framer is not a fully SONET-compliant framer.
Instead, it is a simple four-state machine: two consecu-
tive errored frames bring the state machine from in-
frame state to LOF (loss of framing) state, while two
consecutive frames with aligned A1/A2 transitions
bring the state machine from LOF to in-frame state.
Figure 7 shows the framer state machine. The framer
is completely autonomous.
5-9876r.1(F)
Notes:
Row, column, and STS counters are only set/reset by state transition from LOF to frame confirm.
The confirmed A1/A2 pattern means that row/col/STS counter values indicate time for the last (12th) A1 byte.
Figure 7. Framer State Machine
PATTERN A1/A2
RESET
LOF
FRAME
CONFIRMED
PATTERN A1/A2
NOT CONFIRMED
TWO CONSECUTIVE
PATTERNS A1/A2
NOT CONFIRMED
PATTERN A1/A2
CONFIRMED
PATTERN A1/A2
CONFIRMED
CONFIRM
IN
FRAME
4444 Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Functional Description (continued)
Receiver Block (continued)
This block also incorporates a few monitors: LOF flag,
LOF count, and A1/A2 error count. These are cleared
by a specific freeze command from the CPU interface.
The LOF flag is simply a latched alarm bit which indi-
cates that the framer state machine went through LOF
state or is in LOF state (the alarm is forced active while
in LOF state even if there is a clear command from the
CPU interface). The LOF counter is incremented each
time the framer state machine goes into the LOF state.
The A1/A2 error counter is incremented (one count per
errored STS12 frame) upon detection of an error on
either A1 byte of STS-1#12 or A2 byte of STS-1#1.
The framer propagates an LOF signal to the AIS-L
insert block. This is needed in order to support AIS
insertion on occurrence of LOF (under software con-
trol). Occurrence of LOF on a specific channel does not
have any impact on all other in-frame channels.
SONET Descrambler
This block does a framed synchronized descrambling
of the framed data using a parallel equivalent of the
SONET polynomial of (1 + x6 + x7). Note that the fram-
ing bytes A1, A2 and the section trace J0/Z0 are not
modified by this module.
Furthermore, a debug feature allows disabling the
descrambler. Control is common to the scrambler (in
transmitter) and descrambler (in receiver) of all 48
channels.
B1 Parity Check
This block calculates parity on the incoming data. The
calculated parity is even and calculated for all the bytes
in the frame before descrambling. It is compared for
errors with the parity byte B1 embedded in the frame
after the descrambler block. The B1 byte is defined in
the STS-1#1 of the frame. Upon detection of an error, a
counter is incremented (one count per errored bit, for a
possibility of eight errors per frame) and a latched
alarm is raised. The counter is 8 bits wide and does not
roll over after the maximum value is reached.
Note that when the scrambler and descrambler are dis-
abled, B1 will be calculated on a nonscrambled data
stream.
FIFO Aligner
The FIFO aligner is responsible for aligning each of the
48 STS-12 frames to the system frame pulse for proper
cross connect operations. The FIFO aligner is 64-bytes
deep and the nominal operating point is determined by
the position of the input system frame pulse and the
value in a frame offset register. Thus, it provides room
for aligning channels having frame offsets of up to
64 bytes (see Figure 8). The FIFO of each channel is
filled with the incoming STS-12 stream, using the
recovered clock. On the other side, the FIFO is read
with the system clock.
The FIFO read/write control block is responsible for
managing the FIFO. It handles read and write pointers,
and monitors FIFO operating point against software-
programmable threshold values. Upon deviating from
the nominal operating point of the FIFO by more than
the programmed minimum and maximum threshold
values, a latched alarm is raised.
An active channel going into LOF does not impact
FIFO aligner operations on any of the other channels.
A channel being enabled or an active channel coming
back from LOF is handled automatically by the FIFO
aligner and becomes frame aligned (provided its frame
is within the 64-byte window) without causing hits on
other active channels.
The FIFO also monitors the frame offset with respect to
the 64-byte window. If the frame alignment of the
incoming frame is outside the 64-byte window, a
latched alarm is raised.
The end of the input window, as shown in Figure 8, is
delayed from the incoming SYS_FP by the value of the
FRMOFFS register +4. The FRMOFFS register goes
from 0 to 9719(dec) (9720 is the number of clock/bytes
in an STS-12 frame) (9 rows x 90 columns x 12 time
slots). For example, if the user wanted the end of the
input window to occur simultaneously with the rising
edge of SYS_FP, then the user would need to delay
the window by either 0 or 9720 (which is exactly the
same thing). So to work out the value to be written into
the FRMOFFS register (0X00B), use the following for-
mula:
Once the system in which the TDCS4810G is being
used is characterized, the frame offset register should
be programmed to position the 64-byte window so that
the delay through the chip is minimized (i.e., the FIFO
is as close to empty as the system will allow). This will
minimize the delay through the cross connect, and
thus, a downstream cross connect will be able to
absorb the delay through the first cross connect.
FRMOFFS Total_delay 4=
Agere Systems Inc. 45
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Functional Description (continued)
Receiver Block (continued)
1273(F)
Note: A clock is defined as 12.86 ns.
Figure 8. TSHIM Timeline
FIXED DELAY
30 CLOCKS ±1
INPUT WINDOW
63 CLOCKS
EXAMPLE: THREE NONALIGNED STREAMS.
FIRST BIT OF FIRST A1 BYTE
FIRST BIT OF FIRST A1 BYTE
D_IN0_00
D_IN0_01
D_IN0_02
D_OUT0_00
D_OUT0_01
D_OUT0_02
TIME
FIRST BIT OF FIRST A1 BYTE
FIRST BIT OF FIRST A1 BYTE
FIRST BIT OF FIRST A1 BYTE
FIRST BIT OF FIRST A1 BYTE
THE FIRST BIT OF THE FIRST A1 BYTE
WILL LEAVE THE CHIP 30 CLOCKS AFTER
THE END OF THE INPUT WINDOW.
46 Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Functional Description (continued)
Receiver Block (continued)
AIS Insertion
Receiver behavior under the LOF event is under software control; it is possible to select either insert AIS or pass-
through when an LOF condition occurs (per-channel control). It is also possible to force AIS (per-channel control).
Note that AIS will overwrite all bytes to ones. AIS insertion could be performed at different stages in the receiver. It
was placed before the FIFO aligner since the output of the FIFO aligner will be all ones under any circumstances,
since the CDR macro will always provide a clock when powered up. When the CDR channel is powered down, the
output of the FIFO automatically forces all data to ones.
Cross Connect Block
TSI Memory Organization
The memory is logically organized into two banks. Writes occur to successive locations, rotating through all loca-
tions in one bank (having written 12 bytes from each of the 48 write data inputs) before starting on the other bank.
Reads from each of the 48 read ports are random access and are always performed on the bank that is not being
written to. Since there are 576 STS-1 inputs, each bank contains 576 bytes. The banks are switched at the rate of
6.48 MHz.
Connection Memory
The connection memory is logically organized into four memories: configuration A map C (AC), configuration A
map D (AD), configuration B map C (BC), and configuration B map D (BD). Each memory has one entry for each
STS-1 output. Functionally, the memory is divided into many small memories. Each STS-12 channel uses two sep-
arate memories containing entries for all STS-1s in the channel. One of the memories contains configuration A
(both map C and map D), and the other contains configuration B (both map C and map D). Thus, each memory
holds 24 entries (12 for map C, 12 for map D). This organization is shown in Figure 9
5-9877r.1(F)
Figure 9. Connection Memory Physical Organization
CONFIGURATION A
MAP C
CONFIGURATION A
MAP D
0x00
0x0B
0x17
SELECTED PER CHANNEL (STS-12)
SELECTED
PER STS-1
CONNECTION MEMORY FOR ONE STS-12 CHANNEL
10 bits 10 bits
24 bytes
OR
PER CHANNEL
(STS-12)
CONFIGURATION B
MAP C
CONFIGURATION B
MAP D
Agere Systems Inc. 47
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Functional Description (continued)
Cross Connect Block (continued)
Since only one of the two memories is in use for switching at any time, read operations can be carried out on the
other memory. Thus, the preferred method of setting up a configuration is to program the configuration that is not in
use, confirm the programming by reading it back, and then switch to that configuration. The configuration that is in
use cannot be written to, but a read will return 0x03FF.
Each entry in the connection memory is a 10-bit number that can be broken down into two or three fields, depend-
ing on how the channels are interpreted as 48 individual STS-12 channels or as three STS-192 streams. Note that
the differences are only in interpretation. There is no actual implementation difference between the two interpreta-
tions. The breakdown of the connection memory entry is shown in Figure 10. STS-48 interpretation is similar to the
STS-192 interpretation, except there are 4 bits for STS-48 number and 2 bits for STS-12 number.
5-9878.a(F)
Note: Time slot and STS-12 number to STS-1 number conversion is shown in Table 14 and Table 15.
Figure 10. Connection Memory Entry
The write address and data to the connection memory are taken from the CPU interface that controls the connec-
tion memory. When the memory is being used for switching, the read address is derived from the time-slot count
and the working/protect status for each time slot (STS-1). The read data is used to create the address for the TSI
macro read port when the memory is being used for switching. Otherwise, the read data is used for microprocessor
reads.
Synchronization
Synchronization is divided into two functions: control of the SYNC_N pin and per-channel control of connection
memory synchronization. The connection memories will switch to the preprogrammed software configuration dur-
ing A1A2 when the corresponding SYNC_CM signal is asserted. (The associated register of SYNC_CM is
ALM_SW (address 0000, bit 14)). At that point, a latched alarm is raised and the S1 is toggled (to or from 0xF0 and
0x00). This feature can be enabled on a per-channel basis.
The SYNC_N pin can be configured as an open-drain output (master) or input (slave). When configured as an
input, individual channels may be programmed to synchronize to the pin. When configured as an output, several
options exist to control it:
A chip-level control bit (the same bit that each channel can synchronize to directly).
The S1 byte received in a particular channel (the same S1 byte that each channel can synchronize to directly).
The current state of the output S1 (either 0xF0 or 0x00) for each channel is available in a status register. A control
register can be used to force a toggle of the S1 byte (regardless of synchronization state) if a particular output state
is required.
9876543210
TIME-SLOT
NUMBER
CHANNEL
NUMBER
(0—11) (0—47)
9876543210
TIME-SLOT
NUMBER
STS-12
NUMBER
(0—11) (0—15)
STS-192
NUMBER
(0—2)
48-CHANNEL INTERPRETATION THREE STS-192 INTERPRETATION
48 Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Functional Description (continued)
Cross Connect Block (continued)
APS Byte Handling
As described in the general description section, incoming K1 and K2 are stored and monitored for a change and
the outgoing K1 and K2 can be inserted from a software register with separate control for K1 and K2. These fea-
tures are per channel.
The K1 and K2 bytes, along with D1 through D12 and E2, can also be switched from any input channel to any out-
put channel separately from the cross connect configuration programmed into the connection memories. There is a
single control per output channel to select the input channel to source these bytes from. This feature can be dis-
abled through a software control bit.
Below is a diagram indicating the bytes that can be separately switched and which K bytes are monitored/inserted.
5-9879r.3(F)
Figure 11. APS Byte Handling
The following diagram illustrates an example of the K-byte switching feature.
0796.a(F)
Figure 12. APS Byte Switching Example
BYTES THAT ARE SWITCHED WITH A CONTROL (PER-CHANNEL CONTROL) SEPARATE FROM CONNECTION MEMORY.
K BYTES MONITORED FOR CHANGE K1 INSERTION
K2 INSERTION
E2
D12
D9
D6
K2
D3
D11
D8
D5
K1
D2
D10
D7
D4
D1
OC-192 LTE
RING
TDCS4810G
Kbytes
DATA
OC-192 LTE
RING
DATA ENGINE
Agere Systems Inc. 49
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Functional Description (continued)
Cross Connect Block (continued)
E1/F1/E2 Extraction
The E1, F1, and E2 bytes carry information that can be used to initiate a switch. The E1 and F1 bytes contain path
status information, and the E2 byte contains line status. The E1 and F1 bytes contain identical information. The E1/
F1 codes are shown in Table 16. The E2 codes are shown in Table 17. Note that these codes are presented for
information purposes only. The circuit will respond to any change in E1 and/or F1, regardless of code.
Table 16. Path Alarm (E1/F1) Information Encoding
Table 17. Line Alarm (E2) Information Encoding
E1/F1 Value Definition
00111111 Loss of Pointer or Path AIS
01111111 Concatenation Mismatch or Software
AIS Insertion
00111110 Unequipped Signal Label
TBD Path Trace Identifier Mismatch
00111101 Signal Fail (SF)
00111100
to
00100001
PDI Code 28
to
PDI Code 1
00011111 Signal Degrade (SD)
00011110 Payload Label Mismatch
00000000 No Alarms
E2 Value Definition
00000111 Loss of Signal
00000110 Loss of Frame
00000101 Line AIS
TBD Section Trace Identifier Mismatch
00000100 Signal Fail (SF)
00000011 Signal Degrade (SD)
00000000 No Alarms
50 Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Functional Description (continued)
Cross Connect Block (continued)
The E1/F1 bytes for each STS-1 are used, but the E2 byte of only the STS-1 #1 of each channel (STS-12) is used.
The E2 byte for each channel is extracted (EXTRE2) from the input data and is compared to the received value
each frame. If a change is detected, a latched alarm is raised (E2ALM). (See Register Descriptions, page 69 and
page 62.)
The E1 and F1 bytes are extracted from the output data and stored in memories. The device can be configured
under software control so that E1 byte is always taken from working memory and the F1 byte is always taken from
protected memory. This is ensured in the connection memory address generator circuit. The E1 and F1 bytes are
compared to the previously stored values and if a change is detected, a latched alarm is raised. If this feature is
disabled, the E1 and F1 bytes pass through the cross connect normally.
The E1 and F1 bytes are stored in separate memories. The bytes for four channels are stored together in one
memory for both E1 and F1. A shadow memory for each channel is used to allow reading of the extracted values.
The shadow memory must be set to accumulate data or to read the accumulated data. This is done through a read
enable bit in a control register. If a read is made when the memory is accumulating data, the read will return a zero
value.
AIS/UNEQ Insertion
Path AIS and UNEQ indications can be inserted on any STS-1 under software control in order to squelch individual
STS-1s during and after network topology reconfigurations. Path AIS consists of all ones being inserted into H1,
H2, H3, and the entire SPE. UNEQ consists of all zeros in H3 and the entire SPE, with H1/H2 = 0x6000, indicating
a normal NDF with an offset of zero. This ensures that downstream path processors will detect a normal pointer
and will thus be able to extract the path overhead in order to detect an UNEQ defect. AIS/UNEQ insertion does not
affect E1/F1 or E2 values (or any of the TOH).
AIS insertion takes precedence over UNEQ insertion. Changes to the AIS/UNEQ microprocessor registers will not
take effect until the next frame boundary.
The registers are arranged such that the AIS controls for an entire channel (12 bits) are in one register and the
UNEQ controls (12 bits) are in another register.
Agere Systems Inc. 51
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Functional Description (continued)
Transmitter Block
The transmitter is composed of 48 STS-12 channels that are treated as independent channels.
5-9880r.1(F)
Figure 13. Transmitter Block Diagram
PARALLEL TO
MUX
B1
MUX
SONET
SCRAMBLER
PARITY
GENERATOR
A1/A2
MUX
CONTROL
A1/A2
B1 ERROR
A1/A2 ERROR A1/A2 ERROR A1/A2 ERROR SCRAMBLER LVDS LOOPBACK
DATA FROM
LVDS OUT
B1 ERROR
INSERT COMMAND
(SOFTWARE
REGISTER)
MASK
(SOFTWARE
REGISTER)
SERIAL
(PART OF
CDR)
(TO RX)DISABLE FROM
(SOFTWARE
REGISTER)
INSERT COMMAND
(SOFTWARE
REGISTER)
INSERT COUNT
(SOFTWARE
REGISTER)
CROSS CONNECT
INSERT VALUE
(SOFTWARE
REGISTER)
52 Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Functional Description (continued)
Transmitter Block (continued)
STS-12 Input Format
Each of the 48 parallel input buses from the cross connect is synchronized to the system clock. The data stream
format is a standard SONET STS-12 frame. Framing bytes (A1/A2) of all STS-1s are regenerated. The last A1 and
the first A2 can optionally be corrupted via software registers. The B1 parity is always regenerated and the 11 bytes
following the B1 are forced to zero.
5-9882r.1(F)
Figure 14. STS-12 Frame Structure
A1
B1
D1
H1
B2
D4
D7
D10
S1
A2
E1
D2
H2
K1
D5
D8
D11
M0
J0
F1
D3
H3
K2
D6
D9
D12
E2
(3*12 BYTES)
SPE
(87*12 BYTES)
SYSTEM FRAME
PULSE IS HIGH DURING
STS-1 #1 A1 TIME SLOT
A1/A2 MUX Control
With this block, the A1/A2 bytes are regenerated for all
transmitted STS-1s.
A1/A2 errors can be inserted in the frame by the regis-
ter 000C. A1 of STS-1 #12 and A2 byte of STS-1 #1
are replaced with user-specified byte values (values
are shared by the 48 channels) for a user-specified
number of consecutive frames (value is shared by the
48 channels).
SONET Scrambler
The SONET scrambler does a framed synchronized
scrambling of the input using the SONET polynomial of
(1 + x6 + x7). Note that the framing bytes A1, A2 and
the section trace J0/Z0 are not scrambled.
Furthermore, a debug feature allows disabling the
scrambler. Control is common to the scrambler (in
transmitter) and descrambler (in receiver) of all 48
channels.
B1 Byte Parity Generator
The B1 byte parity generator generates B1 parity as
defined in Bellcore* GR-253 for an OC-12 signal. Parity
is even and is calculated over the entire payload after
the scrambler. The resulting B1 is inserted in the next
frame prior the scrambler block.
The B1 error insert feature allows the user to insert
errors on user-selectable bits in the B1 byte. Errors are
created by simply inverting bit values. This feature is
provisionable on a per-bit basis and will insert a single
error (any mix of bits can be inverted). Bits to be
inverted are specified through an 8-bit register per
channel (each bit is associated with one of the 8 B1
bits). Error insertion is enabled through a single control
bit per channel.
When the scrambler is disabled, B1 is calculated on
the nonscrambled data stream.
CPU Interface Block
The microprocessor interface is designed to accommo-
date connection to the Motorola MC68360 and
MPC860 microprocessors and DSP56309 digital signal
processor. Bus transfers using the MC68360 are asyn-
chronous to microprocessor clock, while the MPC860
and DSP56309 transfers are synchronous to the pro-
cessor clock. The TDCS4810G has a 13-bit wide
address and a 16-bit wide data bus.
* Bellcore is now Telcordia Technologies. Telcordia Technologies is a
trademark of Telcordia Technologies, Inc.
Agere Systems Inc. 53
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Functional Description (continued)
Back-to-Back Cross Connect
When data is fed into the TDCS4810G, it must not loop
back into the TDCS4810G through another
TDCS4810G without another device, with pointer
mover or pointer processor capability, between them to
align the frames. Data streaming out of the
TDCS4810G into a series of back-to-back
TDCS4810Gs must flow in a straight line. As an illus-
tration of what not to do, see Figure 15.
1251.a(F)
Figure 15. Illegal Back-to-Back Cross Connect
Illustration
In Figure 15, there are two data streams, one flowing
from A to C, and the other flowing from D to B. Assume
that the first bit of the first A1 arrives at C at clock
period 0. Because of the nature of the TDCS4810G,
the outgoing first bit of the first A1 from D cannot be
launched before clock period 0. The reason for this is
that the outgoing streams can be made up from any of
the incoming streams (i.e., the TSI function), so theo-
retically, the data on the link from D to B could be the
same as on the link from A to C (if TDCS4810G is con-
figured to do that). The consequence is that the first bit
of the first A1 leaving on D cannot be launched until
after the first bit of the first A1 arrives at C, because
they could be the same bit (i.e., all the data from C
could be looped back to D inside the TSI). Therefore,
the first bit of the first A1 must leave D after the clock
period 0. We assume a really low latency through the
chip so that the first bit of the first A1 can leave D on
clock period 1 (one clock later than it arrived at C). The
problem is that the earliest possible time that the first
bit of the first A1 from D can arrive at B is clock 1
(assuming zero travel time). So for the same reason
that the first bit of the first A1 must leave TDCS4810G
on D after it arrives via C, we have the constraint that
the first bit of the first A1 must arrive at B before the
first bit of the first A1 leaves at A. As in the previous
case, this is because the data coming in on B must be
able to be sent out on A (if the TSI is so configured). So
now the first bit of the first A1 arrives at B at least one
clock period before it leaves at A, but it leaves A at
clock period 0, so the first bit of the first A1 must arrive
at B at clock period –1.
For an alternate way to look at this, see Figure 16.
1250.a(F)
Figure 16. Alternate Illegal Back-to-Back Cross
Connect Illustration
From the above figure, the following must be true:
T1 < T2 < T3
&
T4 < T5 < T6.
Because all data leave a single TDCS4810G at the
same time (no delay between them):
T3 = T5
&
T2 = T6.
Which substituted into the above relationship pro-
duces:
T1 < T2 < T5
&
T4 < T5 < T2.
Note that this equations now state that:
T2 < T5
&
T5 < T2.
This is mathematically impossible. This is a result of
the T5 from Figure 16. Removing T5 would make the
entire setup functional. Without the loopback in place, it
is possible to have back-to-back TDCS4810G configu-
rations.
TDCS4810G1 TDCS4810G2
A
B
C
D
TDCS4810G TDCS4810G
IN
OUT
OUT
IN
IN
OUT
OUT
IN
T6
T1
T5
T2
T4
T3
54 Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Register Descriptions
The address shown for each register is the address of the first occurrence of the register. The number following the
T character is the offset to the register for the next time slot in the same channel. The number following the C char-
acter is the offset to the first register for the next channel in the port. The number following the P character is the
offset to the first register for the next port.
All unused bits read zero and should be written zero with the exception of unused mask bits, which should be writ-
ten with one to disable (mask out) an alarm.
A summary of the memory map is shown in Table 18, showing the major functional blocks and their associated
address range. Areas marked Unused will return a transfer error acknowledge (TEA_N) when accessed. Areas
marked Reserved will read 0, and writes will have no effect.
Table 18. Memory Map Summary
Address Detail
0x0000
0x000D
Device-wide alarms, masks, provisioning, and configuration.
0x000E
0x000F
RESERVED.
0x0010 Write lock register.
0x0011 RESERVED.
0x0012
0x01FF
UNUSED.
0x0200 Port 0.
0x0200
0x0209
Port-wide alarms and masks.
0x020A
0x0229
Channel alarms and masks: channels 0—15.
0x022A
0x0249
Path status alarms and masks: channels 0—15.
0x024A
0x027F
RESERVED.
0x0280
0x0287
Port configuration.
FIFOs, AB select, CD selects, etc.
0x0288
0x02FF
RESERVED.
0x0300
0x030C
Provisioning and configuration: channel 0.
0x030D
0x030F
RESERVED.
0x0310—
0x03FF
Provisioning and configuration: channels 1—15
(as for channel 0).
Agere Systems Inc. 55
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Register Descriptions (continued)
Table 18. Memory Map Summary (continued)
Address Detail
0x0400—
0x05FF
Port 1: See per-port structure above.
0x0600—
0x07FF
Port 2: See per-port structure above.
0x0800—
0x09FF
RESERVED.
0x0A00—
0x0AFF
RESERVED.
0x0B00
0x0B17
Audit memory port 0.
0x0B18
0x0B1F
RESERVED.
0x0B20
0x0B37
Audit memory port 1.
0x0B38
0x0B3F
RESERVED.
0x0B40
0x0B57
Audit memory port 2.
0x0B58
0x0B5F
RESERVED.
0x0B60
0x0B77
RESERVED.
0x0B78
0x0BFF
RESERVED.
56 Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Register Descriptions (continued)
Table 18. Memory Map Summary (continued)
A Note on Alarm Register Reset Defaults
Although all alarms will be cleared on reset, some alarms may be asserted shortly after reset. For example, the
LOF alarm is cleared on reset and then immediately asserted by the framer (which resets to the LOF state). Other
alarms are also affected, but exactly which alarms are asserted after reset depends on the application.
Address Detail
0x0C00 Extracted path status (E1/F1): channel 0.
0x0C00
0x0C0B
Path status for all paths within channel 0 (12 paths in total).
0x0C0C
0x0C0F
RESERVED.
0x0C10—
0x0EFF
Extracted path status (E1/F1): channels 1 to 47
(See extracted path status for channel 0 above.).
0x0F00
0x0FFF
RESERVED.
0x1000 Connection memory: channel 0.
0x1000
0x100B
AC connection memory (channel 0).
0x100C
0x1017
AD connection memory (channel 0).
0x1018
0x101F
RESERVED.
0x1020
0x102B
BC connection memory (channel 0).
0x102C
0x1037
BD connection memory (channel 0).
0x1038
0x103F
RESERVED.
0x1040—
0xBFFF
Connection memories: channels 1 to 47
(See connection memory for channel 0 above.).
Agere Systems Inc. 57
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Register Descriptions (continued)
Device-Level Registers
These registers appear only once in the device.
Table 19. Device Interrupt Status Register (RO)
Address
(Hex)
Bit Name Description Reset
0000 14 ALM_SW Connection memory switch synchronization alarm. 0
13 ALM_CH Channel-level alarm. 0
12 ALM_DEV Device-level alarm. 0
11 RESERVED. x
10 RESERVED. x
9—RESERVED. x
8 ALM_LS2 Line status alarm, port 2. 0
7 ALM_PS2 Path status alarm, port 2. 0
6 ALM_APS2 APS bytes alarm, port 2. 0
5 ALM_LS1 Line status alarm, port 1. 0
4 ALM_PS1 Path status alarm, port 1. 0
3 ALM_APS1 APS bytes alarm, port 1. 0
2 ALM_LS0 Line status alarm, port 0. 0
1 ALM_PS0 Path status alarm, port 0. 0
0 ALM_APS0 APS bytes alarm, port 0. 0
58 Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Register Descriptions (continued)
Device-Level Registers (continued)
Table 20. Device Interrupt Status Mask Register (R/W)
Table 21. Channel Alarm Interrupt Status Register (RO)
Address
(Hex)
Bit Name Description Reset
0001 14 ALM_SW_MSK Connection memory switch synchronization alarm
mask.
1
13 ALM_CH_MSK Channel-level alarm mask. 1
12 ALM_DEV_MSK Device-level alarm mask. 1
11 RESERVED. x
10 RESERVED. x
9—RESERVED. x
8 ALM_LS2_MSK Line status alarm mask, port 2. 1
7 ALM_PS2_MSK Path status alarm mask, port 2. 1
6 ALM_APS2_MSK APS bytes alarm mask, port 2. 1
5 ALM_LS1_MSK Line status alarm mask, port 1. 1
4 ALM_PS1_MSK Path status alarm mask, port 1. 1
3 ALM_APS1_MSK APS bytes alarm mask, port 1. 1
2 ALM_LS0_MSK Line status alarm mask, port 0. 1
1 ALM_PS0_MSK Path status alarm mask, port 0. 1
0 ALM_APS0_MSK APS bytes alarm mask, port 0. 1
Address
(Hex)
Bit Name Description Reset
0002 6 ALM_CH2 Channel-level alarm, port 2. 0
5 ALM_CH1 Channel-level alarm, port 1. 0
4 ALM_CH0 Channel-level alarm, port 0. 0
3—RESERVED. x
2 ALM_SW2 Connection memory sync, port 2. 0
1 ALM_SW1 Connection memory sync, port 1. 0
0 ALM_SW0 Connection memory sync, port 0. 0
Agere Systems Inc. 59
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Register Descriptions (continued)
Device-Level Registers (continued)
Table 22. Channel Alarm Interrupt Status Mask Register (R/W)
Table 23. Device-Level Alarm Register (W1C)
Table 24. Device-Level Alarm Mask Register (R/W)
Table 25. Device ID Register (RO)
Address
(Hex)
Bit Name Description Reset
0003 6 ALM_CH2_MSK Channel-level alarm mask, port 2. 1
5 ALM_CH1_MSK Channel-level alarm, mask port 1. 1
4 ALM_CH0_MSK Channel-level alarm mask, port 0. 1
3—RESERVED. x
2 ALM_SW2_MSK Connection memory sync mask, port 2. 1
1 ALM_SW1_MSK Connection memory sync mask, port 1. 1
0 ALM_SW0_MSK Connection memory sync mask, port 0. 1
Address
(Hex)
Bit Name Description Reset
0004 1 WLOCKALM Write occurred when registers are locked. 0
0 FPERR Frame pulse error (lost or moved). 0
Address
(Hex)
Bit Name Description Reset
0005 1 WLOCKALM_MSK WLOCKALM mask. 1
0 FPERR_MSK Frame pulse error mask. 1
Address
(Hex)
Bit Name Description Reset
0006 15—0 CHIP_ID Chip identification. 0x6440
60 Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Register Descriptions (continued)
Device-Level Registers (continued)
Table 26. Device Vintage Register (RO)
Table 27. Scratch Pad Register (R/W)
Table 28. Device Provisioning Register (R/W)
Address
(Hex)
Bit Name Description Reset
0007 15—0 CHIP_VINTAGE Chip vintage. 0x0001
Address
(Hex)
Bit Name Description Reset
0008 15—0 SCRATCH_PAD Scratchpad register. (Does not affect chip opera-
tion.)
0x0000
Address
(Hex)
Bit Name Description Reset
0009 12—7 S1SEL Selects which channel to monitor S1 for chip syn-
chronization.
0
6 SYNCEN Enables control of SYNC_N pin (master mode). 0
5 SW_HW_SYNC Controls SYNC_N pin from:
0 = SW_SYNC bit.
1 = S1 byte from channel selected by S1SEL bits.
0
4 FP_MODE Frame pulse detect mode:
0 = pulse 4 clocks.
1 = pulse 1 clock.
0
3 SCRDIS Scrambler/descrambler disable. 0
2—1 RESERVED. 0
0 SWRST Software reset. 0
Agere Systems Inc. 61
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Register Descriptions (continued)
Device-Level Registers (continued)
Table 29. Device Control Register (R/W)
Table 30. Frame Offset Register (R/W)
Table 31. Framing Error A1A2 Corrupt Value (R/W)
Table 32. Number of Columns (R/W)
Table 33. Write Lock Register (R/W)
Address
(Hex)
Bit Name Description Reset
000A 6 SW_SYNC Software control of chip synchronization. 0
5 ALMFRZ Freeze alarm states. 0
4 CNTFRZ Freeze performance counters. 0
3—0 A1A2INSCNT A1A2 framing error insert count. 0
Address
(Hex)
Bit Name Description Reset
000B 13—0 FRMOFFS Frame offset control. 0
Address
(Hex)
Bit Name Description Reset
000C 15—8 A1CRPT A1 corrupt value. 0
7—0 A2CRPT A2 corrupt value. 0
Address
(Hex)
Bit Name Description Reset
000D 15—7 NUMCOL_LCK Change value to 9’b1010_0000_1 to change to
NUM_COL columns.
0
6—0 NUM_COL Number of columns. 0x5A
Address
(Hex)
Bit Name Description Reset
0010 15—0 LOCKVAL Lock value. Write 0xA001 to this register to unlock
all other registers. Any other value will prevent writes
to all other registers and cause an alarm if any regis-
ter (including this one) is written to.
0
62 Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Register Descriptions (continued)
Port (STS-192) Level Registers
These registers appear once for each group of 16 channels. Thus, they are replicated three times in the device.
Table 34. Channel Alarm Interrupt Status (Consolidation) Register
Table 35. Channel Alarm Interrupt Status Mask Register
Table 36. Path Status Alarm Interrupt Status (Consolidation) Register
Table 37. Path Status Alarm Interrupt Status Mask Register
Table 38. Line Status (E2) Change Alarm (W1C)
Address
(Hex)
Bit Name Description Reset
0200
P+200
15—0 CH_ALM[15—0] Unmasked channel-level alarm present in channel
[15—0].
0
Address
(Hex)
Bit Name Description Reset
0201
P+200
15—0 CH_ALM_MSK[15—0] Channel alarm consolidation mask. 0xFFFF
Address
(Hex)
Bit Name Description Reset
0202
P+200
15—0 PS_ALM[15—0] Unmasked path status alarm present in channel
[15—0].
0
Address
(Hex)
Bit Name Description Reset
0203
P+200
15—0 PS_ALM_MSK[15—0] Path status alarm consolidation mask. 0xFFFF
Address
(Hex)
Bit Name Description Reset
0204
P+200
15—0 E2ALM E2 change alarm for channel [15—0]. 0
Agere Systems Inc. 63
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Register Descriptions (continued)
Port (STS-192) Level Registers (continued)
Table 39. Line Status (E2) Change Mask (R/W)
Table 40. APS (K1K2) Change Alarm (W1C)
Table 41. APS (K1K2) Change Alarm Mask (R/W)
Table 42. Connection Memory Switch Alarm (W1C)
Table 43. Connection Memory Switch Alarm Mask (R/W)
Address
(Hex)
Bit Name Description Reset
0205
P+200
15—0 E2ALM_MSK E2 change alarm mask for channel [15—0]. 0xFFFF
Address
(Hex)
Bit Name Description Reset
0206
P+200
15—0 K1K2ALM APS (K1K2) change alarm for channel [15—0]. 0
Address
(Hex)
Bit Name Description Reset
0207
P+200
15—0 K1K2ALM_MSK APS (K1K2) change alarm for channel [15—0]
mask.
0xFFFF
Address
(Hex)
Bit Name Description Reset
0208
P+200
15—0 SW_ALM Connection memory switch indication for channel
[15—0].
0
Address
(Hex)
Bit Name Description Reset
0209
P+200
15—0 SW_ALM_MSK Connection memory switch indication mask for
channel [15—0].
0xFFFF
64 Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Register Descriptions (continued)
Port (STS-192) Level Registers (continued)
Table 44. FIFO Thresholds (R/W)
Note: Thresholds are compared to (N – 1) where N is the number of bytes stored in the FIFO.
Table 45. Configuration A/B Select (R/W)
Table 46. Configuration A/B Readback (RO)
Table 47. Configuration C/D Line or Path Switching Mode (R/W)
Table 48. Configuration C/D Select (R/W)
Table 49. Configuration C/D Readback (RO)
Address
(Hex)
Bit Name Description Reset
0280
P+200
11—6 FIFOMAX FIFO maximum depth threshold. 0x003F
5—0 FIFOMIN FIFO minimum depth threshold. 0
Address
(Hex)
Bit Name Description Reset
0281
P+200
15—0 ABSEL[15—0] Preselect configuration A or B for channel [15—0]:
0 = A.
1 = B.
0
Address
(Hex)
Bit Name Description Reset
0282
P+200
15—0 ABRDBK[15—0] Read back active configuration for channel [15—0]:
0 = A.
1 = B.
0
Address
(Hex)
Bit Name Description Reset
0283
P+200
15—0 PATHLINE[15—0] Select path switching (using channel path switch
control registers, page 69) or line switching (using
configuration C/D select register, Table 48) for
channel [15—0]:
0 = path.
1 = line.
0
Address
(Hex)
Bit Name Description Reset
0284
P+200
15—0 CDSEL[15—0] Select configuration C or D for channel [15—0]:
0 = C.
1 = D.
0
Address
(Hex)
Bit Name Description Reset
0285
P+200
15—0 CDRDBK[15—0] Read back active configuration for channel [15—0]:
0 = C.
1 = D.
0
Agere Systems Inc. 65
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Register Descriptions (continued)
Port (STS-192) Level Registers (continued)
Table 50. Audit Memory Control (R/W)
* When this bit changes from 0 to 1, the active configuration of the channel requested by AUDCH is copied into the audit memory during
the next A1/A2 bytes.
Table 51. Audit Memory Status (RO)
Table 52. Audit Memory [23:0] (RO)
Note: The audit memory stores the full C and D maps (24 entries) of the active configuration (A or B as determined by the appropriate
ABSEL bit) of the channel determined by the AUDCH bits.
Table 53. S1 Generation Status (RO)
Table 54. S1 Generation Force Toggle (R/W)
* The bit must be changed from a 0 to a 1 to force the change.
Address
(Hex)
Bit Name Description Reset
0286
P+200
4 AUDSTART* Audit control*. 0
3—0 AUDCH Channel [15—0] to audit. 0
Address
(Hex)
Bit Name Description Reset
0287
P+200
0 AUDDONE Audit memory has been filled (cleared when
AUDSTART bit is written 0).
0
Address
(Hex)
Bit Name Description Reset
0B00
P+20
T+1
9—6 SRCTS Source time slot [11:0]. x
5—0 SRCCH Source channel [47:0]. x
Address
(Hex)
Bit Name Description Reset
0288
P+200
15—0 S1STAT Current state of S1 generation for channel [15—0]:
0 = 0x00.
1 = 0xF0.
0
Address
(Hex)
Bit Name Description Reset
0289
P+200
15—0 S1FORCE* Force toggle of current state of S1 generation
(change will be reflected in S1STAT bit) for channel
[15—0].
0
66 Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Register Descriptions (continued)
Channel-Level Registers
These registers appear once for each channel. Thus, they are replicated 48 times in the device.
Table 55. Channel Alarm Register (W1C)
Table 56. Channel Alarm Mask Register (R/W)
Table 57. Path Status (E1/F1) Change Alarm (W1C)
* Reports both E1 and F1 changes when the E1F1EN bit is set and only E1 changes otherwise.
Address
(Hex)
Bit Name Description Reset
020A
P+200
C+2
3 FIFOERR FIFO threshold error. 0
2 B1ERR B1 BIP error. 0
1 LOF Loss of frame. 0
0 FRMOFFS Frame offset error (frame out of range of FIFO). 0
Address
(Hex)
Bit Name Description Reset
020B
P+200
C+2
3 FIFOERR_MSK FIFO threshold error mask. 1
2 B1ERR_MSK B1 BIP error mask. 1
1 LOF_MSK Loss of frame mask. 1
0 FRMOFFS_MSK Frame offset error mask. 1
Address
(Hex)
Bit Name Description Reset
022A
P+200
C+2
11—0 E1F1ALM Path status (E1, or E1 and F1*) change alarm on
time slot [11:0].
0
Agere Systems Inc. 67
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Register Descriptions (continued)
Channel-Level Registers (continued)
Table 58. Path Status (E1/F1) Change Alarm Mask (R/W)
Table 59. Channel Provisioning Register (R/W)
Address
(Hex)
Bit Name Description Reset
022B
P+200
C+2
11—0 E1F1ALM_MSK Path status alarm mask. 0x0FFF
Address
(Hex)
Bit Name Description Reset
0300
P+200
C+10
9—8 SYNC_SRC Synchronization source:
00 = sync to local S1
01 = sync to S1 selected by S1SEL bits
10 = sync to SW_SYNC bit
11 = sync to SYNC_N pin
0
7 SYNC_CTL Enable synchronization of connection memory
switching.
0
6 INS_S1 Use toggle between 0xF0 and 0x00 on output S1
to indicate when channel is switching.
0
5 USEKBYTES APS bytes (K1/K2), D1—D12, and E2 are switched
separately using KCH bits.
0
4—RESERVED. x
3—RESERVED. x
2 E1F1EN Enable monitoring of path status (E1 from
working/C and F1 from protect/D).
1
1 AISONLOF Insert AIS on LOF condition. 1
0 PWRDN Channel powerdown. 1
68 Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Register Descriptions (continued)
Channel-Level Registers (continued)
Table 60. Channel Control Register (R/W)
Table 61. APS Control Register (R/W)
* Values are inserted in the raw K-byte location. This is in the second time slot of the channel (STS-1 #4).
Table 62. APS Status Register (RO)
* Values are those received in the validated K-byte location. This is in the first time slot of the channel (STS-1 #1).
Table 63. APS Insert Value Register (R/W)
* Values are inserted in the raw K-byte location. This is in the second time slot of the channel (STS-1 #4).
Address
(Hex)
Bit Name Description Reset
0301
P+200
C+10
12 READE1F1 Enables reading of received E1/F1 values. 0
11 FAISL Force AIS-L on input channel. 0
10 RESERVED. x
9 FRMERRINS Insert framing (A1A2) error (based on A1CRPT,
A2CRPT, and A1A2INSCNT).
0
8 B1COREN Enable corruption of B1 with B1CRTP bits. This is
a one shot function—the bit must be reset to 0 and
set to 1 again to repeat the B1 error.
0
7—0 B1CRPT B1 corrupt value. 0
Address
(Hex)
Bit Name Description Reset
0302
P+200
C+10
7 INSK1 Insert K1 value from register*. 0
6 INSK2 Insert K2 value from register*. 0
5—0 KCH Switch all K1, K2, D1—D12, and E2 bytes from this
channel [0:47] instead of passing through TSI
(when enabled with USEKBYTES bit in the chan-
nel provisioning register).
0
Address
(Hex)
Bit Name Description Reset
0303
P+200
C+10
15—8 RCDK1 Received K1 value*. 0
7—0 RCDK2 Received K2 value*. 0
Address
(Hex)
Bit Name Description Reset
0304
P+200
C+10
15—8 K1INSVAL Value to insert in K1*. 0
7—0 K2INSVAL Value to insert in K2*. 0
Agere Systems Inc. 69
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Register Descriptions (continued)
Channel-Level Registers (continued)
Table 64. Channel Path Switch Control (R/W)
Table 65. Channel Path Switch Readback (RO)
Table 66. Channel AIS-P Insert (R/W)
Table 67. Channel UNEQ-P Insert (R/W)
Table 68. Extracted Line Status (E2) (RO)
Table 69. Line Error Counts (RO)
Note:Note that the counts are latched by changing the CNTFRZ bit from 0 to 1. This is like a PM register, but instead of a PM_CLK, the
ALMFRZ bit is used.
Address
(Hex)
Bit Name Description Reset
0307
P+200
C+10
11—0 WP[11:0] Preselect time slot [11:0] to protect configuration:
0 = working/C.
1 = protect/D.
0
Address
(Hex)
Bit Name Description Reset
0308
P+200
C+10
11—0 WPRDBK[15:0] Read back active configuration for time slot [11:0]:
0 = working/C.
1 = protect/D.
0
Address
(Hex)
Bit Name Description Reset
0309
P+200
C+10
11—0 AISINS[11:0] Insert AIS-P in time slot [11:0]. 0
Address
(Hex)
Bit Name Description Reset
030A
P+200
C+10
11—0 UNEQINS[11:0] Insert UNEQ-P in time slot [11:0]. 0
Address
(Hex)
Bit Name Description Reset
030B
P+200
C+10
7—0 EXTRE2 Extracted E2 byte. 0
Address
(Hex)
Bit Name Description Reset
030C
P+200
C+10
15—8 FRMERRCNT Framing (A1/A2) error count. 0
7—0 B1ERRCNT B1 BIP error count. 0
70 Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Register Descriptions (continued)
Channel-Level Registers (continued)
Table 70. Channel Alarm Freeze Register (RO)
Note:The errors that occur between occurrences of a 0 to 1 change to the ALMFRZ bit are latched when there is a 0 to 1 change to the
ALMFRZ bit. This is like a PM register, but instead of a PM_CLK, the ALMFRZ bit is used.
STS-1 Level Registers
These registers appear once for each time slot in each channel. Thus, they are replicated 576 times in the device.
Note that connection memory registers are implemented with internal RAM and the contents are not guaranteed on
powerup. Also, the active configuration (A or B) will return 0x3FF if read directly. In order to read the active config-
uration, the audit memory must be used.
The connection memories are divided into 24 entry blocks. Each channel has two 24 entry blocks of connection
memory, named A and B. Each block describes two connection maps for the channel, named C and D (12 entries
per map). Thus, there are four maps for each channel, with each map describing the connections for 12 time slots.
The four maps are named AC, AD, BC, and BD.
The active configuration is determined by the ABSEL bit for the channel. This selects one of the two blocks (A or B)
for the channel. The map that is used within the A or B configuration is determined by either the CDSEL bit for the
channel (in which case all 12 time slots use the C or D map) or by the WP bits (in which case each time slot uses
the map determined by its corresponding WP bit). The PATHLINE bit for the channel determines whether the
CDSEL bit or the WP bits control the map selection for the channel.
When PATHLINE is 0, the WP bits select map C or D on a per-time-slot basis. This can be used for path switching.
In this case, map C is referred to as working and map D as protect.
Table 71. Connection Memory AC (R/W)
Address
(Hex)
Bit Name Description Reset
030D
P+200
C+10
4—RESERVED. x
3 FIFOERR_FZ FIFO threshold error frozen status. 0
2 B1ERR_FZ B1 BIP error frozen status. 0
1 LOF_FZ Loss of frame frozen status. 0
0 FRMOFFS_FZ Frame offset error (frame out of range of FIFO)
frozen status.
0
Address
(Hex)
Bit Name Description Reset
1000
C+40
T+1
9—6 SRCTS Source time slot [11:0]. x
5—0 SRCCH Source channel [47:0]. x
Agere Systems Inc. 71
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Register Descriptions (continued)
STS-1 Level Registers (continued)
Table 72. Connection Memory AD (R/W)
Table 73. Connection Memory BC (R/W)
Table 74. Connection Memory BD (R/W)
Table 75. Extracted Path Status (RO)
Note: For all the STS-1 level registers above, the hex address is for the output and the value to be programmed is
for the input.
Address
(Hex)
Bit Name Description Reset
100C
C+40
T+1
9—6 SRCTS Source time slot [11:0]. x
5—0 SRCCH Source channel [47:0]. x
Address
(Hex)
Bit Name Description Reset
1020
C+40
T+1
9—6 SRCTS Source time slot [11:0]. x
5—0 SRCCH Source channel [47:0]. x
Address
(Hex)
Bit Name Description Reset
102C
C+40
T+1
9—6 SRCTS Source time slot [11:0]. x
5—0 SRCCH Source channel [47:0]. x
Address
(Hex)
Bit Name Description Reset
0C00
C+10
T+1
15—8 EXTRE1 Extracted E1 byte. x
7—0 EXTRF1 Extracted F1 byte. x
72 Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Absolute Maximum Ratings
Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are abso-
lute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess
of those given in the operational sections of the data sheet. Exposure to absolute maximum ratings for extended
periods can adversely affect device reliability.
Table 76. Absolute Maximum Ratings
Handling Precautions
Although protection circuitry has been designed into this device, proper precautions should be taken to avoid expo-
sure to electrostatic discharge (ESD) during handling and mounting. Agere employs a human-body model (HBM)
and a charged-device model (CDM) for ESD-susceptibility testing and protection design evaluation. ESD voltage
thresholds are dependent on the circuit parameters used in the defined model. No industrywide standard has been
adopted for the CDM. However, a standard HBM (resistance = 1500 , capacitance = 100 pF) is widely used and,
therefore, can be used for comparison purposes.
Table 77. ESD Threshold Voltage
Operating Conditions
Table 78. Recommended Operating Conditions
Parameter Symbol Min Max Unit
Power Supply Voltage:
3.3 V dc Supply
1.5 V dc Supply
1.5 V Analog Supply
VDD
VDD2
VDDA
4.2
2.0
2.0
V
V
V
Storage Temperature Tstg –65 125 °C
Power Consumption
3.3 V dc Supply
1.5 V dc Supply
1.5 V Analog Supply
PD
PD2
PDA
5.0
3.22
0.28
W
W
W
Device Model Voltage
TDCS4810G HBM TBD
CDM (corner pins) TBD
CDM (noncorner pins) TBD
Parameter Symbol Min Typ Max Unit
Power Supply Voltage:
3.3 V dc Supply
1.5 V dc Supply
1.5 V Analog Supply
VDDI/O
VDDI
VDDA
3.135
1.425
1.425
3.3
1.5
1.5
3.465
1.575
1.575
V
V
V
Junction Temperature TJ–40 125 °C
Ambient Temperature TA–40 85 °C
Agere Systems Inc. 73
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Electrical Characteristics
Power Sequencing
The device power may be applied concurrently to both voltage level inputs. If power sequencing is used for other
devices on a board or in a system, it is a preferred that the highest voltage be applied first and removed last.
Low Voltage Differential Signal (LVDS) Buffers
The LVDS buffers are compliant with the EIA-644 standard. The only exception to compliance with this standard is
associated with the input leakage current. The LVDS input buffers have an input leakage current of 300 µA maxi-
mum.
The LVDS buffers are also compliant to the IEEE* 1596.3 standard. The only exception to compliance with this
standard is the input termination resistance. The LVDS input buffers have an input termination resistance of
100 Ω±20%.
The LVDS outputs are hot-swap compatible, and can be connected to other vendor’s LVDS I/O buffers. The maxi-
mum input current for the Agere LVDS input buffers is 9 mA. Prolonged exposure to higher current levels will have
an impact on long term reliability.
CML or open collector transmitters cannot be directly connected to the TDCS4810G LVDS inputs. This is not pos-
sible, since up to four LVDS inputs share one center tap line with one center tap pin. The 10 µm center tap line is
relatively long in the TDCS4810G, therefore resistances and capacitances cannot be ignored.
Unused LVDS inputs may be left unconnected. There are internal pull-up resistors (nominal 14 k) which pull open
inputs to greater than 2.75 Vdc (the common mode range is 0 Vdc to 2.4 Vdc). A sense circuit becomes active for
input voltages above 2.75 Vdc and clamps the buffer output to a defined state. Open inputs will not oscillate for this
reason.
For board layout, LVDS traces should be run on controlled impedance layers, and should be specified as 50
line-to-ground. The LVDS buffers support point-to-point connections. They are not intended for bussed implemen-
tations.
* IEEE is a registered trademark of The Institute of Electrical and Electronics Engineers, Inc.
74 Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Electrical Characteristics (continued)
5-8703(F)
Figure 17. LVDS Driver and Receiver and Associated Internal Components
5-8704(F)
Figure 18. LVDS Driver and Receiver
5-8705(F)
Figure 19. LVDS Driver
LVDS DRIVER
50
50
LVDS RECEIVER
CENTER TAP
DEVICE PINS
100
EXTERNAL
VGPD
VOA
VOB
VIA
VIB
A
B
AA
BB
DRIVER INTERCONNECT RECEIVER
VOA A
VOB B
CA
CB
RLOAD VOD = (VOA – VOB)V
Agere Systems Inc. 75
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Electrical Characteristics (continued)
LVDS Receiver Buffer Capabilities
A disabled or unpowered LVDS receiver can withstand a driving LVDS transmitter over the full range of driver oper-
ating range, for an unlimited period of time, without being damaged. Table 79 illustrates LVDS driver dc data,
Table 80 the ac data, and Table 82, “LVDS Receiver Data,” on page 76 the LVDS receiver data.
Note: VDD = 3.1 V—3.5 V, 0 °C—125 °C, slow-fast process.
Table 79. LVDS Driver dc Data
Table 80. LVDS Driver ac Data
Parameter Symbol Conditions Min Typ Max Unit
Driver Output Voltage High,
VOA or VOB
VOH RLOAD = 100 Ω ± 1%. 1.475*
* External reference, REF10 = 1.0 V ± 3%, REF14 = 1.4 V ± 3%.
V
Driver Output Voltage Low,
VOA or VOB
VOL RLOAD = 100 Ω ± 1%. 0.9251—— V
Driver Output Differential Volt-
age VOD = (VOA – VOB)
(with external reference
resistor)
VODRLOAD = 100 Ω ± 1%. 0.25 0.451V
Driver Output Offset Voltage
VOS = (VOA + VOB)/2
VOS RLOAD = 100 Ω ± 1%,
refer to Figure 19. on page 74.
1.1251 1.2751V
Output Impedance, Single-
Ended
ROVCM = 1.0 V and 1.4 V. 40 50 60
RO Mismatch Between A & B ROVCM = 1.0 V and 1.4 V. 10 %
Change in ∆ VODBetween
0 and 1
∆VODRLOAD = 100 Ω ± 1%. 25 mV
Change in ∆ VOSBetween
0 and 1
∆VOSRLOAD = 100 Ω ± 1%. 25 mV
Output Current ISA, ISB Driver shorted to ground. 24 mA
Output Current ISAB Driver shorted together. 12 mA
Power-Off Output Leakage IXA, IXBVDD = 0 V
VPAD, VPADN = 0 V—3 V.
——30
µA
Parameter Symbol Conditions Min Max Unit
VOD Fall Time, 80% to 20% tFALL ZLOAD = 100 ± 1%
CPAD = 3.0 pF, CPADN = 3.0 pF.
100 200 ps
VOD Rise Time, 20% to 80% tRISE ZLOAD = 100 ± 1%
CPAD = 3.0 pF, CPADN = 3.0 pF.
100 200 ps
Differential Skew tpHLA tpLHB
ortpHLB – tpLHAtSKEW1Any differential pair on package at 50%
point of the transition.
—50ps
76 Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Electrical Characteristics (continued)
Table 81. LVDS Driver Reference Data
Table 82. LVDS Receiver Data
Table 83. LVTTL 3.3 V Logic Interface Characteristics
Parameter Conditions Min Typ Max Unit
REF10E, REF10L Voltage Range 0.95 1.0 1.05 V
REF14E, REF14L Voltage Range 1.35 1.4 1.45 V
Nominal Input Current—REF10 and
REF14 Reference Inputs
——10µA
Parameter Symbol Conditions Min Typ Max Unit
Receiver input Voltage Range, VIA
or VIB (Common Mode Voltage)
VIVGPD< 925 mV dc—1MHz. 0 1.2 2.4 V
Receiver Input Differential Thresh-
old (Differential Mode Voltage)
VIDTHVGPD< 925 mV 400 MHz. 100 100 mV
Receiver Input Differential
Hysteresis
VHYST VIDTHH – VIDTHL.—
*
* Buffer will not produce transition when input is open-circuited.
mV
Receiver Differential Input
Impedance
RIN With built-in termination, center
tapped.
80 100 120
Parameter Symbol Conditions Min Typ Max Unit
Input Leakage IL——1.0µA
Input Voltage:
Low
High
VILLVTTL
VIHLVTTL
GND
VDD – 1.0
1.0
VDD
V
V
Output Voltage:
Low
High
VOLLVTTL
VOHLVTTL
–5.0 mA
5.0 mA
GND
VDD – 1.0
0.5
VDD
V
V
Input Capacitance CI—2.23.0pF
Load Capacitance CL—0.4—pF
Agere Systems Inc. 77
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Timing Characteristics
Microprocessor Interface Timing
The I/O timing specifications for the microprocessor interface are given in Table 84. The read and write timing dia-
grams for all three microprocessor interface modes are shown in Figures 20—24.
Table 84. Microprocessor Interface Timing
* This value represents the timing for a transfer error (TA_N = 1, TEA_N = 0). The typical value during normal access would be 9(tc_M360) ns.
Symbol Mode Parameter Min Max Unit
tc_M860 Synch
M860
(Write)
PCLK Period 15 ns
tcycle_M860 Bus Transfer Cycle Time 8 (tc_M860) 12 (tc_M860) ns
t1 CS_N, TS_N, RW_N Valid to PCLK 4 ns
t2 ADDRESS, DATA Valid to PCLK 18 ns
t3 CS_N, TS_N, RW_N, ADDRESS, DATA Hold 0 ns
t4 PCLK to TA_N/TEA_N 3-State to High 4 ns
t5 PCLK to TA_N/TEA_N High to Low 5 ns
t6 PCLK to TA_N/TEA_N Low to High 2 ns
t7 PCLK to TA_N/TEA_N 3-State 4 ns
t8 (Read) DATA Valid to PCLK with TA_N Low 2 (tc_M860) 3 (tc_M860) ns
t9 PCLK to DATA 3-State 2 ns
tc_M360 Asynch
M360
(Write)
PCLK Period 12.76 ns
t10 ADDRESS Valid to CS_N, DS_N, TS_N Fall 0 ns
t11 TA_N Fall to CS_N, DS_N, TS_N Rise 0 ns
t12 TA_N Fall to DATA, ADDRESS Invalid 0 ns
t13 RW_N Fall to CS_N, DS_N, TS_N Fall 0 ns
t14 DS_N Rise to RW_N Rise 0 ns
t15 DATA Valid to DS_N Fall 0 ns
t16 CS_N, DS_N, TS_N Fall to TA_N/TEA_N High 4 (tc_M360) ns
t17 CS_N, DS_N, TS_N Fall to TA_N/TEA_N Fall 5 (tc_M360) 35 (tc_M360)* ns
t18 CS_N, DS_N, TS_N Rise to TA_N/TEA_N Rise 2 (tc_M360) 3 (tc_M360) ns
t19 CS_N, DS_N, TS_N Rise to TA_N/TEA_N 3-
State
4 (tc_M360) 5 (tc_M360) ns
t20 (Read) TA_N/TEA_N Valid to DATA Valid tc_M360 2 (tc_M360) ns
t21 CS_N,TS_N, DS_N Rise to DATA 3-State 2 (tc_M360) 4 (tc_M360) ns
tc_DSP DSP
Synch
(Write)
PCLK Period 10 ns
tcycle_DSP Bus Transfer Cycle Time 5 (tc_DSP) ns
t22 CS_N, ADDRESS Valid to PCLK (Setup) 3.5 ns
t23 TS_N, RW_N Valid to PCLK (Setup) 3.0 ns
t24 CS_N to TA_N Active/High Impedance 9.5 ns
t25 PCLK to TA_N (Clock to Out) 6.0 ns
t26 PCLK to CS_N, ADDRESS Invalid (Hold) 0 ns
t27 PCLK to TS_N, RW_N Invalid (Hold) 0 ns
t28 PCLK to DATA Input Invalid (Hold) 0 ns
t29 DATA Input Valid to PCLK (Setup) 20.0 ns
t30 PCLK to DATA Output Active/High Impedance 14.0 ns
t31 PCLK to DATA Output Valid 26.0 ns
78 Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Timing Characteristics (continued)
Microprocessor Interface Timing (continued)
Synchronous Mode—M860
The synchronous microprocessor interface (like Motorola MPC860) mode is selected when MPMODE = 10 or 11.
Parity is selected when MPMODE = 10; no parity is selected when MPMODE = 11. Interface timing for the synchro-
nous mode write cycle is given in Figure 20 and for the read cycle in Figure 21.
In synchronous mode, a transfer error (TA_N = 1, TEA_N = 0) will occur if the internal cycle is not terminated in
32 PCLK cycles from the first rising edge of PCLK where CS_N = 0 and TS_N = 0.
0583r.2(F)
Figure 20. M860 Synchronous Write Cycle (MPMODE = 10 or 11)
Table 85. TA_N/TEA_N Cycle Termination for Synchronous Write Cycle
TA_N TEA_N Encoding Description
0 0 Write data parity error.
0 1 Normal cycle termination.
1 0 Access to undefined address region—transfer error.
1 1 No cycle termination—processor-generated time out.
PCLK
ADDRESS_[12:0]
CS_N
TS_N
RW_N
DATA_[15:0]/
TA_N/TEA_N
tc_M860
HIGH Z HIGH Z
PARITY_[1:0]
(INPUT)
tcycle_M860 INSERTED
WAIT-STATES
t1
t2
t4
t5
t6
t7
t3
Agere Systems Inc. 79
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Timing Characteristics (continued)
Microprocessor Interface Timing (continued)
0584r.3(F)
Figure 21. M860 Synchronous Read Cycle (MPMODE = 10 or 11)
Table 86. TA_N/TEA_N Cycle Termination for Synchronous Read Cycle
TA_N TEA_N Encoding Description
0 0 Not possible during read cycle.
0 1 Normal cycle termination.
1 0 Access to undefined address region—transfer error.
1 1 No cycle termination—processor-generated time out.
PCLK
ADDRESS_[12:0]
CS_N
TS_N
RW_N
DATA_[15:0]/
TA_N/TEA_N HIGH Z HIGH Z
PARITY_[1:0]
(OUTPUT)
tcycle_M860 INSERTED
WAIT-STATES
t1
t2
t4 t5
t6
t7
t3
t8 t9
80 Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Timing Characteristics (continued)
Microprocessor Interface Timing (continued)
Asynchronous Mode—M360
The asynchronous microprocessor interface (like Motorola MC68360) mode is selected when MPMODE = 00.
Interface timing for the asynchronous mode write cycle is given in Figure 22 and for the read cycle in Figure 23.
In asynchronous mode, the PCLK can be connected to a 77.76 MHz clock. This can be divided down from the
SYS_CLK at 155.52 MHz. The microprocessor should run at no more than half the frequency of PCLK in asynchro-
nous mode. The timing numbers shown assume a PCLK frequency of 77.76 MHz.
0581r.2(F)
Figure 22. M360 Asynchronous Write Cycle (MPMODE = 00)
Table 87. TA_N/TEA_N Cycle Termination for Asynchronous Write Cycle
TA_N TEA_N Encoding Description
0 0 Not possible during asynchronous write cycle.
0 1 Normal cycle termination.
1 0 Access to undefined address region—transfer error.
1 1 No cycle termination—processor-generated time out.
ADDRESS_[12:0]
CS_N
TS_N
DS_N
RW_N
DATA_[15:0]
TA_N/TEA_N
(INPUT)
t10
t10
t15
t18
t14
t13
t10
HIGH Z HIGH Z
t17
t16
t12
t11
t12
t11
t11
t19
Agere Systems Inc. 81
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Timing Characteristics (continued)
Microprocessor Interface Timing (continued)
0582r.2(F)
Figure 23. M360 Asynchronous Read Cycle (MPMODE = 00)
Table 88. TA_N/TEA_N Cycle Termination for Asynchronous Read Cycle
TA_N TEA_N Encoding Description
0 0 Not possible during read cycle.
0 1 Normal cycle termination.
1 0 Access to undefined address region—transfer error.
1 1 No cycle termination—processor-generated time out.
ADDRESS_[12:0]
CS_N
TS_N
DS_N
TA_N/TEA_N
DATA_[15:0]
t21
t19
RW_N
t10
t10
t20
HIGH Z
HIGH Z
HIGH Z
HIGH Z
t18
t17
t16
t10
82 Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Timing Characteristics (continued)
Microprocessor Interface Timing (continued)
DSP Synchronous Mode
The synchronous digital signal processor interface (like Motorola DSP56309) mode is selected when
MPMODE = 01. The DSP mode allows for five-cycle read/write only when accessing the connection memory and
E1/F1 memory. All other addressing will have a significant number of wait-states depending on what internal block
is being accessed.
Note: Although the Motorola DSP56309 must be in two or more wait-states mode, there will always be at least
four wait-states (i.e., five clock cycles).
WR and RD in Figure 24 refer to DSP56309 pins which are analogous to pins RW_N and TS_N, respectively, in
the TDCS4810G device.
0797r.4(F)
Figure 24. DSP R/W Synchronous Write Cycle (MPMODE = 01)—Two or More Wait-States Mode
PCLK
ADDRESS[12:0]
CS_N
TS_N (RD)
RW_N (WR)
TA_N
DATA [15:0]
(OUTPUT)
tc_DSP
DATA [15:0]
(INPUT)
t22
t23
t23
HIGH Z HIGH Z
t24
t24 t25
t26
t27
HIGH ZHIGH Z X
tcycle_DSP
t31
t30
t29
t25
INSERTED
WAIT-STATES
t30
t28
Agere Systems Inc. 83
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Outline Diagram
792-Pin LBGA
Dimensions are in millimeters.
.
5-9800(F)
Note: A dimension x/y refers to the minimum and maximum values for the given parameter.
1.96/2.27
SEATING PLANE
SOLDER BALL
1.33/1.60
0.20
40.00 ± 0.10
40.00
A1 BALL
T
D
H
AL
F
K
B
P
M
L
J
AH
R
C
E
Y
N
U
AN
G
AD
V
AM
AJ
AG
AE
AC
AA
W
AP
AK
AF
AB
AR
A
38 SPACES
A1 BALL
CORNER
± 0.10
@ 1.00 = 38.00
CORNER
40.00
40.00
19
30 2628 2432 22 20 18 46810121416 234
52325 731 29 1521 327 1117 913 135 33
38 SPACES @ 1.00 = 38.00
23.1
23.1
2.61 ± 0.24
0.41/0.58
AU AT
AV
AW
3638
3739
1.00
84 Agere Systems Inc.
Advance Data Sheet
May 2001
10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Outline Diagram (continued)
792-Pin LBGA (continued)
Table 89. Basic 792-Pin LBGA
Ordering Information
Act.
Balls
Ball Pitch
mm
(mils)
Width/Length
mm
(mils)
Thickness
mm
(mils)
(nom.)
Max Height*
mm
(mils)
* Maximum height from the board to the top surface of the package before solder ball collapse.
PWR/GND
792 1.00
(39.4)
40.00
(1575)
2.11
(83)
2.85
(112)
192
Device Code Package Temperature Comcode
(Ordering Number)
TDCS4810G 792-pin LBGA –40 °C to +85 °C 109057265
Agere Systems Inc. 85
Advance Data Sheet
May 2001 10 Gbits/s APS Port and TSI
TDCS4810G SONET/SDH
Revision History
May 2001—Rev 2
Pin Information
Page 25, Table 5, added second footnote (†) and
reworked name/description for rows F9—AR31.
Page 25, Figure 3, added to document.
Register Descriptions
Page 66, Table 55 and Table 56, removed row for
bit 4.
Absolute Maximum Ratings
Page 72, Table 76, replaced TBD with corresponding
values.
Operating Conditions
Page 72, Table 78, replaced TBD with corresponding
values.
Electrical Characteristics
Page 73 to 76, added section to document.
Outline Diagram
Page 84, Table 89, removed the following colums:
descriptor, layers, array-size, max signals, and num-
ber of pads.
Agere Systems Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application.
Copyright © 2001 Agere Systems Inc.
All Rights Reserved
Printed in U.S.A.
May 2001
DS01-150SONT
For additional information, contact your Agere Systems Account Manager or the following:
INTERNET: http://www.agere.com
E-MAIL: docmaster@micro.lucent.com
N. AMERICA: Agere Systems Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18109-3286
1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)
ASIA PACIFIC: Agere Systems Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256
Tel. (65) 778 8833, FAX (65) 777 7495
CHINA: Agere Systems (Shanghai) Co., Ltd., 33/F Jin Mao Tower, 88 Century Boulevard Pudong, Shanghai 200121 PRC
Tel. (86) 21 50471212, FAX (86) 21 50472266
JAPAN: Agere Systems Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan
Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700
EUROPE: Data Requests: DATALINE: Tel. (44) 7000 582 368, FAX (44) 1189 328 148
Technical Inquiries:GERMANY: (49) 89 95086 0 (Munich), UNITED KINGDOM: (44) 1344 865 900 (Ascot),
FRANCE: (33) 1 40 83 68 00 (Paris), SWEDEN: (46) 8 594 607 00 (Stockholm), FINLAND: (358) 9 3507670 (Helsinki),
ITALY: (39) 02 6608131 (Milan), SPAIN: (34) 1 807 1441 (Madrid)