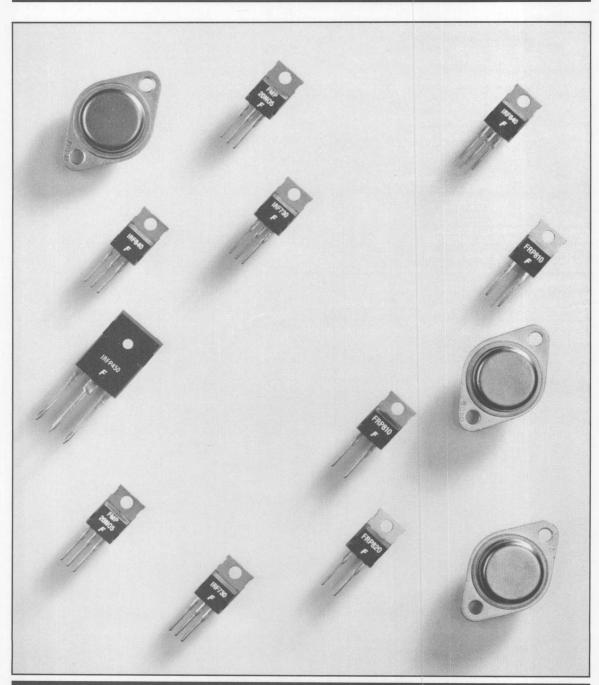


Power Products Data Book

1986/87




Power Data Book

1986/87

Power and Discrete Division

Introduction

The Fairchild Power Semiconductors described in this databook have been designed primarily for use in switching power conversion applications.

The Selection Guides provide easy access to the many types of power devices currently offered by Fairchild. In addition to the products contained herein, special selections can be made to meet specific requirements. For more information on these selections, please contact the nearest Fairchild Field Sales Office.

The continuing advances being made in power semiconductor technology mean that this book can only contain full data on those products available from Fairchild at the time of publication. Section 4 of the book has been devoted to products in advanced stages of development, which are due to be released to production within a few weeks of the publication date. Preliminary data have been included for these products.

Furthermore, following Fairchild's commitment to providing the market with leading-edge products, other devices are also being developed to satisfy an ever-present industry need for more advanced technology in power conversion systems. These products include higher cell density Power MOSFETs, insulated gate devices, better control circuits, high power integrated circuits and lower cost packages displaying improved thermal characteristics.

The Fairthild Power Semiconductors described in this diglabools have been designed primarily for use in switching power conversion applications.

The Selection Guides provide easy socials to the many types of power devices currently offered by Fairchild. In addition to the products contained herein, special selections can be made to meet specific requirements. For more information on these selections, please contact the nearest Fairchild Flaid Sales Office.

The continuing advances being made in power semiconal ductor technology mean that this book can only contain full data on those products evaliable from Falichild at the full data on those products available from book has been devoted at products in advanced stages of development, which are due to be released to production within a few weeks of the publication data. Preliminary data have been included for these products.

Furthermore, following Fainchild's commitment to providing the market with leading-edge products, other devices are slep poing developed to satisfy an over-present industry need for more advanced technology in power conversion systems. These products include higher cell density Power MOSFETs, insufated gate devices, better control circuits, high power integrated circuits and lower cost packages displaying improved thermal characteristics.

Table of Contents

Section 1 Index, Selector Guides		IRF350-353	2-123		
and Industry Cross Reference		IRF420-423, IRF820-823, MTP2N45, MTP2N50	2-127		
Index	1-3	IRF430-433, IRF830-833, MTM4N45, MTM4N50,			
Selector Guides	1-5	MTP4N45, MTP4N50	2-132		
Industry Cross Reference	1-9	IRF440-443, IRF840-843, MTM7N45, MTM7N50	2-138		
		IRF450-453	2-143		
Section 2 Power MOSFET and Ultra-Fast		IRF510-513, MTP4N08, MTP4N10	2-147		
Recovery Rectifier Data Sheets		IRF610-613, MTP2N18, MTP2N20	2-152		
2N6755, 2N6756	2-3	IRF710-713, MTP2N35, MTP2N40	2-157		
2N6757, 2N6758	2-8				
2N6759, 2N6760	2-13	Section 3 MOSFET and Rectifier Dice			
2N6761, 2N6762	2-18	FRC Series Ultra-Fast Rectifier Dice	3-3		
2N6763, 2N6764	2-23	IRFC Series N-Channel Power MOSFET Dice	3-6		
2N6765, 2N6766	2-28				
2N6767, 2N6768	2-33	Section 4 Advanced Products			
2N6769, 2N6770	2-38	BUZ71, BUZ71A			
FMP20N05, FMP18N05	2-43	FMP35N05/FMP30N05			
FRP800 Series	2-47	FRP860 Series	4-6		
FRP1000, FRP2000CC Series	2-51	FRP3200 Series	4-7		
FRP1600 Series	2-55	TO-247 Encapsulated N-Channel Power MOSFETs	4-8		
FRP1600CC Series	2-59				
FRM3200CC Series	2-63	Section 5 Application Notes/ESD			
IRF120-123, IRF520-523, MTP10N08, MTP10N10	2-67	ANPD-4	5-3		
IRF130-133, IRF530-533, MTP20N08, MTP20N10	2-72	ANPD-1	5-9		
IRF140-143, IRF540-543	2-78	ANPD-3	5-15		
IRF150-153	2-83	PBPD-1	5-28		
IRF220-223, IRF620-623, MTP7N18, MTP7N20	2-87				
IRF230-233, IRF630-633, MTP12N18, MTP12N20	2-92	Section 6 Quality Assurance	6-3		
IRF240-243, IRF640-643	2-98	and Reliability			
IRF250-253	2-103				
IRF320-323, IRF720-723, MTP3N35, MTP3N40	2-107	Section 7 Ordering Information	7-3		
IRF330-333, IRF730-733, MTM5N35, MTM5N40,		and Package Outlines			
MTP5N35, MTP5N40	2-112				
IRF340-343, IRF740-743, MTM8N35, MTM8N40	2-118	Section 8 Field Sales Offices	8-3		

Fable of Contents

Index, Selector Guides, Industry Cross Reference	1
Power MOSFETs and Ultra-Fast Recovery Rectifier Data Sheets	2
MOSFET and Rectifier Dice	3
Advanced Products	4
Application Notes/ESD	5
Quality Assurance and Reliability	6
Ordering Information and Package Outlines	7
Field Sales Offices	8

Index, Salector Guides, Industry Cross Reference

Alpha-Numeric Index Power MOSFETs and Ultra-Fast Recovery Rectifiers

Select the appropriate electronic component for your power supply design from the list of power components below. The selection guides briefly describe Fairchild Power MOSFET and Ultra-Fast Recovery Rectifiers. The Industry Cross Reference versus Fairchild part numbers is found after the selection guides.

Power MOSFETs assessment Seems designation and assessment assessment assessment assessment assessment assessment assessment as a seems of the seems as a seems of the seems as a seems of the seems of t

Fairchild Part Number	Page Number	Fairchild Part Number	Page Number	Fairchild Part Number	Page Number	Fairchild Part Number	Page Number
BUZ71	4-3	FRP3205	4-7	IRF340	2-118	IRF620	2-87
BUZ71A	4-3	FRP3210	4-7	IRF341	2-118	IRF621	2-87
FMC20N05	3-6	FRP3215	4-7	IRF342	2-118	IRF622	2-87
FMP18N05	2-43	FRP3220	4-7	IRF343	2-118	IRF623	2-87
FMP20N05	2-43	IRF120	2-67	IRF350	2-123	IRF630	2-92
FMP30N05	4-5	IRF121	2-67	IRF351	2-123	IRF631	2-92
FMP35N05	4-5	IRF122	2-67	IRF352	2-123	IRF632	2-92
FMP55N05	4-8	IRF123	2-67	IRF353	2-123	IRF633	2-92
FMP60N05	4-8	IRF130	2-72	IRF420	2-127	IRF640	2-98
FRC805	3-3	IRF131	2-72	IRF421	2-127	IRF641	2-98
FRC810	3-3	IRF132	2-72	IRF422	2-127	IRF642	2-98
FRC815	3-3	IRF133	2-72	IRF423	2-127	IRF643	2-98
FRC820	3-3	IRF140	2-78	IRF430	2-132	IRF710	2-157
FRC1605	3-3	IRF141	2-78	IRF431	2-132	IRF711	2-157
FRC1610	3-3	IRF142	2-78	IRF432	2-132	IRF712	2-157
FRC1615	3-3	IRF143	2-78	IRF433	2-132	IRF713	2-157
FRC1620	3-3	IRF150	2-83	IRF440	2-138	IRF720	2-107
FRM3205CC	2-63	IRF151	2-83	IRF441	2-138	IRF721	2-107
FRM3210CC	2-63	IRF152	2-83	IRF442	2-138	IRF722	2-107
FRM3215CC	2-63	IRF153	2-83	IRF443	2-138	IRF723	2-107
FRM3220CC	2-63	IRF220	2-87	IRF450	2-143	IRF730	2-112
FRP805	2-47	IRF221	2-87	IRF451	2-143	IRF731	2-112
FRP810	2-47	IRF222	2-87	IRF452	2-143	IRF732	2-112
FRP815	2-47	IRF223	2-87	IRF453	2-143	IRF733	2-112
FRP820	2-47	IRF230	2-92	IRF510	2-147	IRF740	2-118
FRP840	4-6	IRF231	2-92	IRF511	2-147	IRF741	2-118
FRP850	4-6	IRF232	2-92	IRF512	2-147	IRF742	2-118
FRP860	4-6	IRF233	2-92	IRF513	2-147	IRF743	2-118
FRP1005	2-51	IRF240	2-98	IRF520	2-67	IRF820	2-127
FRP1010	2-51	IRF241	2-98	IRF521	2-67	IRF821	2-127
FRP1015	2-51	IRF242	2-98	IFR522	2-67	IFR822	2-127
FRP1020	2-51	IRF243	2-98	IRF523	2-67	IRF823	2-127
FRP1605	2-55	IRF250	2-103	IRF530	2-72	IRF830	2-132
FRP1605CC	2-59	IRF251	2-103	IRF531	2-72	IRF831	2-132
FRP1610	2-55	IRF252	2-103	IRF532	2-72	IRF832	2-132
FRP1610CC	2-59	IRF253	2-103	IRF533	2-72	IRF833	2-132
FRP1615	2-55	IRF320	2-107	IRF540	2-78	IRF840	2-138
FRP1615CC	2-59	IRF321	2-107	IRF541	2-78	IRF841	2-138
FRP1620	2-55	IRF322	2-107	IRF542	2-78	IRF842	2-138
FRP1620CC	2-59	IRF323	2-107	IRF543	2-78	IRF843	2-138
FRP2005CC	2-51	IRF330	2-112	IRF610	2-152	IRFC110	3-6
FRP2010CC	2-51	IRF331	2-112	IRF611	2-152	IRFC120	3-6
FRP2015CC	2-51	IRF332	2-112	IRF612	2-152	IRFC130	3-6
FRP2020CC	2-51	IRF333	2-112	IRF613	2-152	IRFC140	3-6

Alpha-Numeric Index Power MOSFETs and Ultra-Fast Recovery Rectifiers

MOSFETs	

Fairchild Part Number	Page Number	Fairchild Part Number	Page Number	Fairchild Part Number	Page Number	Fairchild Part Number	Page Number
IRFC150	3-6	IRFP241	4-8	MTM4N50	2-132	MTP4N50	2-132
IRFC210	3-6	IRFP242	4-8	MTM5N35	2-112	MTP5N35	2-112
IRFC220	3-6	IRFP243	4-8	MTM5N40	2-112	MTP5N40	2-112
IRFC230	3-6	IRFP250	4-8	MTM7N45	2-138	MTP7N18	2-87
IRFC240	3-6	IRFP251	4-8	MTM7N50	2-138	MTP7N20	2-87
IRFC250	3-6	IRFP252	4-8	MTM8N35	2-118	2N6755	2-3
IRFC310	3-6	IRFP253	4-8	MTM8N40	2-118	2N6756	2-3
IRFC320	3-6	IRFP340	4-8	MTP10N08	2-67	2N6757	2-8
IRFC330	3-6	IRFP341	4-8	MTP10N10	2-67	2N6758	2-8
IRFC340	3-6	IRFP342	4-8	MTP12N18	2-92	2N6759	2-13
IRFC350		2.0 0.0 0.0 0.0 0.0 0.0	4-8	100000000000000000000000000000000000000			
IRFC420	3-6 3-6	IRFP343 IRFP350	4-8	MTP12N20 MTP20N08	2-92 2-72	2N6760 2N6761	2-13 2-18
The state of the s	TERRILL.	1.71707 - 6.	322	3.05		Land State	ALISEA NO.
IRFC430 IRFC440	3-6 3-6	IRFP351 IRFP352	4-8	MTP20N10	2-72	2N6762	2-18
			4-8	MTP2N18	2-152	2N6763	2-23
IRFC450	3-6	IRFP353	4-8	MTP2N20	2-152	2N6764	2-23
IRFP140	4-8	IRFP440	4-8	MTP2N35	2-157	2N6765	2-28
IRFP141	4-8	IRFP441	4-8	MTP2N40	2-157	2N6766	2-28
IRFP142	4-8	IRFP442	4-8	MTP2N45	2-127	2N6767	2-33
IRFP143	4-8	IRFP443	4-8	MTP2N50	2-127	2N6768	2-33
IRFP150	4-8	IRFP450	4-8	MTP3N35	2-107	2N6769	2-38
IRFP151	4-8	IRFP451	4-8	MTP3N40	2-107	2N6770	2-38
IRFP152	4-8	IRFP452	4-8	MTP4N08	2-147	2.63	
IRFP153	4-8	IRFP453	4-8	MTP4N10	2-147	83.8	
IRFP240	4-8	MTM4N45	2-132	MTP4N45	2-132	253	
				287	INFRE	2-63	OCOL SEMP

Selector Guide Power MOSFETs

Metal TO-204AA/TO-204AE

V _{DSS} (V)	R _{DS} (on) (Ohms)	I _{DR}	Part Number	Page Number
500	0.400	13.0	IRF450	2-143
	0.400	12.0		2-38
	0.500	12.0		2-143
	0.800	7.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2-138
	0.850	8.0	120000000000000000000000000000000000000	2-138
	1.100	7.0		2-138
	1.500	4.5	IRF430	2-132
	1.500	4.0	MTM4N50	2-132
	1.500	4.5	2N6762	2-18
	2.000	4.0	IRF432	2-132
	3.000	2.5		2-132
	4.000	2.0		2-127
450	0.400	13.0		2-127
450	0.500	12.0	IRF453	2-143
	TOTAL PROPERTY	1 1 7 7 7 1		2-143
	0.500	11.0	2N6769	
	0.800	7.0	MTM7N45	2-138
	0.850	8.0	IRF441	2-138
	1.100	7.0	IRF443	2-138
	1.500	4.5		
	1.500	4.0		
	2.000	4.0		2-132
	2.000	4.0		2-18
	3.000	2.5		2-127
2-67	4.000	2.0	IRF423	2-127
400	0.300	15.0	IRF350	2-123
	0.400	13.0	IHE352	2-123
	0.300	14.0	2N6/68	2-33
	0.550	8.0	M I MBIN4U	2-118
	0.550	10.0	IRF340	2-118
	0.800	8.0	IRF342	2-118
	1.000	5.5	IRF330	2-112
	1.000			2-13
	1.000	5.0	MTM5N40	2-112
	1.500	4.5	IRF332	2-112
	1.800	3.0	IRF320	2-107
	2.500	2.5	IRF322	2-107
350	0.300	15.0	IRF351	2-123
	0.400	13.0	IRF353	2-123
	0.400	12.0	2N6767	2-33
	0.550	10.0	IRF341	2-118
	0.550	8.0	MTM8N35	2-118
	0.800	8.0	IRF343	2-118
	1.000	5.5	IRF331	2-112
	1.000	5.0	MTM5N35	2-112
	1.500	4.5	IRF333	2-112

V _{DSS} (V)	R _{DS} (on) (Ohms)	I _{DR} (A)	Part Number	Page Number
350	1.500 1.800 2.500	7.0 3.0 2.5	IRF321	2-13 2-107 2-107
200 S S S S S S S S S S S S S S S S S S	0.085 0.085 0.120 0.180 0.220 0.400 0.400 0.500 0.800 1.200	30.0 30.0 25.0 18.0 16.0 9.0 8.0 8.0 5.0 4.0	IRF250 IRF252 IRF240 IRF242 2N6758 IRF230 IRF232 IRF220	2-92 2-92 2-87
150 GRANDS	0.085 0.120 0.120 0.180 0.220 0.400 0.500 0.600 0.800 1.200	30.0 25.0 25.0 18.0 16.0 9.0 8.0 8.0 5.0 4.0	IRF243 IRF231 IRF233 2N6757 IRF221	2-98 2-92 2-92 2-8
	0.055 0.055 0.080 0.085 0.110 0.180 0.180 0.250 0.300 0.400	40.0 38.0 33.0 27.0 24.0 14.0 12.0 8.0 7.0	IRF152 IRF140 IRF142 2N6756 IRF130 IRF132 IRF120	2-3 2-72 2-72 2-67
60 181 6 181 6 181 6 181 6 180 5 180 5 180 5	0.055 0.080 0.080 0.085 0.110 0.180 0.250 0.250 0.300 0.400	40.0 31.0 33.0 27.0 24.0 14.0 12.0 8.0 7.0	IRF141 IRF143 IRF131 2N6755 IRF133	2-78 2-72 2-3 2-72 2-67

Plastic Encapsulated TO-220AB

V _{DSS} (V)	R _{DS} (on) (Ohms)	I _{DR} (A)	Part Number	Page Number	V _{DSS} (V)	R _{DS} (on) (Ohms)	I _{DR} (A)	Part Number	Page Number
500	0.850	8.0	IRF840	2-138	200	0.700	7.0	MTP7N20	2-87
	1.100	7.0	IRF842	2-138		0.800	5.0	IRF620	2-87
	1.500	4.5	IRF830	2-132		1.200	4.0	IRF622	2-87
	1.500	4.0	MTP4N50	2-132		1.500	2.5	IRF610	2-152
	2.000	4.0	IRF832	2-132		1.800	3.5	MTP2N20	2-152
	3.000	2.5	IRF820	2-127		2.400	2.0	IRF612	2-152
	4.000	2.0	IRF822	2-127	410.0	1075-0	-		
	4.000	2.5	MTP2N50	2-127	180	0.350	12.0	MTP12N18	2-92
	CACE!	0.0	1 228			0.700	7.0	MTP7N18	2-87
450	0.850	8.0	IRF841	2-138		1.800	3.25	MTP2N18	2-152
	1.100	7.0	IRF843	2-138	150	0.180	18.0	IRF641	2-98
	1.500	4.0	10101 1100	2-132	2-127	0.220	16.0	IRF643	2-98
	1.500	4.5		2-132		0.400	9.0	IRF631	2-92
	2.000	4.0	IRF833	2-132		0.500	8.0	IRF633	2-92
	3.000	2.5	IRF821	2-127		0.800	5.0	IRF621	2-87
	4.000	2.0	IRF823	2-127		1.200	4.0	IRF623	2-87
	4.000	2.5	MTP2N45	2-127		1.500	2.5	IRF611	2-152
400	0.550	10.0	IRF740	2-118		2.400	2.0	IRF613	2-152
400	0.800	8.0		2-118	2-138	2,0270			
	1.000	5.5		2-112	100	0.085	27.0	IRF540	2-78
	1.000	5.0	MTP5N40	2-112		0.110	24.0	IRF542	2-78
	1.500	4.5	IRF732	2-112		0.150	20.0	MTP20N10	2-72
	1.800	3.0	IRF720	2-107		0.180	14.0	IRF530	2-72
	2.500	2.5		2-107		0.250	12.0	IRF532	2-72
	3.300	3.0	MTP3N40	2-107		0.300	8.0	IRF520	2-67
	3.600	1.5	IRF710	2-157		0.330	10.0	MTP10N10	2-67
	5.000	1.3	IRF712	2-157		0.400	7.0	IRF522	2-67
	5.000	2.0	MTP2N40	2-157		0.600	4.0	IRF510	2-147
2-78.	0.13	1 1 0.1		2-137		0.800	3.5	IRF512	2-147
350	0.550	10.0	IRF741	2-118		0.800	5.0	MTP4N10	2-147
	0.800	8.0	IRF743	2-118	80	0.150	20.0	MTP20N08	2-72
	1.000	5.5	IRF731	2-112	00	0.130	10.0	MTP10N08	2-72
	1.000	5.0	MTP5N35	2-112		0.800	5.0	MTP4N08	2-07
	1.500	4.5	IRF733	2-112	0175	0.800	5.0	WITP4INU8	2-147
	1.800	3.0	IRF721	2-107	60	0.085	27.0	IRF541	2-78
	2.500	2.5	IRF723	2-107		0.110	24.0	IRF543	2-78
	3.300	3.0	MTP3N35	2-107		0.180	14.0	IRF531	2-72
	3.600	1.5	IRF711	2-157		0.250	12.0	IRF533	2-72
	5.000	1.3	IRF713	2-157		0.300	8.0	IRF521	2-67
	5.000	2.0	MTP2N35	2-157		0.400	7.0	IRF523	2-67
200	0.100	100	IDEC 40	2.00		0.600	4.0	IRF511	2-147
	0.180	18.0	IRF640	2-98		0.800	3.5	IRF513	2-147
	0.220	16.0	IRF642	2-98	50	27346161		0820	
	0.350	12.0	MTP12N20	2-92	50	0.085	20	FMP20N05	2-43
	0.400	9.0	IRF630	2-92	2-112	0.100	18	FMP18N05	2-43
	0.500	8.0	IRF632	2-92			W To 6	1 000 1	

Selector Guide Ultra-Fast Recovery Rectifiers

Single Rectifier Per Package

Part Number	V _{RSM} (V)	I _F (AVG) (A)	t _{rr} (ns) ²	V _F (V) ¹	Case Style	Page Number
FRP805	50	8	35	0.95	TO-220AC	2-47
FRP810	100	8	35	0.95	TO-220AC	2-47
FRP815	150	8	35	0.95	TO-220AC	2-47
FRP820	200	8	35	0.95	TO-220AC	2-47
FRP1005	50	10	35	0.95	TO-220AC	2-51
FRP1010	100	10	35	0.95	TO-220AC	2-51
FRP1015	150	10	35	0.95	TO-220AC	2-51
FRP1020	200	10	35	0.95	TO-220AC	2-51
FRP1605	50	16	35	0.95	TO-220AC	2-55
FRP1610	100	16	35	0.95	TO-220AC	2-55
FRP1615	150	16	35	0.95	TO-220AC	2-55
FRP1620	200	16	35	0.95	TO-220AC	2-55

Dual Rectifiers, Common Cathode

Part Number	V _{RSM} (V)	I _F (AVG) (A)	t _{rr} (ns) ²	V _F (V) ¹	Case Style	Page Number
FRP1605CC	50	16	35	0.95	TO-220AB	2-59
FRP1610CC	100	16	35	0.95	TO-220AB	2-59
FRP1615CC	150	16	35	0.95	TO-220AB	2-59
FRP1620CC	200	16	35	0.95	TO-220AB	2-59
FRP2005CC	50	20	35	0.95	TO-220AB	2-51
FRP2010CC	100	20	35	0.95	TO-220AB	2-51
FRP2015CC	150	20	35	0.95	TO-220AB	2-51
FRP2020CC	200	20	35	0.95	TO-220AB	2-51
FRM3205CC	50	32	35	0.95	TO-204AA	2-63
FRM3210CC	100	32	35	0.95	TO-204AA	2-63
FRM3215CC	150	32	35	0.95	TO-204AA	2-63
FRM3220CC	200	32	35	0.95	TO-204AA	2-63

Notes

1. V_f measured at I_f (avg). 2. t_{rr} measured at I_f = 1 A; dl/dt = 50 A/ μ s; T_j = 25°C

	36		

A Schlumberger Company

Power	MOSFETs
1 0 44 61	MICOI FIS

Industry:	Feirebild	Dono	Industry	Fairchild	Dogo	Industry	Fairchild	Pag
Industry Type	Fairchild Part No.	Page No.	Industry	Part No.	Page No.	Type	Part No.	No.
2N6755	2N6755	2-3	2SK355	IRF241	2-98	BUZ60A	IRF730	2-112
2N6756	2N6756	2-3	2SK357	IRF623	2-87	BUZ60B	IRF732	2-112
2N6757	2N6757	2-8	2SK382	IRF822	2-127	BUZ63	IRF330	2-112
2N6758	2N6758	2-8	2SK383	IRF530	2-72	BUZ63A	IRF330	2-112
2N6759	2N6759	2-13	2SK428	IRF543	2-78	BUZ63B	IRF332	2-112
2N6760	2N6760	2-13	2SK440	IRF630	2-92	BUZ64	IRF352	2-123
2N6761	2N6761	2-18	2SK512	IRF452	2-143	BUZ64A	IRF352	2-123
2N6761 2N6762	2N6761 2N6762	2-18	2SK552	IRF831	2-143	BUZ71	FMP18N05	2-123
2N6763	2N6763	2-23	2SK553	IRF830	2-132	BUZ71A	FMP18N05	2-43
				The second secon	2-132	BUZ72	IRF530	2-72
2N6764	2N6764	2-23	2SK554	IRF841	ELL CONTROL OF CONTROL			
2N6765 2N6766	2N6765 2N6766	2-28 2-28	2SK555 BUZ10	IRF840 FMP18N05	2-138 2-43	BUZ72A BUZ73A	IRF532 IRF632	2-72 2-92
	-							
2N6767	2N6767	2-33	BUZ10A	FMP18N05	2-43	BUZ74	IRF820	2-127
2N6768	2N6768	2-33	BUZ20	IRF530	2-72	BUZ74A	IRF822	2-127
2N6769	2N6769	2-38	BUZ21	IRF540	2-78	BUZ76	IRF720	2-107
2N6770	2N6770	2-38	BUZ21A	IRF540	2-78	BUZ76A	IRF722	2-107
2SK133	IRF223	2-87	BUZ23	IRF130	2-72	D84BK2	IRF511	2-147
2SK134	IRF223	2-87	BUZ24	IRF150	2-83	D84BL2	IRF510	2-147
2SK135	IRF222	2-87	BUZ25	IRF140	2-78	D84BM2	IRF611	2-152
2SK175	IRF222	2-87	BUZ30	IRF632	2-92	D84BQ1	IRF711	2-157
2SK176	IRF222	2-87	BUZ31	IRF640	2-98	D84BQ2	IRF710	2-157
2SK176H	IRF222	2-87	BUZ32	IRF630	2-92	D84CK1	IRF521	2-67
2SK220H	IRF222	2-87	BUZ32A	MTP12N20	2-92	D84CK2	IRF521	2-67
2SK221H	IRF222	2-87	BUZ33	IRF232	2-92	D84CL1	IRF520	2-67
2SK259	IRF323 80	2-107	BUZ34	IRF240	2-98	D84CL2	IRF520	2-67
2SK260	IRF322	2-107	BUZ35	IRF230	2-92	D84CM1	IRF621	2-87
2SK277	IRF333	2-112	BUZ35A	IRF230	2-92	D84CM2	IRF621	2-87
2SK278	IRF332	2-112	BUZ36	IRF252	2-103	D84CN1	MTP7N18	2-87
2SK294	IRF522	2-67	BUZ40	IRF822	2-127	D84CN2	IRF620	2-87
2SK295	IRF522	2-67	BUZ41	IRF842	2-138	D84CQ1	IRF721	2-107
2SK296	MTP3N35	2-107	BUZ41A	IRF830	2-132	D84CQ2	IRF720	2-107
2SK298	IRF332	2-112	BUZ42	IRF832	2-132	D84CR1	IRF821	2-127
2SK299	IRF431	2-132	BUZ42A	IRF832	2-132	D84CR2	IRF820	2-127
2SK308	IRF243	2-98	BUZ43	IRF422	2-127	D84DK1	IRF531	2-72
2SK310	IRF710		BUZ44	IRF442	2-127	D84DK1	IRF531	2-72
2SK311	IRF823	2-127	BUZ44A	IRF430	2-132	D84DL1	IRF530	2-72
2SK312	IRF342	2-118	BUZ44B	IRF430	2-132	D84DL2	IRF530	2-72
2SK313	IRF441	2-138	BUZ45	IRF452	2-132	D84DM1	IRF631	2-92
2SK313	The second secon	2-136	BUZ45A	MTM7N50	2-143			
2SK319 2SK320	IRF720 IRF723	2-107	BUZ45A BUZ45B	IRF452	2-138	D84DM2 D84DN1	IRF631 MTP12N18	2-92
2SK324						-		
		2-123	BUZ45C	IRF453	2-143	D84DN2	IRF630	2-92
2SK325	IRF453	2-143	BUZ46	IRF432	2-132	D84DQ1	IRF731	2-112
2SK338	IRF730	2-112	BUZ46A	IRF430	2-132	D84DQ2	IRF730	2-112
2SK346	IRF523	2-67	BUZ60	IRF730	2-112	D84DR1	IRF831	2-132

Power MOSFETs

Industry Type	Fairchild Part No.	Page No.	Industry Type	Fairchild Part No.	Page No.	Industry Type	Fairchild Part No.	Page No.
D84DR2	IRF830	2-132	MTP5N18	IRF520	2-67	PM816M	IRF152	2-83
D84EK1	IRF541	2-78	MTP5N20	IRF520	2-67	PM816P	MTP20N08	2-72
D84EK2	IRF541	2-78	MTP8N08	IRF522	2-67	PM820M	IRF140	2-78
D84EL1	MTP4N08	2-147	MTP8N10	IRF522	2-67	PM820P	IRF540	2-78
D84EL2	IRF540	2-78	MTP8N18	IRF630	2-92	RFK10N45	IRF453	2-143
D84EM1	IRF641	2-98	MTP8N20	IRF630	2-92	RFK10N50	IRF452	2-143
D84EM2	IRF641	2-98	MTP25N05	FMP20N05	2-43	RFK12N35	IRF353	2-123
D84EN1	IRF640	2-98	PM1006M	IRF122	2-67	RFK12N40	IRF352	2-123
D84EN2	IRF640	2-98	PM1006P	IRF522	2-67	RFK25N18	IRF252	2-103
D84EQ1	IRF741	2-118	PM1010M	IRF132	2-72	RFK25N20	IRF252	2-103
D84EQ2	IRF740	2-118	PM1010P	IRF532	2-72	RFK30N12	IRF251	2-103
D84ER1	IRF841	2-138	PM1203P	IRF521	2-67	RFK30N15	IRF251	2-103
D84ER2	IRF840	2-138	PM1204P	IRF633	2-92	RFK35N08	IRF150	2-83
D84MN2	IRF610	2-152	PM1206M	IRF231	2-92	RFK35N10	IRF150	2-83
D86CK1	IRF121	2-67	PM1206P	IRF631	2-92	RFM10N12	IRF243	2-98
D86CL1	IRF120	2-67	PM1503P	IRF611	2-152	RFM10N15	IRF243	2-98
D86CM1	IRF221	2-67	PM1504P	IRF623	2-87	RFM12N08	IRF130	2-72
D86CN1	IRF220	2-67	PM1506M	IRF233	2-92	RFM12N10	IRF130	2-72
D86DK1	IRF131	2-72	PM1506P	IRF633	2-92	RFM12N18	IRF242	2-98
D86DK2	IRF131	2-72	PM1510M	IRF240	2-98	RFM12N20	IRF242	2-98
D86DL1	IRF130	2-72	PM1510P	IRF643	2-98	RFM15N05	IRF143	2-78
D86DL2	IRF130	2-72	PM509P	IRF523	2-67	RFM15N06	IRF143	2-78
D86DM1	IRF231	2-92	PM510P	IRF521	2-67	RFM15N12	IRF253	2-103
D86DM2	IRF231	2-92	PM512M	IRF131	2-72	RFM15N15	IRF253	2-103
D86DN1	IRF230	2-92	PM512P	IRF531	2-72	RFM18N08	IRF142	2-78
D86DN2	IRF230	2-92	PM518M	IRF143	2-78	RFM18N10	IRF142	2-78
D86DQ1	IRF331	2-112	PM604P	IRF513	2-147	RFM25N05	IRF141	2-78
D86DQ2	IRF330	2-112	PM605P	IRF523	2-67	RFM25N06	IRF141	2-78
D86DR1	IRF431	2-132	PM608M	IRF121	2-67	RFM4N35	IRF333	2-112
D86DR2	IRF430	2-132	PM608P	IRF521	2-67	RFM4N40	IRF332	2-112
D86EK1	IRF141	2-78	PM609P	IRF523	2-67	RFM6N45	IRF431	2-132
D86EL1	IRF140	2-78	PM610P	IRF521	2-67	RFM6N50	IRF430	2-132
D86EM1	IRF241	2-98	PM612M	IRF131	2-72	RFM7N35	MTM8N35	2-118
D86EN1	IRF240	2-98	PM612P	IRF531	2-72	RFM7N40	MTM8N40	2-118
D86EQ1	IRF341	2-118	PM614M	IRF131	2-72	RFM8N18	IRF232	2-92
D86EQ2	IRF340	2-118	PM614P	IRF531	2-72	RFM8N20	IRF232	2-92
D86ER1	IRF441	2-138	PM618M	IRF143	2-78	RFP10N12	IRF643	2-98
D86ER2	IRF440	2-138	PM618P	IRF543	2-78	RFP10N15	IRF643	2-98
D86FQ1	IRF351	2-123	PM804P	IRF512	2-147	RFP12N08	IRF530	2-72
D86FQ2	IRF350	2-123	PM805P	IRF522	2-67	RFP12N10	IRF530	2-72
D86FR1	IRF451	2-143	PM808M	IRF120	2-67	RFP12N18	IRF642	2-98
D86FR2	IRF450	2-143	PM808P	IRF520	2-67	RFP12N20	IRF642	2-98
IRFZ20	FMP18N05	2-43	PM814M	IRF130	2-72	RFP15N05	IRF543	2-78
IRFZ22	FMP18N05	2-43	PM814P	IRF530	2-72	RFP15N06	IRF543	2-78

Power MOSFETs

Industry	Fairchild	Page	Industry	Fairchild	Page	Industry	Fairchild	Page
Type	Part No.	No.	Type	Part No.	No.	Type	Part No.	No.
RFP18N08	IRF542	2-78	RRF510	IRF510	2-147	SD500CD	IRF833	2-132
RFP18N10	IRF542	2-78	RRF511	IRF511	2-147	SD500KD	IRF433	2-132
RFP25N05	FMP20N05	2-43	RRF512	IRF512	2-147	SD900KD	IRF442	2-138
RFP25N06	IRF541	2-78	RRF513	IRF513	2-147	SD901KD	MTM7N45	2-138
RFP2N08 RFP2N10 RFP2N12 RFP2N15	IRF512 IRF512 IRF611	2-147 2-147 2-152 2-152	RRF520 RRF521 RRF522 RRF523	IRF520 IRF521 IRF522 IRF523	2-67 2-67 2-67 2-67	SFN106A3 SFN106B3 SFN204A3 SFN204B3	IRF120 IRF121 IRF220 IRF221	2-67 2-67 2-87 2-87
RFP2N18	IRF612	2-152	RRF610	IRF610	2-152	SNF402A3	IRF320	2-107
RFP2N20	IRF612	2-152	RRF611	IRF611	2-152	STM3110	IRF341	2-118
RFP4N05	IRF513	2-147	RRF612	IRF612	2-152	STM3111	IRF340	2-118
RFP4N06	IRF513	2-147	RRF613	IRF613	2-152	STM3112	IRF453	2-143
RFP4N35	IRF733	2-112	RRF620	IRF620	2-87	STM360	IRF331	2-112
RFP4N40	IRF732	2-112	RRF621	IRF621	2-87	STM361	IRF330	2-112
RFP6N45	IRF841	2-138	RRF622	IRF622	2-87	STM362	IRF442	2-138
RFP6N50	IRF840	2-138	RRF623	IRF623	2-87	UFN120	IRF120	2-67
RFP7N35	IRF741	2-118	RRF710	IRF710	2-157	UFN121	IRF121	2-67
RFP7N40	IRF740	2-118	RRF711	IRF711	2-157	UFN122	IRF122	2-67
RFP8N18	IRF630	2-92	RRF712	IRF712	2-157	UFN123	IRF123	2-67
RFP8N20	IRF630	2-92	RRF713	IRF713	2-157	UFN130	IRF130	2-72
RRF120	IRF120	2-67	RRF720	IRF720	2-107	UFN132	IRF132	2-72
RRF121	IRF121	2-67	RRF721	IRF721	2-107	UFN133	IRF133	2-72
RRF122	IRF122	2-67	RRF722	IRF722	2-107	UFN140	IRF140	2-78
RRF123	IRF123	2-67	RRF723	IRF723	2-107	UFN141	IRF141	2-78
RRF220	IRF220	2-87	RRF730	IRF730	2-112	UFN142	IRF142	2-78
RRF221	IRF221	2-87	RRF731	IRF731	2-112	UFN143	IRF143	2-78
RRF222	IRF222	2-87	RRF732	IRF732	2-112	UFN150	IRF150	2-83
RRF223	IRF223	2-87	RRF733	IRF733	2-112	UFN151	IRF151	2-83
RRF320	IRF320	2-107	RRF820	IRF820	2-127	UFN152	IRF152	2-83
RRF321	IRF321	2-107	RRF821	IRF821	2-127	UFN153	IRF153	2-83
RRF322	IRF322	2-107	RRF822	IRF822	2-127	UFN220	IRF220	2-87
RRF323	IRF323	2-107	RRF823	IRF823	2-127	UFN221	IRF221	2-87
RRF330	IRF330	2-112	RRF830	IRF830	2-132	UFN222	IRF222	2-87
RRF331	IRF331	2-112	RRF831	IRF831	2-132	UFN223	IRF223	2-87
RRF332	IRF332	2-112	RRF832	IRF832	2-132	UFN230	IRF230	2-92
RRF333	IRF333	2-112	RRF833	IRF833	2-132	UFN231	IRF231	2-92
RRF420	IRF420	2-127	SD1002KD	IRF430	2-132	UFN232	IRF232	2-92
RRF421	IRF421	2-127	SD1005CD	IRF631	2-92	UFN233	IRF233	2-92
RRF422	IRF422	2-127	SD1005KD	IRF231	2-92	UFN240	IRF240	2-98
RRF423	IRF423	2-127	SD1011KD	IRF440	2-138	UFN241	IRF241	2-98
RRF430	IRF430	2-132	SD1012KD	IRF431	2-132	UFN242	IRF242	2-98
RRF431	IRF431	2-132	SD1014CD	IRF622	2-87	UFN243	IRF243	2-98
RRF432	IRF432	2-132	SD1014KD	IRF122	2-67	UFN250	IRF250	2-103
RRF433	IRF433	2-132	SD1021KD	IRF330	2-112	UFN251	IRF251	2-103

Industry Cross Reference

Industry	Fairchild	Page	Industry	Fairchild	Page	Industry	Fairchild Part No.	Page
Type	Part No.	No.	Type	Part No.	No.	Type		No.
UFN252	IRF252	2-103	UFN532	IRF532	2-72	UFN832	IRF832	2-132
UFN253	IRF253	2-103	UFN533	IRF533	2-72	UFN833	IRF833	2-132
UFN320	IRF320	2-107	UFN540	IRF540	2-78	UFN840	IRF840	2-138
UFN321	IRF321	2-107	UFN541	IRF541	2-78	UFN841	IRF841	2-138
UFN322	IRF322		UFN542	IRF542	2-78	UFN842	IRF842	2-138
UFN323	IRF323		UFN543	IRF543	2-78	UFN843	IRF843	2-138
UFN330	IRF330		UFN610	IRF610	2-152	VN0600A	IRF543	2-78
UFN331	IRF331		UFN611	IRF611	2-152	VN0601A	IRF543	2-78
UFN332	IRF332	2-112	UFN612	IRF612	2-152	VN0800A	IRF130	2-72
UFN333	IRF333	2-112	UFN613	IRF613	2-152	VN0800D	IRF530	2-72
UFN340	IRF340	2-118	UFN620	IRF620	2-87	VN0801A	IRF132	2-72
UFN341	IRF341	2-118	UFN621	IRF621	2-87	VN0801D	IRF532	2-72
UFN342	IRF342	2-118	UFN622	IRF622	2-87	VN1000A	IRF130	2-72
UFN343	IRF343	2-118	UFN623	IRF623	2-87	VN1000D	IRF530	2-72
UFN350	IRF350	2-123	UFN630	IRF630	2-92	VN1001A	IRF132	2-72
UFN351	IRF351	2-123	UFN631	IRF631	2-92	VN1001D	IRF532	2-72
UFN352	IRF352	2-123	UFN632	IRF632	2-92	VN1106N5	IRF511	2-147
UFN353	IRF353	2-123	UFN633	IRF633	2-92	VN1110N5	IRF510	2-147
UFN420	IRF420	2-127	UFN640	IRF640	2-98	VN1116N5	IRF612	2-152
UFN421	IRF421	2-127	UFN641	IRF641	2-98	VN1120N5	IRF612	2-152
UFN422	IRF422	2-127	UFN642	IRF642	2-98	VN1200A	IRF641	2-98
UFN423	IRF423	2-127	UFN643	IRF643	2-98	VN1201A	IRF643	2-98
UFN430	IRF430	2-132	UFN710	IRF710	2-157	VN1210N1	IRF120	2-67
UFN431	IRF431	2-132	UFN711	IRF711	2-157	VN1210N5	IRF520	2-67
UFN432	IRF432	2-132	UFN712	IRF712	2-157	VN1216N1	IRF220	2-87
UFN433	IRF433	2-132	UFN713	IRF713	2-157	VN1216N5	IRF620	2-87
UFN440	IRF440	2-138	UFN720	IRF720	2-107	VN1220N5	IRF620	2-87
UFN441	IRF441	2-138	UFN721	IRF721	2-107	VN2306N1	IRF143	2-78
UFN442	IRF442	2-138	UFN722	IRF722	2-107	VN2310N1	IRF142	2-78
UFN443	IRF443	2-138	UFN723	IRF723	2-107	VN2310N5	IRF542	2-78
UFN450	IRF450	2-143	UFN730	IRF730	2-112	VN2316N1	IRF242	2-98
UFN451	IRF451	2-143	UFN731	IRF731	2-112	VN2316N5	IRF642	2-98
UFN452	IRF452	2-143	UFN732	IRF732	2-112	VN2320N1	IRF242	2-98
UFN453	IRF453	2-143	UFN733	IRF733	2-112	VN2320N5	IRF642	2-98
UFN510	IRF510	2-147	UFN740	IRF740	2-118	VN2335N1	IRF341	2-118
UFN511	IRF511	2-147	UFN741	IRF741	2-118	VN2335N5	IRF741	2-118
UFN512	IRF512	2-147	UFN742	IRF742	2-118	VN2340N1	IRF340	2-118
UFN513	IRF513	2-147	UFN743	IRF743	2-118	VN2340N5	IRF740	2-118
UFN520	IRF520	2-67	UFN820	IRF820	2-127	VN2345N1	IRF443	2-138
UFN521	IRF521	2-67	UFN821	IRF821	2-127	VN2345N5	IRF843	2-138
UFN522	IRF522	2-67	UFN822	IRF822	2-127	VN2350N1	IRF442	2-138
UFN523	IRF523	2-67	UFN823	IRF823	2-127	VN2350N5	IRF842	2-138
UFN530	IRF530	2-72	UFN830	IRF830	2-132	VN3500A	IRF331	2-112
UFN531	IRF531	2-72	UFN831	IRF831	2-132	VN3500D	IRF731	2-112

Industry Cross Reference

Power MOSFETs

Industry Type	Fairchild Part No.	Page No.	Industry Type	Fairchild Part No.	Page No.
VN3501A	IRF333	2-112	VN4501D	IRF831	2-132
VN3501D	IRF733	2-112	VN4502A	IRF433	2-132
VN3502A	IRF430	2-132	VN4502D	IRF833	2-132
VN4000A	IRF330	2-112	VN5001A	IRF430	2-132
VN4000D	IRF730	2-112	VN5001D	IRF830	2-132
VN4001A	IRF332	2-112	VN5002A	IRF432	2-132
VN4001D	IRF732	2-112	VN5002D	IRF832	2-132
VN4501A	IRF431	2-132	VNL001A	IRF331	2-112

Industry Type	Fairchild Part No.	Page No.
VNM001A	IRF330	2-112
VNN002A	IRF443	2-138
VNP002A	IRF430	2-132

Ultra-Fast Reverse Recovery Rectifiers

Industry Type	Fairchild Part No.	Page No.		Industry Type	Fairchild Part No.	Page No.
BYV32-100	FRP2010CC	2-51	-	FE8C	FRP815	2-47
BYV32-150	FRP2015CC	2-51		FE8D	FRP820	2-47
BYV32-200	FRP2020CC	2-51		MUR1505	FRP1605	2-55
BYV32-50	FRP2005CC	2-51		MUR1510	FRP1610	2-55
BYV79-100	FRP1610	2-55		MUR1515	FRP1615	2-55
BYV79-150	FRP1615	2-55		MUR1520	FRP1620	2-55
BYV79-200	FRP1620	2-55		MUR1605CT	FRP1605CC	2-59
BYV79-50	FRP1605	2-55		MUR1610CT	FRP1610CC	2-59
BYW28-100	FRP810	2-47	_	MUR1615CT	FRP1615CC	2-59
BYW29-150	FRP815	2-47		MUR1620CT	FRP1620CC	2-59
BYW29-200	FRP820	2-47		MUR805	FRP805	2-47
BYW29-50	FRP805	2-47		MUR810	FRP810	2-47
BYW51-100	FRP1610CC	2-59	-	MUR815	FRP815	2-47
BYW51-150	FRP1615CC	2-59		MUR820	FRP820	2-47
BYW51-50	FRP1605CC	2-59		RUR810	FPR810	2-47
BYW80-100	FRP810	2-47		RUR815	FRP815	2-47
BYW80-150	FRP815	2-47	-	RUR820	FRP820	2-47
BYW80-200	FRP820	2-47		RURD1610	FRM3210CC	2-63
BYW80-50	FRP805	2-47		RURD1615	FRM3210CC	2-63
BYW99-100	FRM3210CC	2-63		RURD1620	FRM3220CC	2-63
BYW99-150	FRM3220CC	2-63		RURD810	FRP1610CC	2-59
BYW99-50	FRM3205CC	2-63		RURD815	FRP1615CC	2-59
FE16A	FRP1605	2-55		RURD820	FRP1620CC	2-59
FE16B	FRP1610	2-55		UES1401	FRP805	2-47
FE16C	FRP1615	2-55		UES1402	FRP810	2-47
FE16D	FRP1620	2-55		UES1403	FRP815	2-47
FE8A	FRP805	2-47		UES1404	FRP820	2-47
FE8B	FRP810	2-47		UES1501	FRP1605	2-55

Industry Type	Fairchild Part No.	Page No.
UES1502	FRP1610	2-55
UES1503	FRP1615	2-55
UES1504	FRP1620	2-55
UES2401	FRP1605CC	2-59
UES2402	FRP1610CC	2-59
UES2403	FRP1615CC	2-59
UES2404	FRP1620CC	2-59
UES2601	FRM3205CC	2-63
UES2602	FRM3210CC	2-63
UES2603	FRM3215CC	2-63
UES2604	FRM3220CC	2-63
VHE1401	FRP1005	2-51
VHE1402	FRP1010	2-51
VHE1403	FRP1015	2-51
VHE1404	FRP1020	2-51
VHE2401	FRP2005CC	2-51
VHE2402	FRP2010CC	2-51
VHE2403	FRP2015CC	2-51
VHE2404	FRP2020CC	2-51
VHE2601	FRM3205CC	2-63
VHE2602	FRM3210CC	2-63
VHE2603	FRM3215CC	2-63
VHE2604	FRM3220CC	2-63

Index, Selector Guides, Industry Cross Reference	1
Power MOSFETs and Ultra-Fast Recovery Rectifier Data Sheets	2
MOSFET and Rectifier Dice	3
Advanced Products	4
Application Notes/ESD	5
Quality Assurance and Reliability	6
Ordering Information and Package Outlines	7
Field Sales Offices	8

Power MOSFETs and Ultra-Fast Recovery Rectifier Data Sheets

W/°C

2N6755/2N6756 N-Channel Power MOSFETs, 14 A, 60 V/100 V

Power And Discrete Division

Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as switching power supplies, UPS, AC and DC motor controls, relay and solenoid drivers and high energy pulse circuits.

- \bullet $\,V_{GS}$ Rated at $\pm\,20\,$ V
- Silicon Gate for Fast Switching Speeds
- I_{DSS}, R_{DS(on)}, Specified at Elevated Temperature
- Rugged
- Low Drive Requirements
- Ease of Paralleling
 Maximum Ratings

se of Paralleling

2N6755 2N6756

Symbol	Characteristic	Rating Rating 2N6755 2N6755		sent els Unit mas
V _{DSS}	Drain to Source Voltage	100	60 0 801102	Postoni V State Orain
V _{DGR}	Drain to Gate Voltage $R_{GS} = 1 \ M\Omega$	81.0 100 85.0	60	aavalus v
V _{GS}	Gate to Source Voltage	± 20	± 20	V
T _J , T _{stg}	Operating Junction and Storage Temperatures	-55 to +150	-55 to +150	8078WS °C
TL	Maximum Lead Temperature for Soldering Purposes, 1/16" From Case for 10 s	300	300 gssloV-aO s	chucs-pish
Maximum	On-State Characteristics	0.0		aavaks
R _{DS(on)}	Static Drain-to-Source On Resistance	0.18	0.25	Ω Forward Te
I _D	Drain Current Continuous at T _C = 25°C Continuous at T _C = 100°C Pulsed	9 30 ²	0	Case Justiful Case
Maximum	Thermal Characteristics	081 08	guitali. Equiù Tetarre	Cigs Heveres III
$R_{ heta JC}$	Thermal Resistance, Junction to Case	1.67	1.67	°C/W
P _D	Total Power Dissipation at T _C = 25°C	75	75	L W Rise Time

Notes

All values are JEDEC registered except as noted. For information concerning connection diagram and package outline, refer to Section 7.

Linear Derating Factor

0.6

Electrical Characteristics (T_C = 25°C unless otherwise noted)

Symbol	Cha	racteristic	Min	Max	Unit	Test Conditions
Off Charac	teristics	- A	M/	PS, AC	supplies, U	oficetions, such as switching power
V _{(BR)DSS}	Drain Source I	Breakdown Voltage		Pila e	V	V _{GS} = 0 V, I _D = 1 mA
	2N6756	100	100 ²			
	2N6755		60 ²		ansemi	Vos Rated et ± 20 V Silicon Gate for Past Switching 5
I _{DSS}	Zero Gate Vol	tage Drain Current	ERYSINS	1/15/	mA	V _{DS} = Rated V _{DSS} , V _{GS} = 0 V
			Marant	4		V_{DS} = Rated V_{DSS} , V_{GS} = 0 V, T_{C} = 125°C
I _{GSS}	Gate-Body Lea	akage Current		± 100	nA	V _{GS} = ± 20 V, V _{DS} = 0 V
On Charac	teristics	weeks and the second	6.0	(A=20)		
V _{GS(th)}	Gate Threshol	d Voltage	2.0	4.0	V	$I_D = 1$ mA, $V_{DS} = V_{GS}$
R _{DS(on)}	Static Drain-Sc	ource On-Resistance ¹		10	Ω	V _{GS} = 10 V
	2N6756	09		0.18		I _D = 9 A
	2N6755			0.25		I _D = 8 A
		02.0		81	Ω	V _{GS} = 10 V, T _C = 125°C
	2N6756	-55 to +150	9814	0.33		I _D = 9 mA
	2N6755	000		0.45	n with	I _D = 8 A
V _{DS(on)}	Drain-Source (On-Voltage ¹				for Soldering Purposes
	2N6756			2.52	٧	V _{GS} = 10 V; I _D = 14 A
	2N6755			3.0	89	V _{GS} = 10 V; I _D = 12 A
9fs	Forward Trans	conductance ¹	4.0	12	S (V)	V _{DS} = 10 V, I _D = 9 A
Dynamic C	haracteristics					Prefer Country
C _{iss}	Input Capacita	nce	350	800	pF o	V _{DS} = 25 V, V _{GS} = 0 V
Coss	Output Capaci	tance	150	500	pF	f = 1.0 MHz
C _{rss}	Reverse Trans	efer Capacitance	50	150	pF	Jahren Tharrant Pharacterial
Switching	Characteristics	$(T_C = 25^{\circ}C, Figures 9,$	10)			avantalend legenda
t _{d(on)}	Turn-On Delay	Time		30	ns	V _{DD} = 36 V, I _D = 9 A
t _r	Rise Time	75		75	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 15 \Omega$ $R_{GS} = 15 \Omega$
t _{d(off)}	Turn-Off Delay	Time		40	ns	70 28 45 7 14
t _f	Fall Time	8.9		45	ns	Linear Denating Factor
Qg	Total Gate Ch	arge		30 ²	nC	V _{GS} = 10 V, I _D = 18 A V _{DD} = 55 V

Electrical C	haracteristics	(Cont.)	$(T_C = 25^{\circ}C)$	unless	otherwise	noted)
---------------------	----------------	---------	-----------------------	--------	-----------	--------

Symbol	Characteristic	Min	Тур	Max	Unit	Test Conditions
Source-Dra	in Diode Characteristics	nuoli		,	adil	igure 3 Transfur Characteris
Is	Continuous Source Current 2N6756 2N6755		100,146%	14 12	Α	V DT = 200 00
I _{SM}	Pulsed Source Current 2N6756 2N6755		The state of the	30 ² 25 ²	A	0
V _{SD}	Diode Forward Voltage 2N6756	0.90	1 (1)	1.8	٧	I _S = 14 A; V _{GS} = 0 V
	2N6755	0.85		1.7	V	I _S = 12 A; V _{GS} = 0 V
t _{rr}	Reverse Recovery Time	0 08-	300 ²		ns	$V_{GS} = 0 \text{ V}, T_J = 150^{\circ}\text{C}$ $I_F = I_{SM}, dI_F/dt = 100 \text{ A}/\mu\text{S}$
Q _{RR}	Reverse Recovery Charge	injut-y	4.0 ²		μC	V _{GS} = 0 V, T _J = 150°C I _F = I _{SM} , dI _F /dt = 100 A

Notes

- 1. Pulse test: Pulse width \leq 300 μ s, Duty cycle \leq 1%
- 2. Non-JEDEC registered value.

Typical Performance Curves

Figure 1 Output Characteristics

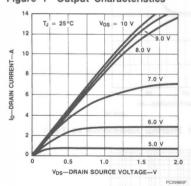
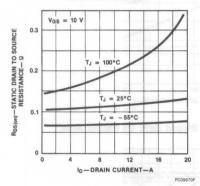



Figure 2 Static Drain to Source Resistance vs Drain Current

Typical Performance Curves (Cont.)

Figure 3 Transfer Characteristics

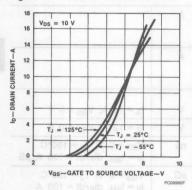


Figure 5 Capacitance vs Drain to Source Voltage

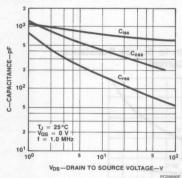


Figure 7 Forward Biased Safe Operating Area

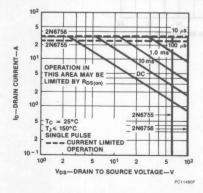


Figure 4 Temperature Variation of Gate to Source Threshold Voltage

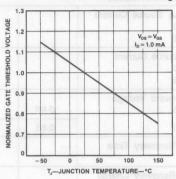


Figure 6 Gate to Source Voltage vs Total Gate Charge

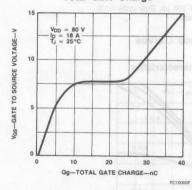
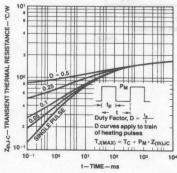
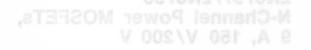
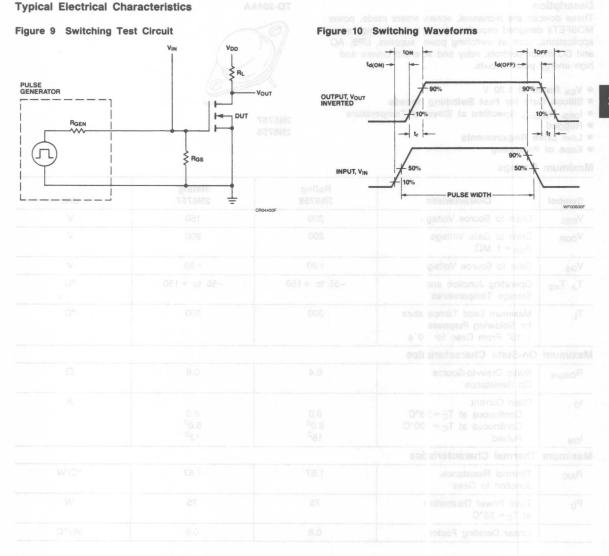





Figure 8 Transient Thermal Resistance vs Time

Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as switching power supplies, UPS, AC and DC motor controls, relay and solenoid drivers and high energy pulse circuits.

- V_{GS} Rated at ± 20 V
- Silicon Gate for Fast Switching Speeds
- I_{DSS}, R_{DS(on)}, Specified at Elevated Temperature
- Rugged
- Low Drive Requirements
- Ease of Paralleling

Maximum Ratings

TO-204AA

2N6757 2N6758

Symbol	Characteristic	Rating 2N6758	Rating 2N6757	Unit
V _{DSS}	Drain to Source Voltage	200	150	V
V _{DGR}	Drain to Gate Voltage $R_{GS} = 1 \ M\Omega$	200	200	V
V _{GS}	Gate to Source Voltage	± 20	± 20	V
T _J , T _{stg}	Operating Junction and Storage Temperatures	-55 to +150	-55 to +150	°C
TL	Maximum Lead Temperature for Soldering Purposes, 1/16" From Case for 10 s	300	300	°C
Maximum	On-State Characteristics			
R _{DS(on)}	Static Drain-to-Source On Resistance	0.4	0.6	Ω
I _D	Drain Current Continuous at T _C = 25°C Continuous at T _C = 100°C Pulsed	9.0 6.0 ² 15 ²	8.0 5.0 ² 12 ²	A
Maximum	Thermal Characteristics			
$R_{ heta JC}$	Thermal Resistance, Junction to Case	1.67	1.67	°C/W
P _D	Total Power Dissipation at T _C = 25°C	75	75	W
	Linear Derating Factor	0.6	0.6	W/°C

Notes

All values are JEDEC registered except as noted. For information concerning connection diagram and package outline, refer to Section 7.

Symbol	Characteristic	Min	Max	Unit	Test Conditions
Off Charac	teristics				ource-Drain Clode Characterieti a
V _{(BR)DSS}	Drain Source Breakdown Voltage			٧	V _{GS} = 0 V, I _D = 1 mA
	2N6758	200 ²			2116757
	2N6757	150 ²			Ism Pulsed Source Curren
I _{DSS}	Zero Gate Voltage Drain Current		1	mA	V _{DS} = Rated V _{DSS} , V _{GS} = 0 V
	A		4		V_{DS} = Rated V_{DSS} , V_{GS} = 0 V, T_{C} = 125°C
I _{GSS}	Gate-Body Léakage Current		± 100	nA	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$
On Charac	teristics A B = Bl		87.5	0	\$NETS7
V _{GS(th)}	Gate Threshold Voltage	2.0	4.0	V	I _D = 1 mA, V _{DS} = V _{GS}
R _{DS(on)}	Static Drain-Source On-Resistance			Ω	V _{GS} = 10 V
	2N6758	-01	0.4		I _D = 6 A
	2N6757		0.6		I _D = 5 A
	2N6758		0.75	AP (2.1)	I _D = 6 A, T _C = 125°C
	2N6757		1.13		I _D = 5 A, T _C = 125°C
V _{DS(on)}	Drain-Source On-Voltage ¹ 2N6758		3.6	V	V _{GS} = 10 V; I _D = 9 A
	2N6757	z oandia	4.8		V _{GS} = 10 V; I _D = 8 A
9fs	Forward Transconductance ¹	3.0	9.0	S (V)	V _{DS} = 15 V, I _D = 6 A
Dynamic C	haracteristics	apy la			Von - William House and
C _{iss}	Input Capacitance	350	800	pF	V _{DS} = 25 V, V _{GS} = 0 V
Coss	Output Capacitance	100	450	pF	f = 1.0 MHz
C _{rss}	Reverse Transfer Capacitance	40	150	pF	
Switching	Characteristics (T _C = 25°C, Figures 9,	10)			1 1
t _{d(on)}	Turn-On Delay Time	10 1	30	ns	V _{DD} = 90 V, I _D = 6 A
t _r	Rise Time	7.0	50	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 15 \Omega$ $R_{GS} = 15 \Omega$
t _{d(off)}	Turn-Off Delay Time		50	ns	103
t _f	Fall Time	- 0	40	ns	N-SPATING NAME OF THE PARTY OF
Q_g	Total Gate Charge		30 ²	nC	V _{GS} = 10 V, I _D = 12 A V _{DD} = 120 V

Flectrical	Characteristics	(Cont.)	$(T_{\circ} = 25^{\circ}C)$	unless	otherwise	noted)

Symbol	Characteristic	Min	Тур	Max	Unit	Test Conditions
Source-Dra	ain Diode Characteristics					Off Characteristics
Is	Continuous Source Current 2N6758 2N6757		So	9.0 8.0	Mov Awork	V _{IBRID} SS Drain Source Brein 2N6758
I _{SM}	Pulsed Source Current 2N6758 2N6757	An t	. Fo	15 ² 12 ²	A Drein Currie	2NS757 loss Zero Gata Voltage
V _{SD}	Diode Forward Voltage 2N6758	0.80	t ±	1.60	V Surrent	VI _{GS} = 0 V I _S = 9 A
	2N6757	0.75		1.50	V	I _S = 8 A BOTE MASSIERO NO
t _{rr}	Reverse Recovery Time	0,1	650 ²	808	ns Malagariano s	$V_{GS} = 0 \text{ V, } T_J = 150^{\circ}\text{C}$ $I_F = I_{SM}, \ dI_F/dt = 100 \ A/\mu\text{S}$
Q _{RR}	Reverse Recovery Charge	1.0	10 ²		μC	$V_{GS} = 0 \text{ V}, T_J = 150^{\circ}\text{C}$ $I_F = I_{SM}, dI_F/dt = 100 \text{ A}$

Notes

1. Pulse test: Pulse width ≤ 300 µs, Duty cycle ≤ 2%

Non-JEDEC registered value.

Typical Performance Curves

Figure 1 Output Characteristics

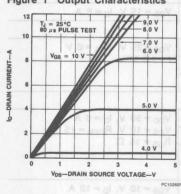
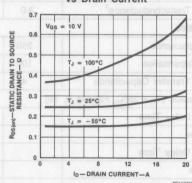



Figure 2 Static Drain to Source Resistance vs Drain Current

Typical Performance Curves (Cont.)

Figure 3 Transfer Characteristics

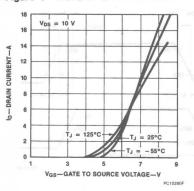


Figure 5 Capacitance vs Drain to Source Voltage

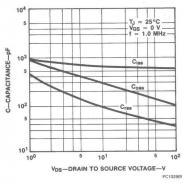


Figure 7 Forward Biased Safe Operating Area

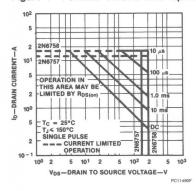


Figure 4 Temperature Variation of Gate to Source Threshold Voltage

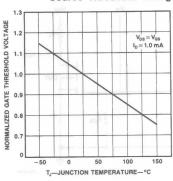


Figure 6 Gate to Source Voltage vs Total Gate Charge

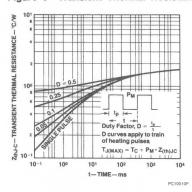



Figure 8 Transient Thermal Resistance vs Time

Typical Electrical Characteristics

Figure 9 Switching Test Circuit

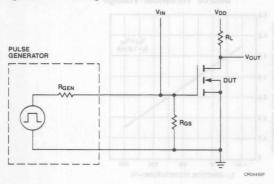
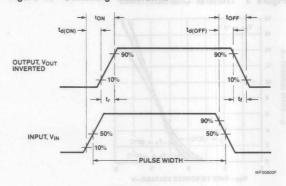
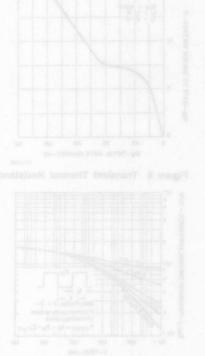




Figure 10 Switching Waveforms

2N6759/2N6760 N-Channel Power MOSFETs, 5.5 A, 350 V/400 V

Power And Discrete Division

Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high voltage, high speed applications, such as off-line switching power supplies, UPS, AC and DC motor controls, relay and solenoid drivers.

- V_{GS} Rated at ± 20 V
- Silicon Gate for Fast Switching Speeds
- I_{DSS}, R_{DS(on)}, Specified at Elevated Temperature
- Rugged
- Low Drive Requirements
- Ease of Paralleling

is Rated at ± 20 V

TO-204AA

Maximum	Ratings	071.5	ma sO agarles.	I you Page
Symbol	Characteristic	Rating 2N6760	Rating 2N6759	Unit
V _{DSS}	Drain to Source Voltage	400	350 0 50 00	Floreign V ret Drawn
V _{DGR}	Drain to Gate Voltage $R_{GS} = 1.0 \ M\Omega$	400	350	V
V _{GS}	Gate to Source Voltage	± 20	± 20	V
T _J , T _{stg}	Operating Junction and Storage Temperatures	-55 to +150	-55 to +150	°C
TL	Maximum Lead Temperature for Soldering Purposes, 1/16" From Case for 10 s	300	300	°C .
Maximum	On-State Characteristics	0.0 0.6	ec refuilmean	D-T - 1
R _{DS(on)}	Static Drain-to-Source On Resistance	1.0	1.5	Dynamic Ω Systemics
I _D	Drain Current Continuous at T _C = 25°C Continuous at T _C = 100°C Pulsed	5.5 3.5 8.0 ²	4.5 3.0 7.0 ²	A 200 10 10 10 10 10 10 10 10 10 10 10 10 1
Maximum	Thermal Characteristics		araiT wo	
$R_{\theta JC}$	Thermal Resistance, Junction to Case	1.67	1.67	°C/W
P _D	Total Power Dissipation at $T_C = 25^{\circ}C$ at $T_C = 100^{\circ}C$	75 30	75 30	W
	Linear Derating Factor	0.6	0.6	W/°C

Notes

All values are JEDEC registered except as noted. For information concerning connection diagram and package outline, refer to Section 7.

2N6759/2N6760

Symbol	Characteristic	Min	Max	Unit	Test Conditions
Off Charac	teristics	171/	2010	Distriction of	BORDONAL SUCIT AS OF BIRD SWILCHING
V _{(BR)DSS}	Drain Source Breakdown Voltage ¹	4//		٧	V _{GS} = 0 V, I _D = 1.0 mA
	2N6760	400 ²			V AC to the bods Has
	2N6759	350 ²		paods	dison (sets for Fest Syllching 5
I _{DSS}	Zero Gate Voltage Drain Current	2500730	1	mA	V _{DS} = Rated V _{DSS} , V _{GS} = 0 V
		-055349	4		V_{DS} = Rated V_{DSS} , V_{GS} = 0 V, T_{C} = 125°C
I _{GSS}	Gate-Body Leakage Current		± 100	nA	V _{GS} = ± 20 V, V _{DS} = 0 V
On Charac	teristics		edita R		
V _{GS(th)}	Gate Threshold Voltage	2.0	4.0	V	I _D = 1.0 mA, V _{DS} = V _{GS}
R _{DS(on)}	Static Drain-Source On-Resistance ¹		90»	Ω	V _{GS} = 10 V
	2N6760		1.0		I _D = 3.0 A
	2N6759		1.5		I _D = 3.5 A
	2N6760		2.2		I _D = 3.5 A, T _C = 125°C
	2N6759	NO.	3.3		$I_D = 3.0 A, T_C = 125$ °C
V _{DS(on)}	Drain-Source On-Voltage ¹		000	٧	Musimira Leed Tempor
	2N6760		6.7		V _{GS} = 10 V; I _D = 5.5 A
	2N6759		7.0		$V_{GS} = 10 \text{ V}; I_D = 4.5 \text{ A};$
9fs	Forward Transconductance ¹	3.0	9.0	S (7)	$V_{DS} = 15 \text{ V}, I_{D} = 3.5 \text{ A}$
	haracteristics		difference.		Corporate District Court to Bourds
C _{iss}	Input Capacitance	350	800	pF	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}$ f = 1.0 MHz
Coss	Output Capacitance	50	300	pF	S = of the supprission
C _{rss}	Reverse Transfer Capacitance	20	80	pF	Continuous at Tilledie
Switching	Characteristics (T _C = 25°C, Figures 9,	10)	14/4		Machine 14
t _{d(on)}	Turn-On Delay Time		30	ns	$V_{DD} = 175 \text{ V}, I_D = 3.5 \text{ A}$
t _r	Rise Time		35	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 15 \Omega$ $R_{GS} = 15 \Omega$
t _{d(off)}	Turn-Off Delay Time		55	ns	notincipald news 1 leter 1
t _f	Fall Time		55	ns	STOP STOP IS
Qg	Total Gate Charge		30 ²	nC	V _{GS} = 10 V, I _D = 7.0 A V _{DD} = 180 V

Electrical Characteristics (Cont.) (T_C = 25°C unless otherwise noted) (Jn 30) (Jn 30

Symbol	Characteristic	Min	Тур	Max	Unit	Test Conditions
Source-Dra	ain Diode Characteristics	11 30			5015	minorare e anter e anti-
Is	Continuous Source Current 2N6760 2N6759		400134911	5.5 4.5	A	V 07 = 28V
I _{SM}	Pulsed Source Current 2N6760 2N6759	1.1	A Magnetic Control	8.0 7.0	A	
V _{SD}	Diode Forward Voltage 2N6760 2N6759	0.75	76	1.5	٧	I _S = 5.5 A; V _{GS} = 0 V
		0.70		1.4		I _S = 4.5 A; V _{GS} = 0 V
t _{rr}	Reverse Recovery Time	e e	550 ²		ns	$V_{GS} = 0 \text{ V, } T_J = 150^{\circ}\text{C}$ $I_F = I_{SM}, dI_F/dt = 100 \text{ A}/\mu\text{S}$
Q _{RR}	Reverse Recovery Charge	and 8 com	8.0 ²		μC	$V_{GS} = 0$ V, $T_{J} = 150$ °C $I_{F} = I_{SM}$, $dI_{F}/dt = 100$ A/ μ S

Notes 1. Pulse test: Pulse width \leqslant 300 μ s, Duty cycle \leqslant 2% 3. Non-JEDEC registered value.

Typical Performance Curves

Figure 1 Output Characteristics

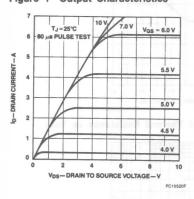


Figure 2 Static Drain to Source Resistance vs Drain Current

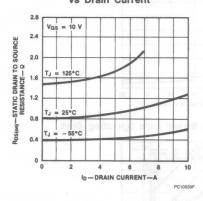


Figure 3 Transfer Characteristics

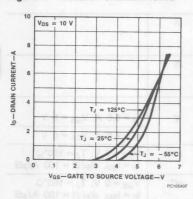


Figure 5 Capacitance vs Drain to Source Voltage

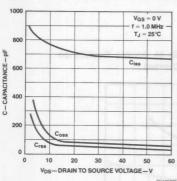


Figure 7 Forward Biased Safe Operating Area

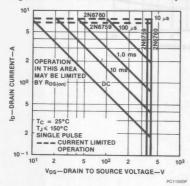


Figure 4 Temperature Variation of Gate to Source Threshold Voltage

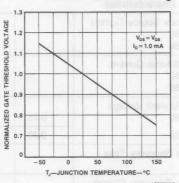


Figure 6 Gate to Source Voltage vs Total Gate Charge

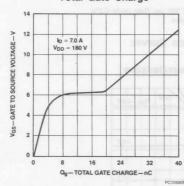
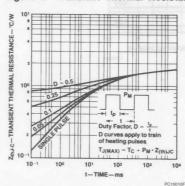



Figure 8 Transient Thermal Resistance vs Time

Typical Electrical Characteristics

Figure 9 Switching Test Circuit

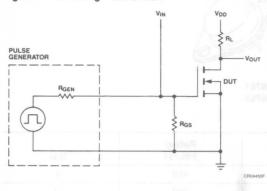
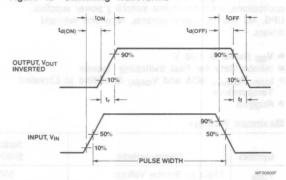



Figure 10 Switching Waveforms

2N6761/2N6762 N-Channel Power MOSFETs, 4.5 A, 450 V/500 V

Power And Discrete Division

Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high voltage, high speed applications, such as off-line switching power supplies, UPS, AC and DC motor controls, relay and solenoid drivers.

- V_{GS} Rated at ± 20 V
- Silicon Gate for Fast Switching Speeds
- I_{DSS}, R_{DS(on)}, SOA and V_{GS(th)} Specified at Elevated Temperature
- Rugged

TO-204AA

2N6761 2N6762

Maximum Ratings

Symbol	Characteristic	Rating 2N6762	Rating 2N6761	Unit
V _{DSS}	Drain to Source Voltage	500	450	V
V _{DGR}	Drain to Gate Voltage $R_{GS} = 1.0 \ M\Omega$	500	450	٧
V _{GS}	Gate to Source Voltage	± 20	± 20	V
T _J , T _{stg}	Operating Junction and Storage Temperatures	-55 to +150	-55 to +150	°C
TL	Maximum Lead Temperature for Soldering Purposes, 1/16" From Case for 10 s	300	300 300	
/laximum	On-State Characteristics			
R _{DS(on)}	Static Drain-to-Source On Resistance	1.5	2.0	Ω
I _D	Drain Current Continuous at T _C = 25°C Continuous at T _C = 100°C Pulsed	4.5 3.0 7.0 ²	4.0 2.5 6.0 ²	Α
Maximum	Thermal Characteristics			
$R_{ heta$ JC	Thermal Resistance, Junction to Case	1.67	1.67	°C/W
P _D	Total Power Dissipation at $T_C = 25^{\circ}C$ at $T_C = 100^{\circ}C$	75 30	75 30	W
	Linear Derating Factor	0.6	0.6	W/°C

Notes

All values are JEDEC registered except as noted. For information concerning connection diagram and package outline, refer to Section 7.

Symbol	Characteristic	Min	Max	Unit	Test Conditions
Off Charac	teristics	•			auroa-Dros los Characterialites
V _{(BR)DSS}	Drain Source Breakdown Voltage ¹			٧	$V_{GS} = 0$ V, $I_D = 4$ mA
	2N6762	500 ²			304
	2N6761	450 ²			Inautus soure haces
I _{DSS}	Zero Gate Voltage Drain Current	oltage Drain Current 1 mA	mA	$V_{DS} = Rated V_{DSS}, V_{GS} = 0 V$	
			4		$V_{DS} = 0.8 \times \text{Rated } V_{DSS},$ $V_{GS} = 0 \text{ V}, T_C = 125^{\circ}\text{C}$
I _{GSS}	Gate-Body Leakage Current		± 100	nA	V _{GS} = ± 20 V, V _{DS} = 0 V
n Charac	teristics	-08			miT yravcore
V _{GS(th)}	Gate Threshold Voltage	2.0	4.0	V	I _D = 1.0 mA, V _{DS} = V _{GS}
R _{DS(on)}	Static Drain-Source On-Resistance ¹	10		Ω	V _{GS} = 10 V
	2N6762		1.5		I _D = 3.0 A
	2N6761		2.0		I _D = 2.5 A
	2N6762		3.3		I _D = 3.0 A, T _C = 125°C
	2N6761		4.4		I _D = 2.5 A, T _C = 125°C
V _{DS(on)}	Drain-Source On-Voltage ¹ 2N6762	Figure 2	7.7	٧	V _{GS} = 10 V I _D = 4.5 A
	2N6761		8.0		I _D = 4.0 A
9fs	Forward Transconductance ¹	2.5	7.5	S (U)	V _{DS} = 15 V, I _D = 3.0 A
Dynamic C	haracteristics				2.07
C _{iss}	Input Capacitance	350	800	pF	V _{DS} = 25 V, V _{GS} = 0 V
C _{dss}	Output Capacitance	25	200	pF	f = 1.0 MHz
C _{res}	Reverse Transfer Capacitance	15	60	pF	
Switching	Characteristics (T _C = 25°C, Figures 9,	10)			Vel
t _{d(on)}	Turn-On Delay Time		30	ns	V _{DD} = 225 V, I _D = 3.0 A
t _r	Rise Time	J	30	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = \Omega$ $R_{GS} = 15 \Omega$
t _{d(off)}	Turn-Off Delay Time		55	ns	The specific survival of the same service.
t _f	Fall Time		30	ns	
Qg	Total Gate Charge		30 ²	nC	V _{GS} = 10 V, I _D = 7.0 A V _{DD} = 180 V

Electrical Characteristics (Cont.) (T_C = 25°C unless otherwise noted)

Symbol	Characteristic	Min	Тур	Max	Unit	Test Conditions
Source-Dra	in Diode Characteristics					pathristement III
Is	Continuous Source Current 2N6762 2N6761		500	4.5 4.0	A	Venges Diain Squee Bred ski6762
I _{SM}	Pulsed Source Current 2N6762 2N6761			7.0 6.0	A	Ipta Cale Voltage
V _{SD}	Diode Forward Voltage 2N6762 2N6761	0.7 0.65	2	1.4 1.3	V Imman O a	V _{GS} = 0 V I _S = 4.5 A I _S = 4.0 A
t _{rr}	Reverse Recovery Time	0.5	520 ²		ns	$V_{GS} = 0 \text{ V}, T_{J} = 150^{\circ}\text{C}$ $I_{F} = I_{SM}, dI_{F}/dt = 100 \text{ A}/\mu\text{S}$
Q _{RR}	Reverse Recovery Charge		7.0 ²	dom	μC	$V_{GS} = 0 \text{ V}, T_{J} = 150^{\circ}\text{C}$ $I_{F} = I_{SM}, dI_{F}/dt = 100 \text{ A}/\mu\text{S}$

Notes

1. Pulse test: Pulse width \leq 300 μ s, Duty cycle \leq 1%

2. Non-JEDEC registered value.

Typical Performance Curves

Figure 1 Output Characteristics

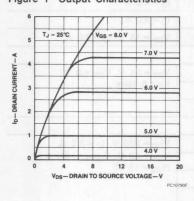


Figure 2 Static Drain to Source Resistance vs Drain Current

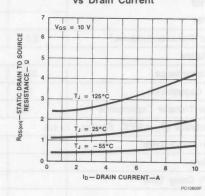


Figure 3 Transfer Characteristics

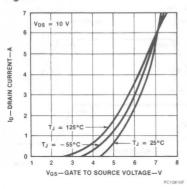


Figure 5 Capacitance vs Drain to Source Voltage

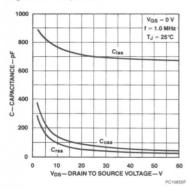


Figure 7 Forward Biased Safe Operating Area

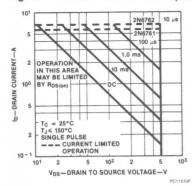


Figure 4 Temperature Variation of Gate to Source Threshold Voltage

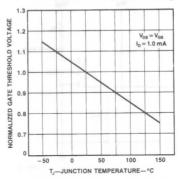


Figure 6 Gate to Source Voltage vs Total Gate Charge

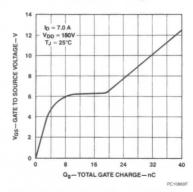
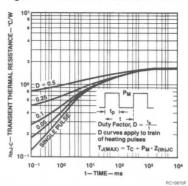



Figure 8 Transient Thermal Resistance vs Time

Typical Electrical Characteristics

Figure 9 Switching Test Circuit

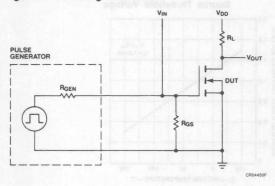
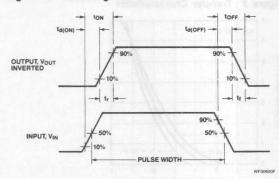



Figure 10 Switching Waveforms

2N6763/2N6764 N-Channel Power MOSFETs, 38 A, 60 V/100 V

Power And Discrete Division

Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as switching power supplies, UPS, AC and DC motor controls, relay and solenoid driver and high energy pulse circuits.

- V_{GS} Rated at ± 20 V
- Silicon Gate for Fast Switching Speeds
- I_{DSS}, R_{DS(on)} Specified at Elevated Temperature
- Rugged
- Low Drive Requirements
- Ease of Paralleling

TO-204AE

2N6763 2N6764

Maximum Ratings

Symbol	Characteristic	Rating 2N6764	Rating 2N6763	Unit
V _{DSS}	Drain to Source Voltage	100	source On 60 stance	V 100)80F
V_{DGR}	Drain to Gate Voltage $R_{GS} = 1.0 \ M\Omega$	100	60	#-1 - M - V
V _{GS}	Gate to Source Voltage	± 20	± 20	Leval V
T _J , T _{stg}	Operating Junction and Storage Temperatures	-55 to +150	-55 to +150	€aTyr: °C
TL	Maximum Lead Temperature for Soldering Purposes, 1/16" From Case for 10 s	90 × 300	300	Salah eC (MISS)
Maximum	On-State Characteristics	7.5 8.7	nsconductar	eri i sur i ed
R _{DS(on)}	Static Drain-to-Source On Resistance	0.055	0.08	Ω
I _D	Drain Current Continuous at T _C = 25°C Continuous at T _C = 100°C Pulsed	38 24 70 ²	31 20 60 ²	Cotas A state Copy Copy Copy I have Test with China Copy and Copy
Maximum	Thermal Characteristics		nmil ve	KAT ENDOSOT
$R_{\theta JC}$	Thermal Resistance, Junction to Case	0.83	0.83	°C/W
P _D	Total Power Dissipation at T _C = 25°C at T _C = 100°C	150 60	150 60	W
	Linear Derating Factor	1.2	1.2	W/°C

Notes

All values are JEDEC registered except as noted. For information concerning connection diagram and package outline, refer to Section 7.

2N6763/2N6764

Symbol	Characteristic	Min	Max	Unit	Test Conditions	
Off Charac	teristics	13/	S, AC	supplies, UF	heatlone, such as switching power	
V _{(BR)DSS}	Drain Source Breakdown Voltage	/ ////	Night Street	V	V _{GS} = 0 V, I _D = 1 m	
	2N6764	100 ²			Water to the second	
	2N6763	60 ²		nbewo	Bloom Cart for Feet Switching \$	
I _{DSS}	Zero Gate Voltage Drain Current	SMELES	1 1	mA	V _{DS} = Rated V _{DSS} , V _{GS} = 0 V	
		2936784	4		V_{DS} = Rated V_{DSS} , V_{GS} = 0 V, T_{C} = 125°C	
I _{GSS}	Gate-Body Leakage Current		± 100	nA	V _{GS} = ± 20 V, V _{DS} = 0 V	
On Charac	teristics					
V _{GS(th)}	Gate Threshold Voltage	2.0	4.0	V	I _D = 1 mA, V _{DS} , = V _{GS}	
R _{DS(on)}	Static Drain-Source On-Resistance ¹		100	Ω	V _{GS} = 10 V	
	2N6764		0.055		I _D = 24 A	
·	2N6763		0.080		I _D = 20 A	
	2N6764		0.094		I _D = 24 A; T _C = 125°C	
	2N6763	081	0.136		I _D = 20 A; T _C = 125°C	
V _{DS(on)}	Drain-Source On-Voltage ¹ 2N6764 2N6763		2.09	٧	V _{GS} = 10 V I _D = 38 A	
			2.48		I _D = 31 A	
9fs	Forward Transconductance ¹	9.0	27	S (U)	V _{DS} = 15 V, I _D = 24 A	
	haracteristics		220 D		103 1011, 10 2111	
C _{iss}	Input Capacitance	1000	3000	pF	V _{DS} = 25 V, V _{GS} = 0 V	
C _{dss}	Output Capacitance	500	1500	pF	f = 1.0 MHz	
C _{rss}	Reverse Transfer Capacitance	150	500	pF	Continuous at To = 2 Continuous at To = 4 ft	
Switching (Characteristics (T _C = 25°C, Figures 9,	10)	262		аваји? м	
t _{d(on)}	Turn-On Delay Time		35	ns	V _{DD} = 24 V, I _D = 24 A	
t _r	Rise Time		100	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 4.7 \Omega$	
t _{d(off)}	Turn-Off Delay Time		125	ns	$R_{GS} = 4.7 \Omega$	
t _f	Fall Time	16 - CC 13	100	ns	Total Power Disapellon - 1 To # 2510	
Qg	Total Gate Charge		120 ²	nC	V _{GS} = 10 V, I _D = 50 A V _{DD} = 55 V	

2NG763/2NG764 N-Channel Power MOSFETs, 38 A, 60 V/100 V Electrical Characteristics (Cont.) (T_C = 25°C unless otherwise noted)

Symbol	Characteristic	Min	Тур	Max	Unit	Test Conditions
Source-Dra	ain Diode Characteristics	onucli.		'	est	igure 3 Transler Charpoteir
I _S	Continuous Source Current 2N6764 2N6763			38 31	A	/ 07 - 50V 05
I _{SM}	Pulsed Source Current 2N6764 2N6763			70 60 .	Α	F4
V _{SD}	Diode Forward Voltage 2N6764	0.95	MA OWLY	1.9	٧	V _{GS} = 0 V I _S = 38 A
	2N6763	0.90		1.8		I _S = 31 A
t _{rr}	Reverse Recovery Time	10 10 -	500 ²		ns	$V_{GS} = 0 \text{ V}, T_J = 150^{\circ}\text{C}$ $I_F = I_{SM}, dI_F/dt = 100 \text{ A}/\mu\text{S}$
Q _{RR}	Reverse Recovery Charge	Marie - J	10 ²		μC	$V_{GS} = 0 \text{ V}, T_J = 150^{\circ}\text{C}$ $I_F = I_{SM}, dI_F/dt = 100 \text{ A}/\mu\text{S}$

1. Pulse test: Pulse width \leq 20 μ s, Duty cycle \leq 2% 2. Non-JEDEC registered value.

Typical Performance Curves

Figure 1 Output Characteristics

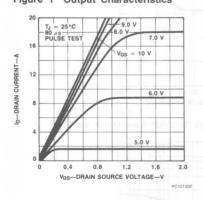


Figure 2 Static Drain to Source Resistance vs Drain Current

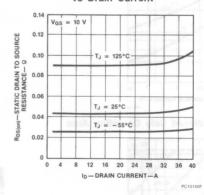


Figure 3 Transfer Characteristics

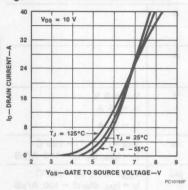


Figure 5 Capacitance vs Drain to Source Voltage

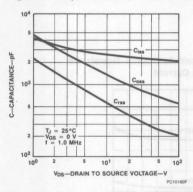


Figure 7 Forward Biased Safe Operating Area

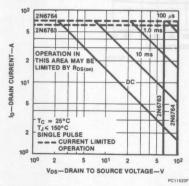


Figure 4 Temperature Variation of Gate to Source Threshold Voltage

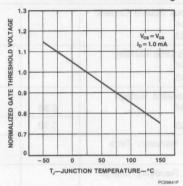


Figure 6 Gate to Source Voltage vs Total Gate Charge

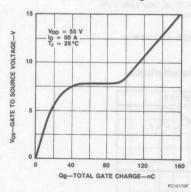
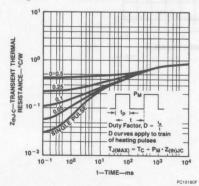



Figure 8 Transient Thermal Resistance vs Time

Typical Electrical Characteristics

Figure 9 Switching Test Circuit

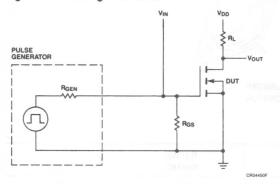
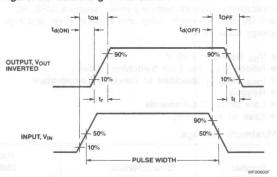



Figure 10 Switching Waveforms

Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as switching power supplies, UPS, AC and DC motor controls, relay and solenoid driver and high energy pulse circuits.

- V_{GS} Rated at ± 20 V
- Silicon Gate for Fast Switching Speeds
- I_{DSS}, R_{DS(on)} Specified at Elevated Temperature
- Rugged
- Low Drive Requirements
- Ease of Paralleling

Maximum Ratings

TO-204AE

2N6765 2N6766

Symbol	Characteristic	Rating 2N6766	Rating 2N6765	Unit
V _{DSS}	Drain to Source Voltage	200	150	V
V _{DGR}	Drain to Gate Voltage $R_{GS} = 1 \ M\Omega$	200	150	٧
V _{GS}	Gate to Source Voltage	± 20	± 20	V
T _J , T _{stg}	Operating Junction and Storage Temperatures	-55 to +150	-55 to +150	°C
TL	Maximum Lead Temperature for Soldering Purposes, 1/16" From Case for 10 s	300 300		°C
Maximum	On-State Characteristics			
R _{DS(on)}	Static Drain-to-Source On Resistance	0.085	0.12	Ω
I _D	Drain Current Continuous at T _C = 25°C Continuous at T _C = 100°C Pulsed	30 19 60 ²	25 16 50 ²	A
Maximum	Thermal Characteristics			
$R_{ heta$ JC	Thermal Resistance, Junction to Case	0.83	0.83	°C/W
P _D	Total Power Dissipation at T _C = 25°C at T _C = 100°C	150 60	150 60	W

Notes

All values are JEDEC registered except as noted. For information concerning connection diagram and package outline, refer to Section 7.

Symbol	Characteristic	Min	Max	Unit	Test Conditions
Off Charac	teristics				ourge-Down Diade Characteristic
V _{(BR)DSS}	Drain Source Breakdown Voltage			V	V _{GS} = 0 V, I _D = 1.0 mA
	2N6766	200 ²			
	2N6765	150 ²			test ' source Culterni
I _{DSS}	Zero Gate Voltage Drain Current		1	mA	$V_{DS} = Rated V_{DSS}, V_{GS} = 0 V$
	V W-ENV V		4		V_{DS} = Rated V_{DSS} , V_{GS} = 0 V, T_{C} = 125°C
I _{GSS}	Gate-Body Leakage Current		± 100	nA	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$
On Charac	teristics	300	8		I Large Second Fire
V _{GS(th)}	Gate Threshold Voltage	2.0	4.0	V	I _D = 1.0 mA, V _{DS} , = V _{GS}
R _{DS(on)}	Static Drain-Source On-Resistance ¹	*01		Ω	V _{GS} = 10 V,
	2N6766		0.085	*37	I _D = 19 A
	2N6765		0.12		I _D = 16 A
	2N6766		0.153		I _D = 19 A, T _C = 125°C
	2N6765		0.216		I _D = 16 A, T _C = 125°C
V _{DS(on)}	Drain-Source On-Voltage ¹	e waterfil		V	V _{GS} = 10 V
	2N6766		2.7		I _D = 30 A
	2N6765	10.0	3.0		I _D = 25 A
9fs	Forward Transconductance ¹	9.0	27	S (U)	V _{DS} = 15 V, I _D = 19 A
Dynamic C	haracteristics	É			10 10 10
C _{iss}	Input Capacitance	1000	3000	pF	V _{DS} = 25 V, V _{GS} = 0 V
C _{dss}	Output Capacitance	450	1200	pF	f = 1.0 MHz
C _{rss}	Reverse Transfer Capacitance	150	500	pF	
Switching	Characteristics (T _C = 25°C, Figures 9,	10)			
t _{d(on)}	Turn-On Delay Time	100	35	ns	V _{DD} = 95 V, I _D = 19 A
t _r	Rise Time		100	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 4.7 \Omega$ $R_{GS} = 4.7 \Omega$
t _{d(off)}	Turn-Off Delay Time		125	ns	West Dark I IV 70 H I I I I I I I I
t _f	Fall Time		100	ns	
Qg	Total Gate Charge		120 ²	nC	V _{GS} = 10 V, I _D = 38 A V _{DD} = 100 V

Electrical Characteristics (Cont.) (T_C = 25°C unless otherwise noted)

Symbol	Characteristic	Min	Тур	Max	Unit	Test Conditions
Source-Dra	in Diode Characteristics					ff Characteristics
Is	Continuous Source Current 2N6766 2N6765		for	30 25	A	Verme Drain Source Buts (Nersee
I _{SM}	Pulsed Source Current 2N6766 2N6765	7	500	60 ² 50 ²	A	2NS785 Ipss Zero Gen Vonige
V _{SD}	Diode Forward Voltage 2N6766 2N6765	0.9 0.85		1.8 1.7	V Current	V _{GS} = 0 V I _S = 30 A I _S = 25 A
t _{rr}	Reverse Recovery Time		500 ²		ns	$V_{GS} = 0 \text{ V, } T_{J} = 150^{\circ}\text{C}$ $I_{F} = I_{SM}, \ dI_{F}/dt = 100 \ A/\mu\text{s}$
Q _{RR}	Reverse Recovery Charge		10 ²	Teoni Permi	μC	$V_{GS} = 0 \text{ V, } T_{J} = 150^{\circ}\text{C}$ $I_{F} = I_{SM}, \ dI_{F}/dt = 100 \ A/\mu\text{s}$

Notes

- 1. Pulse test: Pulse width \leq 300 μ s, Duty cycle \leq 2%
- 2. Non-JEDEC registered value.

Typical Performance Curves

Figure 1 Output Characteristics

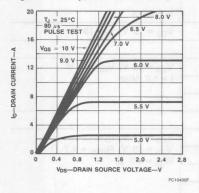


Figure 2 Static Drain to Source On-Resistance vs Drain Current

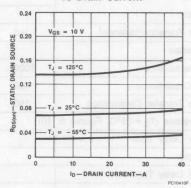


Figure 3 Transfer Characteristics

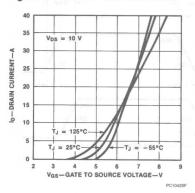


Figure 5 Capacitance vs Drain to Source Voltage

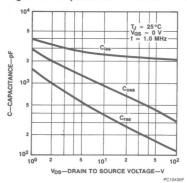


Figure 7 Forward Biased Safe Operating Area

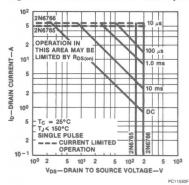


Figure 4 Temperature Variation of Gate to Source Threshold Voltage

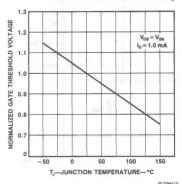


Figure 6 Gate to Source Voltage vs Total Gate Charge

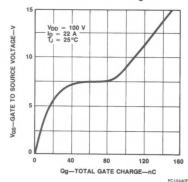
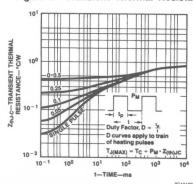



Figure 8 Transient Thermal Resistance vs Time

Typical Electrical Characteristics

Figure 9 Switching Test Circuit

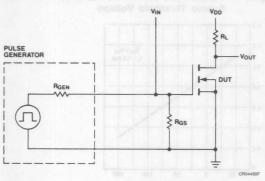
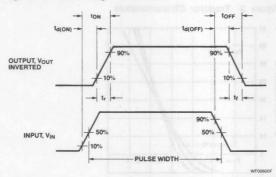



Figure 10 Switching Waveforms

2N6767/2N6768 N-Channel Power MOSFETs, 15 A, 350 V/400 V

Power And Discrete Division

Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high voltage, high speed applications, such as off-line switching power supplies, UPS, AC and DC motor controls, relay and solenoid drivers.

- V_{GS} Rated at ± 20 V
- Silicon Gate for Fast Switching Speeds
- I_{DSS}, R_{DS(on)} Specified at Elevated Temperature
- Rugged
- Low Drive Requirements
- Ease of Paralleling

TO-204AA

2N6767 2N6768

Maximum Ratings

Symbol	Characteristic	Rating 2N6768	Rating 2N6767	Unit Unit
V _{DSS}	Drain to Source Voltage	400	350	V
V_{DGR}	Drain to Gate Voltage ${\rm R_{GS}} = 1.0~{\rm M}\Omega$	400	350	V SARTER
V _{GS}	Gate to Source Voltage	60 0 ± 20	± 20	18/1/18/ V
T _J , T _{stg}	Operating Junction and Storage Temperatures	-55 to +150	-55 to +150	Vasion) Crain#Source
TL	Maximum Lead Temperature for Soldering Purposes, 1/16" From Case for 10 s	300	300	Savávas °C varávas
Maximum	On-State Characteristics			and the last of the statement of the sta
R _{DS(on)}	Static Drain-to-Source On Resistance	0.3	0.4	Ongs O Capac
I _D	Drain Current Continuous at T _C = 25°C Continuous at T _C = 100°C Pulsed	14 9.0 25 ²	12 7.75 20 ²	Equal Provides To
Maximum	Thermal Characteristics	36	emil va	recomplement (mode)
$R_{ heta JC}$	Thermal Resistance, Junction to Case	0.83	0.83	°C/W
P _D	Total Power Dissipation at $T_C = 25^{\circ}C$ at $T_C = 100^{\circ}C$	150	1.50 60	W San Time
	Linear Derating Factor	1.2	1.2	W/°C

Notes

All values are JEDEC registered except as noted. For information concerning connection diagram and package outline, refer to Section 7.

2N6767/2N6768

Symbol	Characteristic	Min	Max	Unit	Test Conditions
Off Charac	teristics	50)-	anles	iqua tevroo i	celors, eyer as oil-line switching
V _{(BR)DSS}	Drain Source Breakdown Voltage ¹	73//		٧	V _{GS} = 0 V, I _D = 1.0 mA
	2N6768	400 ²	PLANT.		
	2N6767	350 ²		about	ig Raisd at 120 V loon Case for Fast Sweeting B
I _{DSS}	Zero Gate Voltage Drain Current		1 014	mA	V _{DS} = Rated V _{DSS} , V _{GS} = 0 V
		2N6768	4		V_{DS} = Rated V_{DSS} , V_{GS} = 0 V, T_C = 125°C
I _{GSS}	Gate-Body Leakage Current	ALC: VIII	± 100	nA	V _{GS} = ± 20 V, V _{DS} = 0 V
On Charac	teristics				AGUELS INVAL
V _{GS(th)}	Gate Threshold Voltage	2.0	4.0	٧	$I_D = 1$ mA, $V_{DS} = V_{GS}$
R _{DS(on)}	Static Drain-Source On-Resistance			Ω	V _{GS} = 10 V
	2N6768		0.3		I _D = 9.0 A
	2N6767		0.4		I _D = 7.75 A
	2N6768		0.66		I _D = 9.0 A
	2N6767	621	0.88		I _D = 7.75 A
V _{DS(on)}	Drain-Source On-Voltage			٧	V _{GS} = 10 V
	2N6768 2N6767		5.6 5.4	ena	I _D = 14 A I _D = 12 A
9fs	Forward Transconductance	8.0	24	S (73)	$V_{DS} = 15 \text{ V}, I_{D} = 9.0 \text{ A}$
Dynamic C	haracteristics				The state of the s
C _{iss}	Input Capacitance	1000	3000	pF	V _{DS} = 25 V, V _{GS} = 0 V
C _{dss}	Output Capacitance	200	600	pF	f = 1.0 MHz
C _{rss}	Reverse Transfer Capacitance	50	200	pF	Cominuous at To = 26
Switching	Characteristics (T _C = 25°C, Figures 9,	10)	582		Pulsed
t _{d(on)}	Turn-On Delay Time		35	ns	V _{DD} = 180 V, I _D = 9.0 A
t _r	Rise Time		65	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 4.7 \Omega$ $R_{GS} = 4.7 \Omega$
t _{d(off)}	Turn-Off Delay Time		150	ns	Asso of modernal
t _f	Fall Time		75	ns	Total Power Dissipation
Qg	Total Gate Charge		120 ²	nC	V _{GS} = 10 V, I _D = 16 A V _{DD} = 400 V

Electrical Characteristics (Cont.) ($T_C = 25^{\circ}C$ unless otherwise noted)

Symbol	Characteristic	Min	Тур	Max	Unit	Test Conditions
Source-Dra	in Diode Characteristics	100E			82/28	igate 5 37 (Like Chinachem
Is	Continuous Source Current 2N6768 2N6767			14 12	Α	P F
I _{SM}	Pulsed Source Current 2N6768 2N6767		COME BASE	25 ² 20 ²	Α	51 52
V _{SD}	Diode Forward Voltage 2N6768	0.85	5	1.7	٧	V _{GS} = 0 V I _S = 14 A
	2N6767	0.8		1.6		I _S = 12 A
t _{rr}	Reverse Recovery Time	b 68-	1000 ²		ns	$V_{GS} = 0 \text{ V, } T_J = 150^{\circ}\text{C}$ $I_F = I_{SM}, \text{ dI}_F/\text{dt} = 100 \text{ A}/\mu\text{s}$
Q _{RR}	Reverse Recovery Charge	protest a mu	25 ²		μC	$V_{GS} = 0 \text{ V}, T_J = 150^{\circ}\text{C}$ $I_F = I_{SM}, dI_F/dt = 100 \text{ A}/\mu\text{s}$

Notes

1. Pulse test: Pulse width \leq 300 μ s, Duty cycle \leq 2% 2. Non-JEDEC registered value.

Typical Performance Curves

Figure 1 Output Characteristics

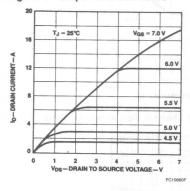


Figure 2 Static Drain to Source On Resistance vs Drain Current

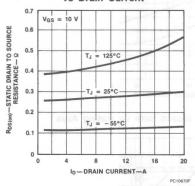


Figure 3 Transfer Characteristics

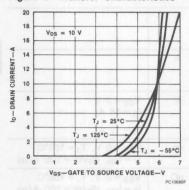


Figure 5 Capacitance vs Drain to Source Voltage

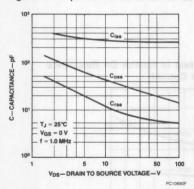


Figure 7 Forward Biased Safe Operating Area

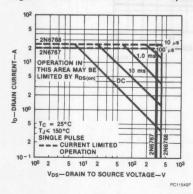


Figure 4 Temperature Variation of Gate to Source Threshold Voltage

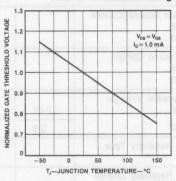


Figure 6 Gate to Source Voltage vs Total Gate Charge

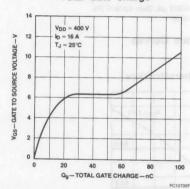
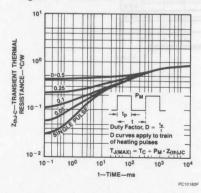



Figure 8 Transient Thermal Resistance vs Time

Typical Electrical Characteristics

Figure 9 Switching Test Circuit

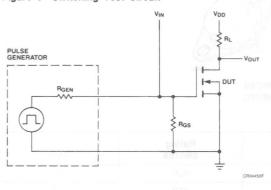
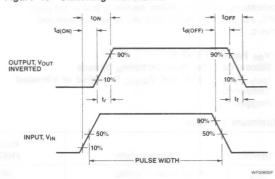



Figure 10 Switching Waveforms

2N6769/2N6770 N-Channel Power MOSFETs, 12 A, 450 V/500 V

Power And Discrete Division

Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high voltage, high speed applications, such as off-line switching power supplies, UPS, AC and DC motor controls, relay and solenoid drivers.

- V_{GS} Rated at ± 20 V
- Silicon Gate for Fast Switching Speeds
- I_{DSS}, V_{DS(on)}, SOA and V_{GS(th)} Specified at Elevated Temperature
- Rugged

TO-204AA

2N6769 2N6770

Maximum Ratings

Symbol	Characteristic	Rating 2N6770	Rating 2N6769	Unit	
V _{DSS}	Drain to Source Voltage	500	450	V	
V _{DGR}	Drain to Gate Voltage $R_{GS} = 1.0 \ \text{M}\Omega$	500	450	٧	
V _{GS}	Gate to Source Voltage	± 20	± 20	V	
T _J , T _{stg}	Operating Junction and Storage Temperatures	-55 to +150	-55 to +150	°C	
TL	Maximum Lead Temperature for Soldering Purposes, 1/16" From Case for 10 s	300	300		
/laximum	On-State Characteristics				
R _{DS(on)}	Static Drain-to-Source On Resistance	0.4	0.5	Ω	
I _D	Drain Current Continuous at T _C = 25°C Continuous at T _C = 100°C Pulsed	12 4.75 25 ²	11 7.0 20 ²	A	
Maximum	Thermal Characteristics				
$R_{ heta JC}$	Thermal Resistance, Junction to Case	0.83	0.83	°C/W	
P _D	Total Power Dissipation at $T_C = 25^{\circ}C$ at $T_C = 100^{\circ}C$	150 60	150 60	W	
	Linear Derating Factor	1.2	1.2	W/°C	

Notes

All values are JEDEC registered except as noted. For information concerning connection diagram and package outline, refer to Section 7.

Symbol	Characteristic	Min	Max	Unit	Test Conditions
Off Charac	teristics				ource-Orain Occas Characteristics
V _{(BR)DSS}	Drain Source Breakdown Voltage ¹			V	$V_{GS} = 0$ V, $I_D = 4$ mA
	2N6770	500 ²			Bres
	2N6769	450 ²			Ism I at A a Guerant
I _{DSS}	Zero Gate Voltage Drain Current		1	mA	$V_{DS} = Rated V_{DSS}, V_{GS} = 0 V$
	V V		4		V_{DS} = Rated V_{DSS} , V_{GS} = 0 V, T_C = 125°C
I _{GSS}	Gate-Body Leakage Current		± 100	nA	V _{GS} = ± 20 V, V _{DS} = 0 V
On Charac	teristics				
V _{GS(th)}	Gate Threshold Voltage	2.0	4.0	٧	I _D = 1 mA, V _{DS} = V _{GS}
R _{DS(on)}	Static Drain-Source On-Resistance ¹	24		Ω	V _{GS} = 10 V
	2N6770		0.4		I _D = 7.75 A
	2N6769		0.5		I _D = 7.0 A
	2N6770		0.88		I _D = 7.75 A, T _C = 125°C
	2N6769		1.10		I _D = 7.0 A, T _C = 125°C
V _{DS(on)}	Drain-Source On-Voltage ¹			٧	V _{GS} = 10 V
	2N6770 2N6769	Pigure 2	6.0 6.0		I _D = 12 A I _D = 11 A
9fs	Forward Transconductance	8.0	24	S (U)	V _{DS} = 15 V, I _D = 7.75 A
Dynamic C	haracteristics				7 na 17 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
C _{iss}	Input Capacitance	1000	3000	pF	V _{DS} = 25 V, V _{GS} = 0 V
C _{dss}	Output Capacitance	200	600	pF	f = 1.0 MHz
C _{rss}	Reverse Transfer Capacitance	50	200	pF	
Switching	Characteristics (T _C = 25°C, Figures 9,	10)			
t _{d(on)}	Turn-On Delay Time		35	ns	V _{DD} = 210 V, I _D = 7.75 A
t _r	Rise Time		50	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 4.7 \Omega$ $R_{GS} = 4.7 \Omega$
t _{d(off)}	Turn-Off Delay Time	T.D.	150	ns	B 8 P . 1 0
t _f	Fall Time		70	ns	V-TAXTECH SERVER THE SERVER POW
Qg	Total Gate Charge		120 ²	nC	V _{GS} = 10 V, I _D = 16 A V _{DD} = 400 V

Electrical Characteristics (Cont.) (T_C = 25°C unless otherwise noted)

Symbol	Characteristic	Min	Тур	Max	Unit	Test Conditions
Source-Dra	nin Diode Characteristics					If Characteristics
Is	Continuous Source Current 2N6770 2N6769		F04	12 ² 11 ²	A	Veragese Drain Scorce Ber 236770
I _{SM}	Pulsed Source Current 2N6770 2N6769		301	25 ² 20 ²	A	2 Zero Gate Vollage
V _{SD}	Diode Forward Voltage 2N6770 2N6769	0.80		1.6	V InemuQ e	V _{GS} = 0 V I _S = 12 A
t _{rr}	Reverse Recovery Time	0.75	1300 ²	1.5	ns	$I_S = 11 \text{ A}$ $V_{GS} = 0 \text{ V}, T_J = 150^{\circ}\text{C}$ $I_F = I_{SM}, dI_F/dt = 100 \text{ A/}\mu\text{s}$
Q _{RR}	Reverse Recovery Charge	9.0	7.42	1600	μC	$V_{GS} = 0 \text{ V, } T_{J} = 150^{\circ}\text{C}$ $I_{F} = I_{SM}, \ dI_{F}/dt = 100 \ A/\mu\text{s}$

Notes

1. Pulse test: Pulse width \leq 300 μ s, Duty cycle \leq 1%

2. Non-JEDEC registered value.

Typical Performance Curves

Figure 1 Output Characteristics

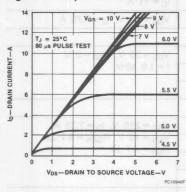
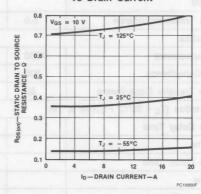



Figure 2 Static Drain to Source Resistance vs Drain Current

2

Figure 3 Transfer Characteristics

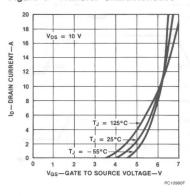


Figure 5 Capacitance vs Drain to Source Voltage

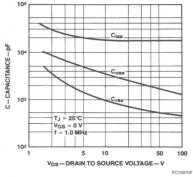


Figure 7 Forward Biased Safe Operating Area

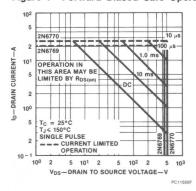


Figure 4 Temperature Variation of Gate to Source Threshold Voltage

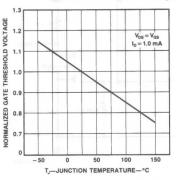


Figure 6 Gate to Source Voltage vs Total Gate Charge

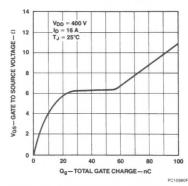
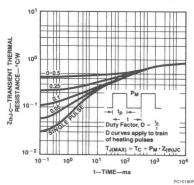



Figure 8 Transient Thermal Resistance vs Time

Typical Electrical Characteristics

Figure 9 Switching Test Circuit

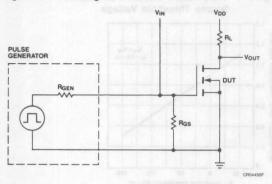
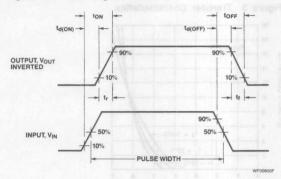
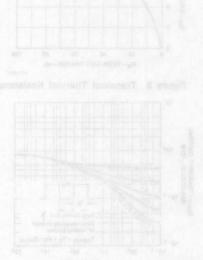




Figure 10 Switching Waveforms

FMP20N05/FMP18N05 N-Channel Power MOSFETs, 18-20 A, 50 V

Power And Discrete Division

Description

These devices are very low RDS(on), 50 V, n-channel, enhancement mode, power MOSFETs especially designed to serve the low voltage, high speed, switching markets. Typical applications are SMPS for telecommunication and instrumentation, DC motor controls, emitter switching, synchronous rectification, and systems that are operated from low voltage batteries, such as automotive and portable equipment, etc.

- Extremely low R_{DS(on)}
 V_{GS} Rated at ± 30 V
- Silicon Gate for Fast Switching Speeds
- Rugged
- Low Drive Requirements
- Ease of Paralleling

TO-220AB

EMD10NOE

FMP18N05 **FMP20N05**

Maximum Ratings

Symbol	Characteristic	Rating FMP20N05	Rating FMP18N05	Unit
V _{DSS}	Drain to Source Voltage ¹	* 50	50	V
V _{DGR}	Drain to Gate Voltage ¹ $R_{GS} = 20 \text{ k}\Omega$	50	50	V
V _{GS}	Gate to Source Voltage	± 30	± 30	V sali
T _J , T _{stg}	Operating Junction and Storage Temperatures	-55 to +150	-55 to +150	°C
TL	Maximum Lead Temperature for Soldering Purposes,	300	300	°C
	1/8" From Case for 5 s		I several section and select	4.7

Maximum On-State Characteristics

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FMP20N05	FMP18N05	
R _{DS(on)}	Static Drain-to-Source On Resistance	0.085	0.10	Ω
I _D	Drain Current Continuous at T _C = 25°C Continuous at T _C = 100°C Pulsed	20 14 60	18 13 50	A - 119/01
Maximum	Thermal Characteristics			
$R_{ heta JC}$	Thermal Resistance, Junction to Case	1.67	1.67	°C/W
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient	80	80	°C/W
P _D	Total Power Dissipation at T _C = 25°C	75	75	W

FAIDOONIOF

Notes

For information concerning connection diagram and package outline, refer to Section 7.

FMP20N05 FMP18N05

Symbol	Characteristic	Min	Max	Unit	Test Conditions	
Off Charac	teristics	De la constitución de la constit	igyT .ater	ham poidali	ve the low worken high spears aw	
V _{(BR)DSS}	Drain Source Breakdown Voltage ¹	50	-10 0100	٧	V _{GS} = 0 V, I _D = 250 μA	
I _{DSS}	Zero Gate Voltage Drain Current		250	μΑ	V _{DS} = Rated V _{DSS} , V _{GS} = 0 V	
		Ner alva	1000	μΑ	V _{DS} = 0.8 x Rated V _{DSS} , V _{GS} = 0 V, T _C = 125°C	
I _{GSS}	Gate-Body Leakage Current	PAREZINI	± 500	nA	V _{GS} = ± 20 V, V _{DS} = 0 V	
On Charac	teristics			n to the same	William Gala Yor Even Switzshing S	
V _{GS(th)}	Gate Threshold Voltage	2.0	4.0	٧	$I_{D} = 250 \ \mu A, \ V_{DS} = V_{GS}$	
R _{DS(on)}	Static Drain-Source On-Resistance ²			Ω	V _{GS} = 10 V, I _D = 10 A	
	FMP20N05		0.085			
	FMP18N05		0.10		admum Rallege	
V _{DS(on)}	Drain-Source On-Voltage ² FMP20N05	al	2.0	V	V _{GS} = 10 V; I _D = 20 A;	
	FMP18N05		2.25		Pass Drain to Source Voltage	
	FMP20N05 FMP18N05		1.40	V	V _{GS} = 10 V; I _D = 10 A; T _C = 100°C	
9fs	Forward Transconductance	5	Q8 =	S (V)	V _{DS} = 10 V, I _D = 10 A	
Dynamic C	haracteristics	081	- Ol 68-		La Tag Operating Junesesh and	
C _{iss}	Input Capacitance		850	pF	V _{DS} = 25 V, V _{GS} = 0 V	
Coss	Output Capacitance		400	pF	f = 1.0 MHz	
C _{rss}	Reverse Transfer Capacitance		150	pF	1/8" From Case for 6	
Switching	Characteristics (T _C = 25°C, Figures 9,	10)		40	manum ox sura successioned	
t _{d(on)}	Turn-On Delay Time	871	50	ns	V _{DD} = 40 V, I _D = 10 A	
t _r	Rise Time		90	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 50 \Omega$ $R_{GS} = 50 \Omega$	
t _{d(off)}	Turn-Off Delay Time		60	ns		
t _f	Fall Time		75	ns	b Litrain Current Continuous at Tox 25	
Qg	Total Gate Charge		20	nC	V _{GS} = 10 V, I _D = 25 A V _{DD} = 40 V	
Symbol	Characteristic	Тур	Max	Unit	Test Conditions	
Source-Dra	in Diode Characteristics				Juneagon to Case	
V _{SD}	Diode Forward Voltage		1.5	V	I _S = 20 A; V _{GS} = 0 V	
t _{rr}	Reverse Recovery Time	60		ns	$I_S = 20 \text{ A}; dI_S/dt = 50 \text{ A}/\mu\text{S}$	

^{1.} $T_J = +25^{\circ}\text{C}$ to $+150^{\circ}\text{C}$ 2. Pulse test: Pulse width $\leq 80~\mu\text{s}$, Duty cycle $\leq 1\%$

Typical Performance Curves

Figure 1 Output Characteristics

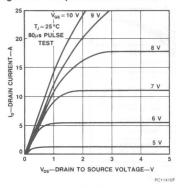


Figure 3 Transfer Characteristics

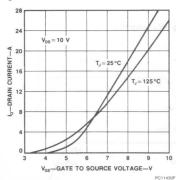


Figure 5 Capacitance vs Drain to Source Voltage

Figure 2 Static Drain to Source Resistance vs Drain Current

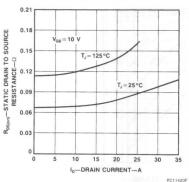


Figure 4 Temperature Variation of Gate to Source Threshold Voltage

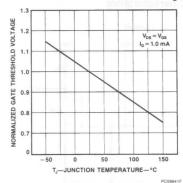


Figure 6 Gate to Source Voltage vs Total Gate Charge

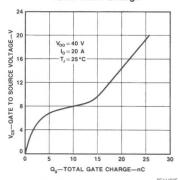
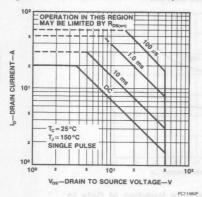



Figure 7 Forward Biased Safe Operating Area

Typical Electrical Characteristics

Figure 9 Switching Test Circuit

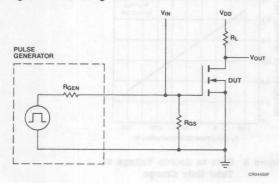


Figure 8 Transient Thermal Resistance vs Time

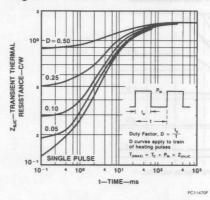
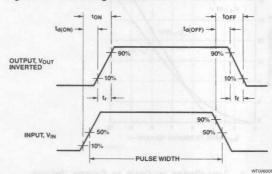



Figure 10 Switching Waveforms

FRP800 Series Ultra-fast POWERplanar™ Rectifiers 8 A, 50-200 V

Power And Discrete Division

Description

Designed for use in switching power supplies, inverters and as free-wheeling diodes, these state-of-the-art devices have the following features:

- Ultrafast 35 ns Recovery Time
- Soft Recovery (S > 0.5)
- Low IR(REC)
- 150°C Operating Junction Temperature
- Popular TO-220AC Package
- Low V_{FM}

IS00030F

FRP805 FRP810 FRP815 FRP820

Maximum Ratings

Symbol	Rating	FRP805	FRP810	FRP815	FRP820	Unit
V _{RRM} V _{RSM} V _R	Peak Repetitive Reverse Voltage Non-repetitive Peak Reverse Voltage DC Blocking Voltage	50 50 50	100 100 100	150 150 150	180 200 180	V and sell As and least
I _{F(AV)}	Average Rectified Forward Current, T _C = 130°C, Rated V _R	8	8	8	8	A
I _{FRM}	Peak Repetitive Forward Current Rated V _R , 50% Duty Cycle, Square Wave, 20 kHz, T _C = 130°C	16	16	16	16	A
I _{FSM}	Non-repetitive Peak Surge Current per Diode, Surge Applied at Rate Load Conditions Halfwave, Single Phase, 60 Hz	100	100	100	100	A
T _J , T _{stg}	Operating Junction Temperature and Storage Temperature	-55 to +150	-55 to +150	-55 to +150	-55 to +150	°C
/laximum	Thermal Characteristics	1				3
$R_{ heta JC}$	Maximum Thermal Resistance, Junction to Case	2.5	2.5	2.5	2.5	°C/W
$R_{ heta JA}$	Maximum Thermal Resistance, Junction to Ambient	60	60	60	60	1 60

Notes

For information concerning connection diagram and package outline, refer to Section 7.

Symbol	Rating	FRP805	FRP810	FRP815	FRP820	Unit
Electrical	Characteristics	8.90	vub Perost-to-s	los, these ctan	ooib gallaariyes	ort as br
V _{FM} ¹	Maximum Instantaneous Forward Voltage I _F = 8.0 A, T _C = 150°C I _F = 8.0 A, T _C = 25°C	0.80 0.95	0.80 0.95	0.80 0.95	0.80 0.95	V
I _{RRM} ¹	Maximum Instantaneous Repetitive Reverse Current Rated DC Voltage, T _C = 125°C Rated DC Voltage, T _C = 25°C	5.0 10	5.0 10	5.0 10	5.0 10	mA μA
t _{rr}	Maximum Reverse Recovery Time $I_F = 1.0$ A, $dI_F/dt = 50$ A/ μ s $I_F = 8$ A, $dI_F/dt = 100$ A/ μ s	35 50	35 50	35 50	35 50	ns
I _{R(REC)} ²	Maximum Reverse Recovery Current $I_F = 8$ A, $dI_F/dt = 100$ A/ μ s, $V_R = V_{RRM}$	2.5	2.5	2.5	2.5	А

Notes

1. Pulse Test: Pulse Width = 300 μ s. Duty Cycle \leq 2.0%

2. See Figure 10 for test conditions.

Performance Curves

Figure 1 Maximum Forward Voltage Drop

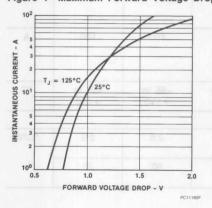
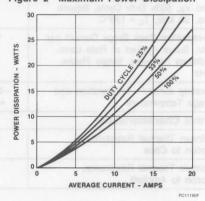



Figure 2 Maximum Power Dissipation

Performance Curves (Cont.)

Figure 3 Transient Thermal Resistance

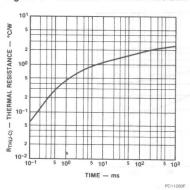


Figure 5 Power Derating

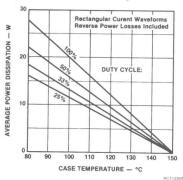


Figure 7 Reverse Recovery Time

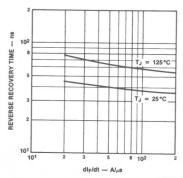


Figure 4 Typical Reverse Leakage Current

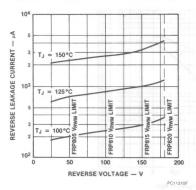
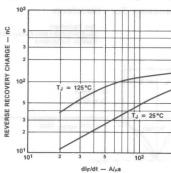



Figure 6 Reverse Recovery Charge

PC11230F

Performance Curves (Cont.)

Figure 8 Reverse Recovery Current

Figure 10 Reverse Recovery Test Waveform

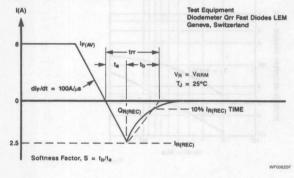
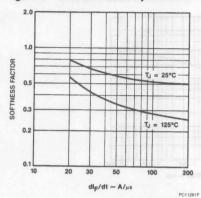



Figure 9 Reverse Recovery Softness

FRP1000/FRP2000CC Series Ultra-fast POWERplanar™ Rectifiers 10-20 A, 50-200 V

Power And Discrete Division

Description

Designed for use in switching power supplies, inverters and as free-wheeling diodes, these state-of-the-art devices have the following features:

- Ultrafast 35 ns Reverse Recovery Time
- Soft Recovery (S > 0.5)
- Low IR(REC)
- Dual Rectifiers Matched to ±50 mV
- 150°C Operating Junction Temperature
- Popular TO-220AC and TO-220AB Packages
- · Low V_{FM}

TO-220AC

TO-220AB

FRP1005 FRP1010 FRP1015 FRP1020

FRP2005CC FRP2010CC FRP2015CC FRP2020CC

Maximum Ratings

Symbol	Rating	FRP1005 FRP2005CC	FRP1010 FRP2010CC	FRP1015 FRP2015CC	FRP1020 FRP2020CC	Unit
V _{RRM} V _{RSM} V _R	Peak Repetitive Reverse Voltage Non-repetitive Peak Reverse Voltage DC Blocking Voltage	50 50 50	100 100 100	150 150 150	180 200 180	V
I _{F(AV)}	Average Rectified Forward Current, T _C = 117°C, Rated V _R ; FRP1000 Series FRP2000CC Series	10 20	10 20	10 20	10 20	A
I _{FSM}	Non-repetitive Peak Surge Current per Diode, Halfwave, 60 Hz	150	150	150	150	Α
T _J , T _{stg}	Operating Junction Temperature and Storage Temperature	-55 to +150	-55 to +150	-55 to +150	-55 to +150	°C
/laximum	Thermal Characteristics					91
$R_{\theta JC}$	Maximum Thermal Resistance, Junction to Case FRP1000 Series FRP2000CC Series	2.5 1.5	2.5 1.5	2.5 1.5	2.5 1.5	°C/W
$R_{\theta JA}$	Maximum Thermal Resistance, Junction to Ambient	60	60	60	60	

For information concerning connection diagram and package outline, refer to Section 7.

Symbol	Rating	FRP1005 FRP2005CC	FRP1010 FRP2010CC	FRP1015 FRP2015CC	FRP1020 FRP2020CC	Unit
Electrical Characteristics per Diode						
V _{FM} ¹	Maximum Instantaneous Forward Voltage I _F = 10.0 A, T_C = 150°C I _F = 10.0 A, T_C = 25°C	0.91 1.0	0.91 1.0	0.91 1.0	0.91	٧
I _{RRM} 1	Maximum Instantaneous Repetitive Reverse Current Rated DC Voltage, $T_C = 125^{\circ}C$ Rated DC Voltage, $T_C = 25^{\circ}C$	5.0 5	5.0 5	5.0 5	5.0 5	mA μA
t _{rr}	Maximum Reverse Recovery Time $I_F = 1.0$ A, $dI_F/dt = 50$ A/ μ s $I_F = 10$ A, $dI_F/dt = 100$ A/ μ s	35 50	35 50	35 50	35 50	ns
I _{R(REC)} ²	Maximum Reverse Recovery Current $I_F = 10$ A, $dI_F/dt = 100$ A/ μ s, V_{RRM}	2.5	2.5	2.5	2.5	Α

Notes

1. Pulse Test: Pulse Width = 300 μ s. Duty Cycle \leq 2.0%

2. See Figure 11 for test conditions.

Performance Curves per Diode

Figure 1 Maximum Forward Voltage Drop

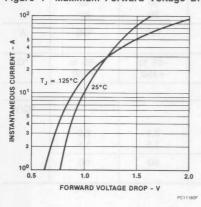
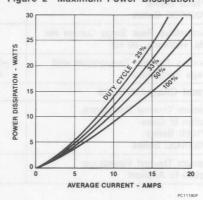



Figure 2 Maximum Power Dissipation

Performance Curves per Diode (Cont.)

Figure 3 Transient Thermal Resistance

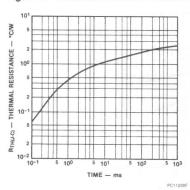


Figure 5 Typical Reverse Leakage Current

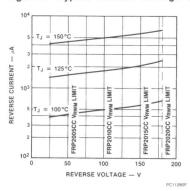


Figure 7 Reverse Recovery Charge

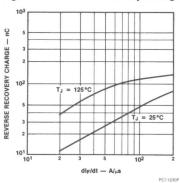


Figure 4 Typical Reverse Leakage Current

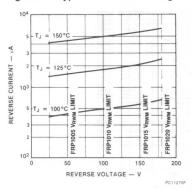


Figure 6 Power Derating

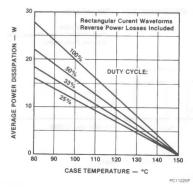
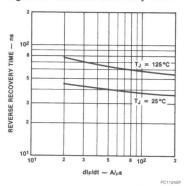



Figure 8 Reverse Recovery Time

FRP1000/FRP2000CC Series

Performance Curves per Diode (Cont.)

Figure 9 Reverse Recovery Current

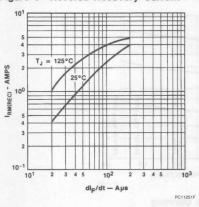


Figure 11 Reverse Recovery Test Waveform

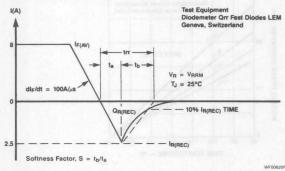
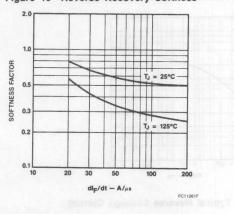



Figure 10 Reverse Recovery Softness

FRP1600 Series Ultra-fast POWERplanar™ Rectifiers 16 A, 50-200 V

Power And Discrete Division

Description

Designed for use in switching power supplies, inverters and as free-wheeling diodes, these state-of-the-art devices have the following features:

- Ultrafast 35 ns Reverse Recovery Time
- Soft Recovery (S > 0.5)
- Low I_{R(REC)}
- 150°C Operating Junction Temperature
- Popular TO-220AC Package
- Low V_{FM}

TO-220AC

IS00030F

FRP1605 FRP1610 FRP1615 FRP1620

Maximum Ratings

Symbol	Rating	FRP1605	FRP1610	FRP1615	FRP1620	Unit
V _{RRM} V _{RSM} V _R	Peak Repetitive Reverse Voltage Non-repetitive Peak Reverse Voltage DC Blocking Voltage	50 50 50	100 100 100	150 150 150	180 200 180	V
I _{F(AV)}	Average Rectified Forward Current, Rated V _R , Square Wave, 20 kHz FRP1605/FRP1620: T _C = 118°C	16	16	16	16	A
I _{FSM}	Non-repetitive Peak Surge Current per Diode, Surge Applied at Rate Load Conditions Halfwave, Single Phase, 60 Hz	200	200	200	200	A
T _J , T _{stg}	Operating Junction Temperature and Storage Temperature	-55 to +150	-55 to +150	-55 to +150	-55 to +150	- °C
Maximum	Thermal Characteristics	19				
$R_{ heta JC}$	Maximum Thermal Resistance, Junction to Case FRP1605/FRP1620	1.5	1.5	1.5	1.5	°C/W
$R_{\theta JA}$	Maximum Thermal Resistance, Junction to Ambient	60	60	60	60	3.0

Notes

For information concerning connection diagram and package outline, refer to Section 7.

Symbol	Rating	FRP1605	FRP1610	FRP1615	FRP1620	Unit
Electrical Characteristics						
V _{FM} ¹	Maximum Instantaneous Forward Voltage I _F = 16 A, T _C = 150°C I _F = 16 A, T _C = 25°C	0.80 0.95	0.80 0.95	0.80 0.95	0.80 0.95	V
I _{RRM} ¹	Maximum Instantaneous Repetitive Reverse Current Rated DC Voltage, T _C = 125°C Rated DC Voltage, T _C = 25°C	10 25	10 25	10 25	10 25	mA μA
t _{rr}	Maximum Reverse Recovery Time $I_F = 1.0$ A, $dI_F/dt = 50$ A/ μ s $I_F = 16$ A, $dI_F/dt = 100$ A/ μ s	35 50	35 50	35 50	35 50	ns
I _{R(REC)} ²	Maximum Reverse Recovery Current $I_F = 8$ A, $dI_F/dt = 100$ A/ μ s, $V_R = V_{RRM}$	2.5	2.5	2.5	2.5	A

Notes

1. Pulse Test: Pulse Width = 300 μ s. Duty Cycle \leq 2.0%

2. See Figure 10 for test conditions.

Performance Curves

Figure 1 Maximum Forward Voltage Drop

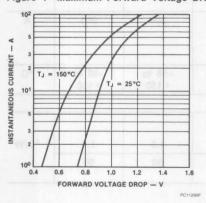
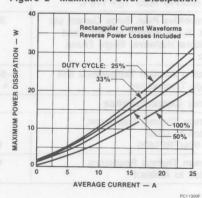



Figure 2 Maximum Power Dissipation

Performance Curves (Cont.)

Figure 3 Transient Thermal Resistance

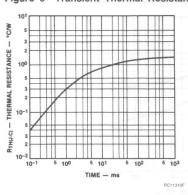


Figure 5 Power Derating

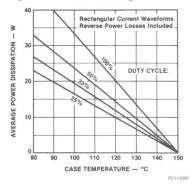


Figure 7 Reverse Recovery Time

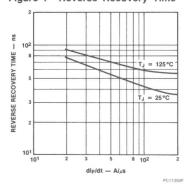


Figure 4 Typical Reverse Leakage Current

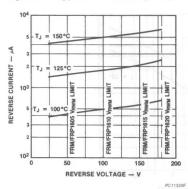
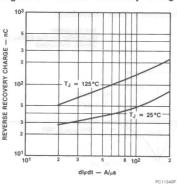



Figure 6 Reverse Recovery Charge

FRP1600 Series

Performance Curves (Cont.)

Figure 8 Reverse Recovery Current

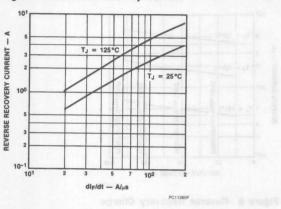


Figure 10 Reverse Recovery Test Waveform

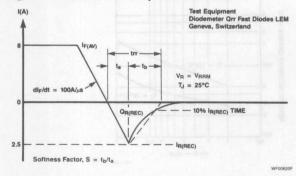
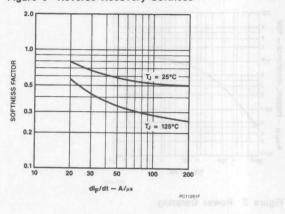



Figure 9 Reverse Recovery Softness

FRP1600CC Series Ultra-fast POWERplanar™ Rectifiers 16 A, 50-200 V

Power And Discrete Division

Description

Designed for use in switching power supplies, inverters and as free-wheeling diodes, these state-of-the-art devices have the following features:

- Ultrafast 35 ns Reverse Recovery Time
- Soft Recovery (S > 0.5)
- Low I_{R(REC)}
- 150°C Operating Junction Temperature
- Popular TO-220 Package
- · Low VFM

TO-220AB

FRP1605CC FRP1610CC FRP1615CC FRP1620CC

Maximum Ratings

Symbol	Rating	FRP1605CC	FRP1610CC	FRP1615CC	FRP1620CC	Unit
V _{RRM} V _{RSM} V _R	Peak Repetitive Reverse Voltage Non-repetitive Peak Reverse Voltage DC Blocking Voltage	50 50 50	100 100 100	150 150 150	180 200 180	V
I _{F(AV)}	Average Rectified Forward Current, T _C = 130°C, Rated V _R	16	16	16	16	Α
I _{FRM}	Peak Repetitive Forward Current Rated V_R , 50% Duty Cycle, Square Wave, 20 kHz, $T_C = 130$ °C	32	32	32	32	A.
I _{FSM}	Non-repetitive Peak Surge Current per Diode, Surge Applied at Rate Load Conditions Halfwave, Single Phase, 60 Hz	100	100	100	100	A
T _J , T _{stg}	Operating Junction Temperature and Storage Temperature	-55 to +150	-55 to +150	-55 to +150	-55 to +150	°C
laximum	Thermal Characteristics	ă				
$R_{\theta JC}$	Maximum Thermal Resistance, Junction to Case	2.5	2.5	2.5	2.5	°C/W
$R_{\theta JA}$	Maximum Thermal Resistance, Junction to Ambient	60	60	60	60	

Notes

For information concerning connection diagram and package outline, refer to Section 7.

Symbol	Rating	FRP1605CC	FRP1610CC	FRP1615CC	FRP1620CC	Unit		
Electrical	trical Characteristics per Diode							
V _{FM} ¹	Maximum Instantaneous Forward Voltage $I_F=8.0$ A, $T_C=150^{\circ}C$ $I_F=8.0$ A, $T_C=25^{\circ}C$	0.80 0.95	0.80 0.95	0.80 0.95	0.80 0.95	٧		
I _{RRM} 1	Maximum Instantaneous Repetitive Reverse Current Rated DC Voltage, T _C = 125°C Rated DC Voltage, T _C = 25°C	5.0 10	5.0 10	5.0 10	5.0 10	mA μA		
t _{rr}	Maximum Reverse Recovery Time $I_F = 1.0$ A, $dI_F/dt = 50$ A/ μ s $I_F = 8$ A, $dI_F/dt = 100$ A/ μ s	35 50	35 50	35 50	35 50	ns		
I _{R(REC)} ²	Maximum Reverse Recovery Current $I_F = 8$ A, $dI_F/dt = 100$ A/ μ s, $V_R = V_{RRM}$	2.5	2.5	2.5	2.5	Α		

1. Pulse Test: Pulse Width = 300 μ s. Duty Cycle \leq 2.0% 2. See Figure 10 for test conditions.

Performance Curves per Diode

Figure 1 Maximum Forward Voltage Drop

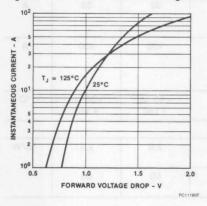
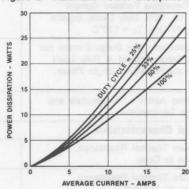



Figure 2 Maximum Power Dissipation

Performance Curves per Diode (Cont.)

Figure 3 Transient Thermal Resistance

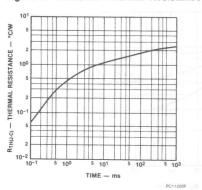


Figure 5 Power Derating

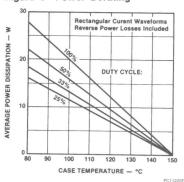


Figure 7 Reverse Recovery Time

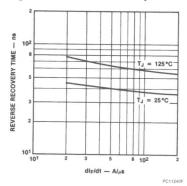


Figure 4 Typical Reverse Leakage Current

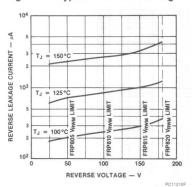
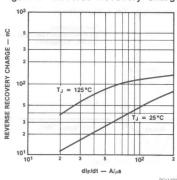



Figure 6 Reverse Recovery Charge

FRP1600CC Series

Performance Curves per Diode (Cont.)

Figure 8 Reverse Recovery Current

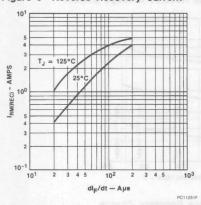


Figure 10 Reverse Recovery Test Waveform

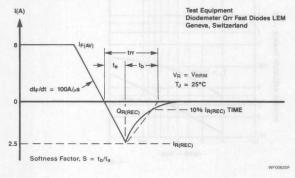
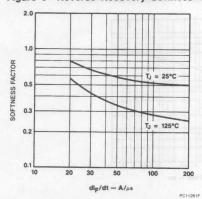



Figure 9 Reverse Recovery Softness

FRM3200CC Series Ultra-fast POWERplanar™ Rectifiers 32 A, 50-200 V

Power And Discrete Division

Description

Designed for use in switching power supplies, inverters and as free-wheeling diodes, these state-of-the-art devices have the following features:

- Ultrafast 35 ns Reverse Recovery Time
- Soft Recovery (S > 0.5)
- Low IR(REC)
- 150°C Operating Junction Temperature
- Popular TO-204AA Package (Formerly TO-3)
- Low V_{FM}

FRM3205CC FRM3210CC FRM3215CC FRM3220CC

Maximum Ratings

Symbol	Rating	FRM3205CC	FRM3210CC	FRM3215CC	FRM3220CC	Unit
V _{RRM} V _{RSM} V _R	Peak Repetitive Reverse Voltage Non-repetitive Peak Reverse Voltage DC Blocking Voltage	50 50 50	100 100 100	150 150 150	180 200 180	Valor Pulse Tues Sent Figure
I _{F(AV)}	Average Rectified Forward Current, $T_C = 107$ °C, Rated V_R	32	32	32	32	A
I _{FRM}	Peak Repetitive Forward Current Rated V_R , Square Wave, 50 kHz, $T_C = 107^{\circ}C$	64	64	64	64	A
I _{FSM}	Non-repetitive Peak Surge Current per Diode, Surge Applied at Rate Load Conditions Halfwave, Single Phase, 60 Hz	200	200	200	200	A
T _J , T _{stg}	Operating Junction Temperature and Storage Temperature	-55 to +150	-55 to +150	-55 to +150	-55 to +150	°C
Maximum	Thermal Characteristics	25 Cr. 34				
$R_{ heta JC}$	Maximum Thermal Resistance, Junction to Case	1.0	1.0	1.0	1.0	°C/W
$R_{\theta JA}$	Maximum Thermal Resistance, Junction to Ambient	60	60	60	60	3.0

Note

For information concerning connection diagram and package outline, refer to Section 7.

FRM3200CC Series

Symbol	Rating	FRM3205CC	FRM3210CC	FRM3215CC	FRM3220CC	Unit
Electrical	Characteristics per Diode	70)	munewn peter	antig power and	news on the particular was	ounger,
V _{FM} ¹	Maximum Instantaneous Forward Voltage per Diode $I_F = 16 \text{ A}, T_C = 150^{\circ}\text{C}$ $I_F = 16 \text{ A}, T_C = 25^{\circ}\text{C}$	0.80 0.95	0.80 0.95	0.80 0.95	0.80 0.95	V
I _{RRM} 1	Maximum Instantaneous Reverse Current per Diode Rated DC Voltage, $T_C = 125^{\circ}C$ Rated DC Voltage, $T_C = 25^{\circ}C$	10 25	10 25	10 25	10 25	mA μA
t _{rr}	Maximum Reverse Recovery Time $I_F = 1.0$ A, $dI_F/dt = 50$ A/ μ s $I_F = 16$ A, $dI_F/dt = 100$ A/ μ s	35 50	35 50	35 50	35 50	ns
I _{R(REC)} ²	Maximum Reverse Recovery Current $I_F = 16$ A, $dI_F/dt = 100$ A/ μ s, $V_R = V_{RRM}$	2.5	2.5	2.5	2.5	Α

Notes

Performance Curves per Diode

Figure 1 Maximum Forward Voltage Drop

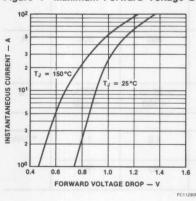
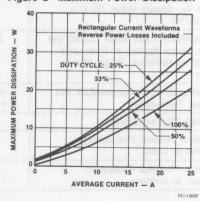



Figure 2 Maximum Power Dissipation

^{1.} Pulse Test: Pulse Width = 300 μ s. Duty Cycle \leq 2.0%

^{2.} See Figure 10 for test conditions.

Performance Curves per Diode (Cont.)

Figure 3 Transient Thermal Resistance

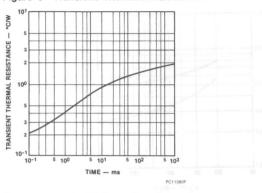


Figure 5 Average Power Derating

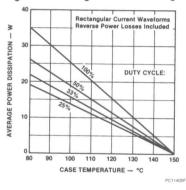


Figure 7 Reverse Recovery Time

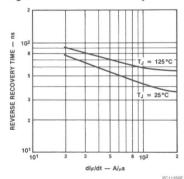


Figure 4 Typical Reverse Leakage Current

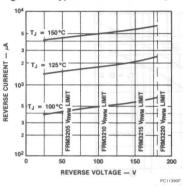
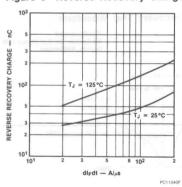



Figure 6 Reverse Recovery Charge

FRM3200CC Series

Performance Curves per Diode (Cont.)

Figure 8 Reverse Recovery Current

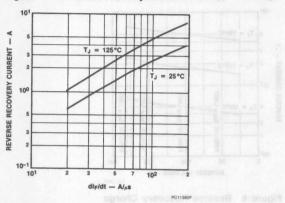


Figure 10 Reverse Recovery Test Waveform

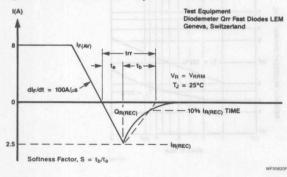
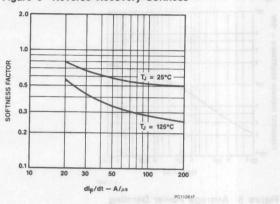
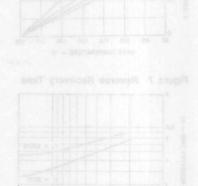




Figure 9 Reverse Recovery Softness

IRF120-123/IRF520-523 MTP10N08/10N10 N-Channel Power MOSFETs, 11 A, 60-100 V Power And Discrete Division

Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high speed applications, such as switching power supplies, converters, AC and DC motor controls, relay and solenoid drivers and other pulse circuits.

- Low R_{DS(on)}
- V_{GS} Rated at ± 20 V
- Silicon Gate for Fast Switching Speeds
- I_{DSS}, V_{DS(on)}, Specified at Elevated Temperature
- Rugged
- Low Drive Requirements
- Ease of Paralleling

TO-204AA

TO-220AB

IRF120 IRF121 IRF122 IRF123

IRF520 IRF521 **IRF522 IRF523** MTP10N08 MTP10N10

Product Summary

Part Number	V _{DSS}	R _{DS(on)}	I _D at T _C = 25°C	I _D at T _C = 100°C	Case Style
IRF120	100 V	0.30 Ω	8.0 A	5.0 A	TO-204AA
IRF121	60 V	0.30 Ω	8.0 A	5.0 A	
IRF122	100 V	0.40 Ω	7.0 A	4.0 A	
IRF123	60 V	0.40 Ω	7.0 A	4.0 A	
IRF520	100 V	0.30 Ω	8.0 A	5.0 A	TO-220AB
IRF521	60 V	0.30 Ω	8.0 A	5.0 A	
IRF522	100 V	0.40 Ω	7.0 A	4.0 A	
IRF523	60 V	0.40 Ω	7.0 A	4.0 A	
MTP10N08	80 V	0.33 Ω	10 A	6.4 A	
MTP10N10	100 V	0.33 Ω	10 A	6.4 A	

Notes

For information concerning connection diagram and package outline, refer to Section 7.

Maximum Ratings

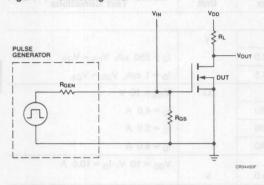
Symbol	Characteristic	Rating IRF120/122 IRF520/522 MTP10N10	Rating MTP10N08	Rating IRF122/123 IRF522/523	Unit
V _{DSS}	Drain to Source Voltage ¹	100	80	60	٧
V _{DGR}	Drain to Gate Voltage ¹ $R_{GS} = 20 \text{ k}\Omega$	100	80	60	V
V _{GS}	Gate to Source Voltage	± 20	± 20	± 20	V
T _J , T _{stg}	Operating Junction and Storage Temperatures	-55 to +150	-55 to +150	-55 to +150	°C
TL	Maximum Lead Temperature for Soldering Purposes, 1/8" From Case for 5 s	275	275	275	°C

Maximum Thermal Characteristics

	0 001 × 5T	IRF120-123/IRF520-523	MTP10N08/10	Part Number
$R_{\theta JC}$	Thermal Resistance, Junction to Case	3.12	1.67	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	30/80	80	°C/W
P _D	Total Power Dissipation at T _C = 25°C	40 54 000	75	W
I _{DM}	Pulsed Drain Current ²	20	32	A

Electrical Characteristics (T_C = 25°C unless otherwise noted)

Symbol	Characteristic	Min	Max	Unit	Test Conditions
Off Charac	teristics		124 175-4		V SOL
V _{(BR)DSS}	Drain Source Breakdown Voltage ¹ IRF120/122/520/522/ MTP10N10	100	O 10101 (01	V	$V_{GS} = 0 \text{ V, } I_{D} = 250 \mu\text{A}$
	MTP10N08	80			
	IRF121/123/521/523	60			
I _{DSS}	Zero Gate Voltage Drain Current		250	μΑ	V _{DS} = Rated V _{DSS} , V _{GS} = 0 V
			1000	μΑ	$V_{DS} = 0.8 \text{ x Rated } V_{DSS},$ $V_{GS} = 0 \text{ V}, T_C = 125 ^{\circ}\text{C}$
I _{GSS}	Gate-Body Leakage Current IRF120-123 IRF520-523/MTP10N08/10		± 100 ± 500	nA	V _{GS} = ± 20 V, V _{DS} = 0 V


Symbol	Characteristic	Min	Max	Unit	Test Conditions
On Charac	teristics				
V _{GS(th)}	Gate Threshold Voltage			V	
	IRF120-123/IRF520-523	2.0	4.0		$I_D = 250 \mu A, V_{DS} = V_{GS}$
	MTP10N08/10N10	2.0	4.5	100,000	$I_D = 1$ mA, $V_{DS} = V_{GS}$
R _{DS(on)}	Static Drain-Source On-Resistance ²			Ω	V _{GS} = 10 V
	IRF120/121/520/521		0.30		I _D = 4.0 A
	MTP10N08/10N10		0.33		I _D = 5.0 A
	IRF122/123/522/523		0.40		I _D = 4.0 A
V _{DS(on)}	Drain-Source On-Voltage ²		The second		V _{GS} = 10 V; I _D = 10.0 A
	MTP 10N08/10N10		4.0	V	
	scrown and compet of the great	t ange	3.3	V	$V_{GS} = 10 \text{ V}, I_D = 5.0 \text{ A}$ $T_C = 100^{\circ}\text{C}$
g _{fs}	Forward Transconductance	1.5		S (27)	$V_{DS} = 10 \text{ V}, I_D = 4.0 \text{ A}$
Dynamic C	haracteristics	0.0			E TOTAL PRODUCT
C _{iss}	Input Capacitance	8	600	pF	V _{DS} = 25 V, V _{GS} = 0 V
Coss	Output Capacitance		400	pF	f = 1.0 MHz
C _{rss}	Reverse Transfer Capacitance		100	pF	11 m
Switching	Characteristics (T _C = 25°C, Figures 1,	2) ³			
t _{d(on)}	Turn-On Delay Time		40	ns	V _{DD} = 50 V, I _D = 4.0 A
t _r	Rise Time		70	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 50 \Omega$ $R_{GS} = 50 \Omega$
t _{d(off)}	Turn-Off Delay Time		100	ns	1.03
tf	Fall Time		70	ns	
Qg	Total Gate Charge	Richard TI	15	nC	V _{GS} = 10 V, I _D = 10 A V _{DD} = 50 V
Symbol	Characteristic	Тур	Max	Unit	Test Conditions
Source-Dra	in Diode Characteristics				
V _{SD}	Diode Forward Voltage IRF120/121/520/521		2.5	V	I _S = 8.0 A; V _{GS} = 0 V
	IRF122/123/522/523	- 44. 3	2.3	V	I _S = 7.0 A; V _{GS} = 0 V
t _{rr}	Reverse Recovery Time	280		ns	$I_S = 4.0 \text{ A}; dI_S/dt = 25 \text{ A}/\mu\text{S}$

Notes

- 1. $T_J = +25^{\circ}\text{C}$ to $+150^{\circ}\text{C}$ 2. Pulse width limited by T_J
- 3. Switching time measurements performed on LEM TR-58 test equipment.

Typical Electrical Characteristics

Figure 1 Switching Test Circuit

Typical Performance Curves

Figure 3 Output Characteristics

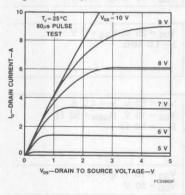


Figure 5 Transfer Characteristics

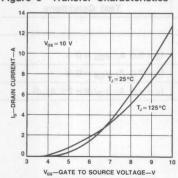


Figure 2 Switching Waveforms

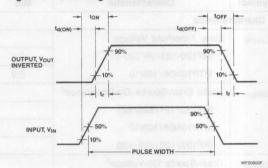


Figure 4 Static Drain to Source Resistance vs Drain Current

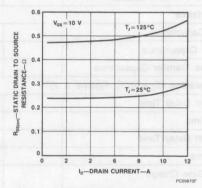



Figure 6 Temperature Variation of Gate to Source Threshold Voltage

PC09841F

Typical Performance Curves (Cont.)

Figure 7 Capacitance vs Drain to Source Voltage

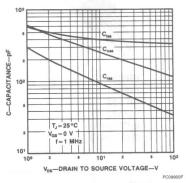


Figure 9 Forward Biased Safe Operating Area for IRF120-123 And IRF520-523

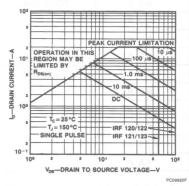


Figure 11 Forward Biased Safe Operating Area for MTP10N08/10N10

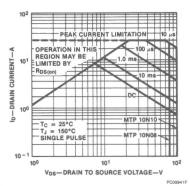


Figure 8 Gate to Source Voltage vs Total Gate Charge

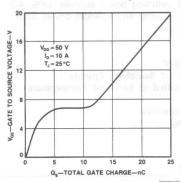


Figure 10 Transient Thermal Resistance vs Time for IRF120-123 And IRF520-523

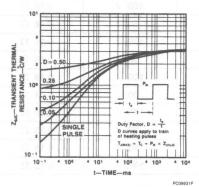
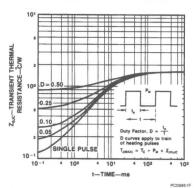



Figure 12 Transient Thermal Resistance vs Time for MTP10N08/10N10

A Schlumberger Company

IRF130-133/IRF530-533 MTP20N08/20N10 N-Channel Power MOSFETs, 20 A, 60-100 V Power And Discrete Division

Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as switching power supplies, UPS, AC and DC motor controls, relay and solenoid drivers and high energy pulse circuits.

- · Low R_{DS(on)}
- V_{GS} Rated at ± 20 V
- Silicon Gate for Fast Switching Speeds
- I_{DSS}, V_{DS(on)}, Specified at Elevated Temperature
- Rugged
- Low Drive Requirements
- Ease of Paralleling

TO-204AA

IRF130 **IRF131 IRF132 IRF133**

TO-220AB

IRF530 IRF531 IRF532 IRF533 MTP20N08 MTP20N10

Product Summary

Part Number	V _{DSS}	R _{DS(on)}	I _D at T _C = 25°C	I _D at T _C = 100°C	Case Style
IRF130	100 V	0.18 Ω	14 A	9.0 A	TO-204AA
IRF131	60 V	0.18 Ω	14 A	9.0 A	
IRF132	100 V	0.25 Ω	12 A	8.0 A	
IRF133	60 V	0.25 Ω	12 A	8.0 A	BUT OF HOUT AND THE
IRF530	100 V	0.18 Ω	14 A	9.0 A	TO-220AB
IRF531	60 V	0.18 Ω	14 A	9.0 A	
IRF532	100 V	0.25 Ω	12 A	8.0 A	
IRF533	60 V	0.25 Ω	12 A	8.0 A	
MTP20N08	80 V	0.15 Ω	20 A	11.5 A	
MTP20N10	100 V	0.15 Ω	20 A	11.5 A	

For information concerning connection diagram and package outline, refer to Section 7.

°C/W

W

Α

IRF130-133/IRF530-533 MTP20N08/20N10

MTP20N08/10

1.25

100

60

		Rating IRF130/132	MIN	Rating	
Symbol	Characteristic	IRF530/532 MTP20N10	Rating MTP20N08	IRF131/133 IRF531/533	Unit
V _{DSS}	Drain to Source Voltage ¹	100	80	60	V
V_{DGR}	Drain to Gate Voltage ¹ $R_{GS} = 20 \text{ k}\Omega$	100	80	60	V
V _{GS}	Gate to Source Voltage	± 20	± 20	± 20	V
T _J , T _{stg}	Operating Junction and Storage Temperatures	-55 to +150	-55 to +150	-55 to +150	°C
TL	Maximum Lead Temperature for Soldering Purposes, 1/8" From Case for 5 s	275	275	275	°C

IRF530-533

1.67

75

60

Electrical Characteristics (T_C = 25°C unless otherwise noted)

Thermal Resistance,

Pulsed Drain Current²

Junction to Case

Total Power Dissipation

at $T_C = 25$ °C

 $R_{\theta JC}$

 P_{D}

 I_{DM}

	CHARACTERIST (10 ES C AMOSO	01110111100			exital Volter, DO-101	
Symbol	Characteristic	Min	Max	Unit	Test Conditions	
Off Charac	teristics	03			-1 IT yels@ 10cm, 1	riotbi
V _{(BR)DSS}	Drain Source Breakdown Voltage ¹			V	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu A$	1
	IRF130/132/530/532/ MTP20N10	100		in On Delay Time		
	MTP20N08	80			and side	
	IRF131/133/531/533	60			n of Delay Time	
I _{DSS}	Zero Gate Voltage Drain Current		250	μΑ	V _{DS} = Rated V _{DSS} , V _{GS} = 0	
			1000	μΑ	$V_{DS} = 0.8 \text{ x Rated } V_{DSS},$ $V_{GS} = 0 \text{ V}, T_C = 125^{\circ}\text{C}$	80
I _{GSS}	Gate-Body Leakage Current IRF130-133		± 100	nA	V _{GS} = ± 20 V, V _{DS} = 0 V	
	IRF530-533/ MTP20N08/MTP20N10		± 500			

IRF130-133/IRF530-533 MTP20N08/20N10

Symbol	Characteristic	Min	Max	Unit	Test Conditions		
On Charac	teristics	er die	SEL VOSTBRI				
V _{GS(th)}	Gate Threshold Voltage	mi tir	MTP20N10	V	Symbol Characteristic		
	IRF130/133/530/533	2.0	4.0		$I_D = 250 \mu A, V_{DS} = V_{GS}$		
	MTP20N08/20N10	2.0	4.5		I _D = 1 mA, V _{DS} = V _{GS}		
R _{DS(on)}	Static Drain-Source On-Resistance ²			Ω	V _{GS} = 10 V, I _D = 8.0 A		
	IRF130/131/530/531		0.18		Vas Gate to Source Vallage		
	IRF132/133/532/533	86-	0.25		The Tate Operating Junction and		
	MTP20N08/20N10		0.15		I _D = 10 A		
V _{DS(on)}	Drain-Source On-Voltage ²		1.5	V	V _{GS} = 10 V; I _D = 10 A		
	MTP 20N08/20N10		3.6	V	V _{GS} = 10 V; I _D = 20 A		
		-183	3.0	٧	V _{GS} = 10 V,I _D = 10 A T _C = 100°C		
9fs	Forward Transconductance	4.0	12781	S (U)	V _{DS} = 10 V, I _D = 8.0 A		
Dynamic C	haracteristics		0.1		nago Charmal Rosistanco,		
C _{iss}	Input Capacitance		800	pF	V _{DS} = 25 V, V _{GS} = 0 V		
Coss	Output Capacitance		500	pF	f = 1.0 MHz		
C _{rss}	Reverse Transfer Capacitance		150	pF	Irax Pulsed Drain Current [®]		
Switching	Characteristics (T _C = 25°C, Figures 1,	2)3					
t _{d(on)}	Turn-On Delay Time	(belo	30	ns	V _{DD} = 36 V, I _D = 8.0 A		
t _r	Rise Time	Max	75	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 15 \Omega$ $R_{GS} = 15 \Omega$		
t _{d(off)}	Turn-Off Delay Time		40	ns	H Characteristics		
tf	Fall Time		45	ns	Vergoss Drain Source Englished		
t _{d(on)}	Turn-On Delay Time		50	ns	V _{DD} = 25 V, I _D = 10 A		
t _r	Rise Time		450	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 50 \Omega$ $R_{GS} = 50 \Omega$		
t _{d(off)}	Turn-Off Delay Time		100	ns	ngs = 50 32		
tf	Fall Time	/Total	200	ns	de la Cala Malana Dian		
Qg	Total Gate Charge	600t	30	nC	V _{GS} = 10 V, I _D = 18 A V _{DD} = 80 V		

IRF130-133/IRF530-533 MTP20N08/20N10

Electrical Characteristics (Cont.) (T_C = 25°C unless otherwise noted)

Symbol	Characteristic	Тур	Max	Unit	Test Conditions
Source-Dra	nin Diode Characteristics				
V _{SD}	Diode Forward Voltage IRF130/131/530/531	1.5	2.5	٧	I _S = 14 A; V _{GS} = 0 V
	IRF132/133/532/533	1.5	2.3	V	I _S = 12 A; V _{GS} = 0 V
t _{rr}	Reverse Recovery Time	300		ns	$I_S = 4 A$; $dI_S/dt = 25 A/\mu S$

Notes

- 1. $T_J = +25^{\circ}C$ to $+150^{\circ}C$
- 2. Pulse width limited by T_J.
- 3. Switching time measurements performed on LEM TR-58 test equipment.

Typical Electrical Characteristics

Figure 1 Switching Test Circuit

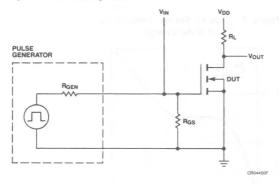
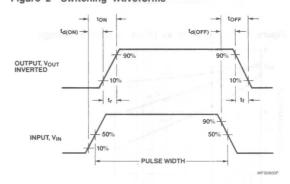



Figure 2 Switching Waveforms

Typical Performance Curves

Figure 3 Output Characteristics

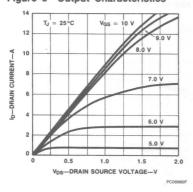
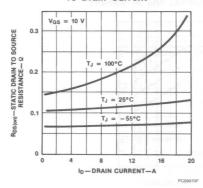



Figure 4 Static Drain to Source Resistance vs Drain Current

Typical Performance Curves (Cont.)

Figure 5 Transfer Characteristics

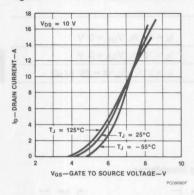


Figure 7 Capacitance vs Drain to Source Voltage

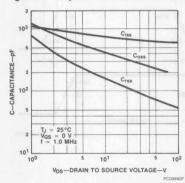


Figure 9 Forward Biased Safe Operating Area for IRF130-133 and IRF530-533

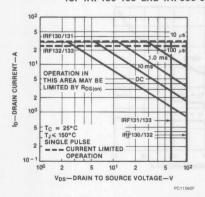


Figure 6 Temperature Variation of Gate to Source Threshold Voltage

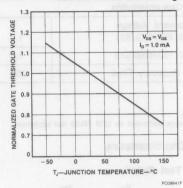


Figure 8 Gate to Source Voltage vs Total Gate Charge

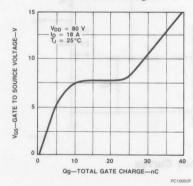
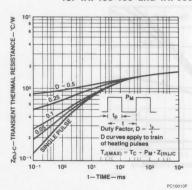



Figure 10 Transient Thermal Resistance vs Time for IRF130-133 and IRF530-533

IRF130-133/IRF530-533 MTP20N08/20N10

Typical Performance Curves (Cont.)

Figure 11 Forward Biased Safe Operating Area for MTP20N08/20N10

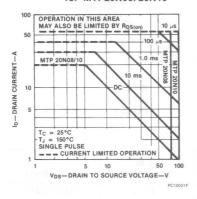
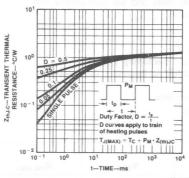



Figure 12 Transient Thermal Resistance vs Time for MTP20N08/20N10

PC10030F

IRF140-143/IRF540-543 N-Channel Power MOSFETs, 27 A, 60-100 V

Power And Discrete Division

Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as switching power supplies, UPS, AC and DC motor controls, relay and solenoid drivers and high energy pulse circuits.

- Low R_{DS(on)}
- V_{GS} Rated at ± 20 V
- Silicon Gate for Fast Switching Speeds
- I_{DSS}, V_{DS(on)}, Specified at Elevated Temperature
- Rugged
- Low Drive Requirements
- Ease of Paralleling

TO-204AE

IRF140 IRF141

IRF142 IRF143

TO-220AB

IRF540 IRF541 IRF542 IRF543

Product Summary

Case Sty	I _D at T _C = 100°C	I _D at T _C = 25°C	R _{DS} (on)	V _{DSS}	Part Number
TO-204AI	17 A	27 A	0.085 Ω	100 V	IRF140
	17 A	27 A	0.085 Ω	60 V	IRF141
	15 A	24 A	0.11 Ω	100 V	IRF142
	15 A	24 A	0.11 Ω	60 V	IRF143
TO-220A	17 A	27 A	0.085 Ω	100 V	IRF540
	17 A	27 A	0.085 Ω	60 V	IRF541
	15 A	24 A	0.11 Ω	100 V	IRF542
	15 A	24 A	0.11 Ω	60 V	IRF543

For information concerning connection diagram and package outline, refer to Section 7.

Symbol	Characteristic	Rating IRF140/142 IRF540/542		Rating IRF141/143 IRF541/543			Unit	
V _{DSS}	Drain to Source Voltage ¹	100		6	0		V	
V _{DGR}	Drain to Gate Voltage 1 R _{GS} = 20 k Ω	100		60			V	160 G H
V _{GS}	Gate to Source Voltage	± 20		± 20		7	V	nido i e
T _J , T _{stg}	Operating Junction and Storage Temperatures	-55 to +150		-55 to +150			°C	(more)
TL	Maximum Lead Temperature for Soldering Purposes, 1/8" From Case for 5 s	275		275			°C	i He
/laximum	Thermal Characteristics				0.007			Harrier)
		IRF140-	143	IRF54	0-543			
$R_{ heta JC}$	Thermal Resistance, Junction to Case	1.0		1	.0	1	°C/W	the 1
P _D	Total Power Dissipation at T _C = 25°C	125		12	25		W	
I _{DM}	Pulsed Drain Current ²	108		108			Α	
Electrical	Characteristics (T _C = 25°C unles	s otherwise	noted)		in is the		16	almyč Suppe
Symbol	Characteristic	Min	Max	Unit	SQ BT 1	Test Co	nditions	i SIS
Off Charac	teristics				R S R I F			
V _{(BR)DSS}	Drain Source Breakdown Voltage ¹			V	V _{GS} = 0	V, I _D = 25	i0 μA	-
	IRF140/142/540/542	100						
	IRF141/143/541/543	60		1				

$V_{DS} = 0.8 \text{ x Rated } V_{DSS},$ $V_{GS} = 0 \text{ V}, T_{C} = 125 ^{\circ}\text{C}$ 1000 μΑ IGSS Gate-Body Leakage Current nA $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$ IRF140-143 ± 100 IRF540-543 ± 500 On Characteristics V_{GS(th)} Gate Threshold Voltage 2.0 4.0 V $I_D = 250 \mu A$, $V_{DS} = V_{GS}$ R_{DS(on)} Static Drain-Source On-Resistance² Ω $V_{GS} = 10 \text{ V}, I_D = 15 \text{ A}$ IRF140/141/540/541 0.085 IRF142/143/542/543 0.11 Forward Transconductance 6.0 S (U) $V_{DS} = 10 V$, $I_D = 15 A$ g_{fs}

250

μΑ

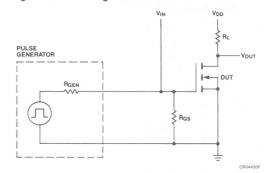
V_{DS} = Rated V_{DSS}, V_{GS} = 0 V

Zero Gate Voltage Drain Current

IDSS

Electrical Characteristics (Cont.) (T _C = 25°C unless otherwise noted)	Electrical	Characteristics	(Cont.)	$(T_C = 25^{\circ}C)$	unless	otherwise	noted)
--	------------	-----------------	---------	-----------------------	--------	-----------	--------

Symbol	Characteristic	Min	Max	Unit	Test Conditions	
Dynamic C	haracteristics	200	AUMERINE AUMERINE		Symbiol Civeroharistic	
C _{iss}	Input Capacitance		1600	pF	V _{DS} = 25 V, V _{GS} = 0 V	
Coss	Output Capacitance		800	pF	f = 1.0 MHz	
C _{rss}	Reverse Transfer Capacitance		300	pF	Figg = 20 kgb	
Switching	Characteristics (T _C = 25°C, Figures	1, 2,)3	C2 ±		Vigg Gale to Source Voltage	
t _{d(on)}	Turn-On Delay Time	150	30	ns	V _{DD} = 45 V, I _D = 15 A	
t _r	Rise Time		60	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 4.7 \Omega$ $R_{GS} = 4.7 \Omega$	
t _{d(off)}	Turn-Off Delay Time		80	ns	11GS 4.7 32	
t _f	Fall Time		30	ns	1/8" From Case for 6 s	
t _{d(on)}	Turn-On Delay Time		60	ns	V _{DD} = 25 V, I _D = 15 A	
t _r	Rise Time	84	450	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 50 \Omega$ $R_{GS} = 50 \Omega$	
t _{d(off)}	Turn-Off Delay Time		0.1 150	ns	Rouge Thermal Restaunce.	
t _f	Fall Time		200	ns	seaS of notional.	
Qg	Total Gate Charge		60	nC	V _{GS} = 10 V, I _D = 34 A V _{DD} = 35 V	
	691		Ball		CM Letter Distraction	
Symbol	Characteristic	Тур	Max	Unit	Test Conditions	


Symbol	Characteristic	Тур	Max	Unit	Test Conditions
Source-Dra	ain Diode Characteristics	(09101)	egiwnento i	signam are	S 7 017 CHEURIDATERY LIVE
V _{SD}	Diode Forward Voltage	Mag	misk		Note: Cheracteristic
	IRF140/141/540/541	2.0	2.5	V	I _S = 27 A; V _{GS} = 0 V
	IRF142/143/542/543	2.0	2.3	V	I _S = 24 A; V _{GS} = 0 V
t _{rr}	Reverse Recovery Time	300		ns	$I_S = 4.0 \text{ A}; \text{ d}I_S/\text{d}t = 25 \text{ A}/\mu\text{S}$

Notes

- 1. $T_J = +25^{\circ}C$ to $+150^{\circ}C$
- 2. Pulse width limited by T_J
- 3. Switching time measurements performed on LEM TR-58 test equipment.

2

Typical Electrical Characteristics Figure 1 Switching Test Circuit

Typical Performance Curves

Figure 3 Output Characteristics

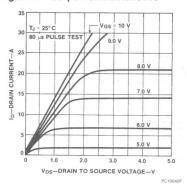


Figure 5 Transfer Characteristics

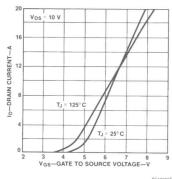


Figure 2 Switching Waveforms

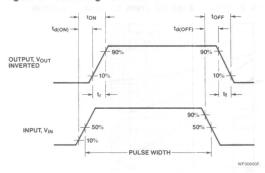


Figure 4 Static Drain to Source Resistance vs Drain Current

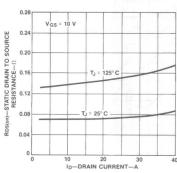
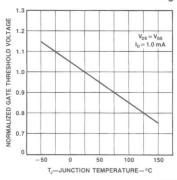



Figure 6 Temperature Variation of Gate to Source Threshold Voltage

PC098-

Typical Performance Curves (Cont.)

Figure 7 Capacitance vs Drain to Source Voltage

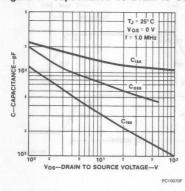


Figure 9 Forward Biased Safe Operating Area

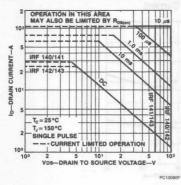


Figure 8 Gate to Source Voltage vs Model Company Total Gate Charge

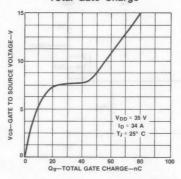
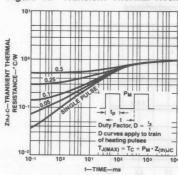



Figure 10 Transient Thermal Resistance vs Time

IRF150-153 N-Channel Power MOSFETs, 40 A, 60 V/100 V

Power And Discrete Division

Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as switching power supplies, UPS, AC and DC motor controls, relay and solenoid drivers and high energy pulse circuits.

- Low R_{DS(on)}
- V_{GS} Rated at ± 20 V
- Silicon Gate for Fast Switching Speeds
- I_{DSS}, SOA Specified at Elevated Temperature
- Rugged
- Low Drive Requirements
- Ease of Paralleling

TO-204AE

IRF150 IRF151

IRF152 IRF153

Maximum Ratings

Symbol	Characteristic	Rating IRF150/152	Rating IRF151/153	Unit
V _{DSS}	Drain to Source Voltage ¹	100	60	V
V_{DGR}	Drain to Gate Voltage ¹ $R_{GS} = 20 \text{ k}\Omega$	100	60	V
V _{GS}	Gate to Source Voltage	± 20	± 20	V
T _J , T _{stg}	Operating Junction and Storage Temperatures	-55 to +150	-55 to +150	°C
TL	Maximum Lead Temperature for Soldering Purposes, 1/8" From Case for 5 s	275	275	°C -
Maximum	On-State Characteristics	T and T	amT	
	1. (1. m.) (1.	IRF150/151	IRF152/153	
R _{DS} (on)	Static Drain-to-Source On Resistance ²	0.055	0.08	Ω
I _D	Drain Current Continuous Pulsed	40 60	33 132	A - (100)E
Maximum	Thermal Characteristics	1	aviet ve	
$R_{\theta JC}$	Thermal Resistance, Junction to Case	0.83	0.83	°C/W
P _D	Total Power Dissipation at T _C = 25°C	150	150	W

Note

For information concerning connection diagram and package outline, refer to Section 7.

IRF150-153

Symbol	Characteristic	Min	Max	Unit	Test Conditions	
Off Charac	teristics	19/	78, AC	supplies, U	elications, such as switching power	
V _{(BR)DSS}	Drain Source Breakdown Voltage ¹	1 ////		٧	V _{GS} = 0 V, I _D = 250 μA	
	IRF150/152	100				
	IRF151/153	60			V 09 = falled at ± 20 V	
I _{DSS}	Zero Gate Voltage Drain Current	1977-150	250	μΑ	V _{DS} = Rated V _{DSS} , V _{GS} = 0 V	
		IRV 151 IRV 152	1000	μΑ	$V_{DS} = 0.8 \times \text{Rated } V_{DSS},$ $V_{GS} = 0 \text{ V, } T_{C} = 125^{\circ}\text{C}$	
I _{GSS}	Gate-Body Leakage Current	201 1011	± 100	nA	V _{GS} = ± 20 V, V _{DS} = 0 V	
On Charac	teristics				alimum Patings	
V _{GS(th)}	Gate Threshold Voltage	2.0	4.0	V	$I_D = 250 \mu A, V_{DS} = V_{GS}$	
R _{DS(on)}	Static Drain-Source On-Resistance ²	20	NOSTABL .	Ω	V _{GS} = 10 V, I _D = 20 A	
	IRF150/151		0.055		oss Drain to Source Voltage	
	IRF152/153		0.08		Des Orain to Gate Voltage	
9fs	Forward Transconductance	9.0		S (U)	V _{DS} = 10 V, I _D = 20 A	
Dynamic C	haracteristics		US 2		SURING SOURCE VOILING	
Ciss	Input Capacitance	061	3000	pF	V _{DS} = 25 V, V _{GS} = 0 V	
Coss	Output Capacitance		1500	pF	f = 1.0 MHz	
C _{rss}	Reverse Transfer Capacitance		500	pF	for Soldering Purposes,	
Switching	Characteristics (T _C = 25°C, Figures 9,	10)3			d a nul esso mora avi	
t _{d(on)}	Turn-On Delay Time		35	ns	V _{DD} = 24 V, I _D = 20 A	
t _r	Rise Time	18	100	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 4.7 \Omega$ $R_{GS} = 4.7 \Omega$	
t _{d(off)}	Turn-Off Delay Time		125	ns	os (m) Static Draft-o-Soules	
t _f	Fall Time		100	ns	Smarroft mix C	
t _{d(on)}	Turn-On Delay Time		75	ns	V _{DD} = 75 V, I _D = 20 A	
t _r	Rise Time		450	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 50 \Omega$ $R_{GS} = 50 \Omega$	
t _{d(off)}	Turn-Off Delay Time		300	ns	anne de manie	
tf	Fall Time		200	ns	Suc Thermal Resistance,	
Qg	Total Gate Charge		120	nC	V _{GS} = 10 V, I _D = 50 A V _{DD} = 55 V	

Electrical Characteristics (Cont.) (T_C = 25°C unless otherwise noted)

Symbol	Characteristic	Тур	Max	Unit	Test Conditions
Source-Dra	ain Diode Characteristics				
V _{SD}	Diode Forward Voltage IRF150/151	2.0	2.5	٧	I _S = 40 A; V _{GS} = 0 V
	IRF152/153	2.0	2.3	V	I _S = 33 A; V _{GS} = 0 V
t _{rr}	Reverse Recovery Time	300		ns	$I_S = 4 A$; $dI_S/dt = 25 A/\mu S$

Notes

- 1. $T_J = +25^{\circ}C$ to $+150^{\circ}C$
- 2. Pulse test: Pulse width \leqslant 80 μ s, Duty cycle \leqslant 1%
- 3. Switching time measurements performed on LEM TR-58 test equipment.

Typical Performance Curves

Figure 1 Output Characteristics

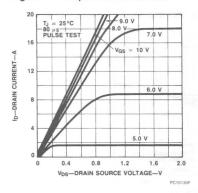


Figure 3 Transfer Characteristics

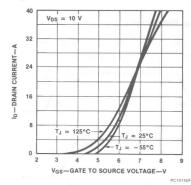


Figure 2 Static Drain to Source Resistance vs Drain Current

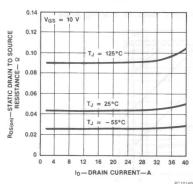
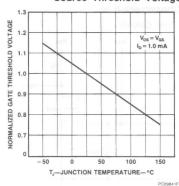



Figure 4 Temperature Variation of Gate to Source Threshold Voltage

Typical Performance Curves (Cont.)

Figure 5 Capacitance vs Drain to Source Voltage

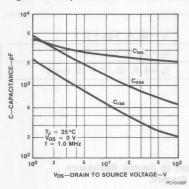
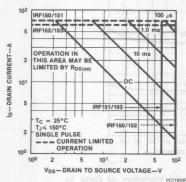



Figure 7 Forward Biased Safe Operating Area

Typical Electrical Characteristics

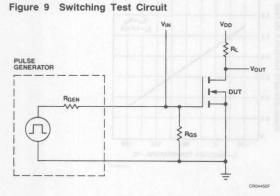


Figure 6 Gate to Source Voltage vs Total Gate Charge

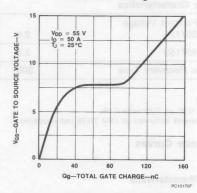


Figure 8 Transient Thermal Resistance vs Time

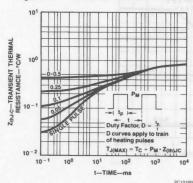
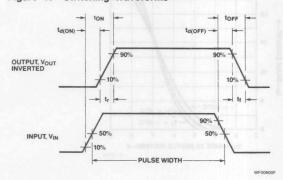



Figure 10 Switching Waveforms

IRF220-223/IRF620-623 MTP7N18/7N20 N-Channel Power MOSFETs, 7 A, 150-200 V Power And Discrete Division

Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high speed applications, such as switching power supplies, converters, AC and DC motor controls, relay and solenoid drivers and other pulse circuits.

- Low R_{DS(on)}
- V_{GS} Rated at ± 20 V
- Silicon Gate for Fast Switching Speeds
- I_{DSS}, V_{DS(on)}, Specified at Elevated Temperature
- Rugged
- Low Drive Requirements
- Ease of Paralleling

TO-204AA

IRF220 IRF221 IRF222 IRF223

TO-220AB

IRF620 **IRF621 IRF622 IRF623 MTP7N18** MTP7N20

Product Summary

Part Number	V _{DSS}	R _{DS (on)}	I _D at T _C = 25°C	I _D at T _C = 100°C	Case Style	
IRF220	200 V	0.8 Ω	5.0 A	3.0 A	TO-204AA	
IRF221	150 V 200 V 150 V	0.8 Ω 1.2 Ω 1.2 Ω	5.0 A 4.0 A 4.0 A	3.0 A 2.5 A 2.5 A		
IRF222						
IRF223						
IRF620	200 V	Ω 8.0	5.0 A	3.0 A	TO-220AB	
IRF621	150 V	0.8 Ω	5.0 A	3.0 A		
IRF622	200 V	1.2 Ω	4.0 A	2.5 A		
IRF623	150 V	1.2 Ω	4.0 A	2.5 A		
MTP7N18	180 V	0.7 Ω	7.0 A	4.5 A		
MTP7N20	200 V	0.7 Ω	7.0 A	4.5 A		

For information concerning connection diagram and package outline, refer to Section 7

Maximum	

Symbol	Characteristic	Rating IRF220/222 IRF620/622 MTP7N20	Rating MTP7N18	Rating IRF222/223 IRF622/623	Unit
V _{DSS}	Drain to Source Voltage ¹	200	180	150	V
V_{DGR}	Drain to Gate Voltage ¹ $R_{GS} = 20 \text{ k}\Omega$	200	180	150	٧
V _{GS}	Gate to Source Voltage	± 20	± 20	± 20	V
T _J , T _{stg}	Operating Junction and Storage Temperatures	-55 to +150	-55 to +150	-55 to +150	°C
TL	Maximum Lead Temperature for Soldering Purposes, 1/8" From Case for 5 s	275	275	275	°C

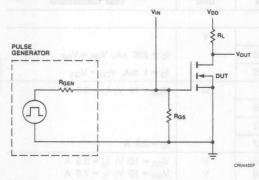
Maximum Thermal Characteristics

	15 g'	IRF220 - 223/IRF620 - 623	MTP7N18/20	Part Number
$R_{\theta JC}$	Thermal Resistance, Junction to Case	A 0.8 3.12 0 80	1.67	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	30/80	80	°C/W
P _D	Total Power Dissipation at T _C = 25°C	40	75	W
I _{DM}	Pulsed Drain Current ²	20	20	A

Electrical Characteristics (T_C = 25°C unless otherwise noted)

Symbol	Characteristic	Min	Max	Unit	Test Conditions
Off Charac	teristics	7.0	0.7.0		V ons OSIAYSTM
V _{(BR)DSS}	Drain Source Breakdown Voltage ¹			V	$V_{GS} = 0 V, I_D = 250 \mu A$
	IRF220/222/620/622/ MTP7N20	200	produces		alice or Infrarezon concerning connection displays of second 2.
	MTP7N18	180			
	IRF221/223/621/623	150			
I _{DSS}	Zero Gate Voltage Drain Current		250	μΑ	V _{DS} = Rated V _{DSS} , V _{GS} = 0 V
	DSS Zero Gate Voltage Drain Current		1000	μΑ	$V_{DS} = 0.8 \text{ x Rated } V_{DSS},$ $V_{GS} = 0 \text{ V}, T_{C} = 125^{\circ}\text{C}$
I _{GSS}	Gate-Body Leakage Current IRF220-223 IRF620-623/MTP7N18/20		± 100 ± 500	nA	V _{GS} = ± 20 V, V _{DS} = 0 V

	Characteristics (Cont.) (T _C = 25°C				National Control of the Control
Symbol	Characteristic	Min	Max	Unit	Test Conditions
On Charac	teristics				
V _{GS(th)}	Gate Threshold Voltage			V	
	IRF220-223/IRF620-623	2.0	4.0		$I_D = 250 \ \mu A, \ V_{DS} = V_{GS}$
	MTP7N18/20	2.0	4.5	1721 84	$I_D = 1$ mA, $V_{DS} = V_{GS}$
R _{DS(on)}	Static Drain-Source On-Resistance ²			Ω	$V_{GS} = 10 \text{ V}, I_D = 2.5 \text{ A}$
	IRF220/221/620/621		0.8		
	IRF222/223/622/623		1.2		
	MTP7N18/7N20		0.7		I _D = 3.5 A
V _{DS(on)}	Drain-Source On-Voltage ² MTP7N18/7N20		2.45 5.9	V	V _{GS} = 10 V; I _D = 3.5 A V _{GS} = 10 V; I _D = 7.0 A
		3 1672 1	5.0	V	V _{GS} = 10 V, I _D = 3.5 A T _C = 100°C
9fs	Forward Transconductance	1.3		S (U)	V _{DS} = 10 V, I _D = 2.5 A
Dynamic C	haracteristics				
C _{iss}	Input Capacitance		600	pF	V _{DS} = 25 V, V _{GS} = 0 V
Coss	Output Capacitance		300	pF	f = 1.0 MHz
C _{rss}	Reverse Transfer Capacitance		80	pF	
Switching	Characteristics (T _C = 25°C, Figures 1,	2) ³			
t _{d(on)}	Turn-On Delay Time	11.00	40	ns	V _{DD} = 100 V, I _D = 2.5 A
t _r	Rise Time		60	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 50 \Omega$ $R_{GS} = 50 \Omega$
t _{d(off)}	Turn-Off Delay Time		100	ns	- 1.GS 00 22
t _f	Fall Time		60	ns	
Qg	Total Gate Charge		15	nC	V _{GS} = 10 V, I _D = 6.0 A V _{DD} = 45 V
Symbol	Characteristic	Тур	Max	Unit	Test Conditions
Source-Dra	in Diode Characteristics				
V _{SD}	Diode Forward Voltage		1.8	V	I _S = 5.0 A; V _{GS} = 0 V
			1.4	V	I _S = 4.0 A; V _{GS} = 0 V
t _{rr}	Reverse Recovery Time	350		ns	$I_S = 5.0 \text{ A}; \text{ dI}_S/\text{dt} = 25 \text{ A}/\mu\text{S}$


Notes

- Notes

 1. $T_J = +25^{\circ}\text{C}$ to $+150^{\circ}\text{C}$ 2. Pulse width limited by T_J 3. Switching time measurements performed on LEM TR-58 test equipment.

Typical Electrical Characteristics

Figure 1 Switching Test Circuit

Typical Performance Curves

Figure 3 Output Characteristics

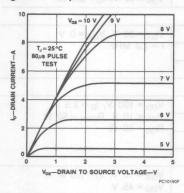


Figure 5 Transfer Characteristics

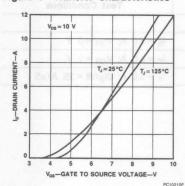


Figure 2 Switching Waveforms

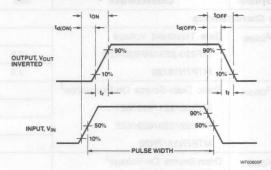


Figure 4 Static Drain to Source Resistance vs Drain Current

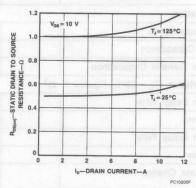
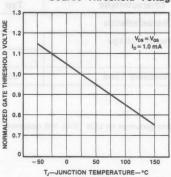



Figure 6 Temperature Variation of Gate to Source Threshold Voltage

Typical Performance Curves (Cont)

Figure 7 Capacitance vs Drain to Source Voltage

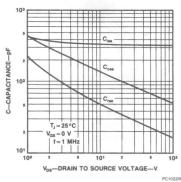


Figure 9 Forward Biased Safe Operating Area for IRF220-223 and IRF620-623

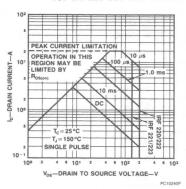


Figure 11 Forward Biased Safe Operating Area for MTP7N18/7N20

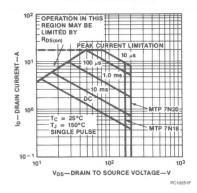


Figure 8 Gate to Source Voltage vs Total Gate Charge

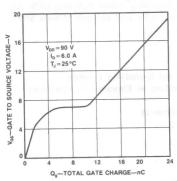


Figure 10 Transient Thermal Resistance vs Time for IRF220-223 and IRF620-623

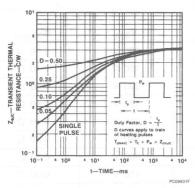
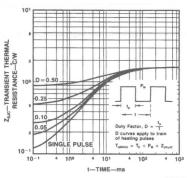



Figure 12 Transient Thermal Resistance vs Time for MTP7N18/7N20

PC0995

Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as switching power supplies, UPS, AC and DC motor controls, relay and solenoid drivers and high energy pulse circuits.

- Low R_{DS(on)}
- V_{GS} Rated at ± 20 V
- Silicon Gate for Fast Switching Speeds
- I_{DSS}, V_{DS(on)}, Specified at Elevated Temperature
- Rugged
- Low Drive Requirements
- Ease of Paralleling

TO-204AA

IRF230 IRF231 IRF232 IRF233

TO-220AB

IRF630 **IRF631 IRF632 IRF633** MTP12N18 MTP12N20

Product Summary

Part Number	V _{DSS}	R _{DS} (on)	I _D at T _C = 25°C	I _D at T _C = 100°C	Case Style
IRF230	200 V	0.40 Ω	9.0 A	6.0 A	TO-204AA
IRF231	150 V	0.40 Ω	9.0 A	6.0 A	AB GELLINITAL
IRF232	200 V	0.50 Ω	8.0 A	5.0 A	
IRF233	150 V	0.50 Ω	8.0 A	5.0 A	
IRF630	200 V	0.40 Ω	9.0 A	6.0 A	TO-220AB
IRF631	150 V	0.40 Ω	9.0 A	6.0 A	
IRF632	200 V	0.50 Ω	8.0 A	5.0 A	1 201 - 1 201
IRF633	150 V	0.50 Ω	8.0 A	5.0 A	LOT ISSUED-INV
MTP12N18	180 V	0.35 Ω	12 A	8.5 A	ne il Forest
MTP12N20	200 V	0.35 Ω	12 A	8.5 A	The not

For information concerning connection diagram and package outline, refer to Section 7.

Symbol	Characteristic	Rating IRF220/222 IRF620/622 MTP7N20	Rati MTP7	-	Rating IRF222/223 IRF622/623	Symbol On Character VastinU
V _{DSS}	Drain to Source Voltage ¹	200	180	0	150	V
V_{DGR}	Drain to Gate Voltage ¹ $R_{GS} = 20 \text{ k}\Omega$	200	18	0 constance	150	V
V _{GS}	Gate to Source Voltage	± 20	± 20		± 20	V
T _J , T _{stg}	Operating Junction and Storage Temperatures	-55 to +150	-55 to +150		-55 to +150	°C
TL	Maximum Lead Temperature for Soldering Purposes, 1/8" From Case for 5 s	275	275		275	.C
Maximum	Thermal Characteristics					
	A (1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	IRF220 - 2 IRF630 - 6		M	TP12N18/20	atle
$R_{ heta JC}$	Thermal Resistance, Junction to Case	1.67		1.25	°C/W	
P _D	Total Power Dissipation at T _C = 25°C	75			100	W
I _{DM}	Pulsed Drain Current ²	40		eenst	40	A

Electrical Characteristics ($T_C = 25$ °C unless otherwise noted)

Symbol	Characteristic		Min	Max	Unit	Test Conditions	
Off Charac	teristics	dri	110			emiT-co-co-titute	(moje/
V _{(BR)DSS}	Drain Source Breakdown	/oltage	02		V	$V_{GS} = 0 \ V, \ I_{D} = 250 \ \mu A$	į,
	IRF230/232/630/632/		200			and typical productions	
	MTP12N20		1110			19 11 14 11 11	
	MTP12N18		180			I Th Dolay Time:	
	IRF231/233/631/633		150			anit of the	
I _{DSS}	Zero Gate Voltage Drain (Current		250	μΑ	V _{DS} = Rated V _{DSS} , V _{GS} = 0	٧
				1000	μΑ	$V_{DS} = 0.8 \text{ x Rated } V_{DSS},$ $V_{GS} = 0 \text{ V}, T_{C} = 125 ^{\circ}\text{C}$	
I _{GSS}	Gate-Body Leakage Currer	nt			nA	V _{GS} = ± 20 V, V _{DS} = 0 V	
	IRF230-233			±100			
	IRF630-633/ MTP12N18/12N20			± 500			

Symbol	Characteristic		Min	Max	Unit	Test Conditions	
On Charac	teristics			IRF220/222			
V _{GS(th)}	Gate Threshold Voltage	STMTS	Tito .	MTP7N20	V	Characteristic	lodmyž
	IRF230/233/630/633		2.0	4.0		$I_D = 250 \mu A, V_{DS} = V_{GS}$	
	MTP12N18/12N20		2.0	4.5		$I_D = 1$ mA, $V_{DS} = V_{GS}$	
R _{DS(on)}	Static Drain-Source On-P	esistance ²			Ω	V _{GS} = 10 V, I _D = 5.0 A	
	IRF230/231/630/631			0.40		Gate to Source Voltage	
	IRF232/233/632/633		88- 0	0.50		Onerating Junction and	
	MTP12N18/12N20			0.35		I _D = 6.0 A	
V _{DS(on)}	Drain-Source On-Voltage	2		2.1	V	V _{GS} = 10 V; I _D = 6.0 A	73.6
	MTP12N18/12N20			5.0	V	V _{GS} = 10 V; I _D = 12.0 A;	
			- 233	4.2	V	V _{GS} = 10 V; I _D = 6.0 A T _C = 100°C	numbes
9fs	Forward Transconductand	ce	3.0	EFIRI	S (T)	V _{DS} = 10 V, I _D = 5.0 A	
Dynamic C	haracteristics	TO STATE	No.			Tremal Residence.	-bush
C _{iss}	Input Capacitance			800	pF	V _{DS} = 25 V, V _{GS} = 0 V	
Coss	Output Capacitance			450	pF	f = 1.0 MHz	
C _{rss}	Reverse Transfer Capaci	tance	0	150	pF	Financo nind books	
Switching	Characteristics (T _C = 25°C	Figures 1,	2)1				
t _{d(on)}	Turn-On Delay Time		(beion	30	ns	1 VDD - 90 V, ID - 5.0 A	ectrical
t _r	Rise Time	tinU	×680	50	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 15 \text{ S}$ $R_{GS} = 15 \Omega$	Ω
t _{d(off)}	Turn-Off Delay Time			50	ns	adiahan	
t _f	Fall Time	-V		40	ns	. Drain Source Breakdown	
t _{d(on)}	Turn-On Delay Time			50	ns	V _{DD} = 25 V, I _D = 6.0 A	
t _r	Rise Time			250	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 50 \text{ S}$	Ω
t _{d(off)}	Turn-Off Delay Time			100	ns	$R_{GS} = 50 \Omega$	
t _f	Fall Time			120	ns	IRF 231/233/631/633	
Qg	Total Gate Charge	Ац	0001	30	nC	V _{GS} = 10 V, I _D = 12 A V _{DD} = 120 V	880

Electrical Characteristics (Cont.) (T_C = 25°C unless otherwise noted)

Symbol	Characteristic	Тур	Max	Unit	Test Conditions
Source-Dra	in Diode Characteristics				
V _{SD}	Diode Forward Voltage IRF230/231/630/631	1.25	2.0	٧	I _S = 9.0 A; V _{GS} = 0 V
	IRF232/233/632/633	1.25	1.8	V	I _S = 8.0 A; V _{GS} = 0 V
t _{rr}	Reverse Recovery Time	450		ns	$I_S = 4.0 \text{ A}; I_S/dt = 25 \text{ A}/\mu\text{S}$

Notes

- 1. $T_J = +25^{\circ}C$ to $+150^{\circ}C$
- 2. Pulse width limited by T_J.
- 3. Switching time measurements performed on LEM TR-58 test equipment.

Typical Electrical Characteristics

Figure 1 Switching Test Circuit

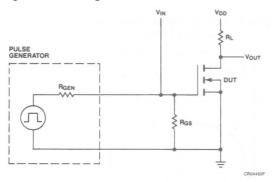
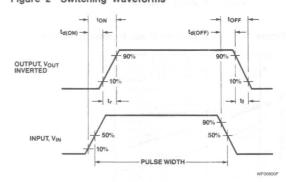



Figure 2 Switching Waveforms

Typical Performance Curves

Figure 3 Output Characteristics

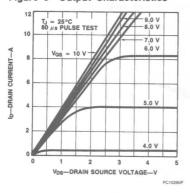
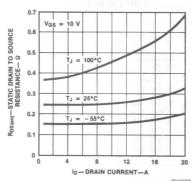



Figure 4 Static Drain to Source Resistance vs Drain Current

Typical Performance Curves (Cont.)

Figure 5 Transfer Characteristics

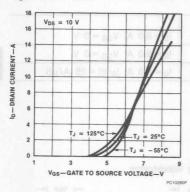


Figure 7 Capacitance vs Drain to Source Voltage

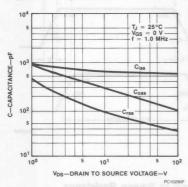


Figure 9 Forward Biased Safe Operating Area for IRF230-233 and IRF630-633

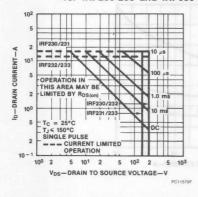


Figure 6 Temperature Variation of Gate to Source Threshold Voltage

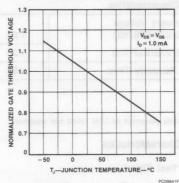


Figure 8 Gate to Source Voltage vs Total Gate Charge

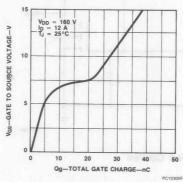
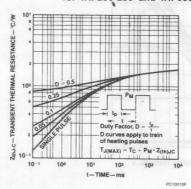



Figure 10 Transient Thermal Resistance vs Time for IRF230-233 and IRF630-633

Typical Performance Curves (Cont.)

Figure 11 Forward Biased Safe Operating Area for MTP12N18/12N20

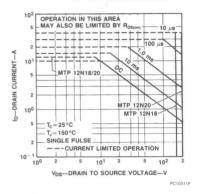
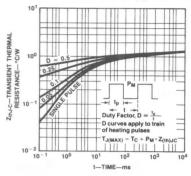



Figure 12 Transient Thermal Resistance vs Time for MTP12N18/12N20

PC10030F

IRF240-243/IRF640-643 N-Channel Power MOSFETs, 18 A, 150-200 V

Power And Discrete Division

Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as switching power supplies, UPS, AC and DC motor controls, relay and solenoid drivers and high energy pulse circuits.

- Low RDS(on)
- VGS Rated at ± 20 V
- Silicon Gate for Fast Switching Speeds
- I_{DSS}, V_{DS(on)}, Specified at Elevated Temperature
- Rugged
- Low Drive Requirements
- Ease of Paralleling

Product Summary

TO-204AE

IRF240 IRF241 IRF242 IRF243

TO-220AB

IRF640 IRF641 IRF642 IRF643

Part Number	V _{DSS}	R _{DS} (on)	I _D at T _C = 25°C	I _D at T _C = 100°C	Case Style
IRF240	200 V	0.18 Ω	18 A	11 A	TO-204AE
IRF241	150 V	0.18 Ω	18 A	11 A	
IRF242	200 V	0.22 Ω	16 A	10 A	
IRF243	150 V	0.22 Ω	16 A	10 A	
IRF640	200 V	0.18 Ω	18 A	11 A	TO-220AB
IRF641	150 V	0.18 Ω	18 A	11 A	
IRF642	200 V	0.22 Ω	16 A	10 A	
IRF643	150 V	0.22 Ω	16 A	10 A	

Notes

For information concerning connection diagram and package outline, refer to Section 7.

Symbol	Characteristic	Rating IRF240/242 IRF640/642	Rat IRF24 IRF64	.,			diny2 Imany0
V _{DSS}	Drain to Source Voltage ¹	200	15	0	BUE	V	
V _{DGR}	Drain to Gate Voltage 1 R _{GS} = 20 k Ω	200		150		V	Cres
V _{GS}	Gate to Source Voltage	± 20	1 1 20 050 ± 2	20		٧	
T _J , T _{stg}	Operating Junction and Storage Temperatures	-55 to +150	-55 to	-55 to +150		°C	[00]2
TL	Maximum Lead Temperature for Soldering Purposes, 1/8" From Case for 5 s	275	27	75 ami 1	soul -	°C	nton I
/laximum	Thermal Characteristics		1	MEN CAN	21 1 1 1		lacts.
	EN EN	IRF240-243	IRF64	0-643	Jim 1 Iai		
$R_{ heta JC}$	Thermal Resistance, Junction to Case	1.0	1.	ay Ture o		°C/W	(top)
P _D	Total Power Dissipation at T _C = 25°C	125	12	25		W	
I _{DM}	Pulsed Drain Current ²	72	7.	2		Α	
	Tint Candillo	2 × [VI	TVT	Transcionation	7	la	Symb
:lectrical	Characteristics (T _C = 25°C unle	ss otherwise note	ed)	Statetorialitics	dS stant	DO TO	001E03
Symbol	Characteristic	Min	Max Unit	registry bill	est Cond	itions	

Symbol	Characteristic	Min	Max	Unit	Test Conditions
Off Charac	teristics				1381,380,000,004
V _{(BR)DSS}	Drain Source Breakdown Voltage ¹	81	4.4	V	$V_{GS} = 0 \text{ V}, I_D = 250 \mu A$
	IRF240/242/640/642	200	Oth		unit research and and
	IRF241/243/641/643	150			69.0
I _{DSS}	Zero Gate Voltage Drain Current		250	μΑ	V _{DS} = Rated V _{DSS} , V _{GS} = 0 V
			1000	μΑ	$V_{DS} = 0.8 \text{ x Rated } V_{DSS},$ $V_{GS} = 0 \text{ V}, T_{C} = 125^{\circ}\text{C}$
I _{GSS}	Gate-Body Leakage Current			nA	V _{GS} = ± 20 V, V _{DS} = 0 V
	IRF240-243		± 100		
	IRF640-643		± 500		
On Charac	teristics				
V _{GS(th)}	Gate Threshold Voltage	2.0	4.0	V	$I_D = 250 \ \mu A, \ V_{DS} = V_{GS}$
R _{DS(on)}	Static Drain-Source On-Resistance ²			Ω	V _{GS} = 10 V, I _D = 10 A
	IRF240/241/640/641		0.18		
	IRF242/243/642/643		0.22		
9fs	Forward Transconductance	6.0		S (U)	V _{DS} = 10 V, I _D = 10 A

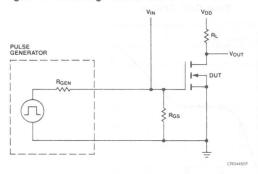
Electrical Characteristics (Cont.) (T_C = 25°C unless otherwise noted)

Symbol	Characteristic	Min	Max	Unit	Test Conditions
Dynamic C	haracteristics	535	CRS THE		Surely Characteristics
C _{iss}	Input Capacitance		1600	pF	V _{DS} = 25 V, V _{GS} = 0 V
Coss	Output Capacitance		750	pF	f = 1.0 MHz
C _{rss}	Reverse Transfer Capacitance		300	pF	Rage 20 kg
witching	Characteristics (T _C = 25°C, Figures 1	, 2)3	18 18		Vos Cele to Source Voltage
t _{d(on)}	Turn-On Delay Time	oar-	30	ns	V _{DD} = 75 V, I _D = 10 A
t _r	Rise Time		60	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 4.7 \Omega$ $R_{GS} = 4.7 \Omega$
t _{d(off)}	Turn-Off Delay Time		80	ns	Tigs 4.7 at
t _f	Fall Time		60	ns	1/5° From Caso (or 5 a
t _{d(on)}	Turn-On Delay Time		60	ns	V _{DD} = 25 V, I _D = 10 A
t _r	Rise Time	243	300	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 50 \Omega$ $R_{GS} = 50 \Omega$
t _{d(off)}	Turn-Off Delay Time		200	ns	rigs 50 tz
t _f	Fall Time		150	ns	Junction to Care
Qg	Total Gate Charge		60	nC	V _{GS} = 10 V, I _D = 22 A V _{DD} = 120 V

Symbol	Characteristic	Тур	Max	Unit	Test Conditions
Source-Dra	in Diode Characteristics	(beton	serviento s	anim D'a	selfical Characteristics (1c=2
V _{SD}	Diode Forward Voltage	10081	might -		Symbol Characteristic
	IRF240/241/640/641	1.7	2.0	V	I _S = 18 A; V _{GS} = 0 V
	IRF242/243/642/643	1.7	1.9	V	I _S = 16 A; V _{GS} = 0 V
t _{rr}	Reverse Recovery Time	400	578	ns	$I_S = 4 A$; $dI_S/dt = 25 A/\mu S$

Notes

1. $T_J = +25^{\circ}C$ to $+150^{\circ}C$


2. Pulse width limited by maximum T_J.

3. Switching time measurements performed on LEM TR-58 test equipment.

2

Typical Electrical Characteristics

Figure 1 Switching Test Circuit

Typical Performance Curves

Figure 3 Output Characteristics

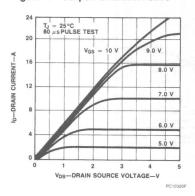


Figure 5 Transfer Characteristics

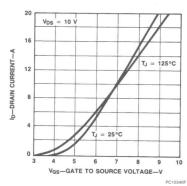


Figure 2 Switching Waveforms

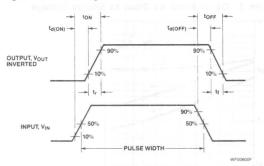


Figure 4 Static Drain to Source Resistance vs Drain Current

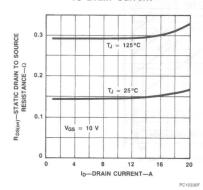
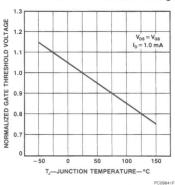



Figure 6 Temperature Variation of Gate to Source Threshold Voltage

Typical Performance Curves (Cont.)

Figure 7 Capacitance vs Drain to Source Voltage

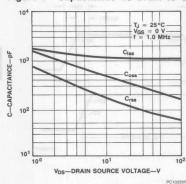


Figure 9 Forward Biased Safe Operating Area

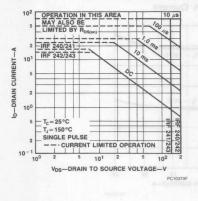


Figure 8 Gate to Source Voltage vs Total Gate Charge

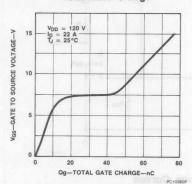
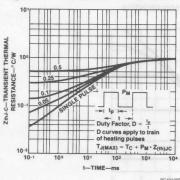



Figure 10 Transient Thermal Resistance vs Time

IRF250-253 N-Channel Power MOSFETs, 30 A, 150 V/200 V

Power And Discrete Division

Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as switching power supplies, UPS, AC and DC motor controls, relay and solenoid drivers and high energy pulse circuits.

- Low R_{DS(on)}
- V_{GS} Rated at ± 20 V
- Silicon Gate for Fast Switching Speeds
- I_{DSS}, SOA Specified at Elevated Temperature
- Rugged
- Low Drive Requirements
- Ease of Paralleling

Maximum Ratings

TO-204AE

IRF250 IRF251 IRF252 IRF253

Symbol	Characteristic	Rating IRF250/252	Rating IRF251/253	Unit
V _{DSS}	Drain to Source Voltage ¹	200	150	V
V_{DGR}	Drain to Gate Voltage ¹ $R_{GS} = 20 \text{ k}\Omega$	200	150	V
V _{GS}	Gate to Source Voltage	± 20	± 20	V
T _J , T _{stg}	Operating Junction and Storage Temperatures	-55 to +150	-55 to +150	°C
TL	Maximum Lead Temperature for Soldering Purposes, 1/8" From Case for 5 s	275	275	°C = 0

Maximum On-State Characteristics

		IRF250/251	IRF252/253	
R _{DS} (on)	Static Drain-to-Source On Resistance	0.085	0.12	Ω
I _D	Drain Current Continuous Pulsed	30 120	25 100	A
Maximum	Thermal Characteristics			1,11,11
$R_{\theta JC}$	Thermal Resistance, Junction to Case	0.83	0.83	°C/W
P _D	Total Power Dissipation at T _C = 25°C	150	150	W

Notes

For information concerning connection diagram and package outline, refer to Section 7.

IRF250-253

IRF250-253 N-Channel Power MOSFETS, 30 A, 150 V/200 V

Symbol	Characteristic	Min	Max	Unit	Test Conditions	
Off Charac	teristics	19/	9A .8F	U sellogies U	aliens, such as switching power	
V _{(BR)DSS}	Drain Source Breakdown Voltage ¹	1/11		٧	$V_{GS} = 0 V, I_D = 250 \mu A$	
	IRF250/252	200				
	IRF251/253	150			Refued at 1:20 V	
I _{DSS}	Zero Gate Voltage Drain Current	pes III	250	μΑ	V _{DS} = Rated V _{DSS} , V _{GS} = 0 V	
		185753 185253	1000	μΑ	$V_{DS} = 0.8 \text{ x Rated } V_{DSS},$ $V_{GS} = 0 \text{ V}, T_C = 125^{\circ}\text{C}$	
I _{GSS}	Gate-Body Leakage Current	662770	± 100	nA	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	
On Charac	teristics				mum Hatage	
V _{GS(th)}	Gate Threshold Voltage	2.0	4.0	V	$I_D = 250 \mu A, V_{DS} = V_{GS}$	
R _{DS(on)}	Static Drain-Source On-Resistance ²	989	MACHINE	Ω	V _{GS} = 10 V, I _D = 16 A	
	IRF250/251		0.085		Drain to Source Vellage	
	IRF252/253		0.12		Legislov stab of nimO A	
9fs	Forward Transconductance	8.0	AP 4	S (U)	V _{DS} = 10 V, I _D = 16 A	
Dynamic C	haracteristics	Dat.	d int EA		Kees malfacul, had most	
C _{iss}	Input Capacitance		3000	pF	V _{DS} = 25 V, V _{GS} = 0 V	
Coss	Output Capacitance		1200	pF	f = 1.0 MHz	
C _{rss}	Reverse Transfer Capacitance		500	pF	for Soldering Purposes.	
Switching	Characteristics (T _C = 25°C, Figures 9,	10)1			man District Characterist	
t _{d(on)}	Turn-On Delay Time	1	35	ns	V _{DD} = 95 V, I _D = 16 A	
t _r	Rise Time		100	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 4.7 \Omega$ $R_{GS} = 4.7 \Omega$	
t _{d(off)}	Turn-Off Delay Time		125	ns	On Posistanos	
t _f	Fall Time		100	ns	Drain Current	
t _{d(on)}	Turn-On Delay Time		75	ns	V _{DD} = 125 V, I _D = 16 A	
t _r	Rise Time		300	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 50 \Omega$ $R_{GS} = 50 \Omega$	
t _{d(off)}	Turn-Off Delay Time		275	ns	annual ismail	
t _f	Fall Time		150	ns	SanCi at molionut	
Qg	Total Gate Charge		120	nC	V _{GS} = 10 V, I _D = 38 A V _{DD} = 100 V	

Electrical Characteristics (Cont.) (T_C = 25°C unless otherwise noted)

Symbol	Characteristic	Тур	Max	Unit	Test Conditions			
Source-Drain Diode Characteristics								
V _{SD}	Diode Forward Voltage IRF250/251 IRF252/253	1.5 1.5	2.0 1.8	V V	I _S = 30 A; V _{GS} = 0 V I _S = 25 A; V _{GS} = 0 V			
t _{rr}	Reverse Recovery Time	400	INTO L. TOTAL	ns	$I_S = 4 \text{ A}; dI_S/dt = 25 \text{ A}/\mu\text{S}$			

Notes

- 1. T₁ = +25°C to +150°C
- 2. Pulse test: Pulse width \leq 80 μ s, Duty cycle \leq 1%
- 3. Switching time measurements performed on LEM TR-58 test equipment.

Typical Performance Curves

Figure 1 Output Characteristics

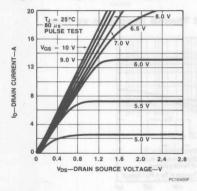


Figure 3 Transfer Characteristics

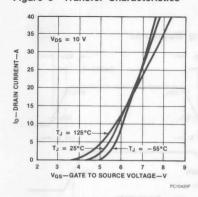


Figure 2 Static Drain to Source Resistance vs Drain Current

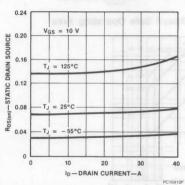
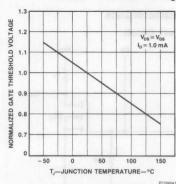



Figure 4 Temperature Variation of Gate to Source Threshold Voltage

Typical Performance Curves (Cont.)

Figure 5 Capacitance vs Drain to Source Voltage

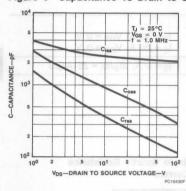
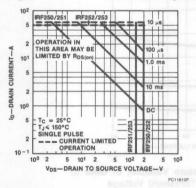



Figure 7 Forward Biased Safe Operating Area

Typical Electrical Characteristics

Figure 9 Switching Test Circuit



Figure 6 Gate to Source Voltage vs Total Gate Charge

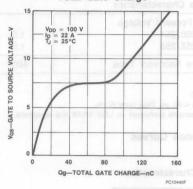


Figure 8 Transient Thermal Resistance vs Time

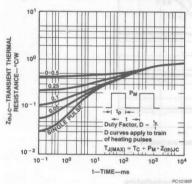
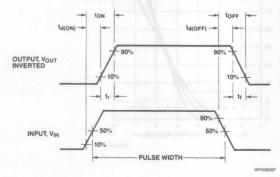



Figure 10 Switching Waveforms

IRF320-323/IRF720-723 MTP3N35/3N40 N-Channel Power MOSFETs, 3.0 A, 350-400 V

Power And Discrete Division

Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high speed applications, such as switching power supplies, converters, AC and DC motor controls, relay and solenoid drivers and other pulse circuits.

- Low R_{DS(on)}
- VGS Rated at ± 20 V
- Silicon Gate for Fast Switching Speeds
- I_{DSS}, V_{DS(on)}, Specified at Elevated Temperature
- Rugged
- Low Drive Requirements
- Ease of Paralleling

TO-204AA

TO-220AB

IRF320 IRF321 IRF322 IRF323 IRF720 IRF721 IRF722 IRF723 MTP3N35 MTP3N40

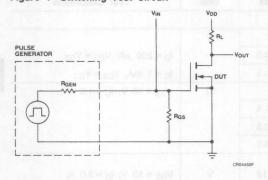
Product Summary

Part Number	V _{DSS}	R _{DS (on)}	I _D at T _C = 25°C	I _D at T _C = 100°C	Case Style
IRF320	400 V	1.8 Ω	3.0 A	2.0 A	TO-204AA
IRF321	350 V	1.8 Ω	3.0 A	2.0 A	Junction
IRF322	400 V	2.5 Ω	2.5 A	1.5 A	Figure Themsel
IRF323	350 V	2.5 Ω	2.5 A	1.5 A	apitonut-
IRF720	400 V	1.8 Ω	3.0 A	2.0 A	TO-220AB
IRF721	350 V	1.8 Ω	3.0 A	2.0 A	Date Street
IRF722	400 V	2.5 Ω	2.5 A	1.5 A	Dealer Mo
IRF723	350 V	2.5 Ω	2.5 A	1.5 A	actrical Charact
MTP3N35	350 V	3.3 Ω	3.0 A	2.0 A	Symbol
MTP3N40	400 V	3.3 Ω	3.0 A	2.0 A	Characteristics

Notes

For information concerning connection diagram and package outline, refer to Section 7.

IRF320-323/IRF720-723 MTP3N35/3N40


Maximum	Ratings	TO-204AA			s.Eh.	notigha
Symbol	Characteristic	Rating IRF320/322 IRF720/722 MTP3N40		Rating IRF321/323 IRF721/723 MTP3N35		tempo
V _{DSS}	Drain to Source Voltage ²	400		35	0	V
V _{DGR}	Drain to Gate Voltage ² $R_{GS} = 20 \text{ k}\Omega$	400		35	0	Rat V at ± 20 V
V _{GS}	Gate to Source Voltage	± 20	200	± 2	20	sa, Va Valla Specific
T _J , T _{stg}	Operating Junction and Storage Temperatures	-55 to +	150	-55 to +150		emediups Requirements for se
TL	Maximum Lead Temperature for Soldering Purposes, 1/8" From Case for 5 s	275		275		°C
Maximum	Thermal Characteristics					
alvis e	o To = reor C	IRF320-3 IRF720-7	The second secon	MTP3N3	5/3N40	Port Number
$R_{ heta JC}$	Thermal Resistance, Junction to Case	3.12	3.12		57	°C/W
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient	30/80	2.6 Ω 2.6 Ω	8	0 / 00k	°C/W
PD	Total Power Dissipation at T _C = 25°C	A 0 8 40	ne.		400 1	Wayara
I _{DM}	Pulsed Drain Current ²	12	30 0.1	12		Α
Electrical	Characteristics (T _C = 25°C unle	ss otherwise	noted)			
Symbol	Characteristic	Min	Max	Unit	V one 1	Test Conditions
Off Charac	teristics	8.0 A	Ω 6.8		V 000	MTPSN40
V _{(BR)DSS}	Drain Source Breakdown Voltage ¹			V	V _{GS} = 0 V	$I_{D} = 250 \mu A$
	IRF320/322/720/722/ MTP3N40	400	of folion an	tuo egastasa ta	u requib nados	
	IRF321/323/721/723/ MTP3N35	350				
I _{DSS}	Zero Gate Voltage Drain Current		250	μΑ	V _{DS} = Rate	ed V _{DSS} , V _{GS} = 0 V
			1000	μΑ		x Rated V _{DSS} , T _C = 125°C
Igss	Gate-Body Leakage Current IRF320-323 IRF720-723/MTP3N35/3N40		± 100 ± 500	nA	$V_{GS} = \pm 20$) V, V _{DS} = 0 V

IRF320-323/IRF720-723 MTP3N35/3N40

Symbol	Characteristic	Min	Max	Unit	Test Conditions
On Charac	teristics				
V _{GS(th)}	Gate Threshold Voltage			V	
	IRF320-323/IRF720-723	2.0	4.0		$I_D = 250 \mu A, V_{DS} = V_{GS}$
	MTP3N35/40	2.0	4.5	700	$I_D = 1$ mA, $V_{DS} = V_{GS}$
R _{DS(on)}	Static Drain-Source On-Resistance ²			Ω	V _{GS} = 10 V, I _D = 1.5 A
	IRF320/321/720/721		1.8		A
	IRF322/323/722/723	V/SHIN	2.5		
	MTP3N35/40		3.3		
V _{DS(on)}	Drain-Source On-Voltage ² MTP3N35/40		12	V	V _{GS} = 10 V; I _D = 3.0 A;
	State Digit to Squess Resistance	10 V	V _{GS} = 10 V; I _D = 1.5 A; T _C = 100°C		
9fs	Forward Transconductance	1.0		S (U)	V _{DS} = 10 V, I _D = 1.5 A
ynamic C	haracteristics	Ta .			K I was I I I I I
C _{iss}	Input Capacitance		500	pF	V _{DS} = 25 V, V _{GS} = 0 V
Coss	Output Capacitance		100	pF	f = 1.0 MHz
C _{rss}	Reverse Transfer Capacitance		40	pF	
witching	Characteristics (T _C = 200°C, Figures 1	2)3			Van
t _{d(on)}	Turn-On Delay Time		40	ns	V _{DD} = 200 V, I _D = 1.5 A
t _r	Rise Time		50	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 50 \Omega$ $R_{GS} = 50 \Omega$
t _{d(off)}	Turn-Off Delay Time		100	ns	143
t _f	Fall Time		50	ns	
Qg	Total Gate Charge	S-amount	15	nC	V _{GS} = 10 V, I _D = 4.0 A V _{DD} = 200 V
Symbol	Characteristic	Тур	Max	Unit	Test Conditions
ource-Dra	in Diode Characteristics				
V _{SD}	Diode Forward Voltage IRF320/321/720/721	1 B	1.6	V	I _S = 3.0 A; V _{GS} = 0 V
	IRF322/323/722/723		1.5	V	I _S = 2.5 A; V _{GS} = 0 V
t _{rr}	Reverse Recovery Time	450		ns	$I_F = 3.0 \text{ A};$ $dI_S/dt = 100 \text{ A}/\mu \text{S}$

- Notes 1. T_J = +25°C to +150°C 2. Pulse test: Pulse width \le 80 μ s, Duty cycle \le 1% 3. Switching time measurements performed on LEM TR-58 test equipment.

Typical Electrical Characteristics
Figure 1 Switching Test Circuit

Typical Performance Curves

Figure 3 Output Characteristics

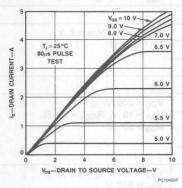


Figure 5 Transfer Characteristics

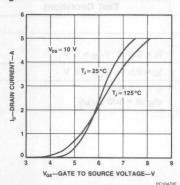


Figure 2 Switching Waveforms

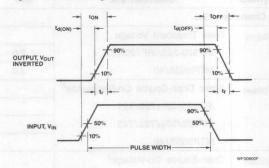


Figure 4 Static Drain to Source Resistance vs Drain Current

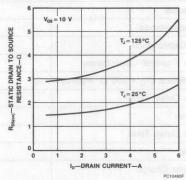
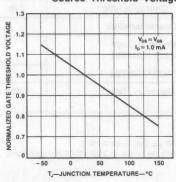



Figure 6 Temperature Variation of Gate to Source Threshold Voltage

IRF320-323/IRF720-723 MTP3N35/3N40

Typical Performance Curves (Cont.)

Figure 7 Capacitance vs Drain to Source Voltage

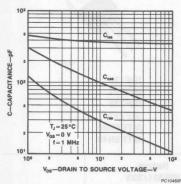


Figure 9 Forward Biased Safe Operating Area for IRF320-323 and IRF720-723

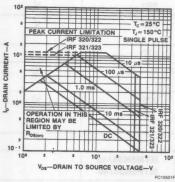


Figure 11 Forward Biased Safe Operating Area for MTP3N35/3N40

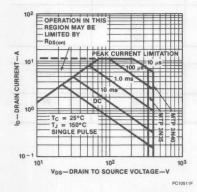


Figure 8 Gate to Source Voltage vs
Total Gate Charge

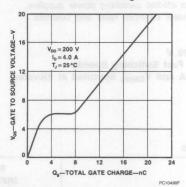


Figure 10 Transient Thermal Resistance vs Time for IRF320-323 and IRF720-723

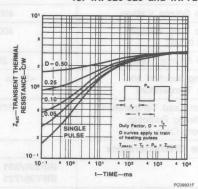
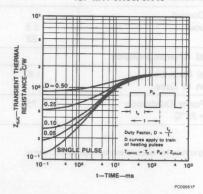



Figure 12 Transient Thermal Resistance vs Time for MTP3N35/3N40

Power And Discrete Division

Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high voltage, high speed applications, such as off-line switching power supplies, UPS, AC and DC motor controls, relay and solenoid drivers.

- VGS Rated at ± 20 V
- Silicon Gate for Fast Switching Speeds
- I_{DSS}, V_{DS(on)}, SOA and V_{GS(th)} Specified at Elevated Temperature
- Rugged

TO-204AA

TO-220AB

IRF330 IRF331 IRF332 IRF333

MTM5N35 MTM5N40 **IRF730**

IRF731 IRF732 IRF733 MTP5N35 MTP5N40

Maximum Ratings

Symbol	Characteristic	Rating IRF330/332 IRF730/732 MTM/MTP5N40	Rating IRF331/333 IRF731/733 MTM/MTP5N35	Unit
V _{DSS}	Drain to Source Voltage	400	350	V
V_{DGR}	Drain to Gate Voltage $R_{GS} = 1.0 \ \text{M}\Omega$	400	350	٧
V _{GS}	Gate to Source Voltage	± 20	± 20	V
T _J , T _{stg}	Operating Junction and Storage Temperature	-55 to +150	-55 to +150	°C
TL	Maximum Lead Temperature for Soldering Purposes, 1/8" From Case for 5 s	275	275	°C

Maximum On-State Characteristics

	top of the state o	IRF330/331 IRF730/731	IRF332/333 IRF732/733	MTM5N35/40 MTP5N35/40	
R _{DS} (on)	Static Drain-to-Source On Resistance	1.0	1.5	1.0	Ω
I _D	Drain Current Continuous Pulsed	5.5 22	4.5 22	5.0 22	A
Maximum	Thermal Characteristics			DESCRIPTION OF THE PROPERTY AND PARTY.	
$R_{ heta JC}$	Thermal Resistance, Junction to Case	1.67	1.67	1.67	°C/W
P _D	Total Power Dissipation at T _C = 25°C	75	75	75	W

For information concerning connection diagram and package outline, refer to Section 7.

Symbol	Characteristic	Min	Max	Unit	Test Conditions	
Off Charac	teristics				Characterlatios	
V _{(BR)DSS}	Drain Source Breakdown Voltage ¹			V	$V_{GS} = 0 \text{ V}, I_D = 250 \mu A$	
	IRF330/332/730/732	400	460		MTM/MTPSN/80	
	IRF331/333/731/733	350	028		MTW/MTPSN36	
I _{DSS}	Zero Gate Voltage Drain Current	0.25	250	μΑ	V _{DS} = Rated V _{DSS} , V _{GS} = 0 V	
	V _{SS} = 0.85 x Rated V _{DS}	2.5	1000	μΑ	$V_{DS} = 0.8 \text{ x Rated } V_{DSS},$ $V_{GS} = 0 \text{ V, } T_{C} = 125^{\circ}\text{C}$	
I _{GSS}	Gate-Body Leakage Current IRF330-333 IRF730-733	008±	± 100 ± 500	nA	V _{GS} = ± 20 V, V _{DS} = 0 V	
On Charac	teristics	201	n c		organic Carin Threighold Walterian	
V _{GS(th)}	Gate Threshold Voltage	2.0	4.0	V	$I_D = 250 \mu A, V_{DS} = V_{GS}$	
R _{DS(on)}	Static Drain-Source On-Resistance ²			Ω	V _{GS} = 10 V, I _D = 3.0 A	
	IRF330/331/730/731	0.1	1.0		Sejent - Eletic Drein-Source On F	
	IRF332/333/732/733	2.5	1.5		pation) Drain-Source Cn-Voltage	
9 _{fs}	Forward Transconductance	3.0		S (U)	V _{DS} = 10 V, I _D = 3.0 A	
Dynamic C	haracteristics	0.6			a carrier la	
C _{iss}	Input Capacitance		900	pF	V _{DS} = 25 V, V _{GS} = 0 V	
Coss	Output Capacitance		300	pF	f = 1.0 MHz	
C _{rss}	Reverse Transfer Capacitance	6052	80	pF	Lingui Coppositiones	
witching	Characteristics (T _C = 25°C, Figures 12,	13)			Dytput Capadianoe	
t _{d(on)}	Turn-On Delay Time	08	30	ns	V _{DD} = 175 V, I _D = 3.0 A	
t _r	Rise Time		35	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 15 \Omega$ $R_{GS} = 15 \Omega$	
t _{d(off)}	Turn-Off Delay Time	08	55	ns	em Trumión Delay Time	
t _f	Fall Time	dot	35	ns	emiT asR	
Qg	Total Gate Charge	001	30	nC	$V_{GS} = 10 \text{ V}, I_D = 7.0 \text{ A}$ $V_{DD} = 180 \text{ V}$	
Symbol	Characteristic	Тур	Max	Unit	Test Conditions	
Source-Dra	in Diode Characteristics					
V _{SD}	Diode Forward Voltage IRF330/331/730/731		1.6	V	I _S = 5.5 A; V _{GS} = 0 V	
	IRF332/333/732/733		1.5	V	I _S = 4.5 A; V _{GS} = 0 V	
t _{rr}	Reverse Recovery Time	400		ns	$I_S = 5.5 \text{ A}; dI_S/dt = 100 \text{ A}/\mu\text{S}$	

MTM/MTP5N35/5N40

Electrical Characterist	$T_C = 25^{\circ}C$ unless	otherwise noted)
--------------------------------	----------------------------	------------------

Symbol	Characteristic	Min	Max	Unit	Test Conditions
Off Charac	teristics				F Chu admistics
V _{(BR)DSS}	Drain Source Breakdown Voltage ¹			V	V _{GS} = 0 V, I _D = 5.0 mA
	MTM/MTP5N40 MTM/MTP5N35	400	104		IRF330/302/730/732
		350	088		IRESOL/330/731/733
I _{DSS}	Zero Gate Voltage Drain Current	085	0.25	mA	$V_{DS} = 0.85 \times \text{Rated } V_{DSS},$ $V_{GS} = 0 \text{ V}$
	0'551 e 0'7 V 0 = 25V		2.5	mA	$V_{DS} = 0.85 \text{ x Rated } V_{DSS},$ $V_{GS} = 0 \text{ V}, T_C = 100^{\circ}\text{C}$
I _{GSS}	Gate-Body Leakage Current		± 500	nA	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$
On Charac	teristics	GIAC 1			STATE OF STA
V _{GS(th)}	Gate Threshold Voltage	2.0	4.5	V	$I_D = 1.0$ mA, $V_{DS} = V_{GS}$
	V I ₀ - 250 μA, V ₀₆ = V ₆₈ Ω V ₆₈ = 10 V, I ₀ = 3.0 A	1.5	4.0	V	$I_D = 1.0 \text{ mA}, V_{DS} = V_{GS}$ $T_C = 100^{\circ}\text{C}$
R _{DS(on)}	Static Drain-Source On-Resistance ²	1.0	1.0	Ω	V _{GS} = 10 V, I _D = 2.5 A
V _{DS(on)}	Drain-Source On-Voltage ²	1.6	2.5 6.2	V	V _{GS} = 10 V; I _D = 2.5 A V _{GS} = 10 V, I _D = 5.0 A
	THE		5.0	V	V _{GS} = 10 V, I _D = 2.5 A T _C = 100°C
9fs	Forward Transconductance	2.0		S (U)	V _{DS} = 10 V, I _D = 2.5 A
Dynamic C	haracteristics	OUR			Less Output Capacitance
C _{iss}	Input Capacitance	U.3	1200	pF	V _{DS} = 25 V, V _{GS} = 0 V
Coss	Output Capacitance		300	pF	f = 1.0 MHz
C _{rss}	Reverse Transfer Capacitance	30	80	pF	Idden Turn-On Gelay Turn
Switching (Characteristics (T _C = 25°C, Figures 12,	13)3			Bitti sates [1898]
t _{d(on)}	Turn-On Delay Time	0.0	50	ns	V _{DD} = 25 V, I _D = 2.5 A
t _r	Rise Time	35	100	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 50 \Omega$ $R_{GS} = 50 \Omega$
t _{d(off)}	Turn-Off Delay Time	30	200	ns	TIGS - 30 32 ama uno 1
t _f	Fall Time		100	ns	
Qg	Total Gate Charge	anid.	30	nC	V _{GS} = 10 V, I _D = 7.0 A V _{DD} = 180 V

Notes

^{1.} T_J = +25°C to +150°C 2. Pulse test: Pulse width \leq 80 μ s, Duty cycle \leq 1%

^{3.} Switching time measurements performed on LEM TR-58 test equipment.

IRF330-333/IRF730-733 MTM/MTP5N35/5N40

Typical Performance Curves

Figure 1 Output Characteristics

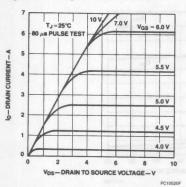


Figure 3 Transfer Characteristics

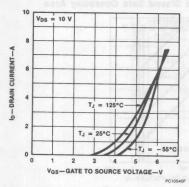
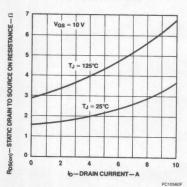



Figure 5 Static Drain to Source On-Resistance vs Drain Current

Figures 4-6 for IRF332/333/732/733 only.

Figure 2 Static Drain to Source Resistance vs Drain Current

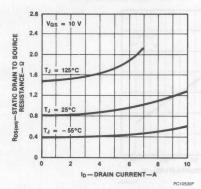


Figure 4 Output Characteristics

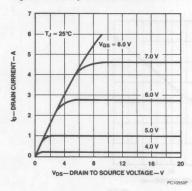
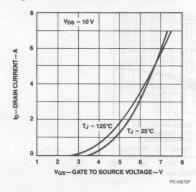



Figure 6 Transfer Characteristics

IRF330-333/IRF730-733 MTM/MTP5N35/5N40

Typical Performance Curves (Cont.)

Figure 7 Temperature Variation of Gate to Source
Threshold Voltage

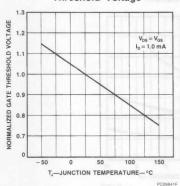


Figure 9 Gate to Source Voltage vs Total Gate Charge

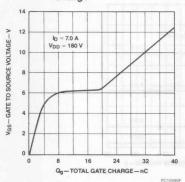


Figure 11 Transient Thermal Resistance

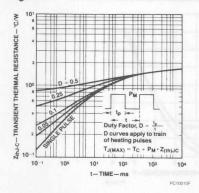


Figure 8 Capacitance vs Drain to Source Voltage

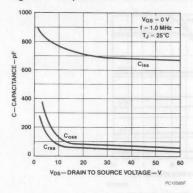
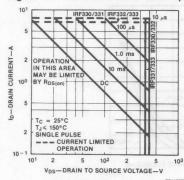



Figure 10 Forward Biased Safe Operating Area

IRF330-333/IRF730-733 MTM/MTP5N35/5N40

Typical Electrical Characteristics

Figure 12 Switching Test Circuit

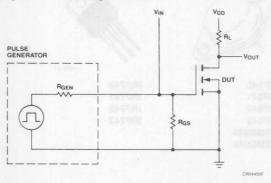
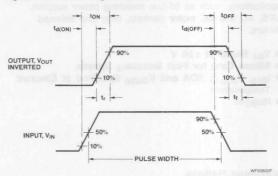



Figure 13 Switching Waveforms

IRF340-343/IRF740-743 MTM8N35/8N40 N-Channel Power MOSFETs, 10 A, 350 V/400 V

Power And Discrete Division

Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high voltage, high speed applications, such as off-line switching power supplies, UPS, AC and DC motor controls, relay and solenoid drivers.

- VGS Rated at ± 20 V
- Silicon Gate for Fast Switching Speeds
- I_{DSS}, V_{DS(on)}, SOA and V_{GS(th)} Specified at Elevated Temperature
- Rugged

TO-204AA

IRF340 IRF341 IRF342 IRF343 MTM8N35 MTM8N40

TO-220AB

IRF740 IRF741 IRF742 IRF743

Maximum Ratings

Symbol	Characteristic	Rating IRF340/342 IRF740/742 MTM8N40	Rating IRF341/343 IRF741/743 MTM8N35	Unit
V _{DSS}	Drain to Source Voltage	400	350	V
V _{DGR}	Drain to Gate Voltage $R_{GS} = 1.0 \ M\Omega$	400	350	V
V _{GS}	Gate to Source Voltage	± 20	± 20	V
T _J , T _{stg}	Operating Junction Temperature Storage Temperature	-55 to +150	-55 to +150	°C
TL	Maximum Lead Temperature for Soldering Purposes, 1/8" From Case for 5 s	275	275	°C

Maximum On-State Characteristics

		IRF340/341 IRF740/741	IRF342/343 IRF742/743	MTM8N35 MTM8N40	
R _{DS(on)}	Static Drain-to-Source On Resistance	0.55	0.80	0.55	Ω
ID	Drain Current Continuous Pulsed	10 40	8 32	8 48	Α
Maximum	Thermal Characteristics				
$R_{ heta JC}$	Thermal Resistance, Junction to Case	1.0	1.0	0.83	°C/W
P _D	Total Power Dissipation at T _C = 25°C	125	125	150	W

Notes

For information concerning connection diagram and package outline, refer to Section 7.

Symbol	Characteristic	tinU	Min	Max	Unit	Test Conditions
Off Charac	teristics					Characteristics
V _{(BR)DSS}	V _{(BR)DSS} Drain-Source Breakdown Vo				V	$V_{GS} = 0 \text{ V}, I_D = 250 \mu A$
	IRF340/342/740/742		400	-004-		MTMBMAD
	IRF341/343/741/743		350	350		MTMBNas
I _{DSS}	Zero Gate Voltage Drain	Current	- 89.0	250	μΑ	V _{DS} = Rated V _{DSS} , V _{GS} = 0 V
		Am	B.S.	1000	μΑ	$V_{DS} = 0.8 \text{ x Rated } V_{DSS},$ $V_{GS} = 0 \text{ V, } T_{C} = 125^{\circ}\text{C}$
I _{GSS}	Gate-Body Leakage Curr IRF340-343 IRF740-743	ent	008.5	± 100 ± 500	nA	V _{GS} = ±20 V, V _{DS} = 0 V
On Charac	teristics			200		and the Valories of Target All States
V _{GS(th)}	Gate Threshold Voltage		2.0	4.0	V	$I_D = 250 \mu A, V_{DS} = V_{GS}$
R _{DS(on)}	Static Drain-Source On-F IRF340/341/740/741 IRF342/343/742/743	Resistance ²	\$.9	0.55 0.80	Ω	V _{GS} = 10 V, I _D = 5.0 A
9fs	Forward Transconductan	се	4.0		S (U)	V _{DS} = 10 V, I _D = 5.0 A
Dynamic C	haracteristics	117	-			
C _{iss}	Input Capacitance	Ω	0.56	1600	pF	V _{DS} = 25 V, V _{GS} = 0 V
Coss	Output Capacitance	(3.1) 8		450	pF	f = 1.0 MHz
C _{rss}	Reverse Transfer Capaci	tance		150	pF	amic Characteristics
Switching	Characteristics (T _C = 25°C	, Figures 9,	10)			e Input Capacitance
t _{d(on)}	Turn-On Delay Time	明年	Deg	35	ns	V _{DD} = 175 V, I _D = 5.0 A
t _r	Rise Time	99	0.81	15	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 4.7 \Omega$ $R_{GS} = 4.7 \Omega$
t _{d(off)}	Turn-Off Delay Time			90	ns	ching Characteristics (To = 25)
t _f	Fall Time / 35 = 50	en -	0.6	35	ns	on Turn-On Delay Time
Qg	Total Gate Charge	en an	150	60	nC	V _{GS} = 10 V, I _D = 12 A V _{DD} = 400 V
Symbol	Ol Characteristic		Тур	Max	Unit	Test Conditions
Source-Dra	in Diode Characteristics		1 19			Salinter each rivol
V _{SD}	Diode Forward Voltage IRF340/341/740/741 IRF342/343/742/743			2.0 1.9	V	I _S = 10 A; V _{GS} = 0 V I _S = 8 A; V _{GS} = 0 V
t _{rr}	Reverse Recovery Time		600	Jimmajupe	ns	$I_S = 10 \text{ A; } dI_S/dt = 100 \text{ A}/\mu S$

MTM8N35/8N40

Symbol	Characteristic	Min	Max	Unit	Test Conditions
Off Charac	teristics				W Characteristics
V _{(BR)DSS}	Drain-Source Breakdown Voltage ¹			V	V _{GS} = 0 V, I _D = 5.0 mA
	MTM8N40	400	DOM:		IRF040/342/740/748
	MTM8N35	350	950		JRFS41/343/741/743
I _{DSS}	Zero Gate Voltage Drain Current	60S	0.25	mA	$V_{DS} = 0.85 \text{ x Rated } V_{DSS},$ $V_{GS} = 0 \text{ V}$
	V ₂₃ = 0 V, T _C = (25°C		2.5	mA	$V_{DS} = 0.85 \text{ x Rated } V_{DSS},$ $V_{GS} = 0 \text{ V, } T_{C} = 100^{\circ}\text{C}$
I _{GSS}	Gate-Body Leakage Current	001:0	± 500	nA	V _{GS} = ± 20 V, V _{DS} = 0 V
On Charac	teristics	000 ±			ENV-UN-HHI
V _{GS(th)}	Gate Threshold Voltage	2.0	4.5	V	I _D = 1.0 mA, V _{DS} = V _{GS}
	V I ₀ =250 μA, V ₀₀ =V ₀₀ Ω V ₀₀ =10 V, I ₀ =5.0 A	1.5	4.0	٧	$I_D = 1.0 \text{ mA}, V_{DS} = V_{GS}$ $T_C = 100^{\circ}\text{C}$
V _{DS(on)}	Drain-Source On-Voltage ²	0.60	2.2 5.3	V	V _{GS} = 10 V; I _D = 4.0 A V _{GS} = 10 V; I _D = 8.0 A
	A 0.8 - 01 N 01 - 20V (55) 8		4.4	٧	V _{GS} = 10 V, I _D = 4.0 A T _C = 100°C
R _{DS(on)}	Static Drain-Source On-Resistance ²	0001	0.55	Ω	V _{GS} = 10 V, I _D = 4.0 A
9fs	Forward Transconductance	3.0		S (\(\mathcal{U}\))	V _{DS} = 10 V, I _D = 4.0 A
Dynamic C	haracteristics	081		eonel	Cina Reverse Transfer Dapaci
C _{iss}	Input Capacitance		1800	pF	V _{DS} = 25 V, V _{GS} = 0 V
Coss	Output Capacitance	36	350	pF	f = 1.0 MHz
C _{rss}	Reverse Transfer Capacitance	- 6t	150	pF	t, Riso Time
Switching	Characteristics (T _C = 25°C, Figures 9,	10)3			teem T yeled NO-muT majet
t _{d(on)}	Turn-On Delay Time	38	60	ns	V _{DD} = 25 V, I _D = 4.0 A
t _r	Rise Time	08	150	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 50 \Omega$ $R_{GS} = 50 \Omega$
t _{d(off)}	Turn-Off Delay Time		200	ns	1103
t _f	Fall Time	40000	120	ns	delinetramed local local
Qg	Total Gate Charge		60	nC	V _{GS} = 10 V, I _D = 12 A V _{DD} = 400 V

^{1.} T_J = $+25^{\circ}$ C to $+150^{\circ}$ C 2. Pulse test: Pulse width $\leq 80~\mu$ s, Duty cycle $\leq 1\%$ 3. Switching time measurements performed on LEM TR-58 test equipment.

IRF340-343/IRF740-743 MTM8N35/8N40

Typical Performance Curves

Figure 1 Output Characteristics

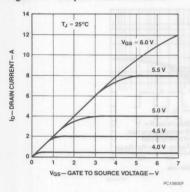


Figure 3 Transfer Characteristics

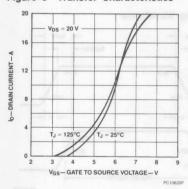


Figure 5 Capacitance vs Drain to Source Voltage

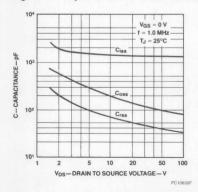


Figure 2 Static Drain to Source Resistance vs Drain Current

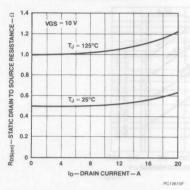
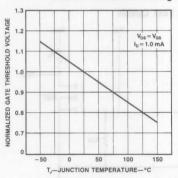
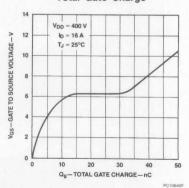
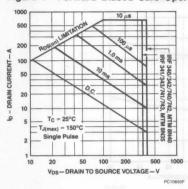


Figure 4 Temperature Variation of Gate to Source Threshold Voltage


Figure 6 Gate to Source Voltage vs Total Gate Charge

IRF340-343/IRF740-743 MTM8N35/8N40

Typical Performance Curves (Cont.)

Figure 7 Forward Biased Safe Operating Area

Typical Electrical Characteristics

Figure 9 Switching Test Circuit

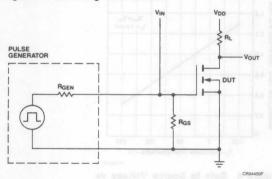


Figure 8 Transient Thermal Resistance vs Time

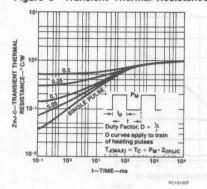
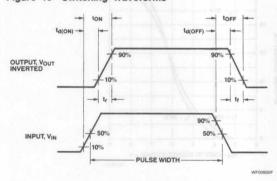



Figure 10 Switching Waveforms

IRF350-353 N-channel Power MOSFETs, 15 A, 350 V/400 V

Power And Discrete Division

Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high voltage, high speed applications, such as off-line switching power supplies, UPS, AC and DC motor controls, relay and solenoid drivers.

- VGS Rated at ± 20 V
- Silicon Gate for Fast Switching Speeds
- I_{DSS}, V_{DS(on)}, SOA and V_{GS(th)} Specified at Elevated Temperature
- Rugged

Maximum Ratings

IRF350 IRF351 IRF352 IRF353

Symbol	Characteristic	Rating IRF350/352	Rating IRF351/353	Unit
V _{DSS}	Drain to Source Voltage	400	350	A least
V _{DGR}	Drain to Gate Voltage R _{GS} = 1.0 MΩ	400	350	EADERSHIP V HOUSE
V _{GS}	Gate to Source Voltage	± 20	± 20	CVSBE NO V
T _J , T _{stg}	Operating Junction and Storage Temperatures	-55 to +150	-55 to +150	eat present °C
TL	Maximum Lead Temperature for Soldering Purposes,	275	275	OS Input Capac
	1/8" From Case for 5 s		criance	Curous Capa

Maximum On-State Characteristics

		IRF350/351	IRF352/353	establing Characteristics
R _{DS(on)}	Static Drain-to-Source On Resistance	0.3	0.4	VO DO POP ON
I _D	Drain Current Continuous	15	13	mend to-mut A
	Pulsed	60	52	Fall Time

Notes

For information concerning connection diagram and package outline, refer to Section 7.

IRF350-353

Symbol	Characteristic	Min	Max	Unit	Test Conditions
Off Charac	teristics	13/	1919	NE IDWA	grandulinie anili-lito es ribus amultadile sino aparterio ration DSI box DA 28
V _{(BR)DSS}	Drain Source Breakdown Voltage ¹			V	$V_{GS} = 0 \ V, \ I_D = 250 \ \mu A$
	IRF350/352	400			N. Ali e for twing with
	IRF351/353	350			Silent Gut for Past Switching S
I _{DSS}	Zero Gate Voltage Drain Current	gache)	250	μΑ	V _{DS} = Rated V _{DSS} , V _{GS} = 0 V
		# 145901 #155901	1000	μΑ	$V_{DS} = 0.8 \times \text{Rated } V_{DSS},$ $V_{GS} = 0 \text{ V}, T_C = 125^{\circ}\text{C}$
I _{GSS}	Gate-Body Leakage Current		±100	nA	V _{GS} = ±20 V, V _{DS} = 0 V
On Charact	teristics		51110019 51110019		AND ADMINISTRAÇÃO
V _{GS(th)}	Gate Threshold Voltage	2.0	4.0	V	$I_D = 250 \mu A, V_{DS} = V_{GS}$
R _{DS(on)}	Static Drain-Source On-Resistance ²		nos	Ω	V _{GS} = 10 V, I _D = 8.0 A
	IRF350/351		0.3		The areas
	IRF352/353		0.4		Contact to Structor Vollage
9fs	Forward Transconductance	8.0	F 00 03-	S (U)	V _{DS} = 10 V, I _D = 8.0 A
Dynamic C	haracteristics				de la composition della compos
C _{iss}	Input Capacitance		3000	pF	V _{DS} = 25 V, V _{GS} = 0 V
Coss	Output Capacitance		600	pF	f = 1.0 MHz
C _{rss}	Reverse Transfer Capacitance		200	pF	sheem On-State Chara-tade
Switching (Characteristics (T _C = 25°C, Figures 9,	10)	INFASOA		
t _{d(on)}	Turn-On Delay Time		35	ns	V _{DD} = 180 V, I _D = 8.0 A
t _r	Rise Time		65	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 4.7 \Omega$ $R_{GS} = 4.7 \Omega$
t _{d(off)}	Turn-Off Delay Time		150	ns	in a superior control of the s
t _f	Fall Time		75	ns	Paletel
Qg	Total Gate Charge		120	nC	$V_{GS} = 10 \text{ V}, I_D = 16 \text{ A}$ $V_{DD} = 400 \text{ V}$
Symbol	Characteristic	Тур	Max	Unit	Test Conditions
Source-Dra	in Diode Characteristics				at To = 25°C
V _{SD}	Diode Forward Voltage IRF350/351 IRF352/353		1.6 1.5	V	I _S = 15 A; V _{GS} = 0 V I _S = 13 A; V _{GS} = 0 V
t _{rr}	Reverse Recovery Time	600		ns	$I_S = 15 \text{ A}; \text{ dI}_S/\text{dt} = 100 \text{ A}/\mu\text{S}$

Notes $1.~T_J=+25^{\circ}C~to~+150^{\circ}C$ 2. Pulse test: Pulse width $\leqslant 80~\mu s,~Duty~cycle \leqslant 1\%$

Typical Performance Curves

Figure 1 Output Characteristics

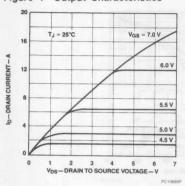


Figure 3 Transfer Characteristics

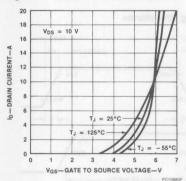


Figure 5 Capacitance vs Drain to Source Voltage

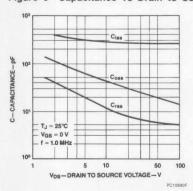


Figure 2 Static Drain to Source On Resistance vs Drain Current

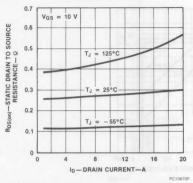


Figure 4 Temperature Variation of Gate to Source Threshold Voltage

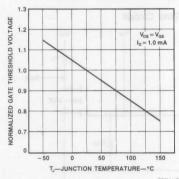


Figure 6 Gate to Source Voltage vs Total Gate Charge

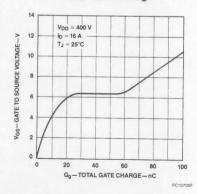
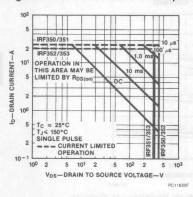



Figure 7 Forward Biased Safe Operating Area

Typical Electrical Characteristics

Figure 9 Switching Test Circuit

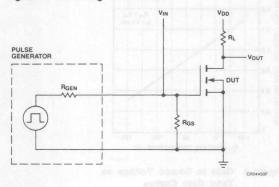


Figure 8 Transient Thermal Resistance vs Time

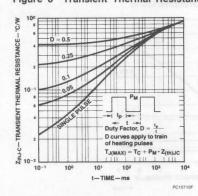
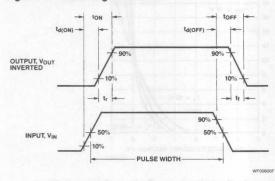



Figure 10 Switching Waveforms

IRF420-423/IRF820-823 MTP2N45/2N50 N-Channel Power MOSFETs, 3.0 A, 450 V/500 V Power And Discrete Division

Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high speed applications, such as switching power supplies, converters, AC and DC motor controls, relay and solenoid drivers and other pulse circuits.

- Low R_{DS(on)}
- VGS Rated at ± 20 V
- Silicon Gate for Fast Switching Speeds
- I_{DSS}, V_{DS(on)}, Specified at Elevated Temperature
- Rugged
- Low Drive Requirements
- Ease of Paralleling

TO-204AA

TO-220AB

IRF420 IRF421 IRF422 IRF423

IRF820 IRF821 IRF822 IRF823 MTP2N45 MTP2N50

Product Summary

Part Number	V _{DSS}	R _{DS(on)}	I _D at T _C = 25°C	I _D at T _C = 100°C	Case Style
IRF420	500 V	3.0 Ω	2.5 A	1.5 A	TO-204AA
IRF421	450 V	3.0 Ω	2.5 A	1.5 A	Therm
IRF422	500 V	4.0 Ω	2.0 A	1.0 A	Manut
IRF423	450 V	4.0 Ω	2.0 A	1.0 A	listeT o
IRF820	500 V	3.0 Ω	2.5 A	1.5 A	TO-220AB
IRF821	450 V	3.0 Ω	2.5 A	1.5 A	om Pulsed
IRF822	500 V	4.0 Ω	2.0 A	1.0 A	sound's familia
IRF823	450 V	4.0 Ω	2.0 A	1.0 A	AND THE PROPERTY OF
MTP2N45	450 V	4.0 Ω	3.0 A	2.0 A	loding
MTP2N50	500 V	4.0 Ω	3.0 A	2.0 A	Characteristics

For information concerning connection diagram and package outline, refer to Section 7.

Maximum Ratings

Symbol	Characteristic	Rating IRF420/422 IRF820/822 MTP2N50	Rating IRF421/423 IRF821/823 MTP2N45	Unit
V _{DSS}	Drain to Source Voltage ¹	500	450	V
V_{DGR}	Drain to Gate Voltage ¹ $R_{GS} = 20 \text{ k}\Omega$	500	450	V V
V _{GS}	Gate to Source Voltage	± 20	± 20	Market Name V
T _J , T _{stg}	Operating Junction and Storage Temperatures	-55 to +150	-55 to +150	°C
TL	Maximum Lead Temperature for Soldering Purposes, 1/8" From Case for 5 s	275	275	°C

Maximum Thermal Characteristics

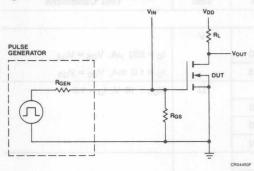
	16 ol T-= 100°C	IRF420-423/ IRF820-823	MTP2N45/2N50	
$R_{\theta JC}$	Thermal Resistance, Junction to Case	3.12	1.67	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	30/80	80	°C/W
PD	Total Power Dissipation at T _C = 25°C	40	75	W
I _{DM}	Pulsed Drain Current ²	10	10	А

Electrical Characteristics ($T_C = 25^{\circ}C$ unless otherwise noted)

Symbol	Characteristic	Min	Max	Unit	Test Conditions
Off Charac	teristics		DW		V DOS CALCOTAL
V _{(BR)DSS}	Drain Source Breakdown Voltage ¹			V	$V_{GS} = 0 \text{ V}, I_D = 250 \mu A$
	IRF420/422/820/822/ MTP2N50	500	of relier to		jeda ov internacion decoming paymentan diagrams int
	IRF421/423/821/823/ MTP2N45	450			7 00139
I _{DSS}	Zero Gate Voltage Drain Current		250	μΑ	V _{DS} = Rated V _{DSS} , V _{GS} = 0 V
			1000	μΑ	$V_{DS} = 0.8 \text{ x Rated } V_{DSS},$ $V_{GS} = 0 \text{ V}, T_{C} = 125^{\circ}\text{C}$
I _{GSS}	Gate-Body Leakage Current			nA	V _{GS} = ± 20 V, V _{DS} = 0 V
	IRF420-423		± 100		
	IRF820-823/MTP2N45/50		± 500		

IRF420-423/IRF820-823 MTP2N45/2N50

Symbol	Characteristic	Min	Max	Unit	Test Conditions
On Charac	teristics				
V _{GS(th)}	Gate Threshold Voltage			V	
	IRF420-423/IRF820-823	2.0	4.0		$I_D = 250 \mu A, V_{DS} = V_{GS}$
	MTP2N45/MTP2N50	2.0	4.5	Tubered	$I_D = 1.0$ mA, $V_{DS} = V_{GS}$
R _{DS(on)}	Static Drain-Source On-Resistance ²			Ω	V _{GS} = 10 V, I _D = 1.0 A
	IRF420/421/820/821		3.0		A G
	IRF422/423/822/823	N 35700	4.0		
	MTP2N45/50		4.0		
V _{DS(on)}	Drain-Source On-Voltage ²				
	MTP2N45/50		10	V	V _{GS} = 10 V; I _D = 2.0 A
			8	V	V _{GS} = 10 V; I _D = 1.0 A
	Static Drain to Source Resistance	Figure 4			T _C = 100°C
9fs	Forward Transconductance	1.0		S (U)	$V_{DS} = 10 \text{ V}, I_{D} = 1.0 \text{ A}$
Dynamic C	haracteristics				144.5
C _{iss}	Input Capacitance		400	pF	V _{DS} = 25 V, V _{GS} = 0 V
Coss	Output Capacitance		100	pF	f = 1.0 MHz
C _{rss}	Reverse Transfer Capacitance	1 5 5	40	pF	
Switching	Characteristics ($T_C = 25$ °C, Figures 1,	2)3			YM LILLE A
t _{d(on)}	Turn-On Delay Time	93	40	ns	V _{DD} = 250 V, I _D = 1.0 A
t _r	Rise Time		50	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 50 \Omega$ $R_{GS} = 50 \Omega$
t _{d(off)}	Turn-Off Delay Time		60	ns	1,03
tf	Fall Time		60	ns	
Qg	Total Gate Charge	figure 6	15	nC	V _{GS} = 10 V, I _D = 3.0 A V _{DD} = 200 V
Symbol	Characteristic	Тур	Max	Unit	Test Conditions
	in Diode Characteristics	Тур	IVIAA	Oilit	rest conditions
V _{SD}	Diode Forward Voltage	7 2 2	1.4	V	I _S = 2.5 A; V _{GS} = 0 V
*SD	Diode i diward voltage	1118	1.3	V	I _S = 2.0 A; V _{GS} = 0 V
			1.0	V	IS - 2.0 A, VGS - 0 V


Notes

- 1. T_J = +25°C to +150°C
 2. Pulse width limited by T_J
 3. Switching time measurements performed on LEM TR-58 test equipment.

IRF420-423/IRF820-823 MTP2N45/2N50

Typical Electrical Characteristics

Figure 1 Switching Test Circuit

Typical Performance Curves

Figure 3 Output Characteristics

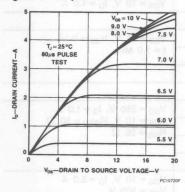


Figure 5 Transfer Characteristics

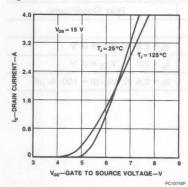


Figure 2 Switching Waveforms

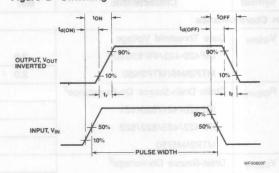


Figure 4 Static Drain to Source Resistance vs Drain Current

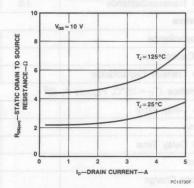


Figure 6 Temperature Variation of Gate to Source Threshold Voltage

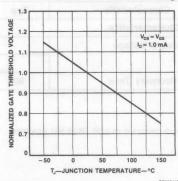


Figure 7 Capacitance vs Drain to Source Voltage

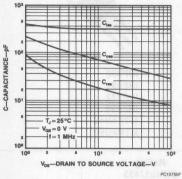


Figure 9 Forward Biased Safe Operating Area for IRF420-423 and IRF820-823

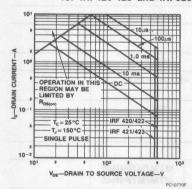


Figure 11 Forward Biased Safe Operating Area for MTP2N45/2N50

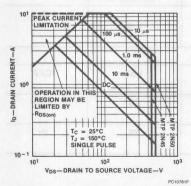


Figure 8 Gate to Source Voltage vs Total Gate Charge

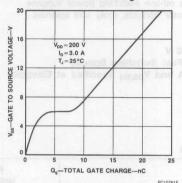


Figure 10 Transient Thermal Resistance vs Time for IRF420-423 and IRF820-823

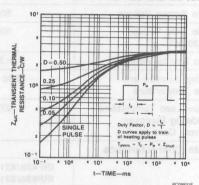


Figure 12 Transient Thermal Resistance vs Time for MTP2N45/2N50

TO-220AB

Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high voltage, high speed applications, such as off-line switching power supplies, UPS, AC and DC motor controls, relay and solenoid drivers.

- V_{GS} Rated at ± 20 V
- Silicon Gate for Fast Switching Speeds
- I_{DSS}, V_{DS(on)}, SOA and V_{GS(th)} Specified at Elevated Temperature
- Rugged

TO-204AA

IRF430 IRF431 IRF432 IRF433 MTM4N45 MTM4N50 **IRF830 IRF831 IRF832 IRF833** MTP4N45 MTP4N50

Maximum Ratings

Symbol	Characteristic	Rating IRF430/432 IRF830/832 MTM/MTP4N50	Rating IRF431/433 IRF831/833 MTM/MTP4N45	Unit
V _{DSS}	Drain to Source Voltage	500	450	V
V _{DGR}	Drain to Gate Voltage $R_{GS} = 20 \text{ k}\Omega$	500	450	V
V _{GS}	Gate to Source Voltage	± 20	± 20	V
T _J , T _{stg}	Operating Junction and Storage Temperature	-55 to +150	-55 to +150	°C
TL	Maximum Lead Temperature for Soldering Purposes, 1/8" From Case for 5 s	275	275	°C

Maximum On-State Characteristics

	ety = 400 = 500 =	IRF430/431 IRF830/831	IRF432/433 IRF832/833	MTM/MTP4N45 MTM/MTP4N45	
R _{DS(on)}	Static Drain-to-Source On Resistance	1.0	2.0	1.5	Ω
I _D	Drain Current Continuous Pulsed	4.5 18	4.0 16	4.0 10	A
/laximum	Thermal Characteristics				VIV
$R_{ heta JC}$	Thermal Resistance, Junction to Case	1.67	1.67	1.67	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	60	60	60	°C/W
PD	Total Power Dissipation at T _C = 25°C	75	75	75	W

Notes

For information concerning connection diagram and package outline, refer to

Symbol	Characteristic	Min	Max	Unit	Test Conditions
Off Charac	teristics	E. A.			Cheracteristics
V _{(BR)DSS}	Drain Source Breakdown Voltage ¹			V	$V_{GS} = 0 \text{ V}, I_D = 250 \mu A$
	IRF430/432/830/832	500	605		DAMAGEMENT
	IRF431/433/831/833	450	450		MTM/MTPanas
I _{DSS}	Zero Gate Voltage Drain Current	0.25	250	μΑ	V _{DS} = Rated V _{DSS} , V _{GS} = 0 V
	V _{QB} = 0.85 x Rated V _{DB}	8.9	1000	μΑ	$V_{DS} = 0.8 \text{ x Rated } V_{DSS},$ $V_{GS} = 0 \text{ V, } T_{C} = 125^{\circ}\text{C}$
I _{GSS}	Gate-Body Leakage Current			nA	V _{GS} = ± 20 V, V _{DS} = 0 V
	IRF430-433	000 2	± 100	Ins	one Care Body Lenkings Cum
	IRF830-833		± 500		Characteratics
On Charac	teristics				Agenes benegun size (miss
V _{GS(th)}	Gate Threshold Voltage	2.0	4.0	V	$I_D = 250 \mu A, V_{DS} = V_{GS}$
R _{DS(on)}	Static Drain-Source On-Resistance ²	83		Ω	V _{GS} = 10 V, I _D = 2.5 A
	IRF430/431/830/831	0.0	1.5		Inches Drain-Source On-Voltage
	IRF432/433/832/833	Tay T	2.0		
9fs	Forward Transconductance	2.5		S (U)	V _{DS} = 10 V, I _D = 2.5 A
Dynamic C	haracteristics				
C _{iss}	Input Capacitance		800	pF	V _{DS} = 25 V, V _{GS} = 0 V
Coss	Output Capacitance		200	pF	f = 1.0 MHz
C _{rss}	Reverse Transfer Capacitance		60	pF	incut: Capacitance
Switching	Characteristics (T _C = 25°C, Figures 12	, 13)			Sons Output Capacitance
t _{d(on)}	Turn-On Delay Time	06	30	ns	V _{DD} = 225 V, I _D = 2.5 A
t _r	Rise Time		30	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 15 \Omega$ $R_{GS} = 15 \Omega$
t _{d(off)}	Turn-Off Delay Time	50	55	ns	dom paled no-mut have
t _f	Fall Time		30	ns	gmiT aeR
Qg	Total Gate Charge	003	30	nC	V _{GS} = 10 V, I _D = 7.0 A V _{DS} = 180 V
Symbol	Characteristic	Тур	Max	Unit	Test Conditions
Source-Dra	in Diode Characteristics				
V_{SD}	Diode Forward Voltage IRF430/431/830/831		1.4	V	I _S = 4.5 A; V _{GS} = 0 V
	IRF432/433/832/833		1.3	V	I _S = 4.0 A; V _{GS} = 0 V
t _{rr}	Reverse Recovery Time	600		ns	$I_S = 4.5 \text{ A}; dI_S/dt = 100 \text{ A}/\mu\text{S}$

Notes

1. $T_J = +25^{\circ}\text{C}$ to $+150^{\circ}\text{C}$ 2. Pulse test: Pulse width $\leq 80~\mu\text{s}$, Duty cycle $\leq 1\%$

MTM/MTP4N45/4N50

Electrical Characteristics (1 c = 25°C unless otherwis	cal Characteristics (T _C = 25°C unless otherwise noted)	
---	--	--

Symbol	Characteristic	Min	Max	Unit	Test Conditions
Off Charac	teristics				f Characteristics
V _{(BR)DSS}	Drain Source Breakdown Voltage ¹			laoV lov	V _{GS} = 0 V, I _D = 5.0 mA
	MTM/MTP4N50	500	500		IRF 450 / 452 / 850 / 852
	MTM/MTP4N45	450	490		668\428\664\744-(A)
I _{DSS}	Zero Gate Voltage Drain Current	280	0.25	mA	$V_{DS} = 0.85 \text{ x Rated } V_{DSS},$ $V_{GS} = 0 \text{ V}$
	V _{GS} = 0.0 × ratio 1 v _{GS} V		2.5	mA	$V_{DS} = 0.85 \text{ x Rated } V_{DSS},$ $V_{GS} = 0 \text{ V, } T_{C} = 100 ^{\circ}\text{C}$
I _{GSS}	Gate-Body Leakage Current	001	± 500	nA	V _{GS} = ± 20 V, V _{DS} = 0 V
On Charac	teristics	noa-			EER-OCK TO
V _{GS(th)}	Gate Threshold Voltage	2.0	4.5	V	$I_D = 1.0$ mA, $V_{DS} = V_{GS}$
	V Ig=250 µA, Vps=Vqs	1.5	4.0	V	$I_D = 1.0 \text{ mA}, V_{DS} = V_{GS},$ $T_C = 100^{\circ}\text{C}$
R _{DS(on)}	Static Drain-Source On-Resistance ²		1.5	Ω	V _{GS} = 10 V, I _D = 2.0 A
V _{DS(on)}	Drain-Source On-Voltage ²	G.	3.0	V	$V_{GS} = 10 \text{ V}, I_D = 2.0 \text{ V}$
		0.5	7.0	V	V _{GS} = 10 V, I _D = 4.0 A
	S (2) Your 10 V. 10 = 2.5 A		6.0	V	V _{GS} = 10 V, I _D = 4.0 A T _C = 100°C
9 _{fs}	Forward Transconductance	2.0		S (U)	V _{DS} = 10 V, I _D = 2.0 A
Dynamic C	haracteristics	200			Cutput Capacitanes
C _{iss}	Input Capacitance	09	1200	pF	V _{DS} = 25 V, V _{GS} = 0 V
Coss	Output Capacitance		300	pF	f = 1.0 MHz
C _{rss}	Reverse Transfer Capacitance	30	80	pF	upon Turn-Cin Bolay Time
Switching	Characteristics (T _C = 25°C, Figures 12	, 13) ³			Sing Time
t _{d(on)}	Turn-On Delay Time	120	50	ns	V _{DD} = 25 V, I _D = 2.0 A
t _r	Rise Time	08	100	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 50 \Omega$ $R_{GS} = 50 \Omega$
t _{d(off)}	Turn-Off Delay Time	00	200	ns	appan2 etaD IstoT
tf	Fall Time		100	ns	
Qg	Total Gate Charge	1696	60	nC	V _{GS} = 10 V, I _D = 7.0 A V _{DD} = 180 V

Notes

- 1. $T_J = +25^{\circ}C$ to $+150^{\circ}C$
- 2. Pulse test: Pulse width \leq 80 μ s, Duty cycle \leq 1%
- 3. Switching time measurements performed on LEM TR-58 test equipment.

IRF430-433/IRF830-833 MTM/MTP4N45/4N50

Typical Performance Curves Figures 4-6 for IRF 432/433/832/833 only.

Figure 1 Output Characteristics

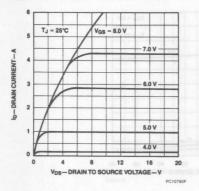


Figure 3 Transfer Characteristics

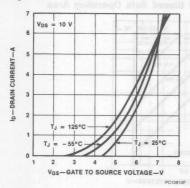


Figure 5 Static Drain to Source On Resistance vs Drain Current

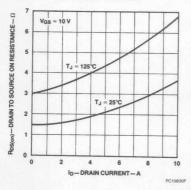


Figure 2 Static Drain to Source Resistance vs Drain Current

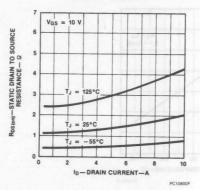


Figure 4 Output Characteristics

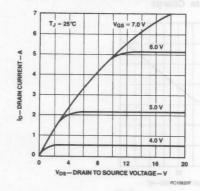


Figure 6 Transfer Characteristics

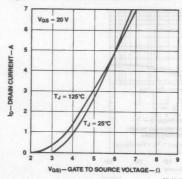


Figure 7 Temperature Variation of Gate to Source Threshold Voltage

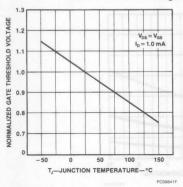


Figure 9 Gate to Source Voltage vs
Total Gate Charge

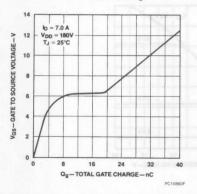


Figure 11 Transient Thermal Resistance vs Time

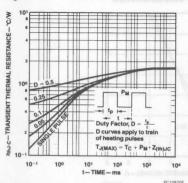


Figure 8 Capacitance vs Drain to Source Voltage

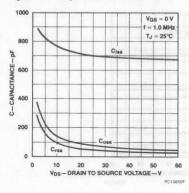
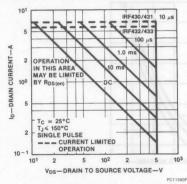



Figure 10 Forward Biased Safe Operating Area

IRF430-433/IRF830-833 MTM/MTP4N45/4N50

Typical Electrical Characteristics

Figure 12 Switching Test Circuit

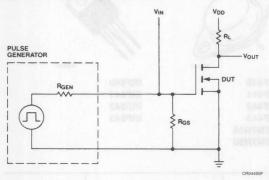
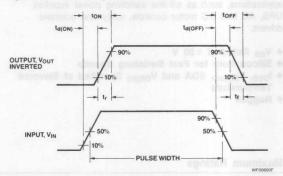



Figure 13 Switching Waveforms

A Schlumberger Company

IRF440-443/IRF840-843 MTM7N45/7N50 N-Channel Power MOSFETs, 8 A, 450 V/500 V

Power And Discrete Division

Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high voltage, high speed applications, such as off-line switching power supplies, UPS, AC and DC motor controls, relay and solenoid drivers.

- V_{GS} Rated at ± 20 V
- Silicon Gate for Fast Switching Speeds
- I_{DSS}, V_{DS(on)}, SOA and V_{GS(th)} Specified at Elevated Temperature
- Rugged

TO-204AA

TO-220AB

IRF440 IRF441 IRF442 IRF443 MTM7N45 MTM7N50

IRF840 IRF841 IRF842 IRF843

Maximum Ratings

Symbol	Characteristic	Rating IRF440/442 IRF840/842 MTM7N50	Rating IRF441/443 IRF841/843 MTM7N45	Unit
V _{DSS}	Drain to Source Voltage	500	450	V
V _{DGR}	Drain to Gate Voltage $R_{GS} = 20 \text{ k}\Omega$	500	450	V
V _{GS}	Gate to Source Voltage	± 20	± 20	V
T _J , T _{stg}	Operating Junction and Storage Temperature	-55 to +150	-55 to +150	°C
TL	Maximum Lead Temperature for Soldering Purposes, 1/8" From Case for 5 s	275	275	°C

Maximum On-State Characteristics

		IRF440/441 IRF840/841	IRF442/443 IRF842/843	MTM7N45 MTM7N50	
R _{DS} (on)	Static Drain-to-Source On Resistance	0.85	1,1	0.8	Ω
I _D	Drain Current Continuous Pulsed	8 32	7 28	7 40	Α
/laximum	Thermal Characteristics				
$R_{ heta JC}$	Thermal Resistance, Junction to Case	1.0	1.0	0.83	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	60	60	60	°C/W
P _D	Total Power Dissipation at T _C = 25°C	125	125	150	W

Notes

For information concerning connection diagram and package outline, refer to Section 7.

Electrical Characteristics (T_C = 25°C unless otherwise noted)

Symbol	Characteristic	Min	Max	Unit	Test Conditions
Off Charac	teristics				if Characteripics
V _{(BR)DSS}	Drain Source Breakdown Voltage ¹			V	$V_{GS} = 0 \text{ V}, I_D = 250 \mu A$
	IRF440/442/840/842	500	302		OBNIMIN DE
	IRF441/443/842/843	450	den		2 ALMANDAS
I _{DSS}	Zero Gate Voltage Drain Current	88.0	250	μΑ	V _{DS} = Rated V _{DSS} , V _{GS} = 0 V
	V 0 = 80V. Fig. V ladeff x 20.0 = 80V. Aria	86	1000	μΑ	$V_{DS} = 0.8 \times \text{Rated } V_{DSS},$ $V_{GS} = 0 \text{ V}, T_C = 125^{\circ}\text{C}$
I _{GSS}	Gate-Body Leakage Current			nA	V _{GS} = ± 20 V, V _{DS} = 0 V
	IRF440-443		± 100	in the	tige Cate-Body Leakage Cure
	IRF840-843		± 500		n Charactarintics
On Charac	teristics	0.4.0	0.9		Veson visite Threshold Vollage
V _{GS(th)}	Gate Threshold Voltage	2.0	4.0	V	$I_D = 250 \mu A, V_{DS} = V_{GS}$
R _{DS(on)}	Static Drain-Source On-Resistance ²			Ω	V _{GS} = 10 V, I _D = 4.0 A
	IRF440/441/840/841		0.85	93.4554	HOS(or) STADE DIRIN-SQUEEN UNITED
	IRF442/443/842/843	93	1.10		Apatiov-no source-orang museum
9fs	Forward Transconductance	4.0		S (U)	V _{DS} = 10 V, I _D = 4.0 A
Dynamic C	haracteristics				
C _{iss}	Input Capacitance		1600	pF	V _{DS} = 25 V, V _{GS} = 0 V
Coss	Output Capacitance		350	pF	f = 1.0 MHz
C _{rss}	Reverse Transfer Capacitance	0081	150	pF	G. Lingut Capacitings
Switching	Characteristics (T _C = 25°C, Figures 9,	10)			Could Creedede
t _{d(on)}	Turn-On Delay Time	0.1	35	ns	V _{DD} = 220 V, I _D = 4.0 A
t _r	Rise Time		15	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 4.7 \Omega$ $R_{GS} = 4.7 \Omega$
t _{d(off)}	Turn-Off Delay Time	100	90	ns	land Valed no multi-
t _f	Fall Time	day	30	ns	Filse Title
Qg	Total Gate Charge	200	60	nC	V _{GS} = 10 V, I _D = 12 A V _{DD} = 400 V
Symbol	Characteristic	Тур	Max	Unit	Test Conditions
Source-Dra	in Diode Characteristics				
V _{SD}	Diode Forward Voltage IRF440/441/840/841		2.0	٧	I _S = 8.0 A; V _{GS} = 0 V
	IRF442/443/842/843		1.9	V	I _S = 7.0 A; V _{GS} = 0 V
t _{rr}	Reverse Recovery Time	700		ns	$I_S = 8.0 \text{ A}; dI_S/dt = 100 \text{ A}/\mu\text{S}$

Notes $1.~T_J=+25^\circ C~to~+150^\circ C$ 2. Pulse test: Pulse width $\leqslant 80~\mu s,~Duty~cycle \leqslant 1\%$

MTM7N45/7N50

Symbol	Characteristic	Min	Max	Unit	Test Conditions
Off Charac	teristics				Chamotoriulica
V _{(BR)DSS}	Drain Source Breakdown Voltage ¹			V	$V_{GS} = 0 \text{ V}, I_D = 5.0 \text{ mA}$
	MTM7N50	500	500		\$161/048/\$41/0K/7FI
	MTM7N45	450	G84-		GRAATAAAAAA
I _{DSS}	Zero Gate Voltage Drain Current	280	0.25	mA	$V_{DS} = 0.85 \times \text{Rated } V_{DSS},$ $V_{GS} = 0 \text{ V}$
	D'EST = oT ,V C = coV		2.5	mA	$V_{DS} = 0.85 \text{ x Rated } V_{DSS},$ $V_{GS} = 0 \text{ V}, T_{C} = 100^{\circ}\text{C}$
I _{GSS}	Gate-Body Leakage Current	031-6	± 500	nA	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$
On Charact	teristics	± 500			\$16-0147FI
V _{GS(th)}	Gate Threshold Voltage	2.0	4.5	V	$I_D = 1.0$ mA, $V_{DS} = V_{GS}$
	V ID = 250 PA, VDS = VCB	1.5	4.0	V	$I_D = 1.0 \text{ mA}, V_{DS} = V_{GS}$ $T_C = 100^{\circ}\text{C}$
R _{DS(on)}	Static Drain-Source On-Resistance ²		0.8	Ω	V _{GS} = 10 V, I _D = 3.5 A
V _{DS(on)}	Drain-Source On-Voltage ²		2.8	V	V _{GS} = 10 V, I _D = 3.5 A
			7.0	V	V _{GS} = 10 V, I _D = 7.0 A
	H AND OF A RIVER TO BE		5.6	٧	V _{GS} = 10 V, I _D = 3.5 A T _C = 100°C
9fs	Forward Transconductance	4.0		S (U)	V _{DS} = 10 V, I _D = 4.0 A
Dynamic C	haracteristics				Durpul Capacitable
C _{iss}	Input Capacitance	Get	1800	pF	V _{DS} = 25 V, V _{GS} = 0 V
Coss	Output Capacitance		350	pF	f = 1.0 MHz
C _{rss}	Reverse Transfer Capacitance		150	pF	conf. yaloO nOmar.
Switching (Characteristics (T _C = 25°C, Figures 9,	10) ³			Flag Time
t _{d(on)}	Turn-On Delay Time	100	60	ns	V _{DD} = 25 V, I _D = 3.5 A
t _r	Rise Time	00	150	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 50 \Omega$ $R_{GS} = 50 \Omega$
t _{d(off)}	Turn-Off Delay Time	99	200	ns	1165 00 42
t _f	Fall Time		120	ns	
Qg	Total Gate Charge	self.	60	nC	V _{GS} = 10 V, I _D = 12 A V _{DD} = 400 V

- Notes $1. \ T_J = +25^{\circ}\text{C to } +150^{\circ}\text{C}$ 2. Pulse test: Pulse width $\leq 80~\mu\text{s}$, Duty cycle $\leq 1\%$ 3. Switching time measurements performed on LEM TR-58 test equipment.

IRF440-443/IRF840-843

Typical Performance Curves

Figure 1 Output Characteristics

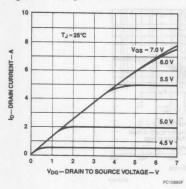


Figure 3 Transfer Characteristics

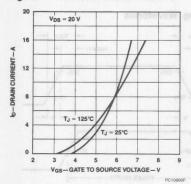


Figure 5 Capacitance vs Drain to Source Voltage

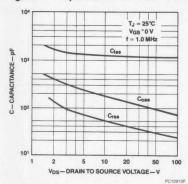


Figure 2 Static Drain to Source Resistance vs Drain Current

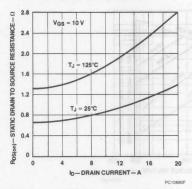


Figure 4 Temperature Variation of Gate to Source Threshold Voltage

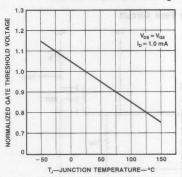


Figure 6 Gate to Source Voltage vs Total Gate Charge

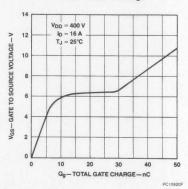
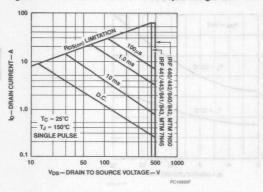



Figure 7 Forward Biased Safe Operating Area Curves

Typical Electrical Characteristics

Figure 9 Switching Test Circuit

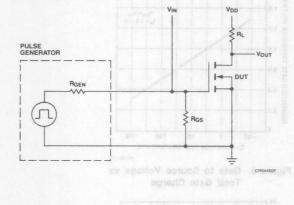


Figure 8 Transient Thermal Resistance vs Time

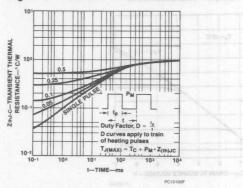
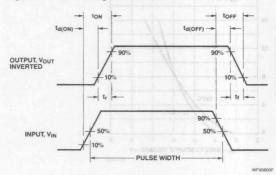



Figure 10 Switching Waveforms

IRF450-453 N-Channel Power MOSFETs, 15 A, 450 V/500 V

Power And Discrete Division

Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high voltage, high speed applications, such as off-line switching power supplies, UPS, AC and DC motor controls, relay and solenoid drivers.

- VGS Rated at ± 20 V
- Silicon Gate for Fast Switching Speeds
- I_{DSS}, V_{DS(on)}, SOA and V_{GS(th)} Specified at Elevated Temperature
- Rugged

TO-204AA

IRF450 IRF451 IRF452 IRF453

Maximum Ratings

Symbol	Characteristic	Rating IRF450/452	Rating IRF451/453	Unit
V _{DSS}	Drain to Source Voltage	500	450	Mean Angle A
V _{DGR}	Drain to Gate Voltage $R_{GS} = 20 \text{ k}\Omega$	500	450	V RO-ASOLAD
V _{GS}	Gate to Source Voltage	± 20	± 20	V Forward Tra
T _J , T _{stg}	Operating Junction and Storage Temperatures	-55 to +150	-55 to +150	
TL	Maximum Lead Temperature for Soldering Purposes, 1/8" From Case for 5 s	275	275	Oulput Caca

Maximum On-State Characteristics

	Vera = 210 V, In = 7.0 A	- 05	IRF450/451	IRF452/453	Turn-On Dela
R _{DS(on)}	Static Drain-to-Source On Resistance	an	0.4	0.5	emil exif Ω
I _D	Drain Current Continuous	879	13	12	A Part Time
	Pulsed	On	52	48	Total Gate to

Maximun	Thermal Characteristics			
$R_{\theta JC}$	Thermal Resistance, Junction to Case	0.83	0.83	°C/W
PD	Total Power Dissipation at T _C = 25°C	150	150 openav to	W

Notes

For information concerning connection diagram and package outline, refer to Section 7.

Symbol	Characteristic	Min	Max	Unit	Test Conditions	
Off Charac	teristics	73//-	18915	power sup	principus entitio es dous encileatio	
V _{(BR)DSS}	Drain Source Breakdown Voltage ¹	1111		٧	$V_{GS} = 0 V, I_D = 250 \mu A$	
	IRF450/452	500			V 05 a so betail entire	
	IRF451/453	450		20205	ligg Faired of Fast Buildhing I	
I _{DSS}	Zero Gate Voltage Drain Current	BEATER	250	μΑ	V _{DS} = Rated V _{DSS} , V _{GS} = 0 V	
		\$184818 195482	1000	μΑ	$V_{DS} = 0.8 \text{ x Rated } V_{DSS},$ $V_{GS} = 0 \text{ V, } T_{C} = 125 ^{\circ}\text{C}$	
I _{GSS}	Gate-Body Leakage Current	Operation.	± 100	nA	V _{GS} = ± 20 V, V _{DS} = 0 V	
On Charact	teristics					
V _{GS(th)}	Gate Threshold Voltage	2.0	4.0	V	$I_D = 250 \ \mu A, \ V_{DS} = V_{GS}$	
R _{DS(on)}	Static Drain-Source On-Resistance ²		003	Ω	V _{GS} = 10 V, I _D = 7.0 A	
	IRF450/451		0.4		opsileV auaD of nianD apa	
	IRF452/453		0.5		ΩM 02 - MΩ R	
9fs	Forward Transconductance	6.0	05.3	S (U)	$V_{DS} = 10 \text{ V}, I_{D} = 7.0 \text{ A}$	
Dynamic C	haracteristics	180	+ 01-88-		Los retains Junction and	
C _{iss}	Input Capacitance		3000	pF	V _{DS} = 25 V, V _{GS} = 0 V	
Coss	Output Capacitance		600	pF	f = 1.0 MHz	
C _{rss}	Reverse Transfer Capacitance		200	pF	1/8" From Case the 6 of	
Switching (Characteristics ($T_C = 25$ °C, Figures 9,	10)			ximum On-State Characteristic	
t _{d(on)}	Turn-On Delay Time	13	35	ns	$V_{DD} = 210 \text{ V}, I_D = 7.0 \text{ A}$	
t _r	Rise Time		50	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 4.7 \Omega$ $R_{GS} = 4.7 \Omega$	
t _{d(off)}	Turn-Off Delay Time		150	ns	Sangalase no	
t _f	Fall Time		70	ns	Crain Current Continuous	
Qg	Total Gate Charge		120	nC	V _{GS} = 10 V, I _D = 16 A V _{DD} = 400 V	
Symbol	Characteristic	Тур	Max	Unit	Test Conditions	
Source-Dra	in Diode Characteristics		021		notable Power Displesion	
V _{SD}	Diode Forward Voltage IRF450/451		1.4	V	I _S = 13 A; V _{GS} = 0 V	
	IRF452/453		1.3	V	I _S = 12 A; V _{GS} = 0 V	
t _{rr}	Reverse Recovery Time	800		ns	$I_F = 13 \text{ A}; dI_F/dt = 100 \text{ A}/\mu\text{S}$	

Notes

^{1.} $T_J = +25^{\circ}\text{C}$ to $+150^{\circ}\text{C}$ 2. Pulse test: Pulse width $\leq 20~\mu\text{s}$, Duty cycle $\leq 1\%$

Typical Performance Curves

Figure 1 Output Characteristics

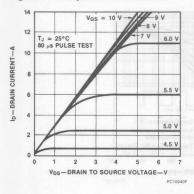


Figure 3 Transfer Characteristics

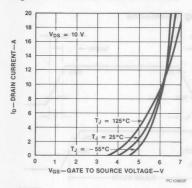


Figure 5 Capacitance vs Drain to Source Voltage

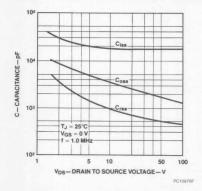


Figure 2 Static Drain to Source Resistance vs Drain Current

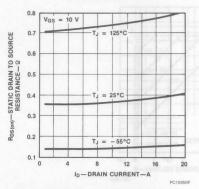


Figure 4 Temperature Variation of Gate to Source Threshold Voltage

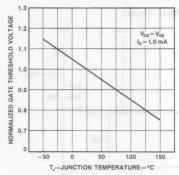


Figure 6 Gate to Source Voltage vs Total Gate Charge

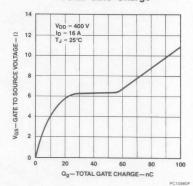
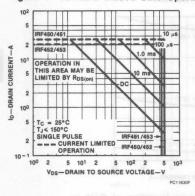



Figure 7 Forward Biased Safe Operating Area

Typical Electrical Characteristics

Figure 9 Switching Test Circuit

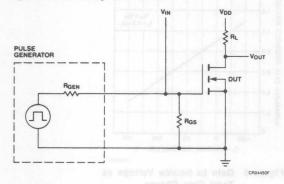


Figure 8 Transient Thermal Resistance vs Time

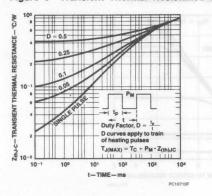
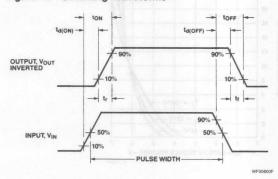



Figure 10 Switching Waveforms

IRF510-513 MTP4N08/4N10 N-Channel Power MOSFETs, 5.5 A, 60-100 V

Power And Discrete Division

Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high speed applications, such as switching power supplies, converters, AC and DC motor controls, relay and solenoid drivers and other pulse circuits.

• Low R_{DS(on)}

V_{GS} Rated at ± 20 V

Silicon Gate for Fast Switching Speeds

• IDSS, VDS(on), Specified at Elevated Temperature

Rugged

Low Drive Requirements

• Ease of Paralleling

TO-220AB

IRF510 IRF511 IRF512 IRF513 MTP4N08 MTP4N10

Maximum Ratings

ggV = ggV Au Des = gt	Rating IRF510/512 MTP4N10	Rating MTP4N08	Rating IRF511/513	Unit
Drain to Source Voltage ¹	100	80	60 60	Water Valen
Drain to Gate Voltage ¹ $R_{GS} = 20 \text{ k}\Omega$	100	80	60 (20073-	H V
Gate to Source Voltage	± 20	± 20	± 20	V
Operating Junction and Storage Temperatures	-55 to +150	-55 to +150	-55 to +150	°C
Maximum Lead Temperature for Soldering Purposes,	275	275	275	O° For
		$ \begin{array}{c cccc} \textbf{Characteristic} & \textbf{IRF510/512} \\ \textbf{MTP4N10} \\ \hline \textbf{Drain to Source Voltage}^1 & 100 \\ \hline \textbf{Drain to Gate Voltage}^1 & 100 \\ \hline \textbf{R}_{GS} = 20 \text{ k}\Omega & \\ \hline \textbf{Gate to Source Voltage} & \pm 20 \\ \hline \textbf{Operating Junction and Storage Temperatures} & -55 \text{ to } +150 \\ \hline \textbf{Maximum Lead Temperature} & 275 \\ \hline \textbf{for Soldering Purposes,} & 275 \\ \hline \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Maximum On-State Characteristics

at $T_C = 25$ °C

Maximum	On-State Characteristics	Ra					
	SHW 01 et	Bq	IRF510/511	IRF512/513	MTP4N08/10	Outs	Cons
R _{DS(on)}	Static Drain-to-Source On Resistance	Rq	0.60	0.80	0.80	weR	Ω
l _D	Drain Current Continuous at T _C = 25°C Continuous at T _C = 100°C Pulsed		4.0 2.5 16	3.5 2.0 14	5.0 3.5 14		A (noise)
Maximum	Thermal Characteristics	Str.	20.10	17	Off Dolay Time	842	Playor
$R_{\theta JC}$	Thermal Resistance, Junction to Case	On	6.4	6.4	2.5	sto T	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient		80	80	80		°C/W
PD	Total Power Dissipation		20	20	50		W

Notes

For information concerning connection diagram and package outline, refer to Section 7.

IRF510-513 MTP4N08/4N10

Symbol	Characteristic	Min	Max	Unit	Test Conditions
off Charac	teristics		Off bits	OA Jarehevino	uch as switching power supplies, or
V _{(BR)DSS}	Drain Source Breakdown Voltage ¹		CONTROL NO.	٧	$V_{GS} = 0 \text{ V}, I_D = 250 \mu A$
	IRF510/512/MTP4N10	100			
	MTP4N08	80			
	IRF511/513	60		appear)	Silloon Gata for Fast Switching
I _{DSS}	Zero Gate Voltage Drain Current	118931	250	μΑ	V _{DS} = Rated V _{DSS} , V _{GS} = 0 V
		INFERS MTPANOS	1000	μΑ	$V_{DS} = 0.8 \times \text{Rated } V_{DSS},$ $V_{GS} = 0 \text{ V}, T_C = 125^{\circ}\text{C}$
I _{GSS}	Gate-Body Leakage Current	OF MATERIAL DE	± 500	nA	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$
n Charac	teristics				moved of arrangement
V _{GS(th)}	Gate Threshold Voltage			V	
	IRF510-513	2.0	4.0		$I_D = 250 \ \mu A, \ V_{DS} = V_{GS}$
MeU	MTP4N08/10	2.0	4.5		$I_D = 1$ mA, $V_{DS} = V_{GS}$
R _{DS(on)}	Static Drain-Source On-Resistance ²		001	Ω	V _{GS} = 10 V, I _D = 2.0 A
	IRF510/511		0.60		
	IRF512/513/MTP4N08/4N10		0.80		92x 08 = apR
V _{DS(on)}	Drain-Source On-Voltage ²		4.8	٧	V _{GS} = 10 V; I _D = 4.0 A
	MTP4N08/4N10	00-	3.2	V	$V_{GS} = 10 \text{ V}; I_D = 2.0 \text{ A};$ $T_C = 100^{\circ}\text{C}$
9fs	Forward Transconductance	1.0	612	S (U)	$V_{DS} = 10 \text{ V}, I_{D} = 2.0 \text{ A}$
ynamic C	haracteristics				1/81 From Case for 5
C _{iss}	Input Capacitance		200	pF sol	V _{DS} = 25 V, V _{GS} = 0 V
Coss	Output Capacitance	P(H)	100	pF	f = 1.0 MHz
C _{rss}	Reverse Transfer Capacitance		30	pF	Roslow Statio Diain-to-Source
Switching (Characteristics (T _C = 25°C, Figures 11	, 12) ³			SOUTH BROWN DICK
t _{d(on)}	Turn-On Delay Time		20	ns	$V_{DD} = 50 \text{ V}, I_D = 2.0 \text{ A}$
t _r	Rise Time		25	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 50 \Omega$ $R_{GS} = 50 \Omega$
t _{d(off)}	Turn-Off Delay Time		25	ns	83804
t _f	Fall Time		20	ns	leximum Thermal Charaeterist
Qg	Total Gate Charge		7.5	nC	$V_{GS} = 10 \text{ V}, I_D = 8.0 \text{ A}$ $V_{DD} = 40 \text{ V}$

IRFS10-513 MTP4N08/4N10 N-Channel Power MOSFETS, 5.5 A, 60-100 V

IRF510-513 MTP4N08/4N10

Electrical Characteristics (Cont.) (T_C = 25°C unless otherwise noted)

Symbol	Characteristic	Тур	Max	Unit	Test Conditions
Source-Dra	ain Diode Characteristics	and the second	Marin Marin		
V _{SD}	Diode Forward Voltage			V	
	IRF510/511	A 100 M	2.5		I _S = 4.0 A; V _{GS} = 0 V
	IRF512/513	9-2 8-3	2.0		I _S = 3.5 A; V _{GS} = 0 V
t _{rr}	Reverse Recovery Time	230		ns	$I_S = 4.0 \text{ A}; \text{ dI}_S/\text{dt} = 25 \text{ A}/\mu\text{S}$

Notes

- 1. $T_J = +25^{\circ}C$ to $+150^{\circ}C$
- 2. Pulse test: Pulse width \leq 80 μ s, Duty cycle \leq 1%
- 3. Switching time measurements performed on LEM TR-58 test equipment.

Typical Performance Curves

Figure 1 Output Characteristics

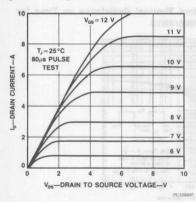


Figure 3 Transfer Characteristics

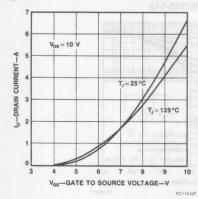


Figure 2 Static Drain to Source Resistance vs Drain Current

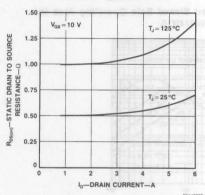


Figure 4 Temperature Variation of Gate to Source Threshold Voltage

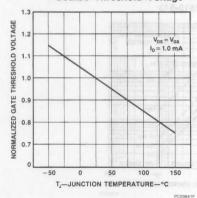


Figure 5 Capacitance vs Drain to Source Voltage

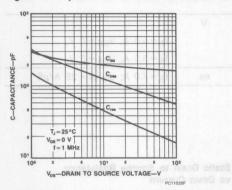


Figure 7 Forward Biased Safe Operating Area for MTP4N08/4N10

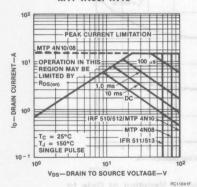


Figure 9 Forward Biased Safe Operating Area for IRF510-513

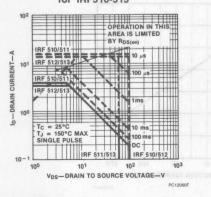


Figure 6 Gate to Source Voltage vs Total Gate Charge

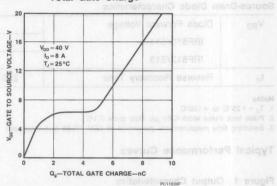


Figure 8 Transient Thermal Resistance vs Time for MTP4N08/4N10

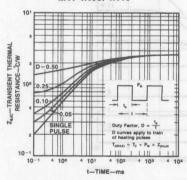
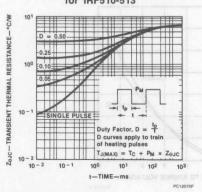



Figure 10 Transient Thermal Resistance vs Time for IRF510-513

IRF510-513 MTP4N08/4N10

Typical Electrical Characteristics

Figure 11 Switching Test Circuit

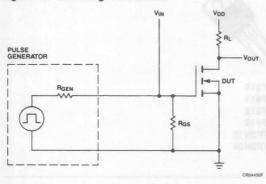
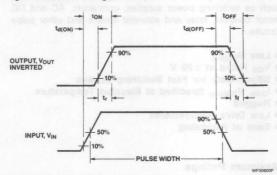



Figure 12 Switching Waveforms

A Schlumberger Company

IRF610-613 MTP2N18/2N20 N-Channel Power MOSFETs, 3.5 A, 150-200 V Power And Discrete Division

Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high speed applications, such as switching power supplies, converters, AC and DC motor controls, relay and solenoid drivers and other pulse circuits.

- Low Rps(on)
- V_{GS} Rated at ± 20 V
- Silicon Gate for Fast Switching Speeds
- I_{DSS}, V_{DS(on)}, Specified at Elevated Temperature
- Rugged
- Low Drive Requirements
- Ease of Paralleling

TO-220AB

IRF610 IRF611 IRF612 **IRF613** MTP2N18 MTP2N20

Maximum Ratings

Symbol	Characteristic	Rating IRF610/612 MTP2N20	Rating MTP2N18	Rating IRF611/613	Unit
V _{DSS}	Drain to Source Voltage ¹	200	180	150	V
V _{DGR}	Drain to Gate Voltage ¹ $R_{GS} = 20 \text{ k}\Omega$	200	180	150	٧
V _{GS}	Gate to Source Voltage	± 20	± 20	± 20	V
T _J , T _{stg}	Operating Junction and Storage Temperatures	-55 to +150	-55 to +150	-55 to +150	°C
TL	Maximum Lead Temperature for Soldering Purposes, 1/8" From Case for 5 s	275	275	275	°C

Maximum On-State Characteristics

		IRF610/611	MTP2N18/20	IRF612/613	
R _{DS(on)}	Static Drain-to-Source On Resistance	1.5	1.8	2.4	Ω
I _D	Drain Current Continuous at T _C = 25°C Continuous at T _C = 100°C Pulsed	2.5 1.5 10	3.25 2.25 9.0	2.0 1.25 8.0	A
/laximum	Thermal Characteristics				
$R_{ heta JC}$	Thermal Resistance, Junction to Case	6.4	2.5	6.4	°C/W
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient	80	80	80	°C/W
P _D	Total Power Dissipation at T _C = 25°C	20	50	20	W

For information concerning connection diagram and package outline, refer to Section 7.

IRF610-613 MTP2N18/2N20

Symbol	Characteristic	Min	Max	Unit	Test Conditions
Off Charac	teristics				urce Orain Plode Charusterialics
V _{(BR)DSS}	Drain Source Breakdown Voltage ¹			٧	$V_{GS} = 0 \text{ V, } I_D = 250 \mu\text{A}$
	IRF610/612/MTP2N20	200			Travare-Hi
	MTP2N18	180			(RF812/818
	IRF611/613	150			Herarco Recovery Time
I _{DSS}	Zero Gate Voltage Drain Current		250	μΑ	V _{DS} = Rated V _{DSS} , V _{GS} = 0 V
			1000	μΑ	V _{DS} = 0.8 x Rated V _{DSS} , V _{GS} = 0 V, T _C = 125°C
I _{GSS}	Gate-Body Leakage Current		± 500	nA	V _{GS} = ± 20 V, V _{DS} = 0 V
n Charac	teristics	Equito 2			
V _{GS(th)}	Gate Threshold Voltage			V	Maliente Option D. 190, 190, 1 Bridge
	IRF610-613	2.0	4.0	V V	$I_{D} = 250 \ \mu A, \ V_{DS} = V_{GS}$
	MTP2N18/20	2.0	4.5		$I_D = 1$ mA, $V_{DS} = V_{GS}$
R _{DS(on)}	Static Drain-Source On-Resistance ²	8		Ω	V _{GS} = 10 V, I _D = 1.25 A
	IRF610/611	- no II	1.5	A.	
	IRF612/613	88	2.4		I _D = 1.0 A
	MTP2N18/20	711	1.8		
V _{DS(on)}	Drain-Source On-Voltage ²		4.4	V	V _{GS} = 10 V; I _D = 2.0 A
	MTP2N18/2N20		3.6	٧	V _{GS} = 10 V; I _D = 1.0 A; T _C = 100°C
9fs	Forward Transconductance	0.8		S (V)	V _{DS} = 10 V, I _D = 1.25 A
ynamic C	haracteristics			Name of Street	
C _{iss}	Input Capacitance	Figure 4	200	pF	V _{DS} = 25 V, V _{GS} = 0 V
C _{oss}	Output Capacitance		80	pF	f = 1.0 MHz
C _{rss}	Reverse Transfer Capacitance		25	pF	
Switching	Characteristics (T _C = 25°C, Figures 11,	12)3			
t _{d(on)}	Turn-On Delay Time	-111	15	ns	V _{DD} = 50 V, I _D = 1.25 A
t _r	Rise Time		25	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 50 \Omega$ $R_{GS} = 50 \Omega$
t _{d(off)}	Turn-Off Delay Time		15	ns	- 1165 50 32
t _f	Fall Time	1	15	ns	2001-5
Qg	Total Gate Charge		7.5	nC	V _{GS} = 10 V, I _D = 3.0 A V _{DD} = 45 V

IRF610-613 MTP2N18/2N20

Electrical Characteristics (Cont.) (T_C = 25°C unless otherwise noted)

Symbol	Characteristic	Тур	Max	Unit	Test Conditions
Source-Dra	ain Diode Characteristics				off Characteristics
V _{SD}	Diode Forward Voltage IRF610/611		2.0	V	I _S = 2.5 A; V _{GS} = 0 V
	IRF612/613		1.8	V	I _S = 2.0 A; V _{GS} = 0 V
t _{rr}	Reverse Recovery Time	290		ns	$I_S = 2.5 \text{ A}; \text{ dI}_S/\text{dt} = 25 \text{ A}/\mu\text{S}$

Notes

- 1. T_J = +25°C to +150°C
- 2. Pulse test: Pulse width \leq 80 μ s, Duty cycle \leq 1%
- 3. Switching time measurements performed on LEM TR-58 test equipment.

Typical Performance Curves

Figure 1 Output Characteristics

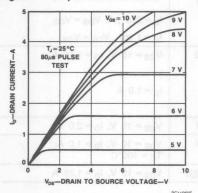


Figure 3 Transfer Characteristics

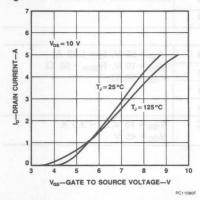


Figure 2 Static Drain to Source Resistance vs Drain Current

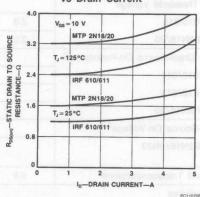
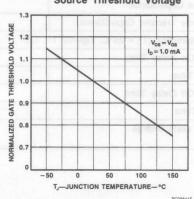



Figure 4 Temperature Variation of Gate to Source Threshold Voltage

2-154

Figure 5 Capacitance vs Drain to Source Voltage

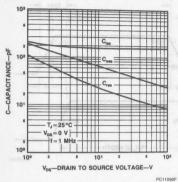


Figure 7 Forward Biased Safe Operating Area for MTP2N18/2N20

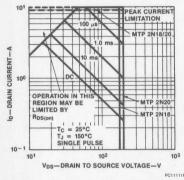


Figure 9 Forward Biased Safe Operating Area for IRF610-613

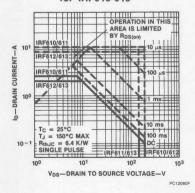


Figure 6 Gate to Source Voltage vs Total Gate Charge

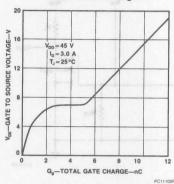


Figure 8 Transient Thermal Resistance vs Time for MTP2N18/2N20

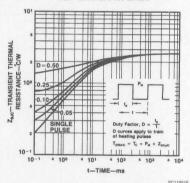
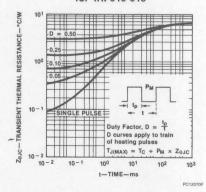



Figure 10 Transient Thermal Resistance for IRF610-613

IRF610-613 MTP2N18/2N20

Typical Electrical Characteristics

Figure 11 Switching Test Circuit

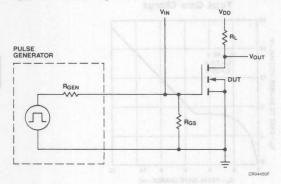
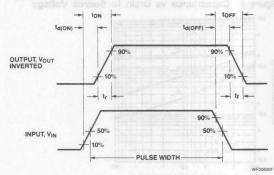



Figure 12 Switching Waveforms

A Schlumberger Company

IRF710-713 MTP2N35/2N40 N-Channel Power MOSFETs, 2.25 A, 350-400 V

Power And Discrete Division

Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high speed applications, such as switching power supplies, converters, AC and DC motor controls, relay and solenoid driver and high energy pulse circuits.

- Low R_{DS(on)}
- VGS Rated at ± 20 V
- Silicon Gate for Fast Switching Speeds
- I_{DSS}, V_{DS(on)}, Specified at Elevated Temperature
- Rugged
- Low Drive Requirements
- Ease of Paralleling

Maximum Ratings

TO-220AB

IRF710 IRF711 IRF712 IRF713 MTP2N35 MTP2N40

Symbol	Characteristic	Rating IRF710/712 MTP2N40	Rating IRF711/713 MTP2N35	Unit
V _{DSS}	Drain to Source Voltage ¹	400	350	V
V _{DGR}	Drain to Gate Voltage 1 R _{GS} = 20 k Ω	400	350	I V
V _{GS}	Gate to Source Voltage	± 20	± 20	VSFTIAL V
T _J , T _{stg}	Operating Junction and Storage Temperatures	-55 to +150	-55 to +150	C meiso,
TL	Maximum Lead Temperature for Soldering Purposes, 1/8" From Case for 5 s	275	275	°C

Maximum On-State Characteristics

	sHM 0.1 = 1	IRF710-711	IRF712-713	MTP2N35/40	Unit
R _{DS(on)}	Static Drain-to-Source On Resistance	3.6	5.0	5.0	Ω Ges Feverse Tr
Ip	Drain Current		131 J 1 ean	a AC = 28°C, Fig.	A
	Continuous at T _C = 25°C	1.5	1.4	1.3	trees Tom-On Del
	Continuous at T _C = 100°C	1.0	0.9	0.8	
	Pulsed	6.0	5.0	5.0	emil salfi ji
Maximum	Thermal Characteristics	- 01		ay inse	Joon June Off Do
$R_{\theta,IC}$	Thermal Resistance,	6.4	6.4	2.5	°C/W
	Junction to Case			Charge	General Sere Care
$R_{\theta JA}$	Thermal Resistance,	80	80	80	°C/W
	Junction to Ambient				
P _D	Total Power Dissipation at T _C = 25°C	20	20	50	W

Notes

For information concerning connection diagram and package outline, refer to Section 7.

IRF710-713 MTP2N35/2N40

Symbol	Characteristic	Min	Max	Unit	Test Conditions	
Off Charac	teristics		and DD	OA ,arehevr	uch as switching power augelies, col	
V _{(BR)DSS}	Drain Source Breakdown Voltage ¹		- A CONTRACT	٧	V _{GS} = 0 V, I _D = 250 μA	
	IRF710/712/MTP2N40	400			low Figures fac Fetal at 120 V	
	IRF711/713/MTP2N35	350				
I _{DSS}	Zero Gate Voltage Drain Current	OLYMPI	250	μΑ	$V_{DS} = Rated V_{DSS}, V_{GS} = 0 V$	
		(AF711)	1000	μΑ	$V_{DS} = 0.8 \times \text{Rated } V_{DSS},$ $V_{GS} = 0 \text{ V, } T_{C} = 125^{\circ}\text{C}$	
I _{GSS}	Gate-Body Leakage Current	SI YES	± 500	nA	V _{GS} = ± 20 V, V _{DS} = 0 V	
On Charac	teristics	AUCHTH			leximum Ratings	
V _{GS(th)}	Gate Threshold Voltage		pulse?	V		
	IRF710-713	2.0	4.0		$I_D = 250 \mu A, V_{DS} = V_{GS}$	
	MTP2N35/2N40	2.0	4.5		$I_D = 1$ mA, $V_{DS} = V_{GS}$	
R _{DS(on)}	Static Drain-Source On-Resistance ²		COA	Ω	V _{GS} = 10 V, I _D = 0.8 A	
	IRF710/711		3.6		Voca Crain to Gate Voltage R	
	IRF712/713/MTP2N35/40		5.0		Vag Gate to Source Voltage	
V _{DS(on)}	Drain-Source On-Voltage ²	rier	13	V	V _{GS} = 10 V, I _D = 2.0 A	
	MTP2N35/2N40		10	V	$V_{GS} = 10 \text{ V}, I_D = 1.0 \text{ A},$	
	275		878	onul	T _C = 100°C	
9fs	Forward Transconductance	0.5		S (V)	$V_{DS} = 10 \text{ V}, I_{D} = 0.8 \text{ A}$	
	haracteristics				lasteum On Crate Characterist	
C _{iss}	Input Capacitance	e state	200	pF	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}$ f = 1.0 MHz	
Coss	Output Capacitance		50	pF	Rosson Static Dent to-Source	
C _{rss}	Reverse Transfer Capacitance		15	pF	On Registence	
Switching	Characteristics (T _C = 25°C, Figures 11,	12)3			In Oraci Corecta	
t _{d(on)}	Turn-On Delay Time		10	ns	$V_{DD} = 200 \text{ V}, I_D = 0.8 \text{ A}$	
t _r	Rise Time	1.6	20	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 50 \Omega$ $R_{GS} = 50 \Omega$	
t _{d(off)}	Turn-Off Delay Time		10	ns	laximom Themal Characterist	
t _f	Fall Time		15	ns	Raio Therms Resistance	
Qg	Total Gate Charge		7.5	nC	V _{GS} = 10 V, I _D = 2.0 A V _{DD} = 200 V	

IRF710-713 MTP2N35/2N40

Electrical Characteristics (Cont.) (T_C = 25°C unless otherwise noted)

Symbol	Characteristic	Тур	Max	Unit	Test Conditions
Source-Dra	ain Diode Characteristics		888)	ION BOTHOR	a capacitance vo main to
V _{SD}	Diode Forward Voltage				
	IRF710/711		1.6	V	I _S = 1.5 A; V _{GS} = 0 V
	IRF712/713		1.5	V	I _S = 1.3 A; V _{GS} = 0 V
t _{rr}	Reverse Recovery Time	380		ns	$I_S = 1.5 \text{ A}; \text{ dI}_S/\text{dt} = 25 \text{ A}/\mu\text{S}$

- 1. T_J = +25°C to +150°C
- 2. Pulse test: Pulse width ≤ 80 µs, Duty cycle ≤ 1%
 3. Switching time measurements performed on LEM TR-58 test equipment.

Typical Performance Curves

Figure 1 Output Characteristics

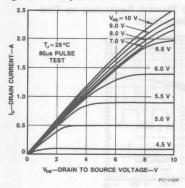


Figure 3 Transfer Characteristics

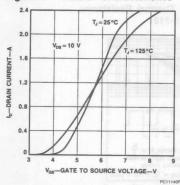


Figure 2 Static Drain to Source Resistance vs Drain Current

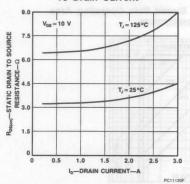
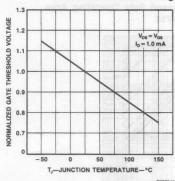



Figure 4 Temperature Variation of Gate to Source Threshold Voltage

IRF710-713 MTP2N35/2N40

Typical Performance Curves (Cont.)

Figure 5 Capacitance vs Drain to Source Voltage

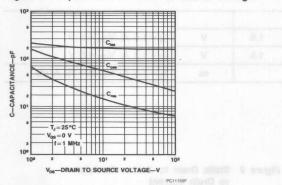


Figure 7 Forward Biased Safe Operating Area for MTP2N35/2N40

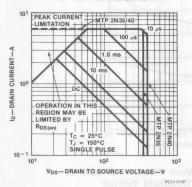


Figure 9 Forward Biased Safe Operating Area for IRF710-713

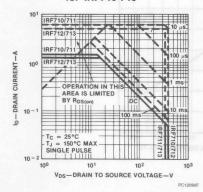


Figure 6 Gate to Source Voltage vs Total Gate Charge

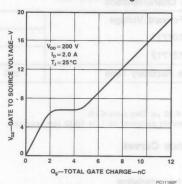


Figure 8 Transient Thermal Resistance vs Time for MTP2N35/2N40

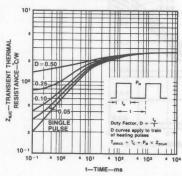
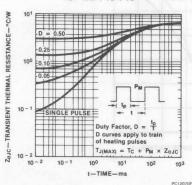



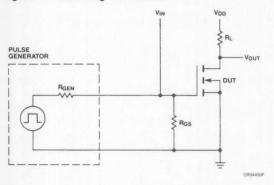
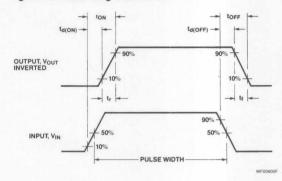
Figure 10 Transient Thermal Resistance for IRF710-713

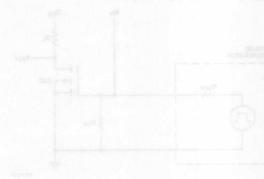
2

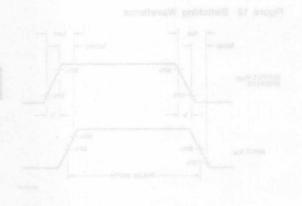
IRF710-713 MTP2N35/2N40

Typical Electrical Characteristics

Figure 11 Switching Test Circuit


Figure 12 Switching Waveforms



MF710-713 MTP2N35/2N40

Typical Electrical Characteristics

Figure 11 Switching Test Circuit

Index, Selector Guides, Industry Cross Reference

Power MOSFETs and Ultra-Fast Recovery Rectifier Data Sheets

MOSFET and Rectifier Dice

3

Advanced Products

4

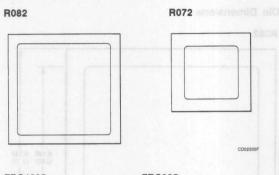
Application Notes/ESD

Quality Assurance and Reliability

Ordering Information and Package Outlines

Field Sales Offices

8

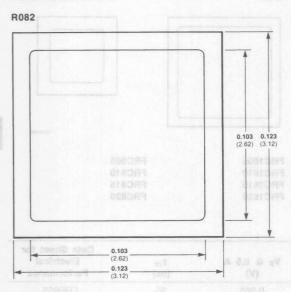

FRC Series Ultra-Fast Rectifier Dice

Power And Discrete Division

Description

These devices are ultrafast, reverse recovery, epitaxial rectifiers supplied in die form for use in hybrid assemblies. The dice are manufactured to the same high quality standards used in Fairchild's standard series of TO-204 and TO-220 offerings.

- 50 V 200 VRRM
- Ultrafast 35ns Recovery Times
- Soft Recovery (S > 0.5)
- Low Recovery Currents
- Low Forward Voltage Drops


FRC1605 FRC805 FRC1610 FRC810 FRC1615 FRC815 FRC1620 FRC820

Electrical Characteristics

			I _{rrm} (μ A)			Data Sheet for
N	Part lumber	V _{RRM} (V)		V _F @ 0.5 A (V)	t rr (ns)	Electrical Performance
FF	RC805	50	10	0.750	35	FRP805
FF	RC810	100	10	0.750	35	FRP810
FF	RC815	150	10	0.750	35	FRP815
FF	RC820	200	10	0.750	35	FRP820
FF	RC1605	50	25	0.725	35	FRP1605
FF	RC1610	100	25	0.725	35	FRP1610
FF	RC1615	150	25	0.725	35	FRP1615
FF	RC1620	200	25	0.725	35	FRP1620

FRC Series Ultrafast Rectifier Dice

Die Dimensions

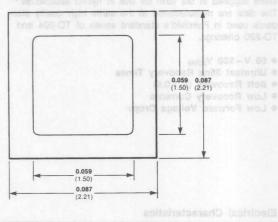
Probe Testing

Each die is probed and electrically tested to the limits specified in the Electrical Characteristics Table. However, high current parameters and thermal characteristics specified in the packaged device data sheets cannot be tested or guaranteed in die form because of the power dissipation limits of unmounted die and current handling limits of probe tips. These parameters are:

Thermal Resistance

Forward Voltage Drop at Rated Current

Reverse Recovery Characteristics at Rated Current


Surge Current

Metallization

The cathode metallization on all rectifier dice is chromium-silver, deposited to an approximate thickness of 9,000 Angstroms. This metallization is suitable for die mounting using a variety of solders, such as 95/5 Pb/Sn, 92.5/5.0/2.5 Pb/In/Ag, 92.5/5.0/2.5 Pb/Sn/Ag and 65/25/10 Sn/Ag/Sb.

The wire bonding metallization for the anode connection is aluminum with a 1% silicon content. This metallization is deposited to a minimum thickness of 6 microns.

R072

Notes:

- Dimension Tolerances ±0.0005 in. (0.013mm)
- Thickness of all die types is 0.010 in. (250μ)

CR05510F

Packaging and Handling

All rectifier dice are supplied in plastic trays (also known as waffle pack) with cavities to contain the dice. The trays and their covers are made from STAT-PROTM 150, which is a black, conductive, glass-filled polypropylene. The trays are 4 inches square and contain 100 of either type dice.

Dice should be handled with TeflonTM tipped vacuum pencils to prevent mechanical damage.

Storage

Upon receipt of the dice, they should be stored as soon as practical in an inert atmosphere, such as dry nitrogen, to prevent oxidation of the bond pad and solder mount-down areas.

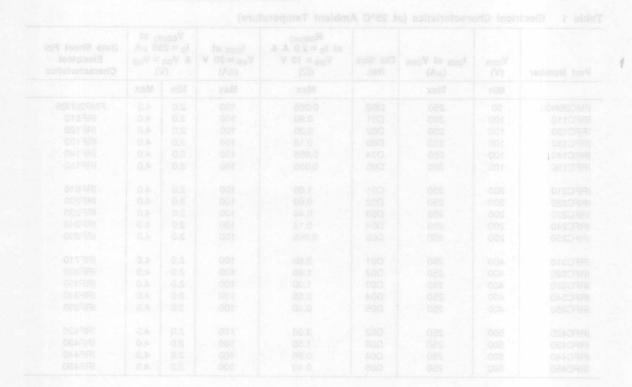
Wire Bonding

Ultra-sonic bonding using aluminum wire with an elongation of 10% is recommended for making electrical connections to the anode bonding pad of the dice. Optimum wire sizes for this bonding have been chosen based on surge current ratings of encapsulated dice and are shown in the following table:

Die Type	Anode Wire Diameter (in.)
FRC8_	0.015 in.
FRC16	2 x 0.015
	or 0.020

FRC Series Ultrafast Rectifier Dice

Die Mounting and Encapsulation


Refer to IFRC Series (Power MOSFET Dice) for a discussion of mounting and encapsulation considerations.

Special Requirements

The factory should be consulted regarding requirements for alternate cathode metallization, more stringent visual in-

spections and lot qualification by quality conformance inspection of encapsulated dice.

Fairchild would be pleased to consider any other special requirements.

IRFC Series N-Channel Power MOSFET Dice

Preliminary Specification

Power And Discrete Division

Description

These devices are n-channel, enhancement mode, power MOSFETs supplied in die form for use in hybrid assemblies. The dice described herein are manufactured with the same reliable silicon-gate technology used in Fairchild's standard series of TO-204 and TO-220 packaged power MOSFETs.

- 50 V to 500 V, V_{DSS} Ratings
- Up to 40 A I_{D(max)}
- Down to 55 mΩ R_{DS(on)} maximum
- High Density Cell Design
- Silicon Nitride Passivated
- Chromium-Silver Back Metal

Table 1 Electrical Characteristics (at 25°C Ambient Temperature)

Part Number	V _{DSS} (V)	I _{DSS} at V _{DSS} (μA)	Die Size Ref.	$\begin{array}{c} R_{DS(on)} \\ at \ I_{D} = 2.0 \ A \ \& \\ V_{GS} = 10 \ V \\ (\Omega) \end{array}$	I _{GSS} at V _{GS} = 20 V (nA)	I _D = 2	th) at 50 μA 5 = V _{GS} V)	Data Sheet For Electrical Characteristics
	Min	Max		Max	Max	Min	Max	
FMC20N05	50	250	DB2	0.085	100	2.0	4.0	FMP20N05
IRFC110	100	250	D01	0.60	100	2.0	4.0	IRF510
IRFC120	100	250	D02	0.30	100	2.0	4.0	IRF120
IRFC130	100	250	D03	0.18	100	2.0	4.0	IRF130
IRFC140	100	250	D04	0.085	100	2.0	4.0	IRF140
IRFC150	100	250	D05	0.055	100	2.0	4.0	IRF150
IRFC210	200	250	D01	1.50	100	2.0	4.0	IRF610
IRFC220	200	250	D02	0.80	100	2.0	4.0	IRF220
IRFC230	200	250	D03	0.40	100	2.0	4.0	IRF230
IRFC240	200	250	D04	0.18	100	2.0	4.0	IRF240
IRFC250	200	250	D05	0.085	100	2.0	4.0	IRF250
IRFC310	400	250	D01	3.60	100	2.0	4.0	IRF710
IRFC320	400	250	D02	1.80	100	2.0	4.0	IRF320
IRFC330	400	250	D03	1.00	100	2.0	4.0	IRF330
IRFC340	400	250	D04	0.55	100	2.0	4.0	IRF340
IRFC350	400	250	D05	0.30	100	2.0	4.0	IRF350
IRFC420	500	250	D02	3.00	100	2.0	4.0	IRF420
IRFC430	500	250	D03	1.50	100	2.0	4.0	IRF430
IRFC440	500	250	D04	0.85	100	2.0	4.0	IRF440
IRFC450	500	250	D05	0.40	100	2.0	4.0	IRF450

IRFC Series N-Channel Power MOSFET Dice

Probe Testing

Each die is probed and electrically tested to the limits specified in the preceding table. However, because of power dissipation limitations imposed by testing the dice unmounted, certain DC and thermal parameters specified in the packaged device data sheets cannot be tested and quaranteed in die form.

These parameters, which also depend on the user's die mounting methods and materials, are:

Power Dissipation	PD
Thermal Resistance	$R_{\theta,IC}$
Safe Operating Area	SOA
On Resistance at Rated Current	R _{DS(on)}

On resistance is, however, tested and guaranteed at a drain current of 1.0 A as shown in the *Table 1*.

The following parameters can be guaranteed by design to meet the limits specified in the appropriate packaged device data sheets:

Forward Transconductance	9fs
Input Capacitance	Ciss
Output Capacitance	Coss
Reverse Transfer Capacitance	Crss
Turn-on Delay Time	t _{d(on)}
Rise Time	tr
Turn-off Delay Time	t _{d(off)}
Fall Time	tf
Total Gate Charge	Qa

Visual Inspection

All MOSFET dice are visually screened to a 1.0% A.Q.L. in accordance with MIL-STD-750, Method 2072 to the extent that this method is applicable to MOSFET dice. Fairchild's die visual inspection specification (NRP-127575) is available upon request.

100% die visual inspection is available as an option. See special requirements.

Metallization

The drain metallization on all MOSFET dice is chromium-silver, deposited to a thickness of approximately 9,000 Angstroms. This metallization is suitable for die mounting using a variety of solders, such as 95/5 Pb/Sn, 92.5/5.0/2.5 Pb/In/Ag, 92.5/5.0/2.5 Pb/Sn/Ag and 65/25/10 Sn/Ag/Sb.

The exposed bonding pads for source and gate connections of the dice are aluminum with a 1% silicon content. This metallization is deposited to a minimum thickness of 20,000 Angstroms.

Packaging and Handling

All MOSFET dice are supplied in plastic trays with cavities which contain the dice (sometimes known as waffle pack). The trays are two inches by two inches and full trays contain the following number of dice:

Die Size Reference	Quantity
D01	100
D02	100
DB2	100
D03	49
D04	36
D05	36

The trays and their covers are made from STAT-PROTM 150 which is a black, conductive, glass-filled polypropylene.

The tray/cover combination is held together with natural polypropylene retaining clips and shipped in an electrostatic shielding bag. Extreme care should be taken when removing the clips to ensure that the tray and cover are not separated. Only after the clips have been remove should the cover be carefully lifted from the tray in order to access the dice.

Dice should be handled with TeflonTM tipped vacuum pencils at ESD work station to prevent mechanical and ESD damage.

Storage

Upon removal of the retaining clips and cover from the tray, the dice must be stored in an inert atmosphere as soon as possible, such as dry nitrogen, to prevent oxidation of the bond pad areas.

Die Mounting

All of the commonly used header and substrate materials, such as copper, nickel-plated copper and gold-plated molybdenum, beryllia and alumina, are acceptable for die mounting. The substrate should be freed of oxides prior to assembly either by chemical cleaning or pre-firing in a reducing atmosphere.

Before die attach, it is recommended that the dice be cleaned by using a one minute de-ionized water wash followed by two one minute rinses in an iso-propyl alcohol agitated bath. Drying should be accomplished in a 70°C nitrogen chamber.

Die mounting, using a suitable preform, is generally achieved using a profiled belt furnace in a hydrogen, forming gas or nitrogen atmosphere. Although the zone temperature settings will depend on the mass of the assembly and fixturing and the belt speed, the die temperature must not exceed 400°C.

IRFC Series N-Channel Power MOSFET Dice

Other die mounting methods, including the use of conductive epoxies, may be used but their limitations and effects on the device performance should be clearly understood.

Wire Bonding

Ultra-sonic bonding using aluminum wire with an elongation of 10% is recommended for making electrical connections to the source and gate bonding pads of the dice.

Optimum wire sizes for wire bonding are shown in the following table:

Die Type	Source Wire Dia. (Inches)	Gate Wire Dia. (Inches)
FMC20N05	0.015	0.006
IRFC110	0.006	0.006
IRFC120	0.006	0.006
IRFC130	0.010	0.008
IRFC140	0.015	0.008
IRFC150	0.020	0.008
IRFC210	0.006	0.006
IRFC220	0.006	0.006
IRFC230	0.008	0.008
IRFC240	0.015	0.008
IRFC250	0.020	0.008
IRFC310	0.006	0.006
IRFC320	0.006	0.006
IRFC330	0.008	0.008
IRFC340	0.015	0.008
IRFC350	0.015	0.008
IRFC420	0.006	0.006
IRFC430	0.008	0.008
IRFC440	0.015	0.008
IRFC450	0.015	0.008

Wire size may be varied but account must be taken of bond pad size (maximum limit) and current handling requirements (minimum limit).

Encapsulation

Prior to encapsulation, the die and assembly should be maintained in a moisture free environment since leakage currents are particularly sensitive to the presence of moisture on the die surface.

For high voltage devices (IRFC420, IRFC430, IRFC440 and IRFC450), it is recommended that a high grade silicone conformal coating, such as Dow Corning R-6101, be used to cover the die and die bond wire structures. This coating will eliminate any possibility of die surface discharge through ionization in the high voltage dice.

For all other die types, if the final package is to be nonhermetic, a coating such as Dow Corning RTV3140 or equivalent is recommended to be similarly applied. For hermetic packages, this coating is optional.

Cleaning of the die/assembly in a Freon vapor degreaser is also recommended prior to the application of any coatings.

Immediately prior to encapsulation, a two hour, 150°C bake should be performed to remove any accumulated surface moisture from assemblies containing both coated and uncoated dice.

Special Requirements

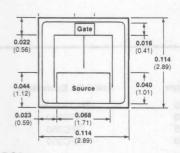
The factory should be consulted regarding requirements for alternate back metallization, more stringent visual inspections and lot qualification by quality conformance inspection of encapsulated dice.

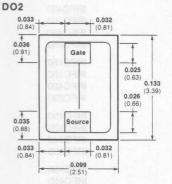
Fairchild would also be pleased to consider any other special requirements.

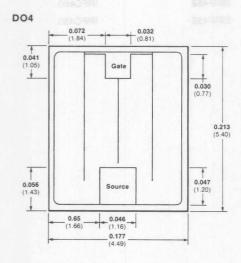
Power MOSFET Die Industry Cross-Reference

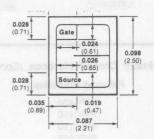
Industry Type	Fairchild Equivale
IRFC113	IRFC110
IRFC123	IRFC120
IRFC133	IRFC130
IRFC143	IRFC140
IRFC153	IRFC150
IRFC213	IRFC210
IRFC223	IRFC220
IRFC233	IRFC230
	IRFC240 IRFC250 IRFC310 IRFC320
IRFC333	IRFC330
IRFC343	IRFC340
IRFC353	IRFC350
IRFC423	IRFC420
IRFC433	IRFC430
IRFC443	IRFC440
IRFC453	IRFC450
MTC2N18	IRFC210
MTC2N20	IRFC210
MTC2N35	IRFC310
MTC2N40	IRFC310
MTC2N45	IRFC420

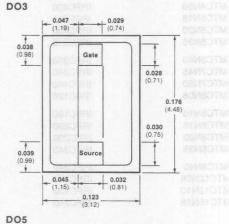
3

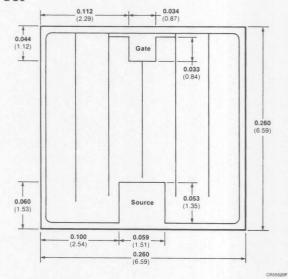

IRFC Series N-Channel Power MOSFET Dice


Power MOSFET Die Industry Cross-Reference (Cont.)


Industry Type	Fairchild Equivalent
MTC2N50	IRFC420
MTC4N08	IRFC110
MTC4N10	IRFC110
MTC4N45	IRFC430
MTC4N50	IRFC430
MTC5N18	IRFC220
MTC5N20	IRFC220
MTC5N35	IRFC330
MTC5N40	IRFC330
MTC7N45	IRFC440
MTC7N50	IRFC440
MTC8N08	IRFC120
MTC8N10	IRFC120
MTC8N18	IRFC230
MTC8N20	IRFC230
MTC8N35	IRFC340
MTC8N40	IRFC340
MTC12N08	IRFC130
MTC12N10	IRFC130
MTC15N18	IRFC240


Industry Type	Fairchild Equivalent
MTC15N05	FMD20N05
MTC15N20	IRFC240
MTC15N35	IRFC350
MTC15N40	IRFC350
MTC15N45	IRFC450
MTC15N50	IRFC450
MTC30N18	IRFC250
MTC30N20	IRFC250
MTC40N08	IRFC150
MTC40N10	IRFC150
PCF3N45	IRFC420
PCF8N18	IRFC230
PCF10N45	IRFC450
PCF12N08	IRFC130
PCF18N08	IRFC140
PCF25N18	IRFC250
PCF35N08	IRFC150
SIRF450	IRFC450
SIRF451	IRFC450
SIRF452	IRFC450
SIRF453	IRFC450





Notes

- 1. Dimension Tolerances: ± 0.0005 in ± 0.013 mm
- Overall length and width are reduced by approximately 0.002 inches after sawing.
- 3. Thickness of all die types is 0.020 inches \pm 0.002.

	Index, Selector Guides, Industry Cross Reference	1
	Power MOSFETs and Ultra-Fast Recovery Rectifier Data Sheets	2
^	MOSFET and Rectifier Dice	3
$\Rightarrow >$	Advanced Products	
V	Application Notes/ESD	
	Quality Assurance and Reliability	
	Ordering Information and Package Outlines	7
	Field Sales Offices	8

BUZ71/71A N-Channel Power MOSFETs, 14 A, 50 V

Advance Information

Power And Discrete Division

Description

These devices are very low R_{DS(on)}, 50 V, n-channel, enhancement mode, power MOSFETs especially designed to serve the low voltage, high speed, switching markets. Typical applications are SMPS for telecommunication and instrumentation, DC motor controls, emitter switching, synchronous rectification, and systems that are operated from low voltage batteries, such as automotive and portable equipment, etc.

- Extremely Low R_{DS(on)}
- V_{GS} Rated at ± 30 V
- Silicon Gate for Fast Switching Speeds
- Rugged
- Low Drive Requirements
- Ease of Paralleling

TO-220AB

BUZ71 BUZ71A

Maximum Ratings

Symbol	Characteristic	Rating BUZ71	Rating BUZ71A	Unit
V _{DSS}	Drain to Source Voltage ¹	50	50	Class T. V Input Caped
V _{DGR}	Drain to Gate Voltage ¹ $R_{GS} = 20 \text{ k}\Omega$	50	50 Sometimental holes	Cosa V Culput Gaza
V _{GS}	Gate to Source Voltage	± 30	± 30	witching Vineracterists
T _J , T _{stg}	Operating Junction and Storage Temperatures	-55 to +150	-55 to +150	O Turn On De
TL	Maximum Lead Temperature for Soldering Purposes, 1/8" From Case for 5 s	275	275 emil ye	Or no-On De
Maximum	On-State Characteristics	20	bargo	G. Total Gata C
R _{DS(on)}	Static Drain-to-Source On Resistance	0.10	0.12	Ω
ID	Drain Current Continuous Pulsed	14 48	13 48	A loumys
Maximum	Thermal Characteristics	200	Depart of	Amori esole agy
$R_{ heta$ JC	Thermal Resistance, Junction to Case	3.1	3.1	°C/W
P _D	Total Power Dissipation at T _C = 25°C	40	40	

BUZ71/71A

Symbol	Characteristic	Min	Max	Unit	Test Conditions
Off Charac	teristics		elite Eyple	ham gairtail	ave the low voltage, high speed, and
V _{(BR)DSS}	Drain Source Breakdown Voltage ¹	50		V	V _{GS} = 0 V, I _D = 1 mA
I _{DSS}	Zero Gate Voltage Drain Current	1111	250	μΑ	V _{DS} = Rated V _{DSS} , V _{GS} = 0 V
	-		1000	μΑ	V_{DS} = Rated V_{DSS} , V_{GS} = 0 V, T_C = 125°C
I _{GSS}	Gate-Body Leakage Current	APTEUR	± 100	nA	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$
On Charac	teristics			stores	Billoon Onte for Feet Switching St
V _{GS(th)}	Gate Threshold Voltage	2.1	4.0	V	I _D = 10 mA, V _{DS} = V _{GS}
R _{DS(on)}	Static Drain-Source On-Resistance ²			Ω	V _{GS} = 10 V, I _D = 6.0 A
	BUZ71		0.10		
	BUZ71A		0.12		adulted in select
9 _{fs}	Forward Transconductance	3		S	V _{DS} = 10 V, I _D = 6 A
Dynamic C	haracteristics		tsun		Symbol Characteristic
C _{iss}	Input Capacitance		650	pF	V _{DS} = 25 V, V _{GS} = 0 V
Coss	Output Capacitance		450	pF	f = 1.0 MHz
C _{rss}	Reverse Transfer Capacitance		280	pF	Di Qs e apR
Switching	Characteristics $(T_C = 25^{\circ}C)^3$				Ves Gate to Source Voltage
t _{d(on)}	Turn-On Delay Time	03)	30	ns	V _{DD} = 30 V, I _D = 3 A
t _r	Rise Time		85	ns	$V_{GS} = 10 \text{ V}, R_{GEN} = 50 \Omega$ $R_{GS} = 50 \Omega$
t _{d(off)}	Turn-Off Delay Time		90	ns	seasonal grandor tot
t _f	Fall Time		110	ns	1/8" From Class for 5 to
Qg	Total Gate Charge		20	nC	V _{GS} = 10 V, I _D = 12 A V _{DD} = 40 V
Symbol	Characteristic	Тур	Max	Unit	Test Conditions
Source-Dra	nin Diode Characteristics		84.		Continuous
V _{SD}	Diode Forward Voltage		2.2	V	I _S = 12 A; V _{GS} = 0 V
t _{rr}	Reverse Recovery Time	120		ns	$I_S = 12 \text{ A}; \text{ dI}_S/\text{dt} = 100 \text{ A}/\mu\text{S}$

Notes

^{1.} T_J = $+25^{\circ}$ C to $+150^{\circ}$ C 2. Pulse test: Pulse width $\leq 80~\mu$ s, Duty cycle $\leq 1\%$ 3. Switching time measurements performed on LEM TR-58 test equipment.

FMP35N05/FMP30N05 N-Channel Power MOSFETs, 30-35 A, 50 V

Advance Information

Power And Discrete Division

Description

These devices are very low $R_{DS(on)}$, 50 V, n-channel, enhancement mode, power MOSFETs especially designed to serve the low voltage, high speed, switching markets. Typical applications are SMPS for telecommunication and instrumentation, DC motor controls, emitter switching, synchronous rectification, and systems that are operated from low voltage batteries, such as automotive and portable equipment, etc.

- Extremely Low R_{DS(on)}
- VGS Rated at ± 30 V
- Silicon Gate for Fast Switching Speeds
- Rugged
- Low Drive Requirements
- Ease of Paralleling

TO-220AB

FMP35N05 FMP30N05

Maximum Ratings

Symbol	Characteristic	Rating FMP35N05	Rating FMP30N05	Unit
V _{DSS}	Drain to Source Voltage	50	50	Sould Mess V
V _{DGR}	Drain to Gate Voltage $R_{GS} = 20 \text{ k}\Omega$	50	50 300 300	
V _G S	Gate to Source Voltage	± 30	± 30	Institute A Montrepolitiv
T _J , T _{stg}	Operating Junction and Storage Temperatures	-55 to +150	-55 to +150	angini moo °C
TL O	Maximum Lead Temperature for Soldering Purposes, 1/8" From Case for 5 s	300	300	C graterior °C

Maximum On-State Characteristics

	FMP35N05	FMP30N05	5 of notional
Static Drain-to-Source On Resistance	0.04	0.05	I physical Ω (actions)
Drain Current Continuous at T _C = 25°C Continuous at T _C = 100°C	35 22	30 20	90000 A
Thermal Characteristics		Ine	Payare Cum
Thermal Resistance, Junction to Case	1.25	1.25	od peted «C/M
Thermal Resistance, Junction to Ambient	60	60	°C/W
Total Power Dissipation at T _C = 25°C	100	100	A 8 = al
	On Resistance Drain Current Continuous at T _C = 25°C Continuous at T _C = 100°C Thermal Characteristics Thermal Resistance, Junction to Case Thermal Resistance, Junction to Ambient Total Power Dissipation	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

FRP860 Series Ultra-fast POWERplanar™ Rectifiers

Advance Information

Power And Discrete Division

Description

Designed for use in switching power supplies, inverters and as free-wheeling diodes, these state-of-the-art devices have the following features:

- Soft Recovery (S > 0.5)
- Low I_{R(REC)}
 150°C Operating Junction Temperature
- Popular TO-220AC Package

TO-220AC

FRP860 FRP850 FRP840

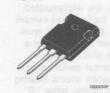
Maximum Ratings

Symbol	Rating	FRP860	FRP850	FRP840	Unit
V _{RRM} V _{RSM} V _R	Peak Repetitive Reverse Voltage Non-repetitive Peak Reverse Voltage DC Blocking Voltage	600 600 600	500 500 500	400 400 400	V mumba
I _{F(AV)}	Average Rectified Forward Current, T _C = 120°C, Rated V _R	8	8	8 Characteria	A
I _{FRM}	Peak Repetitive Forward Current Rated V_R , 50% Duty Cycle, Square Wave, 20 kHz, $T_C = 120$ °C	16	16	16 of siate	A
I _{FSM}	Non-repetitive Peak Surge Current per	80	80	80	A
	Diode, Surge Applied at Rate Load Conditions Halfwave, Single Phase, 60 Hz	-55 to +180	bn .		
T _J , T _{stg}	Operating Junction Temperature and Storage Temperature	-55 to +150	-55 to +150	-55 to +150	°C
Thermal (Characteristics				
$R_{ heta$ JC	Maximum Thermal Resistance, Junction to Case	2.0	2.0	2.0	°C/W
Electrical	Characteristics	10.0	9	Drain-to-Source	2 pojagi
V _{FM} ⁽¹⁾	Maximum Instantaneous Forward Voltage I _F = 8.0 A, T _C = 25°C	1.5	1.5	1.5	V
I _{RRM} ⁽¹⁾	Maximum Instantaneous Repetitive Reverse Current		golles	sional Chargela	(T mumise
W	Rated DC Voltage, T _C = 125°C Rated DC Voltage, T _C = 25°C	2.0 25	2.0 25	2.0 25	mA μA
t _{rr}	Maximum Reverse Recovery Time $I_F = 8 \text{ A}$; $dI_F/dt = 100 \text{ A}/\mu\text{S}$	75	75	75	ns
I _{R(REC)}	Maximum Reverse Recovery Current $I_F = 8$ A, $dI_F/dt = 100$ A/ μ s, $V_R = V_{RRM}$	5.0	5.0	5.0	А

^{1.} Pulse Test: Pulse Width = 300 μ S. Duty Cycle \leq 2.0%.

FR3200CC Series Ultra-Fast POWERplanar™ Rectifiers

Advance Information


Power And Discrete Division

Description

Designed for use in switching power supplies, inverters and as free-wheeling diodes, these state-of-the-art devices have the following features:

- Ultrafast 35 ns Reverse Recovery Time
- Soft Recovery (S > 0.5)
- · Low IR(REC)
- 150°C Operating Junction Temperature

TO-247

FRP3205CC FRP3210CC FRP3215CC FRP3220CC

Maximum Ratings

Symbol	Rating	FRP3205CC	FRP3210CC	FRP3215CC	FRP3220CC	Unit
V _{RRM} V _{RSM} V _R	Peak Repetitive Reverse Voltage Non-repetitive Peak Reverse Voltage DC Blocking Voltage	50 50 50	100 100 100	150 150 150	180 200 180	TO TO HA
I _{F(AV)}	Average Rectified Forward Current, T _C = 130°C, Rated V _R	32	32	32	32	Jo A
I _{FRM}	Peak Repetitive Forward Current Rated V_R , 50% Duty Cycle, Square Wave, 20 kHz, $T_C = 107^{\circ}C$	64	64	64	64 (V)	A Part Rus
I _{FSM}	Non-repetitive Peak Surge Current per Diode, Surge Applied at Rate Load Conditions Halfwave, Single Phase, 60 Hz	200	200	200 12 000.0 10 880.0	200	A FAMPSON IRREP161
T _J , T _{stg}	Operating Junction Temperature and Storage Temperature	-55 to +150	-55 to +150	-55 to +150	-55 to +150	O° C
Thermal C	Characteristics W 000 000	9381	as A 150 W	0.010	V 08.	IAFP143
$R_{ heta$ JC	Maximum Thermal Resistance, Junction to Case	1.0	1.0	1.0	V 00 1.0	°C/W
$R_{\theta JA}$	Maximum Thermal Resistance, Junction to Ambient	60	60	60	V 00160	1RFP140
Electrical	Characteristics per Diode	121/2	AF OCT A DO	1 2 0 1 1 0	V 801	3417 111
V _{FM} ⁽¹⁾	Maximum Instantaneous Forward Voltage I _F = 16 A, T _C = 150°C I _E = 16 A, T _C = 25°C	0.80 0.95	0.80 0.95	0.80 0.95	0.80 0.95	V
I _{RRM} ⁽¹⁾	Maximum Instantaneous Repetitive Reverse Current Rated DC Voltage, T _C = 125°C	10	10	10	V 000	mA
VV UST	Rated DC Voltage, T _C = 25°C	25	25	25	25	μΑ
t _{rr}	Maximum Reverse Recovery Time $I_F = 1.0 \text{ A}; \text{ d}I_F/\text{d}t = 50 \text{ A}/\mu\text{S}$ $I_F = 16 \text{ A}; \text{ d}I_F/\text{d}t = 100 \text{ A}/\mu\text{S}$	35 50	35 50	35 50	35 50	ns
I _{R(REC)}	Maximum Reverse Recovery Current I _F = 16 A, dI _F /dt = 100 A/μs, V _R = V _{RRM}	2.5	2.5	2.5	2.5	А

^{1.} Pulse Test: Pulse Width = 300 μ S. Duty Cycle \leq 2.0%.

TO-247 Encapsulated N-Channel Power MOSFETs, 8-60 A, 50-500 V

Advance Information

Power And Discrete Division

Description

These high power n-channel MOSFETs are encapsulated in a TO-247 housing to attain superior thermal and current handling performance in comparison to their TO-204 counterparts. The TO-247 case facilitates their mounting on a PC board, attaching them to heat sinks and meeting UL and VDE safety requirements. The electrical performance of the die can be found in the specification sheets bearing the part number listed below minus the middle letter ''P'', eg. consult the IRF440 specification for the electrical characteristics of the IRFP440 part.

- Isolated mounting hole
- Vertical mounting
- 0.10" creep and strike distances
- All copper header

Product Summary

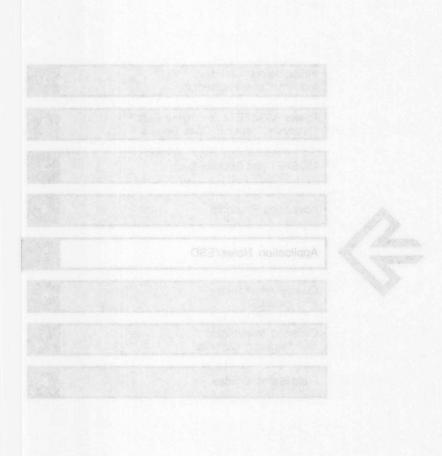
Part Number	V _{DSS} (V)	R _{DS(on)} (Ohms)	I _D at T _C = 25°C (A)	P _D at T _C = 25°C (W)
FMP60N05	50 V	0.025 Ω	60 A	150 W
FMP55N05	50 V	0.030 Ω	55 A	150 W
IRFP151	60 V	0.055 Ω	45 A	250 W
IRFP153	60 V	0.080 Ω	38 A	250 W
IRFP141	60 V	0.085 Ω	28 A	150 W
IRFP143	60 V	0.110 Ω	26 A	150 W
IRFP150	100 V	0.055 Ω	45 A	250 W
IRFP152	100 V	0.080 Ω	38 A	250 W
IRFP140	100 V	0.085 Ω	28 A	150 W
IRFP142	100 V	0.110 Ω	26 A	150 W
IRFP251	150 V	0.085 Ω	38 A	250 W
IRFP253	150 V	0.120 Ω	32 A	250 W
IRFP241	150 V	0.180 Ω	20 A	150 W
IRFP243	150 V	0.220 Ω	18 A	150 W
IRFP250	200 V	0.085 Ω	38 A	250 W
IRFP252	200 V	0.120 Ω	38 A	250 W
IRFP240	200 V	0.180 Ω	20 A	150 W

Part Number	V _{DSS}	R _{DS(on)} (Ohms)	I _D at T _C = 25°C (A)	P _D at T _C = 25°C (W)
IRFP242	200 V	0.220 Ω	18 A	150 W
IRFP351	350 V	0.300 Ω	20 A	250 W
IRFP353	350 V	0.400 Ω	17 A	250 W
IRFP341	350 V	0.550 Ω	11 A	150 W
IRFP343	350 V	0.800 Ω	9 A	150 W
IRFP350	400 V	0.300 Ω	20 A	250 W
IRFP352	400 V	0.400 Ω	17 A	250 W
IRFP340	400 V	0.550 Ω	11 A	150 W
IRFP342	400 V	0.800 Ω	9 A	150 W
IRFP451	450 V	0.400 Ω	17 A	250 W
IRFP453	450 V	0.500 Ω	15 A	250 W
IRFP441	450 V	0.850 Ω	9 A	150 W
IRFP443	450 V	1.100 Ω	8 A	150 W
IRFP450	500 V	0.400 Ω	17 A	250 W
IRFP452	500 V	0.500 Ω	15 A	250 W
IRFP440	500 V	0.850 Ω	9 A	150 W

1.100 Ω

500 V

150 W


8 A

т.	0	2	A	

IRFP442

	Index, Selector Guides, Industry Cross Reference	1
	Power MOSFETs and Ultra-Fast Recovery Rectifier Data Sheets	2
	MOSFET and Rectifier Dice	3
^	Advanced Products	4
\Rightarrow	Application Notes/ESD	5
~	Quality Assurance and Reliability	6
	Ordering Information and Package Outlines	7
	Field Sales Offices	8

Application Note PD-4

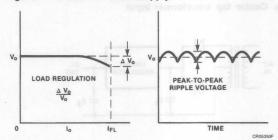
Power And Discrete Division

Introduction

Virtually every piece of electronic equipment, eg. computers and their peripherals, calculators, TV and hi-fi equipment, and instruments, is powered from a DC power source, be it a battery or a DC power supply. Most of this equipment requires not only DC voltage but voltage that is also well filtered and regulated. Since power supplies are so widely used in electronic equipment, these devices now comprise a worldwide segment of the electronics market in excess of \$5 billion annually.

There are three types of electronic power conversion devices in use today which are classified as follows according to their input and output voltages: 1) the AC/DC power supply; 2) DC/DC converter; 3) the DC/AC inverter. Each has its own area of use but this paper will only deal with the first two, which are the most commonly used.

A power supply converting AC line voltage to DC power must perform the following functions at high efficiency and at low cost:


- Rectification: Convert the incoming AC line voltage to DC voltage.
- Voltage transformation: Supply the correct DC voltage level(s).
- 3) Filtering: Smooth the ripple of the rectified voltage.
- Regulation: Control the output voltage level to a constant value irrespective of line, load and temperature changes.
- Isolation: Separate electrically the output from the input voltage source.
- Protection: Prevent damaging voltage surges from reaching the output; provide back-up power or shut down during a brown-out.

An ideal power supply would be characterized by supplying a smooth and constant output voltage regardless of variations in line voltage, load current or ambient temperature at 100% conversion efficiency. Figure 1 compares a real power supply to this ideal one and further illustrates some power supply terms.

Linear Power Supplies

Figure 2 illustrates two common linear power supply circuits in current use. Both circuits employ full-wave rectification to reduce ripple voltage to capacitor C1. The bridge rectifier circuit has a simple transformer but current must flow through two diodes. The center-tapped configuration is preferred for low output voltages since there is just one diode voltage drop. For 5 V and 12 V outputs, Schottky barrier diodes are commonly used since they have lower

Figure 1 Idealized Power Supply

voltage drops than equivalently rated ultra-fast types, which further increases power conversion efficiency. However, each diode must withstand twice the reverse voltage that a diode sees in a full-wave bridge for the same input voltage.

The linear voltage regulator behaves as a variable resistance between the input and the output as it provides the precise output voltage. One of the limitations to the efficiency of this circuit is due to the fact that the linear device must drop the difference in voltage between the input and output. Consequently the power dissipated by the linear device is $(V_i - V_o) \times I_o$. While these supplies have many desirable characteristics, such as simplicity, low output ripple, excellent line and load regulation, fast response time to load or line changes and low EMI, they suffer from low efficiency and occupy large volumes. Switching power supplies are becoming popular because they offer better solutions to these problems.

Switching Power Supplies

Pulse Width Modulation

In the early 60's, switching regulators started to be designed for the military, who would pay a premium for light weight and efficiency. One way to control average power to a load is to control average voltage applied to it. This can be done by opening and closing a switch in rapid fashion as is being done in *Figure 3*.

The average voltage seen by the load resistor R is equal to:

$$V_{o(avg)} = (t_{(on)}/T) \times V_i$$
 (A)

Reducing $t_{(on)}$ reduces $V_{o(avg)}$. This method of control is referred to as pulse width modulation (PWM).

Figure 2 Linear Voltage Regulator
a. Center tap transformer input

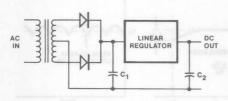


Figure 3 Example of Pulse Width Modulation

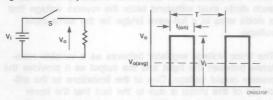
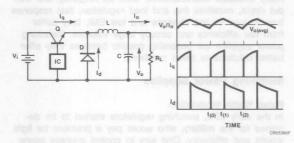
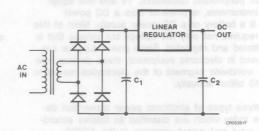



Figure 4 Buck Regulator Circuit with Voltage and Current Waveforms



Buck Regulator

As we shall see, there are many different switching voltage regulator designs. The first one to be considered because of its simplicity is the buck regulator (Figure 4), also known as a step-down regulator since the output voltage as given by equation (A) is less than the input voltage. A typical application is to reduce the standard military bus voltage of 28 V to 5 V to power TTL logic.

At time t_0 in Figure 4, the controller, having sensed that the output voltage V_0 is too low, turns on the pass transistor to build up current in L, which also starts to recharge capacitor C. At a predetermined level of V_0 , the controller switches off the pass transistor Q, which forces the current to free wheel around the path consisting of L,

b. Full-wave bridge input

C, and the ultra-fast rectifier D. This effectively transfers the energy stored in the inductor L to the capacitor. Inductor and capacitor sizes are inversely proportional to switching frequency, which accounts for the increasing power density of switching power supplies. Power MOS-FETs are rapidly replacing bi-polar transistors as the pass transistor because of their high frequency capability. Since the pass transistor must not only carry load current but reverse recovery current of diode D, an ultra-fast recovery diode is mandatory.

Boost Regulator

A second type of regulator shown in *Figure 5* is capable of boosting the input voltage. Applications for this circuit would be to increase 5 V battery sources to 15 V for CMOS circuits or even to 150 V for electro-luminescent displays.

The concept of this circuit is still the same as the previous, namely to transfer the energy stored in the inductor into the capacitor. The inductor current can ramp up quickly when the transistor switch is closed at time $t_{(0)}$ since the full input voltage is applied to it. The transistor is turned off at time $t_{(1)}$ which forces the inductor current to charge up the capacitor through the ultra-fast diode D. Since the energy stored in the inductor is equal to L x I x I/2, the PWM IC can increase $V_{\rm o}$ by increasing its own on-time to increase the peak inductor current before switching. The transfer function is:

$$V_o = V_{in} \left(T/(T - t_{(on)})\right)$$

Figure 5 Boost Regulator and Associated I/V waveforms

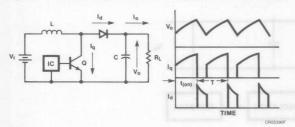


Figure 6 Inverting Regulator and I/V Waveforms

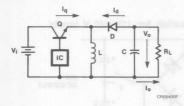
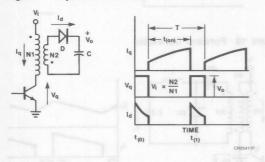



Figure 7 Flyback Converter

Inverting Regulator

Figure 6 shows a switching circuit which produces an output voltage with the opposite polarity of the input voltage. This circuit works in the same fashion as the boost converter but has achieved the voltage inversion by exchanging positions of the transistor and inductor. The circuit is also known as a buck-boost regulator since the absolute magnitude of the output voltage can be higher or lower than the input voltage, depending upon the ratio of ontime to off-time of the pass transistor.

Flyback Converter

The three previous regulators are suitable for low voltage control when no electrical isolation is required. However in off-line switchers operating from 110/220 V mains, electri-

cal isolation is an absolute must. This is achieved by using a transformer in place of the inductor. The flyback converter shown in *Figure 7* is commonly used in power supplies up through 150 W, which is sufficient for most personal computers, many test instruments, video terminals and the like.

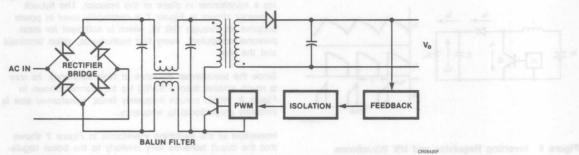
Since the transformer operates at high frequency, its size is much smaller than a 50/60 Hz transformer shown in *Figure 2*. Within certain frequency limits, transformer size is inversely proportional to frequency.

Inspection of the switching waveforms in Figure 7 shows that the circuit behaves very similarly to the boost regulator. The transformer should be regarded as an inductor with two windings, one for storing energy in the transformer core and the other for dumping the core energy into the output capacitor. Current increases in the primary of the transformer during the on-time of the transistor $(t_{\{0\}}-t_{\{1\}})$ but note that no secondary current flows because the secondary voltage reverse biases diode D. When the transistor turns off, the transformer voltage polarities reverse because its magnetic field wants to maintain current flow. Secondary current can now flow through the diode to charge up the output capacitor. The output voltage is given by the basic PWM equation times the transformer turns ration (N2/N1):

$$V_0 = V_{in} \times (t_{(on)}/(T - t_{(on)}) \times (N2/N1)$$

Voltage control is achieved by controlling the transistor ontime to control the peak primary current.

The flyback converter is well suited for multiple output and high voltage power supplies since the transformer inductance replaces the filter inductor(s). The major disadvantages which limit its use to lower wattage supplies are:


- The output ripple voltage is high because of halfwave charging of the output capacitor.
- 2. The transistor must block 2 x Vin during turn-off.
- The transformer is driven in only one direction, which necessitates a larger core, ie more expensive, in a flyback design than for an equivalent design using a forward or push-pull design.

Off-line Switching Supply

Based on the flyback regulator circuit, a complete off-line switching supply is shown in *Figure 8*. The supply is called "off-line" because the DC voltage to the switch is developed right from the AC line.

The circuit also shows the feedback loop completed from the output back to the switching transistor. This feedback loop must have isolation in order for the DC output to be

Figure 8 Complete flyback switching supply

isolated from the AC line. This is normally accomplished by a small transformer or opto-coupler.

Switching power supplies designed for international usage must have selectable AC input voltage ranges of 115 V and 230 V. Figure 9 shows how this is accomplished for many switching power supplies.

Forward Converter

Although the forward converter is not as well-known as the flyback converter, it is becoming increasingly popular for power supplies in the 100-500 W range. Figure 10 shows the basic circuit of the forward converter. When the transistor is switched on, current rises linearly in the primary and secondary current also flows through diode D1 into the inductor and capacitor. When the transistor switch is opened, inductor current continues to free-wheel through the capacitor and diode D2. This converter will have less ripple since the capacitor is being continuously charged, an advantage of particular interest in high current supplies.

The relationship between input and output for this circuit configuration is:

$$V_0 = V_{in} \times (N2/N1) \times (t_{(on)}/T)$$
 (D)

Note that the transformer shown in the above figure has been wound with a third winding and series diode D3. The purpose of this winding is to transfer the magnetizing energy in the core back to the DC supply so it does not have to be dissipated in the transistor switch or some other voltage suppressor. The turns ratio N3/N1 limits the peak voltage seen by the transistor and is normally chosen equal to 1 so that the forward converter can run at 50% duty cycle. Under this condition, the transistor must block 2 x V_{in} during turn-off.

Figure 9 Selector switch for 115/230 V inputs

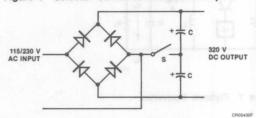
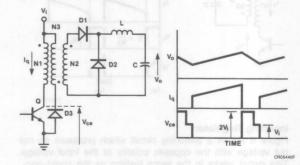



Figure 10 Forward Converter

Symmetrical Converters

Push-Pull Converter

The circuit for this best-known and widely used converter is shown in Figure 11.

Transistors Q1 and Q2 are alternately switched on for time period $t_{(on)}$. This subjects the transformer core to an alternating voltage polarity to maximize its usefulness. The transfer function still follows the basic PWM formula but there is the added factor 2 because both transistors alternately conduct for a portion of the switching cycle.

$$V_0 = 2 \times V_{in} \times (N2/N1) \times (t_{(on)}/T)$$

The presence of a dead time period $t_{(d)}$ is required to avoid having both transistors conduct at the same time, which would be the same as turning the transistors on into a short circuit. The output ripple frequency is twice the operating frequency which reduces the size of the LC filter components. Note the anti-parallel diodes connected across each transistor switch. They perform the same function as diode D3 in the forward converter, namely to return the magnetization energy to the input voltage whenever a transistor turns off.

Compared to the following symmetrical converters, this circuit has the advantage that the transistor switches share a common signal return line. Its chief disadvantages are that the transformer center-tap connection complicates the transformer design and the primary windings must be tightly coupled in order to avoid voltage spikes when each transistor is turning off.

Half-Bridge Converter

This converter (Figure 12) operates in much the same fashion as the previous push-pull circuit.

The input capacitors C1 and C2 split the input voltage equally so that when either transistor turns on, the transformer primary sees $V_{\rm in}/2$. Consequently note no factor of "2" in the following transfer equation:

$$V_0 = V_{in} \times (N2/N1) \times (t_{(on)}/T)$$

Since the two transistors are connected in series, they never see more than the input voltage V_{in} plus the inevitable switching transient voltages. The necessity of a dead time is even more obvious here since the simultaneous conduction of both transistors results in a dead short across the input supply. Anti-parallel ultra-fast diodes return the magnetization energy as in the push-pull circuit but alternately to capacitors C1 and C2. This circuit has the slight inconvenience of requiring an isolated base drive to Q1, but since most practical base drive circuits use a transformer for isolation, this shortcoming is hardly worth noting.

Figure 11 Push-pull Converter

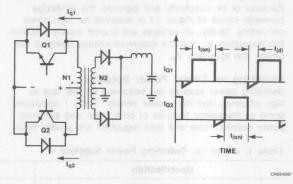


Figure 12 Half-bridge converter circuit

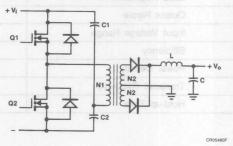
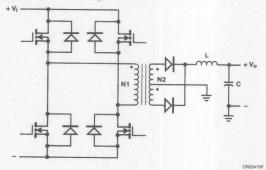



Figure 13 Full-bridge converter circuit

Full-Bridge Converter

Because of its complexity and expense, the full-bridge converter circuit of *Figure 13* is reserved for high power converters. Ideally, all voltages are shared equally between two transistors so that the maximum voltage rating of the device can approach V_{in}.

Switching vs. Linear Power Supplies

Switching power supplies are becoming popular due to high efficiency and high power density. *Table 1* compares some of the salient features of both linear and switching power supplies. Line and load regulation are usually better

with linear supplies, sometimes by as much as an order of magnitude, but switching power supplies frequently use linear post-regulators to improve output regulation.

DC-DC CONVERTERS

DC-DC converters are widely used to transform and distribute DC power in systems and instruments. DC power is usually available to a system in the form of a system power supply or battery. This power may be in the form of 5 V, 28 V, 48 V or other DC voltages. All of the previously discussed circuits are applicable to this type of duty. Since voltages are low, isolation is not usually required.

Table 1: Linear vs. Switching Power Supplies

Specification	Linear	Switcher
Line Regulation	0.02 - 0.05%	0.05 – 0.1%
Load Regulation	0.02 - 0.1%	0.1 – 1.0%
Output Ripple	0.5 – 2 mV RMS	25 – 100 mV P-P
Input Voltage Range	± 10%	± 20%
Efficiency	40 – 55%	60 – 80%
Power Density	0.5 W/cu. in.	2-5 W/cu. in.
Transient Recovery	50 μs	300 μs
Hold-up Time	2 ms	30 ms

A Schlumberger Company

Application Note PD-1

Introduction

A key device in all high voltage AC-DC power supplies is the ultrafast, reverse recovery rectifier diode. These diodes (D1 and D2 in Figure 1) not only play a major role in power supply efficiency but also can be major contributors to circuit electromagnetic interference (EMI) and even cause transistor failure if they are not selected correctly. One would assume that by now, this rectifier diode should approximate the behavior of an ideal switch, i.e., zero onstate voltage, no reverse leakage current and instantaneous turn-on. At first glance, the design of this single pn-junction device would appear to be quite straight forward but a review of the device equations reveals that many compromises must be made to optimize its performance. An understanding of these tradeoffs will allow the circuit designer to select the most appropriate rectifier

Consider how the non-ideal behavior of rectifier D2 affects the circuit performance of the buck regulator in Figure 1a. The solid lines in Figure 2a depict the switching behavior of the transistor switch and rectifier in comparison to the waveforms (dashed lines) that represent an ideal rectifier. There are four differences between the two cases:

1. The most significant difference is that the peak collector current of the transistor switch (I_T in Figure 2a) at the end of turn-on (time t_2) has been increased by the magni-

Figure 1a Buck Regulator to Step-down Input Voltage $V_{\rm IN}$

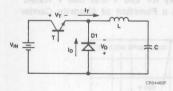
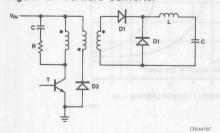
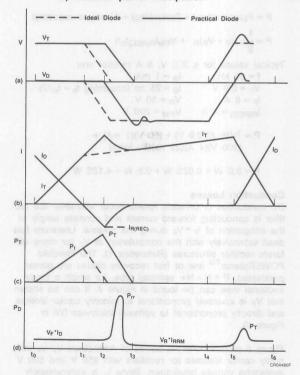



Figure 1b Forward Converter

Optimizing the Ultra-fast POWERplanar™ Rectifier Diode for Switching Power Supplies


Ralph E. Locher, Power And Discrete Division

tude of the peak reverse recovery current of the rectifier ($I_{R(REC)}$). Correspondingly, the peak power dissipation within the transistor has increased from P_T to $P_T^{'}$ as shown in Figure 2c.

2. The maximum transistor voltage V_T at turn-off $(t_4-t_6$ in Figure 2a) has been increased by the dynamic voltage drop of the rectifier during turn-on. Since buck regulators generally run at low voltages, this increase has a minimal effect. However, it is more significant in the forward converter circuit of Figure 1b and in bridge circuits operating from high bus voltages where the voltage margins cannot be as generous.

Figure 2 Transistor and Rectifier Voltage and Current Waveforms for the Buck Regulator in Figure 1a

- a) Transistor and rectifier voltage waveforms
- b) Transistor and rectifier current waveforms
- c) Transistor power dissipation
- d) Rectifier power dissipation

- 3. Since the rectifier is not ideal, its power dissipation consists of the following components:
 - a. Conduction loss (V_F * I_F) during the on-time.
 - b. Turn-off loss during time $t_2 t_3$ and turn-on loss during time $t_5 t_6$ (Figure 2d).
- c. Reverse blocking loss ($V_R * I_R$) during period $t_3 t_5$. 4. The rectifier regains its reverse blocking capability at time t_2 . A ''snappy'' rectifier that quickly turns off $I_{R(REC)}$ will contribute much more EMI than a ''soft'', fast recovery rectifier.

A better transistor switch will intensify rather than improve the shortcomings of the fast recovery rectifier, so it is necessary to consider more fully the conduction and switching behavior of the rectifier diode.

Power Losses in the Ultra-fast Rectifier DiodeConsider the idealized rectifier current and voltage waveforms in *Figure 3* for a 50 kHz buck regulator. Power dissipation within the rectifier for a 50% duty factor is:

$$P = \frac{1}{2}(V_{F}I_{F} + V_{R}I_{R} + V_{RM}I_{R(REC)}t_{b}f)$$

Typical values for a 200 V, 8 A rectifier are:

f = 50 kHz $I_R = 1 \text{ mA}$ $V_F = 0.9 \text{ V}$ $t_B = 25 \text{ ns}$

 $t_B = 25$ ns (assuming $t_b = t_{rr}/2$)

 $I_F = 8 A$ $V_R = 50 V$ $I_{R(REC)} = 4 A$ $V_{RM} = 200 V$

 $P = \frac{1}{2}[(8 \text{ A})(0.9 \text{ V}) + (50 \text{ V})(1 \text{ mA}) + (200 \text{ V})(4 \text{ A})(25 \text{ ns})(50 \text{ kHz})]$

P = 3.6 W + 0.025 W + 0.5 W = 4.125 W

Conduction Losses

DC conduction or on-state losses occur whenever the rectifier is conducting forward current and consists simply of the integration of $I_{\text{F}}*V_{\text{F}}$ during the on-time. Literature has dealt extensively with the computation of V_{F} for many different rectifier structures (Reference 1). The Fairchild POWERplanar $^{\text{TM}}$ line of fast recovery diodes are planar passivated, P+N-N+ epitaxial type, for which a cross-sectional view can be found in Figure 4. It can be shown that V_{F} is inversely proportional to minority carrier lifetime and directly proportional to epitaxial thickness (Wi in Figure 4).

Figure 5 plots theoretical curves of normalized V_F vs minority carrier lifetimes for rectifiers with 250 V and 500 V avalanche voltage breakdown. Since t_{rr} is approximately equal to minority carrier lifetime, it is apparent that high current pn-junction rectifiers are limited to 20-50 ns re-

Figure 3 Representative Current and Voltage
Waveforms for the Rectifier in the Buck
Regulator found in Figure 1a

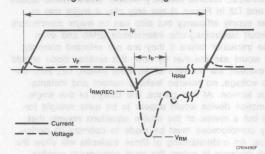


Figure 4 Cross-sectional View of a PLANARpowerTM
P+N-N+, Fast Recovery Rectifier

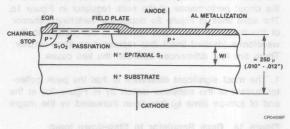
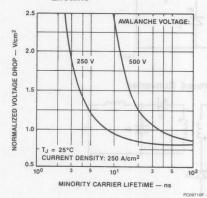



Figure 5 Normalized V_F for 250 V and 500 V Rated Rectifiers as a Function of Minority Carrier Lifetime

Optimizing the Ultra-fast POWERplanarTM Rectifier Diode for Switching Power Supplies

verse recovery times because V_F dramatically increases for minority carrier lifetimes less than these. It is also apparent that the V_F curves have a broad minima around 10-30 ns so that another reason to select this value of minority carrier lifetime is that V_F becomes independent of small changes in minority carrier lifetime due to manufacturing tolerances.

It is immediately obvious that the key to maximizing current through the rectifier is to minimize V_F . However at 200 kHz, reverse recovery losses will quadruple to 4 W, so that increasing attention must be paid to this parameter as operating frequency is raised.

Reverse Blocking Losses

Planar passivation techniques have reduced surface leakage currents (I_R) to a negligible amount so that the principle reverse leakage current is recombination current in the space charge region. Some of the many methods to control minority carrier lifetimes are electron or neutron irradiation and gold or platinum diffusion, each with its own advantages and disadvantages. For 200 V, ultrafast recovery rectifiers, gold diffusion still represents the best compromise between speed, V_F, I_R and "soft" recovery.

A drawback to gold diffusion is its relatively high reverse leakage current. It should be pointed out that the reliability of the gold-diffused product is the same as other rectifiers (all other factors being equal), since this leakage current is a bulk and not a surface phenomenon. Figure 6 illustrates the dependency of recombination current on junction temperature and minority carrier lifetime, which is inversely proportional to the amount of gold in the depletion region. Experimental leakage test results have been plotted in Figure 6 for the Fairchild 8 A and 16 A series of rectifiers (FRP820 and FRP1620 respectively) at 100°C, 125°C and 150°C. These points indicate that the low current injection level lifetime ranges form 20 - 30 ns and is relatively independent of T_J. Since reliability design guidelines specify that the rectifiers be operated at one-half their voltage rating and 25-50°C below their maximum junction temperature, the expected leakage currents in well designed power supplies will run less than 1 mA.

Reverse Recovery Losses

All pn-junction rectifiers, operating in the forward direction, store charge in the form of excess minority carriers. The amount of stored charge is proportional to the magnitude of the forward current. The process by which a rectifier diode is brought out of conduction and returned to its block state is called commutation. Figure 7 shows an expanded view of current commutation, also called reverse recovery. Starting at time t₀, the rectifier is switched from its forward conducting state at a specified current ramp rate (-dl_F/dt). The current ramp rate will be determined by

the external circuit (E/L) or the turn-on time of a transistor switch. During the time t₁-t₂, the stored charge within the rectifier is able to supply more current than the circuit requires, so that the rectifier behaves like a short circuit. Stored charge is depleted both by the reverse recovery current and recombination within the rectifier. Eventually the stored charge dwindles to the point that a depletion region around the junction starts to grow, allowing the rectifier to regain its reverse blocking voltage capability (t2). From a circuit-design standpoint, the most important parameters are the peak reverse recovery current and "S", the softness factor. A "snappy" rectifier will produce a large amplitude voltage transient and contribute significantly to electro-magnetic interference. Figure 8 illustrates the actual reverse recovery of two rectifier diodes. The peak voltage of the snappy rectifier is 175 V compared to

Figure 6 Regeneration Current for Gold-doped, P+N-N+ Rectifier Diodes

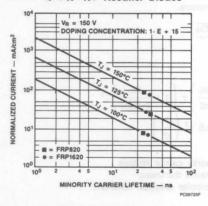
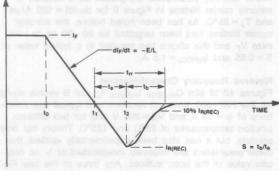



Figure 7 Expanded View of Current Commutation in a Rectifier Diode

CR04510

142 V peak for the FRP820, the higher voltage resulting from both the higher $I_{R(REC)}$ and the fact that the reverse recovery current decays to zero in a shorter time.

The relative snappiness of a rectifier may be defined quantitatively by dividing the reverse recovery time t_{rr} into two subperiods, t_a and t_b , as shown in Figure 7. The softness factor ''S'' is simply the ratio t_b/t_a . A rectifier with a low value S factor will be more likely to produce dangerous voltage transients, but it will also dissipate less reverse recovery energy than a high S factor rectifier. A reasonable compromise between these two conflicting constraints would be to design a rectifier with S = 1 ($t_a = t_b$). The S factors of the FRP820 rectifier and the competitive device in Figure 8 are 0.55 and 0.31 respectively.

Only recently has it become possible to model the ramp recovery in p-i-n rectifiers (References 2, 3) and the following equations have proved useful in predicting reverse recovery parameters.

$$\begin{split} t_{rr} &= \frac{Wi\sqrt{\tau/Da}}{8} \\ S &= \frac{Wi}{4\sqrt{Da\tau}} \\ I_{R(REC)} &= \left(\frac{dI_F}{dt}\right)\tau\left(1 + \frac{Wi}{8\sqrt{Da\tau}}\right)^{-1} \\ Q_{R(REC)} &= 0.5 \ \tau^2 \left(\frac{dI_F}{dt}\right) \end{split}$$

where:

 τ = minority carrier lifetime

Vi = epitaxial thickness

Da = ambipolar diffusion constant

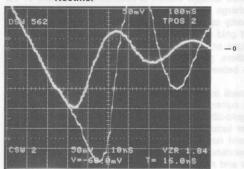
The blocking voltage rating of the rectifier primarily determines Wi; but for a given Wi, note that a short minority lifetime not only decreases $I_{R(REC)}$ but happily increases S. These two key parameters are plotted as a function of minority carrier lifetime in Figure 9 for $dI_F/dt=100~A/\mu s$ and $T_J=25^{\circ}C.$ As has been noted before, the minority carrier lifetime had been targetted for 20 – 30 ns to minimize V_F and this choice has resulted in a typical value of S = 0.65 and $I_{R(REC)}=1.5~A.$

Reverse Recovery Characterization

Figures 10-13 plot $Q_{R(REC)}$, $I_{R(REC)}$, t_{rr} and S versus dI_F/dt for the FRP1600 series of rectifiers and typical use conditions of $I_F=16$ A and $V_R=200$ V and for two different junction temperatures of 25°C and 125°C. Theory not only predicts, but it has also been experimentally verified, that these parameters are relatively independent of I_F so only one value of the latter suffices. Any three of the four Fig-

ures 10-13 completely specifies the reverse recovery behavior of the rectifier. Since S and $T_{\rm rr}$ vary the least over the plotting dl_F/dt range, it is convenient to formulate reverse recovery energy loss P in microwatts in terms of the circuit parameters $V_{\rm B}$ and dl_F/dt:

$$P = \frac{V_R \left(\frac{dI_F}{dt}\right) f}{2 \ S} \left(\frac{St_{rr}}{1+S}\right)^2 \ 10^{-3} \ (\mu W)$$


where:

V_R = peak reverse voltage

 $dI_F/dt = ramp rate (A/\mu s)$

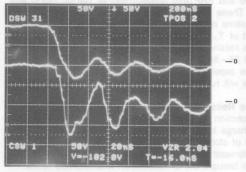
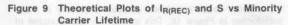

f = operating frequency (kHz)

Figure 8 Comparison of Reverse Recovery of the FRP820 Series Rectifier to a Snappy Rectifier

Test Conditions $T_J = 25^{\circ}C$ $I_F = 8 A$ $dI_F/dt = 100 A/\mu s$



Test Conditions $T_J = 25^{\circ}C$ $I_F = 8$ A $dI_F/dt = 100$ A/ μ s

V = 50V/DIV H = 10 ns/DIV

Optimizing the Ultra-fast POWERplanarTM
Rectifier Diode for Switching Power Supplies

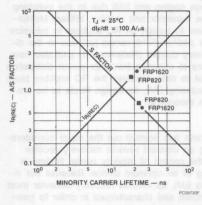
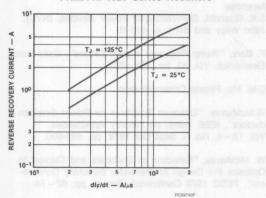
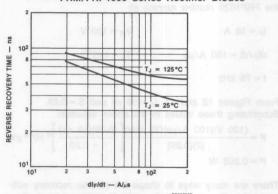




Figure 10 Reverse Recovery Current for the FRM/FRP1620 Series Rectifiers

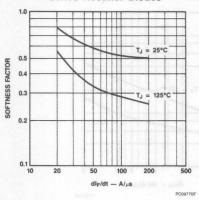

103 0 5 103 0 6 1 3 1 102 1 102 1 101 1 2 3 5 8 102 2 1 101 1 101 2 3 5 8 102 2

Figure 12 Reverse Recovery Time of the FRM/FRP1600 Series Rectifier Diodes

Optimizing the Ultra-fast POWERplanarTM Rectifier Diode for Switching Power Supplies

Figure 13 Softness Factor S for the FRM/FRP1600 Series Rectifier Diodes

Example: Calculate the reverse recovery power loss for the FRP1620 rectifier running at:

$$I_F = 16 \text{ A}$$
 $V_R = 100 \text{ V}$ $dI_F/dt = 100 \text{ A}/\mu\text{s}$ $T_J = 125^{\circ}\text{C}$ $f = 75 \text{ kHz}$

From Figures 12 and 13, t_{rr} = 56 ns and S = 0.29. Substituting these values in the above equation:

$$P = \frac{(100 \text{ V})(100 \text{ A/}\mu\text{s})(75 \text{ kHz})}{(2)(0.29)} \left[\frac{(0.29)(56 \text{ ns})}{1 + 0.29} \right]^2 10^{-3} \mu\text{W}$$

$$P = 0.205 \text{ W}$$

There are many ways to shape the reverse recovery voltage spike. The most simple and still most popular is the

RC snubber circuit connected across the primary of the transformer in Figure 1b. This serves the dual purpose of suppressing voltage ringing and EMI due to the switching action of both the transistor and rectifier. William McMurray has shown how to design an RC snubber to minimize voltage transients and/or dV/dt ramps just due to the diode reverse recovery current (Reference 4) and also how to design snubbers to minimize transistor power dissipation (Reference 5). But to date, because the RC snubber plays a major role in reducing EMI, its design tends to be empirical rather than theoretical.

Conclusion

This application note has pointed out the major considerations in designing an ultrafast reverse recovery rectifier and shown that the control of minority carrier lifetime is the key in arriving at an optimum device. Because the diode contributes to EMI, its reverse recovery behavior must be carefully controlled and characterized in order to guarantee similar performance from lot to lot.

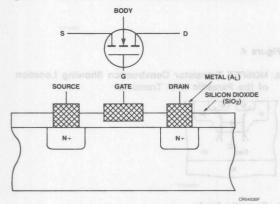
References

- S.K. Ghandhi, Semiconductor Power Devices, (NYC), John Wiley and Sons, p. 110 ff.
- 2. F. Berz, "Ramp Recovery in p-i-n Diodes", Solid-State Electronics, Vol. 23, pp. 783 792.
- 3. C.M. Hu, Private Communication
- W.McMurray, "Optimum Snubbers for Power Semiconductors", *IEEE Trans. on Industry Applications*, Vol. 1A – 8, No. 5, Sept/Oct 1972, pp. 593-600.
- W. McMurray, "Selection of Snubbers and Clamps to Optimize the Design of Transistor Switching Converters", PESC 1979 Conference Record, pp. 62 – 74.

Application Note PD-3, January 1985

Introduction to Power MOSFETs and Their Applications

Philip Dunning & Ralph Locher, Power And Discrete Div.


Introduction

The high voltage power MOSFETs that are available today are n-channel, enhancement-mode, double diffused, Metal-Oxide-Silicon, Field Effect Transistors. They perform the same function as NPN, bipolar junction transistors except the former are voltage controlled in contrast to the current controlled bi-polar devices. Today MOSFETs owe their ever-increasing popularity to their high input impedance and to the fact that being a majority carrier device, they do not suffer from minority carrier storage time effects, thermal runaway, or second breakdown.

MOSFET Operation

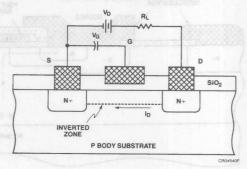

An understanding of the operation of MOSFETs can best be gleaned by first considering the lateral MOSFET shown in Figure 1.

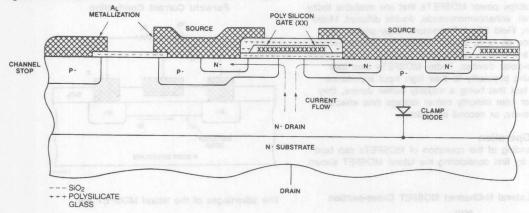
Figure 1 Lateral N-Channel MOSFET Cross-section

With no electrical bias applied to the gate G, no current can flow in either direction underneath the gate because there will always be a blocking PN junction. When the gate is forward biased with respect to the source S, as shown in Figure 2, the free hole carriers in the p-epitaxial layer are repelled away from the gate area creating a channel, which allows electrons to flow from the source to the drain. Note that since the holes have been repelled from the gate channel, the electrons are the "majority carriers" by default. This mode of operation is called "enhancement" but it is easier to think of enhancement mode of operation as the device being "normally off", i.e., the switch blocks current until it receives a signal to turn on. The opposite is depletion mode, which is a normally "on" device.

Figure 2 Lateral MOSFET Transistor Biased for Forward Current Conduction

The advantages of the lateral MOSFET are:

- 1. Low gate signal power requirement. No gate current can flow into the gate after the small gate oxide capacitance has been charged.
- 2. Fast switching speeds because electrons can start to flow from drain to source as soon as the channel opens. The channel depth is proportional to the gate voltage and pinches closed as soon as the gate voltage is removed, so there is no storage time effect as occurs in bipolar transistors.


The major disadvantages are:

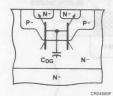
- 1. High resistance channels. In normal operation, the source is electrically connected to the substrate. With no gate bias, the depletion region extends out from the N+drain in a pseudo-hemispherical shape. The channel length L cannot be made shorter than the minimum depletion width required to support the rated voltage of the device.
- 2. Channel resistance may be decreased by creating wider channels but this is costly since it uses up valuable silicon real estate. It also slows down the switching speed of the device by increasing its gate capacitance.

Enter vertical MOSFETs!

The high voltage MOSFET structure (also known as DMOS) is shown in Figure 3.

Figure 3 Vertical DMOS Cross-sectional View

The current path is created by inverting the p-layer underneath the gate by the identical method in the lateral FETs. Source current flows underneath this gate area and then vertically through the drain, spreading out as it flows down. A typical MOSFET consists of many thousands of N+ sources conducting in parallel. This vertical geometry makes possible lower on-state resistances (R_{DS(on)}) for the same blocking voltage and faster switching than the lateral FET.


There are many vertical construction designs possible, e.g., V-groove and U-groove, and many source geometries, e.g., squares, triangles, hexagons, etc. All commercially available power MOSFETs with blocking voltages greater than 300 V are manufactured similarly to *Figure 3*. The many considerations that determine the source geometry are R_{DS(on)}, input capacitance, switching times and transconductance.

Parasitic Diode

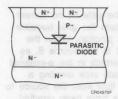
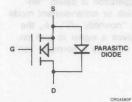

Early versions of MOSFETs were very susceptible to voltage breakdown due to voltage transients and also had a tendency to turn on under high rates of rise of drain-to-source voltage (dV/dt), both resulting in catastrophic failures. The dV/dt turn-on was due to the inherent parasitic NPN transistor incorporated within the MOSFET, shown schematically in Figure 4a. Current flow needed to charge up junction capacitance $C_{\rm DG}$ acts like base current to turn on the parasitic NPN.

Figure 4


a. MOSFET Transistor Construction Showing Location of the Parasitic NPN Transistor

b. Parasitic Diode

c. Circuit Symbol

The parasitic NPN action is suppressed by shorting the N+ source to the P+ body using the source metallization. This now creates an inherent PN diode in anti-parallel to the MOSFET transistor (see Figure 4b). Because of its extensive junction area, the current ratings and thermal resistance of this diode are the same as the power MOSFET. This parasitic diode does exhibit a very long reverse recovery time and large reverse recovery current due to the long minority carrier lifetimes in the N-drain layer, which precludes the use of this diode except for very low frequency applications, e.g., motor control circuit shown in Figure 5. However in high frequency applications, the parasitic diode must be parallelled externally by an ultra-fast rectifier to ensure that the parasitic diode does not turn on. Allowing it to turn on will substantially increase the device power dissipation due to the reverse recovery losses within the diode and also leads to higher voltage transients due to the larger reverse recovery current.

Controlling the MOSFET

A major advantage of the power MOSFET is its very fast switching speeds. The drain current is strictly proportional to gate voltage so that the theoretically perfect device could switch in 50-200 ps, the time it takes the carriers to flow from source to drain. Since the MOSFET is a majority carrier device, a second reason why it can outperform the bipolar junction transistor is that its turn-off is not delayed by minority carrier storage time in the base. A MOSFET begins to turn off as soon as its gate voltage drops down to its threshold voltage.

Switching Behavior

Figure 6 illustrates a simplified model for the parasitic capacitances of a power MOSFET and switching voltage waveforms with a resistive load.

There are several different phenomena occurring during turn-on. Referring to the same figure:

Time interval $t_1 < t < t_2$:

The initial turn-on delay time $t_{d(on)}$ is due to the length of time it takes V_{GS} to rise exponentially to the threshold voltage $V_{GS(th)}$. From Figure 6, the time constant can be seen to be $R_S \times C_{GS}$. Typical turn-on delay times for the Fairchild IRF330 are:

$$t_{d(on)} = R_S \times C_{GS} \times \ln(1 - V_{GS(th)}/V_{PK})$$
 (1)

For an assumed gate signal generator impedance of $R_{\rm S}$ of 50 Ω and $C_{\rm GS}$ of 600 pf, $t_{\rm d}$ comes to 11 ns. Note that since the signal source impedance appears in the $t_{\rm d}$ equation, it is very important to pay attention to the test conditions used in measuring switching times.

Physically one can only measure input capacitance $C_{\rm iss}$, which consists of $C_{\rm GS}$ in parallel with $C_{\rm DG}$. Even though $C_{\rm GS} > > C_{\rm DG}$, the latter capacitance undergoes a much larger voltage excursion so its effect on switching time cannot be neglected.

Figure 5 Full-wave Motor Control Circuit

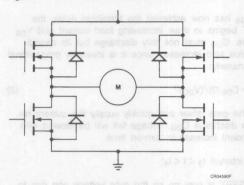
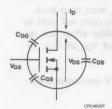
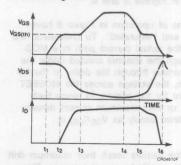




Figure 6

a. MOSFET Capacitance Model for Power MOSFET

b. Switching Waveforms for Resistive Load

Plots of C_{iss} , C_{rss} and C_{oss} for the Fairchild IRF330 are shown in Figure 7 below. The charging and discharging of C_{DG} is analogous to the ''Miller'' effect that was first discovered with electron tubes and dominates the next switching interval.

Time interval $t_2 < t < t_3$:

Since V_{GS} has now achieved the threshold value, the MOSFET begins to draw increasing load current and V_{DS} decreases. C_{DG} must not only discharge but its capacitance value also increases since it is inversely proportional to V_{DG} , namely:

$$C_{DG} = C_{DG}(0)/(V_{DG})^n$$
 (2)

Unless the gate driver can quickly supply the current required to discharge C_{DG} , voltage fall will be slowed with the attendant increase in turn-on time.

Time interval $t_3 < t < t_4$:

The MOSFET is now on so the gate voltage can rise to the overdrive level.

Turn-off interval $t_4 < t < t_6$:

Turn-off occurs in reverse order. V_{GS} must drop back close to the threshold value before $R_{DS}(on)$ will start to increase. As V_{DS} starts to rise, the Miller effect due to C_{DG} re-occurs and impedes the rise of V_{DS} as C_{DG} recharges to V_{CC} .

Specific gate drive circuits for different applications are discussed and illustrated below.

MOSFET Characterization

The output characteristics (I_D vs V_{DS}) of the Fairchild IRF330 are illustrated in Figures 8 and 9.

The two distinct regions of operation in Figure 8 have been labeled ''linear'' and ''saturated''. To understand the difference, recall that the actual current path in a MOSFET is horizontal through the channel created under the gate oxide and then vertical through the drain. In the linear region of operation, the voltage across the MOSFET channel is not sufficient for the carriers to reach their maximum drift velocity or their maximum current density. The static $R_{\mathrm{DS}(\mathrm{on})}$, defined simply as $V_{\mathrm{DS}}/I_{\mathrm{DS}}$, is a constant.

As $V_{\rm DS}$ is increased, the carriers reach their maximum drift velocity and the current amplitude cannot increase. Since the device is behaving like a current generator, it is said to have high output impedance. This is the so-called ''sat-

uration" region. One should also note that in comparing MOSFET operation to a bipolar transistor, the linear and saturated regions of the bipolar are just the opposite to the MOSFET. The equal spacing between the output I_D curves for constant steps in V_{GS} indicates that the transfer characteristic in Figure 9 will be linear in the saturated region.

Importance of Threshold Voltage

Threshold voltage $V_{GS(th)}$ is the minimum gate voltage that initiates drain current flow. $V_{GS(th)}$ can be easily measured on a Tektronix 576 curve tracer by connecting the gate to the drain and recording the required drain voltage for a specified drain current, typically 250 μ A or 1 mA. $V_{GS(th)}$

Figure 7 Typical Capacitances of the Fairchild IRF330

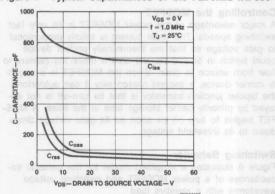
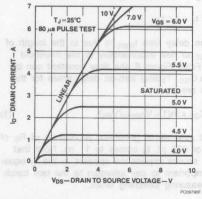
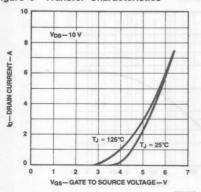



Figure 8 Output Characteristics

in Figure 9 is 3.5 V. While a high value of $V_{\text{GS(th)}}$ can apparently lengthen turn-on delay time, a low value for power MOSFET is undesirable for the following reasons:


- 1. V_{GS(th)} has a negative temperature coefficient -7 mV/°C.
- 2. The high gate impedance of a MOSFET makes it susceptible to spurious turn-on due to gate noise.
- 3. One of the more common modes of failure is gate-oxide voltage punch-through. Low $V_{GS(th)}$ requires thinner oxides, which lowers the gate oxide voltage rating.

Power MOSFET Thermal Model

Like all other power semiconductor devices, MOSFETs operate at elevated junction temperatures. It is important to observe their thermal limitations in order to achieve acceptable performance and reliability. Specification sheets contain information on maximum junction temperature $(T_{J(\text{max})})$, safe areas of operation, current ratings and electrical characteristics as a function of T_J where appropriate. However, since it is still not possible to cover all contingencies, it is still important that the designer perform some junction calculations to ensure that the device operate within its specifications.

Figure 10 shows an elementary, steady-state, thermal model for any power semiconductor and the electrical analogue. The heat generated at the junction flows through the silicon pellet to the case or tab and then to the heat sink. The junction temperature rise above the surrounding environment is directly proportional to this heat flow and the junction-to-ambient thermal resistance. The following

Figure 9 Transfer Characteristics

equation defines the steady state thermal resistance $R_{\text{(th)JC}}$ between any two points x and y:

$$R_{(th)JC} = (T_y - T_x)/P$$
 (3)

where:

T_x = average temperature at point x (°C)
T_v = average temperature at point y (°C)

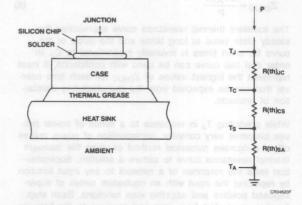
P = average heat flow in watts.

Note that for thermal resistance to be meaningful, two temperature reference points must be specified. Units for $R_{\text{(th)JC}}$ are °C/W.

The thermal model show symbolically the locations for the reference points of junction temperature, case temperature, sink temperature and ambient temperature. These temperature references define the following thermal references:

R_{(th)JC}: Junction-to-case thermal resistance.

R_{(th)CS}: Case-to-sink thermal resistance.


R_{(th)SA}: Sink-to-ambient thermal resistance.

Since the thermal resistances are in series:

$$R_{(th)JA} = R_{(th)JC} + R_{(th)CS} + R_{(th)SA}.$$
 (4)

The design and manufacture of the device determines $R_{(th)JC}$ so that while $R_{(th)JC}$ will vary somewhat from device to device, it is the sole responsibility of the manufacturer to guarantee a maximum value for $R_{(th)JC}$. Both the user and manufacturer must cooperate in keeping $R_{(th)CS}$ to an acceptable maximum and finally the user has sole responsibility for the external heat sinking.

Figure 10 MOSFET Steady State Thermal Resistance Model

By inspection of Figure 10, one can write an expression for T_{.i}:

$$T_J = T_A + P \times [R_{(th)JC} + R_{(th)CS} + R_{(th)SA}]$$
 (5)

While this appears to be a very simple formula, the major problem in using it is due to the fact that the power dissipated by the MOSFET depends upon $T_{J^{\star}}$ Consequently one must use either an iterative or graphical solution to find the maximum $R_{(th)SA}$ to ensure stability. But an explanation of transient thermal resistance is in order to handle the case of pulsed applications.

Use of steady state thermal resistance is not satisfactory for finding peak junction temperatures for pulsed applications. Plugging in the peak power value results in overestimating the actual junction temperature while using the average power value underestimates the peak junction temperature value at the end of the power pulse. The reason for the discrepancy lies in the thermal capacity of the semiconductor and its housing, i.e., its ability to store heat and to cool down before the next pulse.

The modified thermal model for the MOSFET is shown in Figure 11. The normally distributed thermal capacitances have been lumped into single capacitors labelled $C_{\rm J},\,C_{\rm C},\,$ and $C_{\rm S}.$ This simplification assumes current is evenly distributed across the silicon chip and that the only significant power losses occur in the junction. When a step pulse of heating power P is introduced at the junction, Figure 12a shows that $T_{\rm J}$ will rise at an exponential rate to some steady state value dependent upon the response of the thermal network. When the power input is terminated at time $t_2,\,T_{\rm J}$ will decrease along the curve indicated by $T_{\rm cool}$ in Figure 12a back to its initial value. Transient thermal resistance at time t is thus defined as:

$$Z_{(th)JC} = \frac{\Delta T_{JC}(t)}{P}$$
 (6)

The transient thermal resistance curve approaches the steady state value at long times and the slope of the curve for short times is inversely proportional to $C_J.$ In order that this curve can be used with confidence, it must represent the highest values of $Z_{(th),JC}$ for each time interval that can be expected from the manufacturing distribution of products.

While predicting T_J in response to a series of power pulses becomes very complex, superposition of power pulses offers a rigorous numerical method of using the transient thermal resistance curve to secure a solution. Superposition tests the response of a network to any input function by replacing the input with an equivalent series of superimposed positive and negative step functions. Each step function must start from zero and continue to the time for

which T_J is to be computed. For example, Figure 13 illustrates a typical train of heating pulses.

Figure 11 Transient Thermal Resistance Model

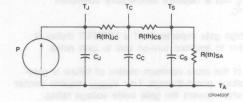
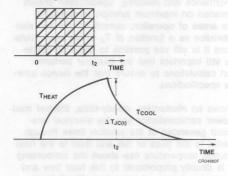
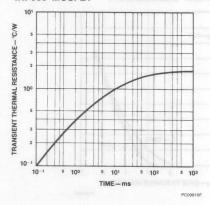




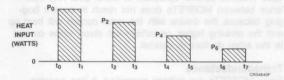
Figure 12

a. Junction Temperature Response to a Step Pulse of Heating Power

b. Transient Thermal Resistance Curve for Fairchild IRF330 MOSFET

T_J at time t is given by:

$$T_{J}(t) = T_{J}(0) + \sum_{i} Pi[Z_{(th)JC}(t_{n} - t_{i}) - Z_{(th)JC}(t_{n} - t_{i+1})]$$


$$i = 0$$
(7)

The usual use condition is to compute the peak junction temperature at thermal equilibrium for a train of equal amplitude power pulses as shown in Figure 14.

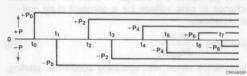
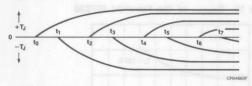
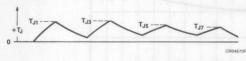

To further simplify this calculation, the bracketed expression in equation (G) has been plotted for all Fairchild pow-

Figure 13 Use of Superposition to Determine Peak T.J


a. Heat Input


b. Equivalent Heat Input by Superposition of Power Pulses

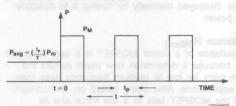
 Junction temperature response to individual power pulses of b

d. Actual T_J

er MOSFETs, as exemplified by the plot of $Z_{(th)JC}$ in Figure 14b. From this curve, one can readily calculate T_J if one knows P_M , $Z_{(th)JC}$ and T_C using the expression:

$$T_{J} = T_{C} + P_{M} \times Z_{(th)JC}$$
 (8)

Example: Compute the maximum junction temperature for a train of 25 W, 200 μ s wide heating pulses repeated every 2 ms. Assume a case temperature of 95°C.


Duty factor = 0.1

From Figure 14b: Z_{(th)JC} = .55°C/W

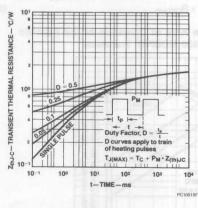

Substituting into equation (H): $T_{J(max)} = 95 + 25 \times .55 = 108.75$ °C

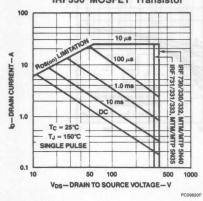
Figure 14

a. Train of Power Pulses

 Normalized Z_{thJC} for Fairchild IRF330 for Power Pulses Typified in 14a

Safe Area of Operation

The power MOSFET is not subject to forward or reverse bias second breakdown, which can easily occur in bipolar junction transistors. Second breakdown is a potentially catastrophic condition in bi-polar transistors caused by thermal hot spots in the silicon as the transistor turns on or off. However in the MOSFET, the carriers travel through the device much as if it were a bulk semiconductor, which exhibits a positive temperature coefficient of 0.6%/°C. If current attempts to self-constrict to a localized area, the increasing temperature of the spot will raise the spot resistance due to the positive temperature coefficient of the bulk silicon. The ensuing higher voltage drop will tend to redistribute the current away from the hot spot. Figure 15 delineates the safe areas of operation of the Fairchild IRF330 device.


Note that the safe area boundaries are only thermally limited and exhibit no derating for second breakdown. This shows that while the MOSFET transistor is very rugged, it may still be destroyed thermally by forcing it to dissipate too much power.

On-resistance R_{DS(on)}

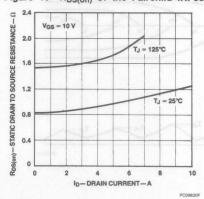
The on-resistance of a power MOSFET is a very important parameter because it determines how much current the device can carry for low to medium frequency (less than 200 kHz) applications. After being turned on, the on-state voltage of the MOSFET falls to a low value and its $R_{DS(on)}$ is defined simply as its on-state voltage divided by on-state current. When conducting current as a switch, the conduction losses P_{C} are:

$$P_{C} = I^{2}_{D(RMS)} \times R_{DS(on)}$$
(9)

Figure 15 Safe Area of Operation of the Fairchild IRF330 MOSFET Transistor

To minimize $R_{DS(on)}$, the applied gate signal should be large enough to maintain operation in the linear or ohmic region as shown in *Figure 8*. All Fairchild MOSFETs will conduct their rated current for V_{GS} = 10 V, which is also the value used to generate the curves of $R_{DS(on)}$ vs I_D and T_J that are shown in *Figure 16* for the Fairchild IRF330. Since $R_{DS(on)}$ increases with T_J , *Figure 16* plots this parameter as a function of current for room ambient and elevated temperatures.

Note that as the drain current rises, $R_{DS(on)}$ also increases once I_D exceeds the rated current value. Because the MOSFET is a majority carrier device, the component of $R_{DS(on)}$ due to the bulk resistance of the N- silicon in the drain region increases with temperature as well. While this must be taken into account to avoid thermal runaway, it does facilitate parallel operation of MOSFETs. Any inbalance between MOSFETs does not result in current hogging because the device with the most current will heat up and the ensuing higher on-voltage will divert some current to the other devices in parallel.


Transconductance

Since MOSFETs are voltage controlled, it has become necessary to resurrect the term transconductance g_{fs} , commonly used in the past with electron tubes. Referring to Figure 8, g_{fs} equals the change in drain current divided by the change in gate voltage for a constant drain voltage. Mathematically:

$$g_{fs} \text{ (Siemens)} = \frac{dI_D(A)}{dV_{GS}(V)}$$
 (10)

Transconductance varies with operating conditions, starting at 0 for $V_{\rm GS} < V_{\rm GS(th)}$ and peaking at a finite value when the device is fully saturated. It is very small in the ohmic region because the device cannot conduct any more cur-

Figure 16 R_{DS(on)} of the Fairchild IRF330

rent. Typically g_{fs} is specified at half the rated current and for $V_{DS} = 20\,$ V. Transconductance is useful in designing linear amplifiers and does not have any significance in switching power supplies.

Gate Drive Circuits for Power MOSFETs

The drive circuit for a power MOSFET will affect its switching behavior and its power dissipation. Consequently the type of drive circuitry depends upon the application. If on-state power losses due to $R_{\rm DS(on)}$ will predominate, there is little point in designing a costly drive circuit. This power dissipation is relatively independent of gate drive as long as the gate-source voltage exceeds the threshold voltage by several volts and an elaborate drive circuit to decrease switching times will only create additional EMI and voltage ringing. In contrast, the drive circuit for a device switching at 200 kHz or more will affect the power dissipation since switching losses are a significant part of the total power dissipation.

Compared to a bi-polar junction transistor, the switching losses in a MOSFET can be made much smaller but these losses must still be taken into consideration. Examples of several typical loads along with the idealized switching waveforms and expressions for power dissipation are given in Figures 17 to 19.

Their power losses can be calculated from the general expression:

$$P_{D} = \left(\frac{1}{\tau} \int_{0}^{\tau} I_{D}(t) \cdot V_{DS}(t) dt\right) \cdot f_{S}$$
(11)

where: f_s = Switching frequency.

For the idealized waveforms shown in the figures, the integration can be approximated by the calculating areas of triangles:

Resistive load:

$$P_D = \frac{V^2_{DD}}{R} \left[\frac{t_{(on)} + t_{(off)}}{6} + R_{DS(on)} \cdot T \right] \cdot f_s$$

Inductive load:

$$P_D = \frac{V_{CL} \ I_m \ t_{(off)} f_s}{2} + P_c$$

where:

P_C = conduction loss during period T.

Capacitive load

$$P_D = \left(\frac{CV^2_{DD}}{2} + \frac{V^2_{DD}R_{DS(on)}}{R^2} T\right) f_s$$

Gate losses and blocking losses can usually be neglected. Using these equations, the circuit designer is able to estimate the required heat sink. A final heat run in a controlled temperature environment is necessary to ensure thermal stability.

Figure 17 Resistive Load Switching Waveforms

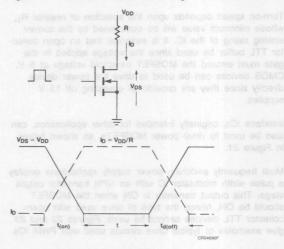


Figure 18 Clamped Inductive Load Switching Waveforms

Since a MOSFET is essentially voltage controlled, the only gate current required is that necessary to charge the input capacitance $C_{\rm iss}$. In contrast to a 10 ampere bipolar transistor, which may require a base current of 2 amperes to ensure saturation, a power MOSFET can be driven directly by CMOS or open-collector TTL logic circuit similar to that in Figure 20.

Turn-on speed depends upon the selection of resistor R_1 , whose minimum value will be determined by the current sinking rating of the IC. It is essential that an open collector TTL buffer be used since the voltage applied to the gate must exceed the MOSFET threshold voltage of 5 V. CMOS devices can be used to drive the power device directly since they are capable of operating off 15 V supplies.

Interface ICs, originally intended for other applications, can also be used to drive power MOSFETs, as shown below in Figure 21.

Most frequently switching power supply applications employ a pulse width modulator IC with an NPN transistor output stage. This output transistor is ON when the MOSFET should be ON, hence the type of drive used with open-collector TTL devices cannot be used. Figures 22 and 23 give examples of typical drive circuits used with PWM ICs.

Figure 19 Capacitive Load Switching Waveforms

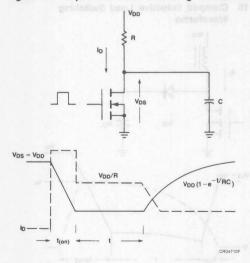


Figure 20 Open Collector TTL Drive Circuit

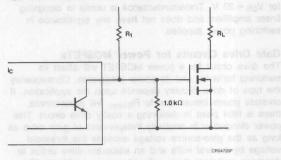


Figure 21 Interface ICs Used to Drive Power MOSFETs

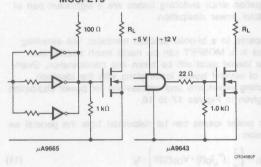
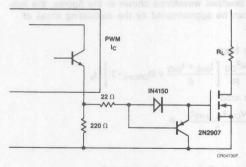



Figure 22 Circuit for PWM IC Driving MOSFET
The PNP Transistor Speeds Up Turn-off

Isolation: Off-line switching power supplies use power MOSFETs in a half-bridge configuration because inexpensive, high voltage devices with low R_{DS(on)} are not available.

Since one of the power devices is connected to the positive rail, its drive circuitry is also floating at a high potential. The most versatile method of coupling the drive circuitry is to use a pulse transformer. Pulse transformers are also normally used to isolate the logic circuitry from the MOSFETs operating at high voltage to protect it from a MOSFET failure.

The zener diode shown in Figure 25 is included to reset the pulse transformer quickly. The duty cycle can approach 50% with a 12 V zener diode. For better performance at turn-off, a PNP transistor can be added as shown in Figure 26.

Figure 27 illustrates an alternate method to reverse bias the MOSFET during turn-off by inserting a capacitor in series with the pulse transformer. The capacitor also ensures that the pulse transformer will not saturate due to DC bias.

Figure 23 Emitter Follower with Speed-up Capacitor

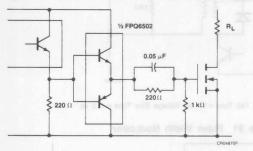


Figure 24 Half-bridge configuration

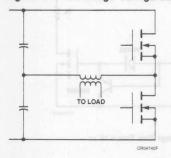


Figure 25 Simple Pulse Transformer Drive Circuit
The Transistor May Be a Part of a PWM IC
If Applicable

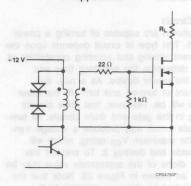


Figure 26 Improved Performance at Turn-off With a Transistor

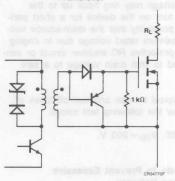
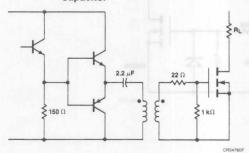
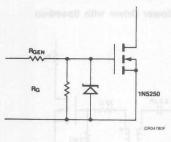



Figure 27 Emitter Follower Driver with Speed-up Capacitor

Opto-isolators may also be used to drive power MOSFETs but their long switching times make them suitable only for low frequency applications.

Selecting a Drive Circuit


Any of the circuits shown are capable of turning a power MOSFET on and off. The type of circuit depends upon the application. The current sinking and sourcing capabilities of the drive circuit will determine the switching time and switching losses of the power device. As a rule, the higher the gate current at turn-on and turn-off, the lower the switching losses will be. However, fast drive circuits may produce ringing in the gate and drain circuits. At turn-on, ringing in the gate circuit may produce a voltage transient in excess of the maximum $V_{\rm GS}$ rating, which will puncture the gate oxide and destroy it. To prevent this occurrence, a zener diode of the appropriate value may be added to the circuit as shown in Figure 28. Note that the zener should be mounted as close as possible to the device.

At turn-off, the gate voltage may ring back up to the threshold voltage and turn on the device for a short period. There is also the possibility that the drain-source voltage will exceed its maximum rated voltage due to ringing in the drain circuit. A protective RC snubber circuit or zener diode may be added to limit drain voltage to a safe level.

Figures 29 - 34 give typical turn-on and turn-off times of various drive circuits for the following test circuit:

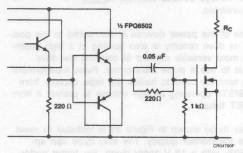

Device: Fairchild IRF450, V_{DD} = 200 V, Load = 33 Ω resistor.

Figure 28 Zener Diode to Prevent Excessive Gate-Source Voltages

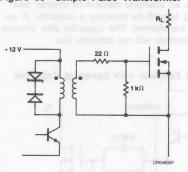

Drive Circuit Turn-on/Turn-off Times

Figure 29 Emitter Follower PWM

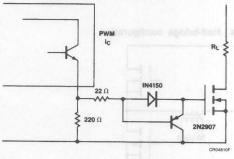

Note
Voltage Fall Time = 17 ns, Voltage Rise Time = 20 ns

Figure 30 Simple Pulse Transformer

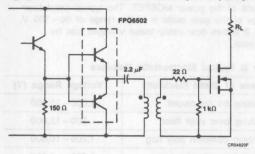

Note
Voltage Fall Time = 50 ns, Voltage Rise Time = 112 ns

Figure 31 Pulse Width Modulator

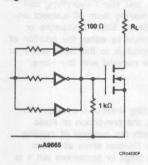

Note
Voltage Fall Time = 50 ns, Voltage Rise Time = 16 ns

Figure 32 Pulse Transformer with Speed-up Capacitor

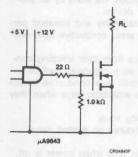

Note
Voltage Fall Time = 63 ns, Voltage Rise Time = 74 ns

Figure 33 Interface Drive

Note
Voltage Fall Time = 200 ns, Voltage Rise Time = 84 ns

Figure 34 Interface Drive

Note
Voltage Fall Time = 70 ns, Voltage Rise Time = 30 ns

Protecting Power MOSFETs from Static Electricity

Product Bulletin PD-1

Power And Discrete Division

One of the potential problems in the handling of power MOSFETs is damage due to the discharge of static electricity. Since Electro-Static Discharge (ESD) can cause degradation or complete component failure, it is necessary that these components be handled in static safe work stations and that all personnel be trained to handle these components safely.

ESD Basics

Static electricity is generated by the simple separation of any two non-conductive surfaces. Note that rubbing is not necessary, but only separation. As the materials are separated, one surface becomes positively charged and the other negatively charged according to their position in the Triboelectric Series Table shown below. Power MOSFETs can be affected by either a discharge or an electric field caused by the presence of this charge, so the presence of either polarity is cause for concern.

Table 1 - Triboelectric Series

Substance	Charge Range
Air	Greatest Positive Charge
Human Skin	
Glass	
Mica	
Human hair	
Nylon	
Wool	
Silk	
Paper	
Cotton	
Wood	
Hard rubber	
Acetate rayon	
Polyester	
Polyurethane	
PVC	
Teflon	Greatest Negative Charge

From this table, it can be seen that cotton is relatively neutral. Materials that do not hold moisture are the most significant contributors to ESD because moisture lowers their resistivity and, therefore, the relative humidity in the work environment plays a major role in the magnitude of ESD voltage.

ESD damage is caused by the build-up of static charge on the gate of the power MOSFET. The typical breakdowr voltage of the gate oxide is in the range of $60-100\,$ V. Table 2 shows how easily these voltages can be generated.

Table 2: Typical Electrostatic Voltages

Means of Static Electricity	Voltage Range (V)
Walking on dry carpet	1,000 – 35,000
Walking over vinyl floor	200 – 12,000
Rubbing common poly bag	1,200 – 10,000
Separating adhesive tape	1,000 - 5,000

People and plastics are the biggest culprits in the generation of static electricity. Since most items found in a manufacturing area are synthetic, just about everything can and will generate a charge, making them all suspect unless they are rendered Anti-Static, Static Dissipative or Conductive. This is accomplished by either the addition of anti-static or conductive compounds to the basic resins or by coating the surface of the material with the same compounds.

ESD Protection

The basic method for protecting electronic components from ESD damage combines the prevention of static charge accumulation along with the removal of existing charges. Power and Discrete Division ships all power MOSFETs in ESD protection bags or containers but it is recommended that special handling guidelines be adhered to to insure that no damage occurs during subsequent inspection and manufacturing operations.

- 1. In order to remove unwanted stray charge from operators, a grounded wrist strap should be worn by all production personnel handling the device.
- 2. In order to ground both machinery and transient personnel that enter a production area, conductive floor and table mats should be used.
- 3. When removing the devices from their shipping containers, they should be placed on a grounded surface.
- 4. The devices should be stored in a conductive material and should be placed inside anti-static bags when they are being transported.
 - 5. Ground the tips of soldering irons.
- 6. Ground metal parts and fixtures on printed circuit cards.
- 7. Insert and remove the part only when power is off.
- 8. An ionized air blower may be used to neutralize static charges on non-conductive materials. This blower should provide a constant stream of both positive and negative ions.

	Index, Selector Guides, Industry Cross Reference	1
	Power MOSFETs and Ultra-Fast Recovery Rectifier Data Sheets	2
	MOSFET and Rectifier Dice	3
	Advanced Products	4
Λ	Application Notes/ESD	5
\Rightarrow	Quality Assurance and Reliability	6
~	Ordering Information and Package Outlines	7
	Field Sales Offices	8

Quelly Assurance and Relicibility

Quality Assurance and Reliability

Fairchild Committment to Quality

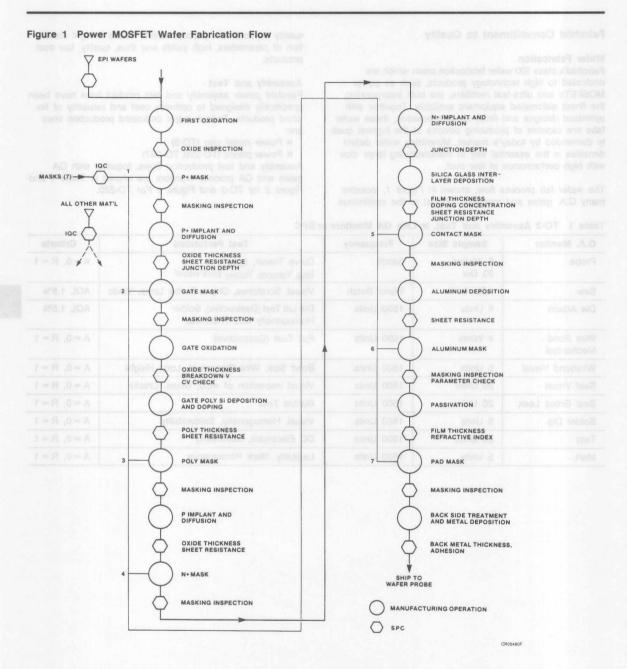
Wafer Fabrication

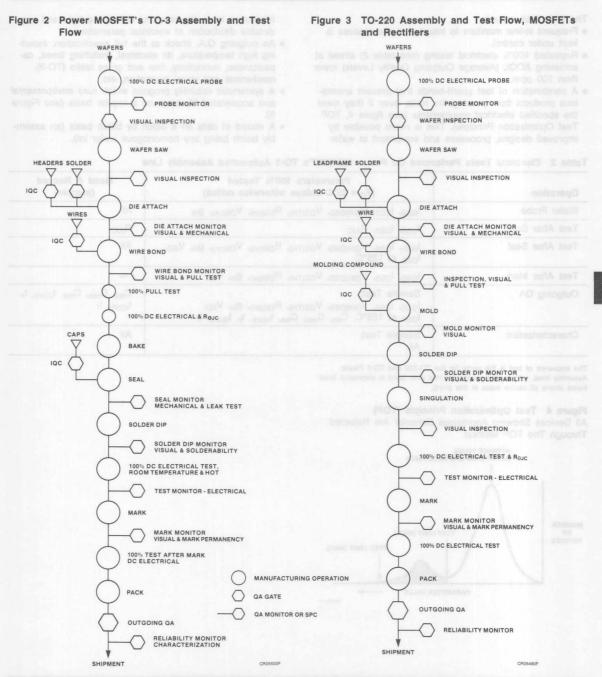
Fairchild's class 100 wafer fabrication areas which are dedicated to high technology products, such as power MOSFETs and ultra-fast rectifiers, are built incorporating the finest automated equipment available. Together with optimized designs and finely-tuned processes, these wafer fabs are capable of producing devices of the highest quality demanded by today's market. Minimizing wafer defect densities is the essential key to manufacturing large dice with high performance at low cost.

The wafer fab process flow, shown in Figure 1, includes many Q.A. gates and monitors, all part of the continuous

quality improvement process which results in tight distribution of parameters, high yields and thus, quality, low cost products.

Assembly and Test


Fairchild power assembly and test product lines have been specifically designed to optimize cost and reliability of finished products. Todays major dedicated production lines are:


- Power metal can (TO-3)
- Power plastic (TO-220, TO-247)

Assembly and test production flows, together with QA gates and QA process monitors are shown in Table 1 and Figure 2 for TO-3 and Figure 3 For TO-220.

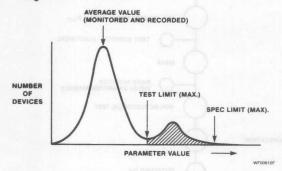
Table 1 TO-3 Assembly and Test, In-Line QA Monitors or SPC

Q.A. Monitor	Sample Size	Frequency	Test Performed	Criteria
Probe	5 Wafers 20 Die	Batch	Curve Tracer, I _{GSS} I _{DSS} , V _{(BR)DSS} , V _{GS(th)} plus visual	A = 0, R = 1
Saw	AQL 1.5%	Wafer Batch	Visual: Scratches, Chips, Scribe Lines, Voids	AQL 1.5%
Die Attach	5 Units	1500 Units	Die Lift Test (Destructive), Solder Homogeneity and Thickness	AQL 1.5%
Wire Bond Mechanical	4 Wires	1500 Units	Pull Test (Destructive)	A = 0, R = 1
Wirebond Visual	5 Units	1500 Units	Bond Size, Wire Placement, Loop Height	A = 0, R = 1
Seal Visual	20 Units	1500 Units	Visual Inspection of weld, Glass, Cracks	A = 0, R = 1
Seal Gross Leak	20 Units	1500 Units	Bubble Test	A = 0, R = 1
Solder Dip	5 Units	1500 Units	Visual, Homogeneity, Solderability	A = 0, R = 1
Test	20 Units	1500 Units	DC Electricals, Misbinning	A = 0, R = 1
Mark	5 Units	1500 Units	Legibility, Mark Permanency	A = 0, R = 1

Quality Assurance and Reliability

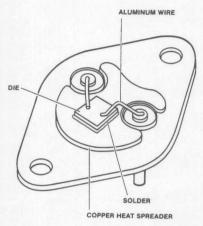
The main features are:

- Frequent in-line monitors to insure that the process is kept under control.
- Repeated 100% electrical testing (see table 2) aimed at achieving AOQL (Average Outgoing Quality Levels) lower than 100 ppm.
- A combination of test guard-bands that prevent anomalous products from passing the tests, even if they meet
 the specified electrical requirements (see figure 4, TOP
 Test Optimization Principle). This is made possible by
 improved designs, processes and equipment at wafer
- fabrication level, the result of which is a tight and predictable distribution of electrical parameters.
- An outgoing Q.A. check to the full specification, including high temperature, dc electrical, switching times, capacitances, hermeticity, fine and gross leaks (TO-3), mechanical and visual inspection, etc.
- A systematic reliability program which runs environmental and accelerated life tests on a regular basis (see Figure 5).
- A record of data on a batch by batch basis (an assembly batch being any homonogous wafer lot).


Table 2 Electrical Tests Performed On Power MOSFET's TO-3 Automated Assembly Line

Parameters 100% Tested Operation (T _C = 25°C unless otherwise noted)		Read & Record (sample)	
Wafer Probe	IGSS, IDSS, V(BR)DSS, VGS(TH), RDS(on), VDS(on), Gfs	All	
Test After Bond	Igss, Ipss, Rauc	R _{θJC}	
Test After Seal	IGSS, IDSS, V(BR)DSS, VGS(TH), RDS(on), VDS(on), gfs, VSD, IDSS at 125°C	All	
Test After Mark	IGSS, IDSS, V(BR)DSS, VGS(TH), RDS(on), 9fs, VSD	0-	
Outgoing QA	Sample Test: IGSS, IDSS, V(BR)DSS, VGS(TH), RDS(on), gfs, VSD, IDSS at 125°C, Ciss, Coss, Crss, td(on), tr, td(off), tf	C _{iss} , C _{oss} , C _{rss} , t _{d(on)} , t _r , t _{d(off)} , t _f	
Characterization	Sample Test: All	All 8943	

The sequence of test is the same for the TO-220 and TO-3 Plastic Assembly lines, with the exception that test after bond is eliminated (lead frame shorts all device leads at this point).


Figure 4 Test Optimization Principle (TOP)

All Devices Showing Anomalous Behavior Are Rejected Through The TOP Method

Quality Assurance and Reliability

Figure 5 Control of TO-3 Assembly Quality

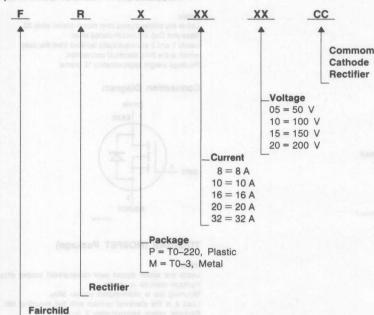
IS00040F

Component	Electric Tests	QA Monitors	Reliability Tests
Solder	$R_{ heta$ JC	Die LIFT Visual inspection	• Temp Cycles -55, +150°C • Power Cycles ∆T _C = 70°C
Die	DC Electricals, Switching Times, Capacitances	Visual Inspection	 HTRB: 80% V_{(BR)DSS}, T_j = 150°C HTS: 150°C HTGB: 20 V, 150°C OP LIFE: T_J = 150°C
Al. Wire	R _{DS(on)} , V _{DS(on)} , V _F	Visual Inspection Pull Test	 Temp Cycles -55 to +150°C Power Cycles ∆T_C = 70°C OP LIFE: T_J = 150°C

Summery

HTRB = High Temperature Reverse Bias
HTS = High Temperature Storage
HTGB = High Temperature Gate Bias
OPLIFE = Operating Life, Device Heat Sunk, Rated Power
Applied

Index, Selector Guides, Industry Cross Reference	1
Power MOSFETs and Ultra-Fast Recovery Rectifier Data Sheets	2
MOSFET and Rectifier Dice	3
Advanced Products	4
Application Notes/ESD	5
Quality Assurance and Reliability	6
Ordering Information and Package Outlines	7
Field Sales Offices	8



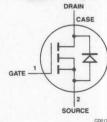

Ordering Information

Fairchild POWERplanar Rectifier Numbering System

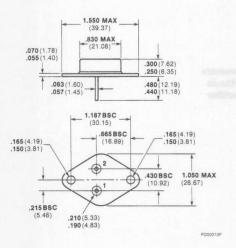
 All devices should be ordered using the Fairchild part number as shown in this data book.

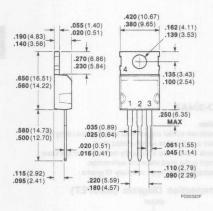
Package Outlines

Notes:


TO-204AA and TO-204AE are shipped in 50 piece cavity antistatic trays. TO-220AB and TO-220AC are shipped in 50 piece antistatic tubes. All dimensions in inches (bold) and millimeters (parentheses).

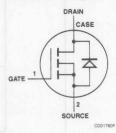
TO-204AA


Notes:


Leads are solder dipped over nickel-plated alloy 52. Base and Cap are nickel-plated steel. Leads 1 and 2 are electrically isolated from the case which is the third electrical connection. Package weight approximately 12 grams.

Connection Diagram (MOSFET)

Package Outlines

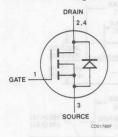


TO-204AE

Notes:

Leads are solder dipped over nickel-plated alloy 52. Base and Cap are nickel-plated steel. Leads 1 and 2 are electrically isolated from the case which is the third electrical connection. Package weight approximately 12 grams.

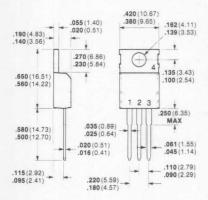
Connection Diagram

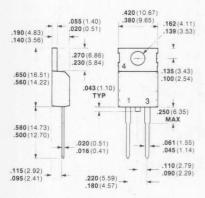


TO-220AB (MOSFET Package)

Notes

Leads are solder dipped over nickel-plated copper alloy. Package material is plastic. Mounting tab is nickel-plated copper alloy. Lead 2 is the electrical contact with the mounting tab. Package weight approximately 2 grams.


Connection Diagram


Notes:

TO-204AA and TO-204AE are shipped in 50 piece cavity antistatic trays. TO-220AB and TO-220AC are shipped in 50 piece antistatic tubes. All dimensions in inches (bold) and millimeters (parentheses).

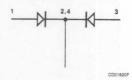
Package Outlines

PD003308

PD00340F

TO-220AB (Rectifier Package)

Notes:


Leads are solder-dipped over nickel-plated copper alloy. Package material is plastic.

Mounting tab is nickel-plated copper alloy.

Lead 2 is the electrical contact with the mounting tab.

Package weight approximately 2 grams.

Connection Diagram

TO-220AC

Notes

Leads are solder-dipped over nickel-plated copper alloy. Package material is plastic. Mounting tab is nickel-plated copper alloy. Lead 1 is the electrical contact with the mounting tab. Package weight approximately 2 grams.

Connection Diagram

Notes:

TO-204AA and TO-204AE are shipped in 50 piece cavity antistatic trays. TO-220AB and TO-220AC are shipped in 50 piece antistatic tubes. All dimensions in inches (bold) and millimeters (parentheses).

Packago Outlines

O-270AB (Rectifler Peckage)

Notes

Leans, are solder-dipped over niced-plated copper alloy Package material is prestic. Moyedrey tall its niced-plated copper aloy, Least 2 is the electrical contact with the mounting table Packages viewell approximately 2 minus.

Connection Disgram

CARRES OT

Motes

ence are exceed-copper over nover-planed supplied alloy, frazinger tab a nickel-planed copper cities, voice 1 is the electrical compact with the mounting tab. Fackage weight approximately 2 grams.

Connection Diagram

Notes:

AAACS-OT AAACS-OT-AAACS are uniqued in 80 clock bears and talk to the AAACS-OT according to the according to the AAACS-OT according to the AAACS-OT