Jan. 2009
MITSUBISHI IGBT MODULES
CM400DX-12A
HIGH POWER SWITCHING USE
CM400DX-12A
¡IC ...................................................................400A
¡VCES ............................................................600V
¡Dual
¡Flatbase Type / Insulated Package /
Copper (non-plating) base plate
¡RoHS Directive compliant
APPLICATION
General purpose Inverters, Servo Amplifiers, Power supply, etc.
OUTLINE DRAWING & CIRCUIT DIAGRAM
Dimensions in mm
4-φ5.5 MOUNTING HOLES
18.8
15
45.48
41.66
(102.25)
95
72.14
68.34
(7.75)
3.5
TERMINAL t = 0.8
SECTION A
(7.4)
1.2
1.5
12.5
φ2.5
φ4.3
φ2.1
(3.81)
1.15
0.65
22
(14) (14) (4.2)
(13.5) (13.5)
58.4
12
17
12
66
17
121.7
110
±0.5
50
±0.5
62
57.5
39
99
94.5
137
152
46
47
48
24
23
22
45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25
212019181716151413121110987654321
6.5 A
(21.14)
4-M6 NUTS
(5.4)
12.5
(SCREWING DEPTH)
17
+1
-0.5
(3)
13
17
0.8
(20.5)
7
0
Di1
Di2
NTC
Th
Tr 2
Tr 1
TH1(1) E1(16)
C1(22)G1(15)
TH2(2)
E2(39) G2(38)
E2(47) E1C2
(24)
E1C2
(23)
C1(48)
LABEL
CIRCUIT DIAGRAM
Pin positions
with tolerance
φ0.5
Toleranceotherwisespecified
Division of Dimension
0.5 to 3
over 3 to 6
over 6 to 30
over 30 to 120
over 120 to 400
Tolerance
±0.2
±0.3
±0.5
±0.8
±1.2
Jan. 2009
2
MITSUBISHI IGBT MODULES
CM400DX-12A
HIGH POWER SWITCHING USE
ABSOLUTE MAXIMUM RATINGS (T
j
= 25°C, unless otherwise specified)
INVERTER PART
Symbol Parameter Conditions Rating Unit
V
CES
V
GES
I
C
I
CRM
P
C
I
E (Note.3)
I
ERM(Note.3)
T
j
T
stg
V
iso
Collector-emitter voltage
Gate-emitter voltage
Collector current
Maximum collector dissipation
Emitter current
(Free wheeling diode forward current)
Junction temperature
Storage temperature
Isolation voltage
Base plate flatness
Torque strength
Torque strength
Weight
G-E Short
C-E Short
DC, T
C
= 60°C
Pulse
T
C
= 25°C
T
C
= 25°C
Pulse
Terminals to base plate, f = 60Hz, AC 1 minute
On the centerilne X, Y
Main terminals M6 screw
Mounting M5 screw
(Typical)
600
±20
400
800
1340
400
800
–40 ~ +150
–40 ~ +125
2500
±0 ~ +100
3.5 ~ 4.5
2.5 ~ 3.5
330
V
A
W
A
°C
Vrms
μm
N·m
g
(Note. 1)
(Note. 4)
(Note. 1, 5)
(Note. 1)
(Note. 4)
(Note. 8)
Note. 8: The base plate flatness measurement points are in the following figure.
+
X
Y
+
Heatsinkside
Heatsinkside
+convex
concave
Jan. 2009
3
MITSUBISHI IGBT MODULES
CM400DX-12A
HIGH POWER SWITCHING USE
ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise specified)
INVERTER PART
Limits Unit
Min. Typ. Max.
I
CES
V
GE(th)
I
GES
V
CE(sat)
C
ies
C
oes
C
res
Q
G
t
d(on)
t
r
t
d(off)
t
f
t
rr (Note.3)
Q
rr (Note.3)
V
EC(Note.3)
R
lead
R
th(j-c)Q
R
th(j-c)R
R
th(c-f)
R
Gint
R
G
Collector cutoff current
Gate-emitter threshold voltage
Gate leakage current
Collector-emitter saturation voltage
Input capacitance
Output capacitance
Reverse transfer capacitance
Total gate charge
Turn-on delay time
Turn-on rise time
Turn-off delay time
Turn-off fall time
Reverse recovery time
Reverse recovery charge
Emitter-collector voltage
Module lead resistance
Thermal resistance
(Junction to case)
Contact thermal resistance
(Case to heat sink)
Internal gate resistance
External gate resistance
V
CE
= V
CES
, V
GE
= 0V
I
C
= 40mA, V
CE
= 10V
±V
GE
= V
GES
, V
CE
= 0V
I
C
= 400A, V
GE
= 15V
I
C
= 400A, V
GE
= 15V
V
CE
= 10V
V
GE
= 0V
V
CC
= 300V, I
C
= 400A, V
GE
= 15V
V
CC
= 300V, I
C
= 400A
V
GE
= ±15V, R
G
= 3.6Ω
Inductive load
(I
E
= 400A)
I
E
= 400A, V
GE
= 0V
I
E
= 400A, V
GE
= 0V
Main terminals-chip, per switch
per IGBT
per free wheeling diode
Thermal grease applied
per 1 module
T
C
= 25°C
6
1.7
1.9
1.6
1100
2.0
1.95
1.9
1.1
0.015
0
1
7
0.5
2.1
50
5.3
1.6
200
200
400
600
200
2.8
0.093
0.16
16
5
1.6
mA
V
μA
V
nF
nC
ns
μC
V
mΩ
K/W
Ω
T
j
= 25°C
T
j
= 125°C
Chip
(Note. 6)
(Note. 2)
(Note. 1)
(Note. 1)
(Note. 6)
T
j
= 25°C
T
j
= 125°C
Chip
(Note. 6)
Symbol Parameter Conditions
Note.1: Case temperature (TC), heat sink temperature (Tf) measured point is just under the chips. (Refer to the figure of the chip location.)
2: Typical value is measured by using thermally conductive grease of λ = 0.9W/(m·K).
3: IE, IERM, VEC, trr and Qrr represent ratings and characteristics of the anti-parallel, emitter-collector free wheeling diode (FWDi).
4: Pulse width and repetition rate should be such that the device junction temperature (Tj) dose not exceed Tjmax rating.
5: Junction temperature (Tj) should not increase beyond 150°C.
6: Pulse width and repetition rate should be such as to cause negligible temperature rise.
(Refer to the figure of the test circuit for VCE(sat) and VEC)
7:
NTC THERMISTOR PART
Limits Unit
Min. Typ. Max.
R
ΔR/R
B
(25/50)
P
25
Zero power resistance
Deviation of resistance
B constant
Power dissipation
T
C
= 25°C
T
C
= 100°C, R
100
= 493Ω
Approximate by equation
T
C
= 25°C
5.00
3375
5.15
+7.8
10
4.85
–7.3
kΩ
%
K
mW
(Note. 7)
Symbol Parameter Conditions
R
25
: resistance at absolute temperature T
25
[K]; T
25
= 25 [°C]+273.15 = 298.15 [K]
R
50
: resistance at absolute temperature T
50
[K]; T
50
= 50 [°C]+273.15 = 323.15 [K]
B
(25/50)
= In( )/( )
R
25
R
50
1
T
25
1
T
50
Jan. 2009
4
MITSUBISHI IGBT MODULES
CM400DX-12A
HIGH POWER SWITCHING USE
Chip Location (Top view) Dimensions in mm (tolerance: ±1mm)
(121.7)
(152)
(110)
0
21.5
32.0
0
29.6
36.3
43.2
78.6
(50)
(62)
LABEL SIDE
0
30.0
43.6
Di2
Di1
Tr1
Tr
Th
2
46
47
48
24
23
22
45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25
212019181716151413121110987654321
Each mark points the center position of each chip. Tr*: IGBT, Di*: FWDi, Th: NTC thermistor
Jan. 2009
5
MITSUBISHI IGBT MODULES
CM400DX-12A
HIGH POWER SWITCHING USE
t
rr,
Q
rr
test waveform
t
IE
trr
Irr 1/2 Irr
Qrr = 1/2 Irr trr
0A
Switching time test circuit and waveforms
VCC+
IC
VCE
IE
Arm
RG
VGE
+VGE
VGE
Load
0V VGE
VGE
IC
td(on) td(off)
trtf
90%
10%
0V
0A
90%
0%
V
CE(sat)
test circuit
T
r
1T
r
2
I
C
V
GE
= 15V
C1
E1C2
E2
V
GE
= 0V
G1
E1(E1s)
C1(C1s)
G2
E2(E2s)
V
I
C
V
GE
= 15V
C1
E1C2
E2
V
GE
= 0V
G1
E1(E1s)
G2
E2(E2s)
C1(C1s)
V
I
E
V
GE
= 0V
C1
E1C2
E2
V
GE
= 0V
G1
E1(E1s)
C1(C1s)
G2
E2(E2s)
V
I
E
V
GE
= 0V
C1
E1C2
E2
V
GE
= 0V
G1
E1(E1s)
G2
E2(E2s)
C1(C1s)
V
D
i
2
V
EC
test circuit
D
i
1
Jan. 2009
6
PERFORMANCE CURVES
0
100
200
300
400
500
600
700
800
100 246813579
T
j
= 25°C
V
GE
=
20V
15
0
0.5
1
1.5
2
2.5
3
3.5
0 100 200 300 400 500 600 700 800
T
j
= 25°C
T
j
= 125°C
V
GE
= 15V
10
0
2
4
6
8
206 8 10 12 14 16 18
T
j
= 25°C
I
C
= 800A
I
C
= 400A
I
C
= 160A
10
–1
210
0
357 2 10
1
357 210
2
357
VGE = 0V
12
13
11
10
9
8
10
0
10
–1
10
1
5
7
10
2
2
3
5
7
2
3
5
7
2
3
10
2
10
1
10
3
5
7
10
4
2
3
5
7
2
3
5
7
2
3
Cies
Coes
Cres
10
2
10
1
5
7
2
3
0 0.5 1 1.5 2 2.5 3 3.5 4
10
3
5
7
2
3
10
1
10
2
23 57 10
3
23 57
Conditions:
VCC = 300V
VGE = ±15V
RG = 3.6Ω
Tj = 125°C
Inductive load
t
d(off)
t
d(on)
t
f
t
r
T
j
= 25°C
T
j
= 125°C
OUTPUT CHARACTERISTICS
(TYPICAL) Inverter part
COLLECTOR CURRENT I
C
(A)
COLLECTOR-EMITTER VOLTAGE V
CE
(V) COLLECTOR CURRENT I
C
(A)
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
(TYPICAL) Inverter part
COLLECTOR-EMITTER
SATURATION VOLTAGE V
CE(sat)
(V)
GATE-EMITTER VOLTAGE V
GE
(V)
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
(TYPICAL) Inverter part
FREE WHEELING DIODE
FORWARD CHARACTERISTICS
(TYPICAL) Inverter part
EMITTER-COLLECTOR VOLTAGE V
EC
(V)
CAPACITANCE CHARACTERISTICS
(TYPICAL) Inverter part
CAPACITANCE (nF)
COLLECTOR-EMITTER VOLTAGE V
CE
(V)
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL) Inverter part
COLLECTOR CURRENT I
C
(A)
COLLECTOR-EMITTER
SATURATION VOLTAGE V
CE(sat)
(V)
EMITTER CURRENT I
E
(A)
SWITCHING TIME (ns)
MITSUBISHI IGBT MODULES
CM400DX-12A
HIGH POWER SWITCHING USE
Jan. 2009
7
MITSUBISHI IGBT MODULES
CM400DX-12A
HIGH POWER SWITCHING USE
10
2
10
1
10
0
2
3
5
7
2
3
5
7
10
3
10
2
10
1
2
3
5
7
2
3
5
7
10
0
10
1
57 10
2
23 5723
10
3
10
2
10
1
Conditions:
V
CC
= 300V
V
GE
= ±15V
R
G
= 3.6Ω
T
j
= 25°C
Inductive load
2
3
5
7
2
3
5
7
10
1
10
2
57 10
3
23 5723
trr
Irr
td(off)
td(on)
0 200 400 600 800
1000 1200 1400 1600
0
5
10
15
20
V
CC
= 200V
V
CC
= 300V
I
C
= 400A
10
–3
10
0
7
5
3
2
10
–2
7
5
3
2
10
–1
7
5
3
2
10
–5
23 57
10
–4
23 57
10
–3
23 57
10
–2
23 57
10
–1
23 57
10
0
23 57
10
1
Inverter IGBT part : Per unit base = R
th(j–c)
= 0.093K/W
Inverter FWDi part : Per unit base = R
th(j–c)
= 0.16K/W
Conditions:
V
CC
= 300V
V
GE
= ±15V
I
C
= 400A
T
j
= 125°C
Inductive load
10
1
10
2
57 10
3
23 5723
Eoff
Eon
Err
Conditions:
VCC = 300V
VGE = ±15V
RG = 3.6Ω
Tj = 125°C
Inductive load
10
2
10
1
10
0
2
3
5
7
2
3
5
7
10
0
10
1
57 10
2
23 5723
tr
tf
Eoff
Eon
Err
Conditions:
VCC = 300V
VGE = ±15V
IC, IE = 400A
Tj = 125°C
Inductive load
Single pulse
TC = 25°C
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL) Inverter part
SWITCHING LOSS (mJ/pulse)
GATE RESISTANCE R
G
(Ω)
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL) Inverter part
SWITCHING TIME (ns)
GATE RESISTANCE R
G
(Ω)
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL) Inverter part
SWITCHING LOSS (mJ/pulse) l
rr
(A), t
rr
(ns)
COLLECTOR CURRENT I
C
(A)
EMITTER CURRENT I
E
(A)
REVERSE RECOVERY CHARACTERISTICS
OF FREE WHEELING DIODE
(TYPICAL) Inverter part
EMITTER CURRENT I
E
(A)
GATE CHARGE CHARACTERISTICS
(TYPICAL) Inverter part
GATE-EMITTER VOLTAGE V
GE
(V)
GATE CHARGE Q
G
(nC)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Z
th(j–c)
TIME (s)