.- 3875081 GE SOLID STATE _ 01 pe se7soaa coraesy 27 O1E 18254 pl-37-07 Standard Power MOSFETs File Number 1563 IRFF120, IRFF121, IRFF122, IRFF123 Power MOS Field-Effect Transistors N-Channel Enhancement-Mode Power Field-Effect Transistors 5.0A and 6.0A, 60V-100V fos(on) = 0.30 O and 0.400 Features: @ SOA is power-dissipation limited @ Nanosecond switching speeds @ Linear transfer characteristics @ High input impedance @ Majority carrier device The !RFF120, IRFF121, IRFF122 and IRFF123 are n-channel enhancement-mode silicon-gate power field- effect transistors designed for applications such as switch- ing regulators, switching converters, motor drivers, relay drivers, and drivers for high-power bipolar switching tran- sistors requiring high speed and low gate-drive power. These types can be operated directly from integrated circuits. The IRFF-types are supplied in the JEDEC TO-205AF (LOW-PROFILE TO-39) metal package. Absolute Maximum Ratings Drain - Source Deain Oran Pulsed Drain Gste - Source Max, Power Linear Factor Inductive Currant, Clamped Te = 25C Operating Junction and Storage Temperature Range N-CHANNEL ENHANCEMENT MODE s 92CS-33741 TERMINAL DIAGRAM TERMINAL DESIGNATION GATE ORAIN SOURCE (CASE) 9205-37555 JEDEC TO-205AF 0.16 (See Fig. 16 and 16) k = 100nH 24 20 -55 to 150 19701 pePss7sos1 oorsass 9 3875081 GE SOLID STATE . OTE 18255 =o T-3B9-09 Standard Power MOSFETs IRFF120, IRFF121, IRFF122, IRFF123 Electrical Characteristics @Tc = 25C (Unless Otherwise Specified) Parameter Type Min Typ | Max Units Test Conditions 8Vpss Orain- Source Greskdown Voltage IRFF420 _ _ = iRFF122 | 100 v_| Yas =ov > '. {RFF121 _ _ = - IREF123 60 Vv Ip + 250pA Vesith)_ Gate Threshold Voltage ALL 20 | [40 v Vos = VGs-Ip = 250nA lass _ Gate-Saurce Leakage Forward ALL = ~ | wo] na Igss Gate Source Leakage Reverse ALL - [-100 nA Ipss Zero Gate Voltage Drain Current ALL - = 250 BA Vos = Max. Raung, Vgg = OV - = 1000 BA Vos = Max Raung x 0.8, Vag = OV, Te = 125C 'Dion} ~ On-State Drain Current @) IRFFI20 | 65 _ . A IAFF 121 Vos? 'Dton) *8 Vgg = 10V DS? 'Dtont *Fpsion) max.: Yas . iAFFI22 1 | _ A iRFF123 . Rostonj Static Drain Source On-State IRFF120 _ a Resistance @ tRFF121 0.25 | 0.30 a Veg = 10, 1p = 3 0A reri22! _ Josoloso] a IRFFI23 * 7 fs Forward Transconductance @ ALL us [29] AG Yps > 'bion) * Roston! max.- Ip = 3-08 Ciss Input Capacitance ALL = 450 | 600 pF Vas = OV, Vpg = 25V,f = 1.0 MHz Coss Gutput Capacitance ALL - 200 | 400 BF See Fig. 10 Ciss__ Reverse Transfer Capacitance ALL = so | 100 | pF Tdton) Turn On Delay Time ALL = | 20 | 40 ns Ypp ~ 0.5 BVpg. Ip = 3.0A,Z, = 5On tr Rise Time ALL - 37 70 ns See Fig. 17 Tloft) Turn-Olf Delay Time ALL = 50 | 100 as (MOSFET times are tf Fal! Time ALL _ 35 70 nS independent of operating temperature } Qg TotalGate Charge _ Vag = 10. Ip = 104, Vag = 0.8 Max. Rating (Gate-Source Plus Gata-Drain} ALL 10 15 nc See Fig. 18 tor test citcuit. (Gate charge is essentially Independent of operating temperature.) Qgs Gate Source Charge ALL - 6.0 - ac Ogg Gate Orain ("Miler"} Charge ALL - 4.0 => aC lp (internal Drain Inductance ALL - 5.0 - nH Measured from the Modified MOSFET drain iead, 5 mm (0 2 symbol showing the in.) fram header to Internal device canter of die inductances Lo Us internal Source Inductance ALL ~ 15 - oH Measured from the H source lead, Smm {0 2 Fat in.) from header to G ts source bonding pad . Thermal Resistance [Rinse Junctionte Case Joau T 7[ - [ez] cw | [Rusa _Junction-to Ambient pau = |] [ws foow | Free Ar Operation | Source-Drain Diode Ratings and Characteristics Is Continuous Source Current IRFE120 _ _ 60 A Modified MOSFET symbo! (Body Diode) IRFF121 showing the integra! o reverse P N junction rectifier IRFF122 | _ - | se A IRFF423 ts Pulse Source Current IRFFI20 | _ 6 (Body Diode) @ IRFFA23 24 a ]- - : - . (RFF122 s : - weriz3} 7 | ~ | 7 | A Vs O.ode Farward Voltage @ IRFF120 _ _ Tp = 25C, le = 6.00, Vac = OV sp (RFF121 25 | c s Gs IRFFI22 [ _ = 25C, Ig = 5 OA, Vgc = OV . ~ : IRFF123 23 v Tg = 25C, Ig = 5 0A, Vag tre Reverse Recovery Time ALL = 230 { - ns Ty = 150C. Ip = 6 OA, dipsdt = TOOA ps Opp __Reverse Recovered Charge ALL - 1.2 - ac Ty = 180C, Ip = GOA. dipdt = 100Aius ton Forward Turn an Time ALL fotansse turn on tme is neg!tgible. Turn on speed 1s substantially controlled by Lg + Lo @Ty = 25C ta 150C, @Putse Test: Pulse width 3COys, Duty Cycle < 2% Repettve Rating Pulse width limited by max. junction temperature. Sce Transient Thermal Impedance Curve (Fig 5). 198 |_<$aAA__ 7., Oh de ff sa7soar coraese o 3875081 G E SOLID STATE oie 18256 ot.39O? Standard Power MOSFETs Ip, DAAIN CURRENT (AMPERES) Ip, ORAIN CURRENT (AMPERES) Bon o wn Zenyel Pen je. NORMALIZED EFFECTIVE TRANSIENT TEE RMAL IMPEDANCE (PER UNIT) ie ws 2 8. wh 2 6 9 0 a x 40 Vos. ORAIN TO SOURCE VOLTAGE (VOLTS) Fig. 1 Typical Output Characteristics o 1 2 3 4 Vos. DRAIN TO SOURCE VOLTAGE (VOLTS) Fig. 3 Typical Saturation Characteristics t Ig, DRAIN CURRENT (AMPERES) IRFF120, (RFF121, (RFF122, IRFF123 Ip, DRAIN CURAENT (AMPERES) 2 a, PULSE T Vps> 'ptan) * Rosian) max. ye a 2 4 6 t 10 Vgs. GATE TO SQUACE VOLTAGE (VOLTS) Fig. 2 Typical Transfer Characteristics OPERATION IN THIS AREAIS LIMITED ay IRFF 120, 1 IAFF 122,3 IAFF 120, 1 SRFF 122.3 Tc: Ty= OC MAR TOS t Ringe= 8 25C | SINGLE PULSE 4 + IRFFI21 a bec onee ++ 3 oc VAFEI20.2 4 +t 10 2 5 10 20 50 100 20 $00 Vgg ORAIN TO-SQURCE VOLTAGE (VOLTS? Fig. 4 Maximum Safe Operating Area at t. 005 a2 1. DUTY FACTOR, D = z 002 SINGLE PULSE (TRANSIENT 2 PER UNIT BASE = Bipjc = 625 DEG CW ; IMPEOANCE) 3 Ty-Te* Pos Zunsctt a1 w2 2 5 wt 2 5 i 2 5 ow 1), SQUARE WAVE PULSE DURATION (SECONDS) Fig. 5 Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration 199- - OL DE 3675081 001825? 2 i 3875081 G E SOLID STATE ww by Standard Power MOSFETs tu O1E 18257. DT*39-09 IRFF120, IRFF121, IRFF122, IRFF123 My, THANSCONDUCTANCE (SIEMENS) Qa 4 t wv iy n 1g, DRAIN CURRENT (AMPERES) . Fig. 6 Typical Transconductance Vs, Drain Current 425 120 115, 100 1.05 ) 0.55 oso BVpss, DRAIN-TOSOURCE BREAKDOWN VOLTAGE (NORMALIZED) oso OTS " 40 40-20 0 0 8&8 M 100 120 149 Ty, JUNCTION TEMPERATURE {C} Fig. 8 Breakdown Voltage Vs. Temperature fe Mie Cras = Ct Cpt, Ces Crm = Cpa C caoea Cat gy C, CAPACITANCE (pF) Q 10 rs] x a 4 Vos. DAAIN TO SOUACE VOLTAGE (VOLTS) Fig. 10 Typical Capacitance Vs. Drain-to-Source Voltage 200 Ty= 150C ton. AEVERSE DRAIN CURRENT (AMPERES) 1 2 3 Ygp, SOUACE TO ORAIN VOLTAGE {VOLTS} Fig. 7 Typical Source-Drain Diode Forward Voltage 250 Aipsianj. ORAIN-TO SOURCE ON-STATE RESISTANCE (NORMALIZED) 2 P = nr r al Saad & 3 B Rk eB BR B bk o h z 4 4 0M 0 RM 8 BO BO 10 120 (140 Ty, JUNCTION TEMPERATURE (C) Fig. 9 Normalized On-Resistance Vs. Temperature Vps = 20V ps = SOV L OV IRFEI2U 122 Vgs. GATE TO SOURCE VOLTAGE (VOLTS) Ip= 10a FOR TEST CIRCUIT SEE FIGURE 18 a 4 8 W2 16 20 Q, TOTAL GATE CHARGE inCt Fig. 11 Typical Gate Charge Vs. Gate-to-Source Voltage3875081 G E SOLID STATE > 01 ve Qsa7sos. oozaess y oie 18258 DI~39O9 Standard Power MOSFETs z 2 8 = & 5 5 a 2 = 5 5 3 = = 3 2 3 z & = a = 2 = Vgs*20V ? = S # LSE OF Roston} FuLS 20 ps OURATION. INITIAL Ty = 25C. {HEATING EFEECT OF 20 ps PULSE IS a 10 2 ca a Ig. ORAIN CURRENT (AMPERES) IRFF120, IRFF121, IRFF122, IRFF123 60 ~ - _ = x 0 25 50 6 100 125 150 Te. CASE TEMPERATURE (C} Fig. 12 Typical On-Resistanca Vs, Drain Current Fig, 13 Maximum Drain Current Vs. Case Temperature ne a Pp, POWER DISSIPATION (WATTS) s cd a 2 Bo a eo 100 2 1d Tr, CASE TEMPERATURE (C) Fig. 14 Power Vs. Temperature Derating Curve VARY 1, 10 OBTAIN REQUIRED PEAK 1, aL Vgs* 20Vh-t, u Fig. 15 Clamped Inductive Test Circuit 1 5BVgs TE Vg @158V ss ADJUST Ry, TO OBTAIN PULSE GENERATOR TO SCOPE oon HIGH FREQUEKCY SHUNT Fig. 17 Switching Time Test Circuit o Vos (ISOLATED SUPPLY) SAME TYPE io CURRENT = CUARENT SHUNT SHUAT Fig. 18 Gate Charge Test Circuit 201