ADS8344 15
SBAS139E
SYMBOL DESCRIPTION MIN TYP MAX UNITS
tACQ Acquisition Time 1.7 µs
tDS DIN Valid Prior to DCLK Rising 50 ns
tDH DIN Hold After DCLK HIGH 10 ns
tDO DCLK Falling to DOUT Valid 100 ns
tDV CS Falling to DOUT Enabled 70 ns
tTR CS Rising to DOUT Disabled 70 ns
tCSS CS Falling to First DCLK Rising 50 ns
tCSH CS Rising to DCLK Ignored 0 ns
tCH DCLK HIGH 150 ns
tCL DCLK LOW 150 ns
tBD DCLK Falling to BUSY Rising 100 ns
tBDV CS Falling to BUSY Enabled 70 ns
tBTR CS Rising to BUSY Disabled 70 ns
FIGURE 7. Ideal Input Voltages and Output Codes.
TABLE VII. Timing Specifications (+VCC = +4.75V to
+5.25V, TA = –40°C to +85°C, CLOAD = 50pF).
Output Code
0V
FS = Full-Scale Voltage = V
REF
1LSB = V
REF
/65,536
FS – 1LSB
11...111
11...110
11...101
00...010
00...001
00...000
1LSB
NOTE: (1) Voltage at converter input, after multiplexer: +IN – (–IN). (See Figure 2.)
Input Voltage
(1)
(V)
Data Format
The ADS8344 output data is in straight binary format, as
shown in Figure 7. This figure shows the ideal output code
for the given input voltage and does not include the effects
of offset, gain, or noise.
POWER DISSIPATION
There are three power modes for the ADS8344: full-power
(PD1 - PD0 = 11B), auto power-down (PD1 - PD0 = 00B),
and shutdown (SHDN LOW). The effects of these modes
varies depending on how the ADS8344 is being operated.
For example, at full conversion rate and 24-clocks per
conversion, there is very little difference between
full-power mode and auto power-down; a shutdown will not
lower power dissipation.
When operating at full-speed and 24-clocks per conversion
(see Figure 3), the ADS8344 spends most of its time
acquiring or converting. There is little time for auto
power-down, assuming that this mode is active. Thus, the
difference between full-power mode and auto power-down
is negligible. If the conversion rate is decreased by simply
slowing the frequency of the DCLK input, the two modes
remain approximately equal. However, if the DCLK fre-
quency is kept at the maximum rate during a conversion, but
conversions are simply done less often, then the difference
between the two modes is dramatic. In the latter case, the
converter spends an increasing percentage of its time in
power-down mode (assuming the auto power-down mode is
active).
If DCLK is active and CS is LOW while the ADS8344 is in
auto power-down mode, the device will continue to dissipate
some power in the digital logic. The power can be reduced
to a minimum by keeping CS HIGH.
Operating the ADS8344 in auto power-down mode will
result in the lowest power dissipation, and there is no
conversion time “penalty” on power-up. The very first
conversion will be valid. SHDN can be used to force an
immediate power-down.
NOISE
The noise floor of the ADS8344 itself is extremely low, as
shown in Figures 8 thru 11, and is much lower than compet-
ing A/D converters. The ADS8344 was tested at both 5V
and 2.7V, and in both the internal and external clock modes.
A low-level DC input was applied to the analog-input pins
and the converter was put through 5,000 conversions. The
digital output of the A/D converter will vary in output code
due to the internal noise of the ADS8344. This is true for all
16-bit SAR-type A/D converters. Using a histogram to plot
the output codes, the distribution should appear bell-shaped
with the peak of the bell curve representing the nominal code
for the input value. The ±1σ, ±2σ, and ±3σ distributions will
represent the 68.3%, 95.5%, and 99.7%, respectively, of all
codes. The transition noise can be calculated by dividing the
number of codes measured by 6 and this will yield the ±3σ
distribution, or 99.7%, of all codes. Statistically, up to 3
codes could fall outside the distribution when executing
1,000 conversions. The ADS8344, with < 3 output codes for
the ±3σ distribution, will yield a < ±0.5LSB transition noise
at 5V operation. Remember, to achieve this low-noise per-
formance, the peak-to-peak noise of the input signal and
reference must be < 50µV.
FIGURE 8. Histogram of 5,000 Conversions of a DC Input at the
Code Transition, 5V operation external clock mode.
Code
4561
24200197
7FFE7FFD 800180007FFF